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Abstract: We introduce and develop a weighted Bayesian bootstrap (WBB) for machine learning and
statistics. WBB provides uncertainty quantification by sampling from a high dimensional posterior
distribution. WBB is computationally fast and scalable using only off-the-shelf optimization software.
First-order asymptotic analysis provides a theoretical justification under suitable regularity conditions on
the statistical model. We illustrate the proposed methodology in regularized regression, trend filtering and
deep learning and conclude with directions for future research. The Canadian Journal of Statistics 49:
421–437; 2021 © 2020 Statistical Society of Canada
Résumé: Les auteurs développent un bootstrap pondéré bayésien (BPB) pour l’apprentissage machine et
la statistique. Le BPB offre une quantification de l’incertitude en échantillonnant à partir d’une loi a
posteriori en haute dimension. Il est rapide à calculer et peut être mis à l’échelle en utilisant uniquement
des logiciels d’optimisation prêts à l’emploi. Les auteurs justifient la méthode théoriquement à l’aide
d’une analyse asymptotique du premier ordre sous des conditions de régularité du modèle statistique. Ils
illustrent la méthodologie proposée avec des modèles de régression régularisée, de filtrage des tendances,
et d’apprentissage profond. Ils concluent par des pistes de recherche. La revue canadienne de statistique
49: 421–437; 2021 © 2020 Société statistique du Canada

1. INTRODUCTION

Weighted Bayesian bootstrap (WBB) is a simulation-based algorithm for assessing uncertainty
in machine learning and statistics. Uncertainty quantification (UQ) is an active area of research,
particularly in high-dimensional inference problems (Wang & Swiler, 2018). Whilst there are
computationally fast and scalable algorithms for training models in a wide variety of contexts,
uncertainty assessments are still required, as are methods to compute these assessments. Bayesian
analysis offers a general solution, but developing computationally fast scalable algorithms for
sampling a posterior distribution is a notoriously hard problem. WBB makes a contribution to this
literature by showing how off-the-shelf optimization algorithms, such as convex optimization or
stochastic gradient descent (SGD), can be adapted to provide uncertainty assessments. Our goal
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here is to marry Bayesian uncertainty techniques with state-of-the-art optimization methods and
software systems.

For relatively simple statistical models, the weighted likelihood bootstrap (WLB) method
provides approximate posterior sampling through repeated optimization of a randomly weighted
likelihood function (Newton & Raftery, 1994). The proposed WBB extends the WLB to
a broad class of contemporary statistical models by leveraging advances in optimization
methodology. Essentially, the WLB used optimization of certain randomized objective functions
to enable approximate marginalization (i.e., integration) required in Bayesian analysis. The same
idea—optimize a randomized objective function to achieve posterior sampling—is at the heart
of the proposed WBB method, though some changes to the WLB procedure are required to carry
out this program for the models considered. Theoretical support for the WLB approximation is
based on connections between posterior variation and curvature of the log-likelihood revealed
through repeated optimization of randomly weighted likelihoods. By contrast, the proposed WBB
calculates a series of randomized posterior modes rather than randomized likelihood maximizers.
A key rationale for this proposal is that high dimensional posterior modes are now readily
computable, thanks to systems such as TensorFlow (Abadi et al., 2015) and Keras (Chollet,
2015) that deploy SGD and convex optimization methods for large-scale problems, such as on
neural network architectures used in deep learning (LeCun, Bengio & Hinton, 2015). By linking
random weighting with advanced optimization, we expose a simple scheme for approximate
uncertainty quantification in a wide class of statistical models.

Quantifying uncertainty is typically unavailable in a purely regularization optimization
method. We contend that UQ is available directly by repeated optimization of randomized
objective functions, using the same computational tools that produce the primary estimate,
rather than through Markov chain Monte Carlo, variational methods, approximate Bayesian
computation (ABC), or other techniques. See Green et al. (2015) for a good summary of
Bayesian computation history. Thus, uncertainty assessments are provided at little extra effort
over the original training computations. A further benefit is that with extra computational cost, it
is straightforward to add a regularization path across hyper-parameters (e.g., simply repeat WBB
on different 𝜆), which is usually difficult to compute in traditional Bayesian sensitivity analysis.
We use predictive cross-validation techniques in this regard.

The rest of the article is outlined as follows. Section 2 develops our weighted Bayesian
Bootstrap (WBB) algorithm. Section 3 provides applications to high dimensional sparse regres-
sion, trend filtering and deep learning. WBB can also be applied to Bayesian tree models
(Taddy et al., 2015). Section 4 indicates several directions for future research, including boot-
strap filters in state-space models (Gordon, Salmond & Smith, 1993) and connections to the
resampling-sampling perspective in sequential Bayesian inference (Lopes, Polson, & Carvalho,
2012).

2. WEIGHTED BAYESIAN BOOTSTRAP

2.1. Setting
We work with a broad class of statistical models for data structures involving outcomes
and covariates. Examples considered in Section 3 include regression, trend-filtering, and deep
learning. Let y = (y1, y2,… , yn) be an n-vector of outcomes and let 𝜃 = (𝜃1, 𝜃2,… , 𝜃p) be a
p-dimensional parameter of interest. Covariate data may be organized in an n × p matrix A whose
rows are the design points (or “features”) aT

i where we index observations by i and parameters
by 𝑗. A large number of estimation/training problems can be expressed in the form

minimize
𝜃∈d

(𝜃) ∶= l(y|𝜃) + 𝜆𝜙(𝜃), (1)
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where l(y|𝜃) = ∑n
i=1 li(yi|𝜃) is a measure of fit (or “empirical risk function”) depending on 𝜃

and y and implicitly on A. The penalty function, or regularization term, 𝜆𝜙(𝜃), may encode
soft or hard constraints, and is controlled by a hyper-parameter, 𝜆 > 0, whose values index
an entire path of solutions. The penalty function 𝜙(𝜃) effects a favourable bias-variance
estimation trade-off and provides extensive modelling flexibility (Wellner & Zhang, 2012). To
accommodate contemporary applications we allow 𝜙(𝜃) to have points in its domain where it
fails to be differentiable (e.g., L1 norm). If we treat data, y, as arising from a probabilistic model
parameterized by 𝜃, then the likelihood function p(y|𝜃) yields the model-associated measure of fit
l(y|𝜃) = − log p(y|𝜃). The maximum likelihood estimator (MLE) is 𝜃̂ ∶= argmax𝜃 p(y|𝜃), though
of course this usually differs from the solution to Equation (1): 𝜃∗ ∶= argmin {l(y|𝜃) + 𝜆𝜙(𝜃)}].
We recall a key duality between regularization and Bayesian analysis.

2.2. Bayesian regularization duality
From the Bayesian perspective, the measure of fit, l(y|𝜃) = − log p(y|𝜃), and the penalty function,
𝜆𝜙(𝜃), correspond to the negative logarithms of the likelihood and prior distribution in the model

p(y|𝜃) ∝ exp{−l(y|𝜃)} ,

p(𝜃) ∝ exp{−𝜆𝜙(𝜃)},

p(𝜃|y) ∝ exp{−(l(y|𝜃) + 𝜆𝜙(𝜃))}. (2)

This posterior p(𝜃|y) is often a proper distribution over d, even if the prior p(𝜃) is not proper.
The well-known equivalence between regularization and Bayesian methods is seen, for example,
in regression with a Gaussian regression model subject to a penalty such as an L2-norm (ridge)
Gaussian prior or L1-norm (LASSO) double exponential prior. By this duality, the posterior
mode, or maximum a posteriori (MAP) estimate, is 𝜃∗, a solution to Equation (1). See Gribonval
& Machart (2013) for a nuanced view of the connection between Equations (1) and (2) in
Gaussian regression models.

2.3. Optimization
Advances in optimization methodology provide efficient algorithms to compute 𝜃∗ = argmin(𝜃)
for a wide range of loss and penalty functions. Theory is well developed in the case of convex
objective functions (e.g., Bertsekas, Nedi & Ozdaglar, 2003; Boyd & Vandenberghe, 2004). For
example if loss l is convex and differentiable in 𝜃 and penalty 𝜙 is convex, then a necessary and
sufficient condition for 𝜃∗ to minimize l(y|𝜃) + 𝜆𝜙(𝜃) is

0 ∈ 𝜕
{

l(y|𝜃∗) + 𝜆𝜙(𝜃∗)
}
= ∇l(y|𝜃∗) + 𝜆𝜕𝜙(𝜃∗), (3)

where 𝜕 is the subdifferential operator (the set of subgradients of the objective), in this case the
sum of a point and a set. Though not a formula for 𝜃∗, such as given by the normal equations
in linear regression, Equation (3) usefully guides algorithms that aim to solve 𝜃∗. For example,
under separability conditions on the penalty function, coordinate descent algorithms effectively
solve for 𝜃∗; see Wright (2015), or Hastie, Tibshirani & Wainwright (2015, chap. 5) for a
statistical perspective. The optimization literature also characterizes 𝜃∗ as the fixed point of a
proximal operator prox𝛾(𝜃) = argminz{(z) − 1

2𝛾
‖z − 𝜃‖2

2}, which opens the door to powerful
MM algorithms and related schemes; see Lange (2016, chap. 5), Polson & Scott (2015), and
Polson, Scott & Willard (2015). Beyond convexity, the guarantees are weaker (e.g., local not
global minima) and the algorithms are many (e.g., Nocedal & Wright, 2006). Gradient descent
or SGD are effective in many cases, owing to parameter dimensionality and structure of the
gradients. The appendix develops SGD for one example.
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Advances in applied optimization provide effective software tools for data analysis. For
example, the R package glmnet deploys coordinate descent for loss functions arising
from generalized linear models and LASSO or elastic net penalties (Friedman, Hastie &
Tibshirani, 2010). To solve the generalized LASSO problem, the R package genlasso
deploys a dual path algorithm (Arnold & Tibshirani, 2014). A variety of general pur-
pose optimization tools for statistics are compiled at the optimization view at CRAN
(https://cran.r-project.org/web/views/Optimization.html). For machine
learning, the TensorFlow system has greatly simplified gradient descent, SGD, and related
algorithms for many applications (Abadi et al., 2015).

2.4. WBB Algorithm
We now define the WBB. Recalling the original objective function Equation (1), we form the
randomized objective

w(𝜃) =

{
n∑

i=1

wili(yi|𝜃)} + 𝜆w0𝜙(𝜃), (4)

where entries of w = (w0,w1,… ,wn) are independent and identically distributed (i.i.d.) standard
exponentially distributed random weights, generated by the analyst and independently from the
data y. Equivalently, wi = log(1∕ui) where ui’s are i.i.d. Uniform(0, 1). When p is relatively
large and 𝜙(𝜃) is separable as 𝜙(𝜃) =

∑p
𝑗=1 𝜙𝑗(𝜃𝑗), we recommend an extension in which w0 =

(w0,1,w0,2,… ,w0,p) allows separate i.i.d. random weights on the prior regularization terms𝜙𝑗 (𝜃𝑗),
namely 𝜆

∑p
𝑗=1 w0,𝑗𝜙𝑗(𝜃𝑗), to help with sparsity and to reduce the effect of occasionally large

scalar weight. In either case, associated with any vector w is the solution, 𝜃∗w = argminw(𝜃).
Our basic conjecture is that the conditional distribution of 𝜃∗w —the distribution induced by w
with the data fixed—approximates the Bayesian posterior Equation (2). For any measurable set
 in the parameter space,

Pr
(
𝜃∗w ∈ |y) ≈ ∫ p(𝜃|y) d𝜃. (5)

Section 2.5 provides an asymptotic argument in support of Equation (5), and we investigate the
approximation numerically in a few examples in Section 3. Assuming this conjecture is true, we
have a straightforward optimization-based algorithm for approximate posterior sampling:

Algorithm 1 Weighted Bayesian bootstrap

Input:
data:  = (y,A)
model structure:  =

(
{li}, 𝜆, 𝜙

)
number of draws: T

Output: T parameter samples {𝜃∗,t}
Function WBB(,, T):
for all t = 1 to T do

Realize: (u1,… , un) ∼i.i.d. Uniform(0, 1)
Construct: wi ← log(1∕ui),∀i.
Independently construct w0 as either a univariate Exponential (common weight case) or as

a vector of i.i.d. Exponentials (separate weights case)
Set w = (w0,w1,… ,wn)
Compute: 𝜃∗,t ← argminw(𝜃)

end for

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11570



2021 WEIGHTED BAYESIAN BOOTSTRAP 425

When optimization on the original problem Equation (1) is fast and scalable, so too is the
WBB. Weights w and the corresponding 𝜃∗w are independent across t, making it possible to speed
up the algorithm via parallel computing. To choose the amount of regularization 𝜆 which is
assumed to be fixed for all sets of w, we can use the marginal likelihood m𝜆(y), estimated by
bridge sampling (Gelman & Meng, 1998) or simply using predictive cross-validation. Next we
consider the approximation Equation (5) from an asymptotic perspective.

2.5. WBB Properties
Conditions under which the target posterior distribution Equation (2) is approximately Gaussian
are well established (Kleijn & van der Vaart, 2012). For example, when data form a random
sample from fixed distribution p(yi|𝜃0) that resides in a sufficiently regular model, and when the
prior is smooth and positive around 𝜃0 ∈ p, we have

𝜃| y ∼approx Np
(
𝜃∗n , J

−1
n (𝜃∗n )

)
, (6)

where including sample size n as an explicit subscript, we have posterior mode 𝜃∗n =
argminn(𝜃), and where Jn(𝜃∗n ) = n𝑗(𝜃∗n ) is the Fisher information matrix evaluated at 𝜃∗n .
Here 𝑗(𝜃) is the information per sample, and y = (y1,… , yn) denotes data. Johnstone (2010)
studies Bernstein–von Mises theorem in high dimensional settings where p grows with n and
the situation is very different. Centring on the posterior mode, rather than the MLE, improves
accuracy in many cases.

As to the WBB distribution, consider a one-term Taylor expansion of ∇w,n(𝜃) about the
posterior mode 𝜃∗n , which is allowable for sufficiently smooth loss and penalty terms:

∇w,n(𝜃) = ∇w,n(𝜃∗n ) + ∇2w,n(𝜃∗n )(𝜃 − 𝜃∗n ) + Rn, (7)

where Rn is an error term and ∇ and ∇2 record the gradient vector and matrix of second
partial derivatives, respectively, of the weighted objective function. Evaluating this expansion at
𝜃∗w,n = argminw,n(𝜃) zeros out the left hand side of Equation (7) and leads to:

√
n
(
𝜃∗w,n − 𝜃∗n

)
= −

(1
n
∇2w,n(𝜃∗n )

)−1
(

1√
n
∇w,n(𝜃∗n )

)
+ R̃n, (8)

where R̃n is another error term. Following Newton & Raftery (1994), we recognize that the
w-induced variation in Equation (8), conditional upon the data, causes the matrix factor to be
approximately the inverse information [Jn(𝜃∗n )]

−1, the score-like second factor to be approximately
mean-zero Gaussian with covariance equal to Jn(𝜃∗n ), and the error R̃n to be negligible. Thus,
compared to the target posterior variation Equation (6), we have WBB variation:

𝜃∗w,n
||| y ∼approx Np

(
𝜃∗n , J

−1
n (𝜃∗n )

)
.

In a relatively narrow asymptotic sense, therefore, the WBB procedure is approximating the target
posterior distribution, as both are approximately Gaussian with the same mean and covariance.
Details of the asymptotic analysis follow the WLB case presented in Newton & Raftery (1994),
and differ only slightly in our use of the posterior mode 𝜃∗n in place of the MLE 𝜃̂n, and also in
our incorporation of weight w0 on the penalty term of the objective function. At this level of
first-order asymptotic analysis, neither of these features affects the limiting conditional Gaussian
distribution of 𝜃∗w,n.
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We note that rescaling in Equation (4) has no effect on solutions 𝜃∗w,n, and so it is equivalent
in the construction to use normalized weights w̃ that sum to unity. Such w̃ are uniformly
distributed over the unit simplex, and thus correspond to a specific Dirichlet distribution.
Exponential/Dirichlet weights are motivated from the perspective of both inference, related to
the original Bayesian bootstrap (Rubin, 1981; Muliere & Secchi, 1996), and computation, owing
to benefits of smoothly varying weights. Other weight distributions may also be effective (Barbe
& Bertail, 2012).

We aim to use WBB samples as approximate posterior samples for uncertainty quantification.
It remains unknown in general what is the relationship between this WBB distribution and the
posterior distribution associated with any specific prior. The first-order asymptotic approximation
above is constructed so that the prior structure is asymptotically negligible; one could say, then,
that WBB approximates any one of a number of different posterior distributions. In particular,
the WBB samples may not provide a close approximation to the posterior formed from the same
prior as used in the penalty term in the objective function. We deploy numerical experiments to
understand the approximation better in finite samples.

3. NUMERICAL EXPERIMENTS

We illustrate the proposed methodology with a number of scenarios to assess the quality of the
WBB approximation.

3.1. LASSO Experiment
First, consider a simple univariate normal means problem with a LASSO prior where

y|𝜃 ∼ N(𝜃, 12), 𝜃 ∼ Laplace(0, 1∕𝜆).

Given the i.i.d. exponential weights w1 and w0, the weighted posterior mode 𝜃∗w is given by

𝜃∗w = argmin
𝜃∈Θ

{w1

2
(y − 𝜃)2 + 𝜆w0|𝜃|} .

This is sufficiently simple for an exact WBB solution in terms of the soft thresholding proximal
operator:

𝜃∗w =
⎧⎪⎨⎪⎩

y − 𝜆w0∕w1 if y > 𝜆w0∕w1,

y + 𝜆w0∕w1 if y < −𝜆w0∕w1,

0 if |y| ≤ 𝜆w0∕w1.

The WBB mean Ew(𝜃∗w|y) is approximated by the sample mean of {𝜃∗,tw }T
t=1. On the other

hand, Mitchell (1994) gives the expression for the posterior mean,

E(𝜃|y) = ∫∞−∞ 𝜃 exp
{
−(y − 𝜃)2∕2 − 𝜆|𝜃|} d𝜃

∫∞−∞ exp
{
−(y − 𝜃)2∕2 − 𝜆|𝜃|} d𝜃

=
F(y)

F(y) + F(−y)
(y + 𝜆) +

F(−y)
F(y) + F(−y)

(y − 𝜆)

= y +
F(y) − F(−y)
F(y) + F(−y)

𝜆,

where F(y) = exp(y)Φ(−y − 𝜆) and Φ(⋅) is the c.d.f. of standard normal distribution. We plot
the WBB mean versus the exact posterior mean in Figure 1. Interestingly, the WBB algorithm
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FIGURE 1: Normal means model with LASSO prior: WBB mean Ew(𝜃∗w|y) (in solid lines) versus
exact posterior mean E(𝜃|y) (in dashed lines).

shrinks the posterior means towards zero. WBB samples are approximate posterior draws, though
the algorithm structure does not permit a clear description of the prior that is in force for this
sampled distribution. Whatever is this effective prior, it may be different from the prior encoded
in the penalty used in repeated optimization, as the result in Figure 1 suggests.

A simulation study is conducted in order to further investigate WBB in the context of
regression. We simulate data from the linear model,

y = X𝛽 + 𝜖, 𝜖 ∼ N(0, 𝜎2
𝜖
I),

where X is n × p and y is n × 1. The design matrix X is generated by drawing its n rows
independently from a p-dimensional normal distribution, N(0,Σ). Within each row, the covariance
between entries in columns i and 𝑗 is set to be Σi,𝑗 = 0.1 × 0.8|i−𝑗|. Furthermore, we set the noise
variance 𝜎2

𝜖
= ‖X𝛽‖2

2∕(2n). In this setting, the signal-to-noise ratio is 2. Figure 2 displays WBB
samples (kernel density estimates) and posteriors via MCMC in one of the simulation settings;
n = 50, p = 2, 𝜎2

𝜖
= 1,Σ = [[1, 0.3]′, [0.3, 1]′] and 𝛽1 = 0, 𝛽2 = 2. The WBB (on the L1, LASSO

prior penalty) is compared to posteriors computed via MCMC under several different priors: the
same L1 prior encoded in the WBB penalty, and also two L0 penalties, p(𝛽) ∝ exp{−𝜆‖𝛽‖0}
and p(𝛽) ∝ exp{−5𝜆‖𝛽‖0} (Polson & Sun, 2019). The WBB samples entail a spike at 𝛽1 = 0,
indicating a positive probability mass in the effective prior. No such posterior mass is evident in
the L0 priors nor possible in the L1 prior.

Next we use the simulation to compare WBB distributions to MCMC-computed posteriors
in a range of regression settings. We consider both sparse and dense cases for the coefficient
vector 𝛽 = [𝛽1, 𝛽2,… , 𝛽p]′:

A(i). 𝛽𝑗 = 1 for 1 ≤ 𝑗 ≤ 10 and 𝛽𝑗 = 0 for 𝑗 > 10.
A(ii). 𝛽𝑗 = 1 for 1 ≤ 𝑗 ≤ 5, 𝛽𝑗 = 10 for 6 ≤ 𝑗 ≤ 10 and 𝛽𝑗 = 0 for 𝑗 > 10.
B. 𝛽𝑗 = 1 for 1 ≤ 𝑗 ≤ p.
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FIGURE 2: WBB samples under LASSO penalty, compared with posteriors under LASSO prior
and L0 prior computed by MCMC.

For each setting of 𝛽, we consider p = 40, 60, 80, 100, 120. To investigate the performance
of WBB under different sample sizes, we also choose two settings of n: n = 100 for all p, or
n = p∕2 for all p.

We compare the WBB with LASSO prior and separate weights to Markov chain Monte Carlo
under the Bayesian LASSO (Park & Casella, 2008; Carlin & Polson, 1991). The two methods
entail different prior penalties:

WBB ∶ 𝜆𝜙(𝛽|w) = 𝜆
∑p

𝑗=1 w0,𝑗|𝛽𝑗|,
BLASSO ∶ 𝜙(𝛽|𝜎2) = − log

(
𝜆

2𝜎

)
+ 𝜆

𝜎

∑p
𝑗=1 |𝛽𝑗|.

Bayesian LASSO imposes a noninformative marginal prior on 𝜎2, 𝜋(𝜎2) = 1∕𝜎2 and the
posterior distribution is sampled by a Gibbs sampler, with 𝜆 chosen by maximizing the marginal
likelihood. In WBB, 𝜆 is chosen via cross-validation, using standard unweighted LASSO. Here
the original LASSO prior is separable and we study the separate-weights version of WBB. In
high-dimensional cases, a large common w0 multiplied to 𝜙(𝛽) can introduce extra sparsity to all
marginal posteriors. We use separate weights in an effort to overcome this issue. For comparison
criteria, we present the estimation MSE of coefficients 𝛽 (use posterior mean as our estimate),
out-of-sample prediction MSE (test sets are of the same size as the corresponding training
sets), and 95% credible interval coverage. Fixing (p, n, 𝛽), we draw T = 200 posterior samples
by each method and the estimation procedure is repeated over B = 500 independent datasets
{(X, y)(b)}B

b=1. Let 𝛽∗,t(b) denote the tth posterior draw, with respect to the bth dataset. For each
coordinate 𝑗, coverage is calculated using {𝛽∗,t

𝑗
(b) ∶ 1 ≤ t ≤ T , 1 ≤ b ≤ B}. The coverages are

then averaged across 1 ≤ 𝑗 ≤ p.
The complete results for estimation error, out-of-sample prediction error, and credible interval

coverage are displayed in Tables 1–3, respectively. In almost all cases when p ≥ 60, WBB
has lower estimation error than BLASSO. WBB shows comparable or superior out-of-sample
prediction in most cases. Credible intervals of neither WBB nor BLASSO have exact 95%
coverage. WBB performs well when p ≥ 100 and 𝛽 is sparse, though it often under covers.
When 𝛽𝑗 = 1 for all 1 ≤ 𝑗 ≤ p, BLASSO intervals are too wide while WBB intervals have
coverage close to 95% when 40 ≤ p ≤ 80. Though limited in scope, this simulation reveals some
distinctions and also broad similarities between WBB and Bayesian LASSO in both posterior
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TABLE 1: Coefficient estimation mean squared error (MSE).

p 40 60 80 100 120

n = 50

A(i)
BLASSO 0.13 0.09 0.06 0.05 0.04

WBB 0.19 0.06 0.05 0.04 0.03

A(ii)
BLASSO 5.59 3.74 2.90 2.33 1.96

WBB 7.40 2.89 2.31 1.90 1.62

B
BLASSO 0.67 0.67 0.68 0.70 0.70

WBB 1.77 0.49 0.50 0.51 0.52

n = p∕2

A(i)
BLASSO 0.13 0.08 0.06 — 0.05

WBB 0.14 0.08 0.05 — 0.03

A(ii)
BLASSO 6.88 4.09 2.88 — 1.94

WBB 6.58 3.80 2.53 — 1.47

B
BLASSO 0.52 0.56 0.64 — 0.74

WBB 0.68 0.62 0.55 — 0.48

TABLE 2: Out-of-sample prediction MSE.

p 40 60 80 100 120

n = 50

A(i)
BLASSO 3.35 3.42 3.43 3.61 3.68

WBB 3.34 3.37 3.40 3.60 3.72

A(ii)
BLASSO 119.65 124.03 130.49 132.21 135.46

WBB 121.45 123.40 129.89 134.04 140.44

B
BLASSO 20.24 33.18 46.75 61.86 80.57

WBB 20.61 32.47 46.27 60.59 78.71

n = p∕2

A(i)
BLASSO 4.55 4.15 3.83 — 3.61

WBB 3.65 3.75 3.66 — 3.65

A(ii)
BLASSO 180.56 153.56 136.82 — 128.39

WBB 145.73 141.35 133.66 — 132.23

B
BLASSO 26.35 39.23 50.77 — 73.63

WBB 21.80 34.82 47.76 — 75.29

structure and the sampling performance of approximate posterior summaries. It may provide
a useful basis for further methodological development. Serial computations were used in the
simulation above, and WBB was slightly slower than BLASSO (by a factor of 1.5 on CPU time);
the computational advantage of WBB shows up in parallel computations, since weight vectors
induce separate optimizations.

3.2. Diabetes Data
To further illustrate the WBB methodology, we apply it to the often-analyzed diabetes dataset
(Efron et al., 2004). Data from n = 442 diabetes patients are available, with response a measure of
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TABLE 3: 95% credible interval coverage.

p 40 60 80 100 120

n = 50

A(i)
BLASSO 0.91 0.92 0.93 0.94 0.94

WBB 0.92 0.92 0.93 0.94 0.95

A(ii)
BLASSO 0.91 0.93 0.95 0.96 0.96

WBB 0.91 0.92 0.94 0.94 0.95

B
BLASSO 1.00 1.00 1.00 1.00 1.00

WBB 0.95 0.96 0.94 0.93 0.91

n = p∕2

A(i)
BLASSO 0.93 0.93 0.94 — 0.94

WBB 0.91 0.92 0.93 — 0.94

A(ii)
BLASSO 0.92 0.94 0.95 — 0.96

WBB 0.91 0.93 0.94 — 0.95

B
BLASSO 1.00 1.00 1.00 — 1.00

WBB 0.94 0.93 0.93 — 0.92

disease progression and with 10 baseline variables (p = 10), including age, sex, body mass index,
average blood pressure, and six blood serum measurements. We apply Algorithm 1 with T =
1, 000. (R code is in the Supplementary Material.) For each weight vector w, the WBB estimate
𝛽∗w is calculated using Equation (9) via the regularization method in the package glmnet.

𝛽∗,common
w ∶= argmin

𝛽

n∑
i=1

wi(yi − x′i𝛽)
2 + 𝜆w0

p∑
𝑗=1

|𝛽𝑗| . (9)

The regularization factor 𝜆 is chosen by cross-validation with unweighted likelihood. The
WBB is also performed with separate weights on each |𝛽𝑗|,

𝛽
∗,separate
w ∶= argmin

𝛽

n∑
i=1

wi(yi − x′i𝛽)
2 + 𝜆

p∑
𝑗=1

w0,𝑗|𝛽𝑗| .
As in the simulation study, WBB is compared to the Bayesian LASSO.

Figure 3 shows the results of all these three methods (the WBB with common/separate weight
on prior terms, and Bayesian LASSO). Marginal posteriors for 𝛽𝑗’s are presented. For some
coefficients there is very good agreement among the methods (e.g., bmi and map). One notable
feature is that the WBB tends to introduce less sparsity than Bayesian LASSO. For example,
the Bayesian LASSO posteriors of age, tc, ldl, tch and glu have higher spikes near zero
compared with the WBB.

3.3. Trend Filtering
The generalized LASSO solves the optimization problem:

𝛽∗ = argmin
𝛽

{l(y|𝛽) + 𝜆𝜙(𝛽)}

= argmin
𝛽

1
2
‖y − X𝛽‖2

2 + 𝜆‖D𝛽‖1
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FIGURE 3: Diabetes example: the WBB (with common prior weight (blue) and separate prior
weights (green)) and Bayesian LASSO (red) are used to draw from the marginal posteriors for

𝛽𝑗’s, j = 1,2,…, 10.

where l(y|𝛽) = 1
2
‖y − X𝛽‖2

2 is the negative log-likelihood. D ∈ m×p is a penalty matrix and
𝜆𝜙(𝛽) = 𝜆‖D𝛽‖1 is the negative log-prior or regularization penalty. There are fast path algorithms
for solving this problem (see genlasso package).

As a subproblem, polynomial trend filtering (Tibshirani, 2014; Polson & Scott, 2015)
allows for piece-wise polynomial curve-fitting, where the knots and the parameters are chosen
adaptively. Intuitively, the trend-filtering estimator is similar to an adaptive spline model: it
penalizes the discrete derivative of order k, resulting in piecewise polynomials of higher degree
for larger k.

Specifically, X = Ip in the trend filtering setting and the data y = (y1,… , yp) are assumed to
be meaningfully ordered from 1 to p. The penalty matrix is specially designed by the discrete
(k + 1)th order derivative,

D(1) =
⎡⎢⎢⎢⎣
−1 1 0 … 0 0
0 −1 1 … 0 0

. . . . . . . . . . .

0 0 0 … −1 1

⎤⎥⎥⎥⎦(p−1)×p
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FIGURE 4: Cubic trend filtering: the red line is 𝛽i for i = 1, 2,… , 500; the blue line is 𝛽i ± 2 × se
where the standard errors are computed by WBB; 𝜆 = 1, 000.

and D(k+1) = D(1)D(k) for k = 1, 2, 3,…. For example, the log-prior in linear trend filtering is
explicitly written as 𝜆

∑p−2
i=1 |𝛽i+2 − 2𝛽i+1 + 𝛽i|. For a general order k > 1,

‖D(k+1)𝛽‖1 =
p−k−1∑

i=1

||| i+k+1∑
𝑗=i

(−1)(𝑗−i)
(

k + 1
𝑗 − i

)
𝛽𝑗

|||.
WBB solves the following generalized LASSO problem in each draw:

𝛽∗w = argmin
𝛽

1
2

p∑
i=1

wi(yi − 𝛽i)2 + 𝜆w0‖D(k)𝛽‖1

= argmin
𝛽

1
2
‖Wy − W𝛽‖2

2 + 𝜆‖D(k)𝛽‖1

= W−1argmin
𝛽

1
2
‖ỹw − 𝛽w‖2

2 + 𝜆‖D̃(k)
w 𝛽w‖1

where W = diag
(√

w1,… ,
√

wp

)
∕
√

w0 and

ỹw = Wy, 𝛽w = W𝛽, D̃(k)
w = D(k)W−1.

To illustrate, we simulate data yi from a Fourier series regression

yi = sin
( 4𝜋

500
i
)

exp
( 3

500
i
)
+ 𝜖i

for i = 1, 2,… , n = 500, where 𝜖i ∼ N(0, 22) are i.i.d. Gaussian deviates. The cubic trend filtering
result is given in Figure 4. For each i, the WBB gives a group of estimates

{
𝛽
∗,t
w (i)

}T
t=1 where

T is the total number of draws. The standard deviation of these weighted solutions constitutes a
posterior standard deviation, or essentially a standard error for the estimator 𝛽i.
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3.4. Deep Learning: MNIST Example
Deep learning is a form of machine learning that uses hierarchical abstract layers of latent variables
to perform pattern matching and prediction. A Bayesian probabilistic perspective provides a
number of insights into more efficient algorithms for optimization and hyper-parameter tuning.
The general goal is to find a predictor of an output y given a high dimensional input x.
For a classification problem, y ∈ {1, 2,… ,K} is a discrete variable and can be coded as a
K-dimensional 0-1 vector. The model is as follows. Let z(l) denote the lth layer, and so x = z(0).
The final output is the response y, which can be numeric or categorical. A deep prediction rule
(Polson & Sokolov, 2017) is then

z(1) = 𝑓 (1)
(

W (0)x + b(0)
)
,

z(2) = 𝑓 (2)
(

W (1)z(1) + b(1)
)
,

· · ·

z(L) = 𝑓 (L)
(

W (L−1)z(L−1) + b(L−1)
)
,

ŷ(x) = z(L).

Here, W (l) are weight matrices, and b(l) are threshold or activation levels. 𝑓 (l) is the activation
function. Probabilistically, the output y in a classification problem is generated by a probability
model

p(y|x,W, b) ∝ exp{−l(y|x,W, b)}

where l(y|x,W, b) =
∑n

i=1 li(yi|xi,W, b) is the negative cross-entropy,

li(yi|xi,W, b) = li(yi, ŷ(xi)) =
K∑

k=1

yik log ŷk(xi),

where yik is 0 or 1. Adding the negative log-prior 𝜆𝜙(W, b), the objective function (negative
log-posterior) to be minimized by SGD is

𝜆(y, ŷ) =
n∑

i=1

li(yi, ŷ(xi)) + 𝜆𝜙(W, b).

Accordingly, with each draw of weights w, WBB provides the estimates (W∗
w, b

∗
w) by solving the

following optimization problem:

(W∗
w, b

∗
w) = argmin

W,b

n∑
i=1

wili(yi|xi,W, b) + 𝜆w0𝜙(W, b).

We take the classic MNIST example (LeCun & Cortes, 2010) to illustrate the application of
WBB in deep learning. The MNIST database of handwritten digits, available from Yann LeCun’s
website, has 60,000 training examples and 10,000 test examples. Here the high-dimensional x is
a normalized and centred fixed-size (28 × 28) image and the output ŷ is a 10-dimensional vector,
where ith coordinate corresponds to the probability of that image being the ith digit.
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FIGURE 5: Posterior distribution of the classification accuracy by WBB. n = 500, 𝜆 = 10−4.

For simplicity, we build a 2-layer neural network with layer sizes 128 and 64 respectively.
Therefore, the dimensions of parameters are

W(0) ∈ 128×784, b(0) ∈ 128,

W (1) ∈ 64×128, b(1) ∈ 64,

W (2) ∈ 10×64, b(0) ∈ 10.

The activation function 𝑓 (i) is ReLU, 𝑓 (x) = max{0, x}, and the negative log-prior is specified
as

𝜆𝜙(W, b) = 𝜆

2∑
l=0

‖W (l)‖2
2,

where we manually set 𝜆 = 10−4.
Figure 5 shows the posterior distribution of the classification accuracy in the test dataset. We

see that the test accuracies are centred around 0.75 and the posterior distribution is left-skewed.
Furthermore, the accuracy is higher than 0.35 in 99% of the cases. The 95% interval is
[0.407, 0.893]. Due to the simple 2-layer neural network structure, the classification accuracy
is admittedly low compared with the state-of-the-art (e.g., Liang & Hu, 2015). This illustrative
example shows how WBB can be easily implemented in deep learning. Implementing variational
Bayes in deep learning is discussed in Polson & Sokolov (2017).

4. DISCUSSION

WBB provides a computationally attractive solution to scalable Bayesian inference (Minsker et
al., 2014; Welling & Teh, 2011) whilst accounting for parameter uncertainty by maximizing a
weighted posterior distribution. WBB can also be used in conjunction with proximal methods
(Parikh & Boyd, 2014; Polson, Scott & Willard, 2015) to provide sparsity in high dimensional
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statistical problems. With a similar ease of computation, WBB provides an alternative to ABC
methods (Beaumont, 2009) and variational Bayes (VB) methods (Blei, Kucukelbir & McAuliffe,
2017). A fruitful area for future research is the comparison of WBB to recent extensions of the
WLB for generalized Bayesian inference (Lyddon, Holmes & Walker, 2019).

For a wide range of non-smooth objective functions/statistical models, recent regularization
methods provide fast, scalable algorithms for calculating estimates of the form Equation (1),
which can also be viewed as posterior modes. Therefore as 𝜆 varies we obtain a full regularization
path as a form of prior sensitivity analysis. Furthermore, Strawderman, Wells & Schifano (2013)
and Polson & Scott (2015) considered scenarios where posterior modes can be used as posterior
means from augmented probability models. There may be useful interpretations of the random
weights from the data-augmentation perspective.

Extending WBB asymptotics presents an exciting research opportunity. The argument in
Section 2.5 relies on smoothness in both the sampling model and prior, and it retains fixed
parameter dimension as n increases. Theoretical guarantees remain unavailable for relatively
large parameter dimension or for non-smooth penalty functions. Fortunately, groundwork has
been done, for example by van der Pas, Kleijn & van der Vaart (2014), Narisetty & He (2014),
and others on the asymptotic behaviour of the posterior distribution, and by Knight & Fu (2000)
and others on sampling theory of optimization-based estimators,
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APPENDIX

Here we consider how SGD may be deployed to minimize the penalized loss function,∑n
i=1 wili(yi; 𝜃) + 𝜆w0𝜙(𝜃). The method minimizes the function by taking a negative step along

an estimate gk of the gradient ∇
[∑n

i=1 wili(yi; 𝜃k) + 𝜆w0𝜙(𝜃k)
]

at iteration k. The approximate
gradient is estimated by calculating

gk = n
bk

∑
i∈Ek

wi∇li(yi; 𝜃k) + 𝜆w0
n
bk

∇𝜙(𝜃k),

where Ek ⊂ {1,… , n} and bk = |Ek| is the number of elements in Ek. When bk > 1 the algorithm
is called batch SGD and simply SGD otherwise. A usual strategy to choose subset E is
to go cyclically and pick consecutive elements of {1,… ,T}, Ek+1 = [Ek mod n] + 1. The
approximated direction gk is calculated using a chain rule (i.e., back-propagation) for deep
learning. It is an unbiased estimator. Thus, at each iteration, the SGD updates the solution

𝜃k+1 = 𝜃k − tkgk.

For deep learning applications the step size tk (i.e., learning rate) is usually kept constant or
some simple step size reduction strategy is used, tk = a exp(−kt). Appropriate learning rates or
the hyperparameters of the reduction schedule are usually found empirically from numerical
experiments and observations of the loss function progression.
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