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RAGNAROC, a model of reflexive visual attention

Abstract

A quintessential challenge for any perceptual system is the need to focus on task-relevant
information without being blindsided by unexpected, yet important information. The human
visual system incorporates several solutions to this challenge, one of which is a reflexive covert
attention system that is rapidly responsive to both the physical salience and the task-relevance of
new information. This paper presents a model that simulates behavioral and neural correlates of
reflexive attention as the product of brief neural attractor states that are formed across the visual
hierarchy when attention is engaged. Such attractors emerge from an attentional
gradient distributed over a population of topographically organized neurons and serve to focus
processing at one or more locations in the visual field, while inhibiting the processing of lower
priority information. The model resolves key debates about the nature of reflexive attention,
such as whether it is parallel or serial, and whether suppression effects are distributed in a spatial
surround, or selectively at the location of distractors. Most importantly, the model develops a
framework for understanding the neural mechanisms of visual attention as a spatiotopic decision
process within a hierarchy and links them to observable correlates such as accuracy, reaction
time, and the N2pc and Pp components of the EEG. This last contribution is the most crucial for
repairing the disconnect that exists between our understanding of behavioral and neural

correlates of attention.
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1 Introduction

A quintessential challenge for any perceptual system is the need to focus on task-relevant
information without being blindsided by unexpected information that is also important. For
example, a driver must be able to stop in response to an unexpected obstacle even while
searching intensely for a specific landmark. Understanding how perception meets this ubiquitous
challenge is crucial for understanding how the brain balances the prioritization of sensory

information according to its relevance.

This challenge is matched by a multitude of attentional systems operating across different senses
and time scales. For example in vision there are overt and covert forms of attention, and
within covert attention, there is a further distinction between a rapid transient/reflexive form of

attention and a slower sustained/volitional form (Jonides 1981; Muller & Rabbit 1992;
Hopfinger & Mangun 1998; Nakayama & Mackeben 1989). There are also non-spatial forms of
attention that allow us to select among spatially overlapping visual inputs (Neisser & Becklen
1975).

Decades of research have provided a multitude of data types that define the
properties of visual attention, such as accuracy, reaction time and neural correlates such as Event
Related Potentials (ERPs). These data have driven the development of many theories, but the
great majority of them are linked to specific paradigms (e.g. a model of visual
search, or a model of the attentional blink). Such models are a useful starting point, but their
narrow focus makes it difficult to generalize across experimental paradigms, and also makes it
easy to inadvertently overfit a theory to a specific kind of finding. Newell (1973) argued that
instead of focusing on individual results as a way to attack or defend a theoretical edifice, we
can use a collection of results most productively if we build a comprehensive model that
addresses all of them. The approach used here is to build a model that is close to the algorithmic
level of implementation (Marr 1982) and that maximizes the number of empirical constraints

that can be applied (Love 2015) with a minimum of parameter adjustment.

The model described here, termed RAGNAROC, which is short for Reflexive Attention Gradient
through Neural AttRactOr Competition, is intended as a theoretical framework for
understanding how the visual system implements a reflexive form attention. The model
addresses data in different forms (e.g. accuracy, reaction time and EEG), and from different
paradigms. The outcome of this approach is to provide (1) a computational implementation of
reflexive attention, (2) an intuition for how different forms of data (e.g. accuracy, reaction time

and EEG) emerge from a common set of neural mechanisms and (3) suggested resolutions for
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several ongoing debates in the literature by showing how one model is able to account for
distinct patterns of data (e.g. simultaneous attention to two stimuli but also suppression of
competing representations) that are often taken as support for mutually incompatible positions in
an ongoing debate. For the reader who is more interested in the conclusions than the model
methods, there is a section in the discussion that focuses on the lessons that have been learned

through the construction of the model.

Scientific Philosophy of this account and intended audience :

This paper is written primarily with-the perspective-of the experimental seientistinmindfor

experimental psychologists. Equations will be kept to a minimum, except for the appendix, and

figures will be used to explain the model’s dynamics. Moreover, the development of

RAGNAROC was driven almost entirely by data from visual cognition experiments, such that

the neural mechanisms proposed here are the simplest possible solutions to explaining such data.

FThus, the paper his-paperadeptuses an shas-a-stronghy-an-abductive approach te-seientifie

diseovery-in which the simplest explanation for a series of empirical phenomena is sought.

attentionaccording to-a-list of empirical constraints—We consider the problem to exist in the M-
open class (Clarke, Clarke & Yu 2013), which is to say that it is practicallintractableimpossible
to specify an exact specification of the biological system.—Fhereforemedelverificationis
impessible-in-the propersense. HoweverNevertheless, abstract neural models such as this one
are-neverthelessare a powerful way to distill insights and predictions to guide future research;

and-these-are-included-inthe-general-diseussion. The paper concludes with a set of lessons and
predictions that should be of interest to anyone who studies visual cognition. By-publishingsueh

1.1 ReflexiveAttentionThe complexity of understanding attention

In the-broadest-ef strokes, attention is perhaps best summarized as privileging certain
representations at the expense of others and this prioritization takes many forms throughout the

nervous system from internal control signals within the brain all the way down to eoncentrated

hardwired receptor distributions in the fovea and fingertips. In terms of visual attention, a
distinction is often drawn between voluntary attention, wherein volitional control mechanisms

configure the spatial deployment of attention over an extended period of time and reflexive
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attention, wherein the visual system reacts rapidly to stimulus onsets in order to attend them
before the stimulus display changes or the eye moves (Jonides 1981; Muller & Rabbit 1992;
Hopfinger & Mangun 1998; Nakayama & Mackeben 1989). The term reflexive invokes an
analogy with muscle reflexes that are deployed rapidly in response to a stimulus, and without

waiting for slower, deliberative processes.

This reflexive form of attention presumably plays a key role in selecting important information

for further processing when the eyes are making saccades frequently. Moreover, it is known to

be responsive to higher levels of cognitive control, such that -which-means-thatstimuli-are-only

AndersonLavrent-& Yantis 2011 -has-demenstrated-that-goals, expectations and rewards
moderate how strongly stimuli can trigger or capture attention.-Fhus,—whenloekingforacelored

srre—ne e e eslosed naee
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What we do not yet understand is how such a rapid form of attention would function at the level

of neural mechanisms. The earliest theories of such attentional effects described how attention

was first engaged at a cued location, and would remain there until disengagement (Posner REF,
CHLOE?)

Later theories elaborated the mechanisms proposing that attention Fer-example,-attentionhas
been-theorized-to-involves a combination of target enhancement (Eimer 1996), and suppression
of distractors (Cepeda, Cave.-& Bichot & Kim 1998, Gaspelin Leonard & Luck 2015). However,
while it seems straightforward to postulate such attentional effects, buildingsimulationsof
attention-that-are speeitiedat the level of neural netweorks revealsthat-these operations are non-

trivial to implement in a visual system that is distributed across cortical regions. In such a

system, it is not immediately obvious how neural representations could be tagged as belonging

to a target or distractor. One-guestion-thatarises-is-how-does-the-visual-systemrapidly

dete N1 o h h o fa o rron anrecentin a O n-ord
Cl Vv vinw a o y D . atcto viae

suppressed-Furthermore, how does the brain implement such a coordinated medulatory
attentional process across thies-visual-system’s network of interconnected maps without

requiring an exhaustively large number of intra-cortical connections?- Limitations on white
matter density mean that it is not feasible for all neurons to communicate directly with all other
neurons, which makes seemingly straightforward decision-making approaches such as winner-
take-all (i.e. the strongest representation suppresses all others) difficulito-implementin
praeticeimpractical.

An additional complication arises when we consider that the attentional system cannot afford to
implement a crisp categorical distinction between targets and distractors. No matter how

strongly a person is engaged on a task, there must always be a possibility for task-irrelevant

information to trigger attention so that the system remains responsive to unexpected dangers.
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salience'-consistently produce-capture-costs(Theeuwes199H-Thus, it must be the case that all

stimuli, whether designated as targets or distractors by the experimental paradigm, are evaluated
to some degree. One might be tempted to argue that inattentional blindness experiments (Rock,
Linnett, Grant & Mack 1992; Neisser & Becklen 1975; Simons, & Chabris 1999) demonstrate
effective suppression of unexpected information. However, many subjects do notice the
unexpected stimulus in such experiments. Moreover, the proportion of participants who noticed,
for example, the black gorilla in Simons & Chabris (1999), was influenced by the attentional set

of the observer.

Thismedelwill describe neural mechanisms that make reflexive decisions about where to

deploy visual attention, and implement the consequences of those decisions (i.e. the

enhancement and suppression of processing)-as-an-ntegrated-systern. This model will be
constrained by neurocomputationaly-formahized-approach-providesthe usury-ofusing

constraints-wit-be-broughtinte-contact-with-the-theory, including neural plausibility-at-the

architeetural-level, behavioral accuracy, and reaction time measures of attentional influences on

behavior, and also the N2pc and Pp EEG components which are commonly associated with

stimulus-evoked visual attention-deployment. Furthermore,beecause-the-modelis-aneural

Model scope. This model is not to be taken as a complete model of visual attention, which would
be beyond the scope of any single paper. RAGNAROC does not address, for example, how
attentional control affects eye movements (Rao, Zelinsky Hayhoe, & Ballard 2002; Zelinksy

2008) or slower forms of covert attention that are more firmly under volitional control and can
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be maintained for a prolonged duration (e.g. multiple object tracking Pyslyshyn & Storm 1988).
The model includes a mechanism for the enhancement of information processing, but this is
intended only as a proxy for more comprehensive explanations that would interface more
directly with single-unit data (e.g. Reynolds & Heeger 2009; Beuth & Hamker 2015). Another
variety of attentional mechanisms not addressed here are those that track object features rather
than spatial locations (e.g. Neisser & Becklen 1975; Blaser, Pylyshyn & Holcombe 2000). In
terms of anatomy, we describe the reflexive attentional system in terms of a hierarchy of
multiple maps that is inspired by work on the macaque posterior cortex and reinforced by the
fact that the lateralized EEG components associated with attention discussed here are also
primarily posterior in origin. However it is likely that a combination of frontal and subcortical
areas are involved in these processes, and it is not our intent to suggest that reflexive attention is

exclusively mediated by posterior areas.

1.2 Behavioral evidence for covert attentional control mechanisms in vision
1.2.1 Reflexive Attention
Reflexive attention is likely to play a role in many visual tasks, and its effects can be
observed in paradigms that produce attentional cueing (Posner 1980; see Chen & Wyble 2018)
attentional capture (Theeuwes 1991, Folk, Remington & Johnston 1992; Yantis 1996) and the
attentional blink (Shapiro, Raymond & Arnell 1992; Chun & Potter 1995)
(Figure 1). In these paradigms, the effect of attention varies according to the nature of the stimuli
and the required response. For example, a cue increases the accuracy
and decreases reaction times for a subsequent target at the location, while having the
opposite effect for targets at uncued locations. In attentional capture paradigms, a highly salient
distractor causes slower and/or less accurate report of a target presented at a different location
and enhanced report of a target at the same location as the salient singleton (Folk, et al. 1992). In
attentional blink paradigms, when two targets (T1 and T2) are presented sequentially at a
Stimulus Onset Asynchrony (SOA) of about 100ms or less, the second target is easy to see but
only when the two targets are presented at the same location (Visser Bischof & DiLollo 1999;

Wyble & Swan 2015).

1.2.2 Semi-Autonomous attentional control
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Figure 1. Paradigms that measure attentional effects often present two
simultaneous or sequential stimuli and measure the influence of one on the other
(e.g. a cue followed by a target, or a T1 followed by a T2). The blue bars indicate the
inter-stimulus temporal separations that are most typically studied for three
common paradigms. The red portion on the left is the temporal interval over which
we consider reflexive attention to play a dominant role in the effect of one stimulus
on the other. Other attentional effects that involve more volitional forms of
processing are dominant at inter-stimulus longer asynchronies.

During normal visual function, the eyes-brief duration of eye movements requires a meve

that-seme-form of attentional control is-able-tethat makes rapid decisions without waiting for

confirmation from slower, volitional forms of cognitive control. In this view, reflexive attention
is a solution to the demands of the saccadic visual system in that it provides a semi-autonomous
decision-making process for selecting information from prioritized locations in the visual field.
Reflexive attention is semi-autonomous in the sense that the decision process obeys a
configuring attentional set that modifies how readily different stimulus attributes will trigger

attention. Such attention is strongly driven by salient singletons * (Remington, Johnston, &

2 There 1s an ongoing debate concerning the ability of top-down goal settings to mediate
attentional capture (Awh, Belopolsky & Theeuwes 2012; Failing & Theeuwes 2018),
with positions ranging from attention being entirely driven by Top-down factors, to the
opposite extreme in which the first stage of attention is entirely driven by physical
characteristics of stimuli.
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Yantis 1992 REF) but the likelihood of a stimulus to capture attention is also strongly affected

by the similarity between a stimulus and the current goals of the subject (Folk, Remington &

Johnston, 1992: Woodman & Luck 1999 REF CHECK; Egeth, Leonard & Leber 2011 REF

CHECK, and to some degree the amount of reward a stimulus has received ( Anderson, Laurent

& Yantis 2011)°3

This task-based configuration is even responsive to categorical target signifiers such as letters

among digits (Wyble, Potter, Bowman 2009; Nako, Wu & Eimer 2014), and superordinate

concepts (e.g. "marine animal"; Wyble, Folk, Potter 2013). Likewise, neural data from the EEG

reflect what are thought to be rapid attentional responses to task relevant colors (Eimer 1996);

letters/words (Eimer 1996: Tan & Wyble 2015: Nako, Wu & Eimer 2014) and line drawings

(Nako, Wu, Smith & Eimer 2014). Therefore, this system provides a tight coupling between

bottom-up (i.e. attention as driven by physical characteristics of the stimulus) and top-down (i.e.

attention as driven by expectations, goals and rapid learning) determinants of attentional control.

This task-defined specificity coupled with the rapidity of reflexive attention provides a potent
way for attention to select task-relevant information even when stimuli are changing rapidly (e.g.
Potter 1976; Schneider & Shiffrin 1977).

Despite the fact that reflexive attention is receptive to attentional signals,

be deployed to stimuli that appear in locations of the visual field that are known to always be

task-irrelevant-(Remington, Johnston & Yantis 1992; Theeuwes 1992; Wyble, Folk & Potter
2013; Folk, Leber & Egeth 2002). Fhese-studiesshow-that-certainkinds-of salientstimuli-that

3 There is an ongoing debate concerning the ability of top-down goal settings to mediate
attentional capture (Awh, Belopolsky & Theeuwes 2012; Failing & Theeuwes 2018),
with positions ranging from attention being entirely driven by Top-down factors, to the
opposite extreme in which the first stage of attention is entirely driven by physical
characteristics of stimuli.
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Fheewwes1992)[f reflexive attention were not semi-autonomous, top down control signals

would be able to ensure that stimuli presented in locations known to be irrelevant,-e+stimhis

Note that there are some cases in which top down control settings seem to eliminate salience-

based capture (Bacon & Egeth 1994).

Another indication of automaticity comes from Krose & Julesz (1989) who demonstrated that
cueing effects were localized to the specific location of a cue in a ring of stimuli, even when
subjects were informed that the location of the target would typically be opposite to the location
of the cue on the ring (see also Jonides 1981). Thus, expectation induced by both task
instructions and experience with the task were unable to eliminate the immediate, reflexive
deployment of attention to the specific location of cues at Cue-Target SOAs up to 260ms*. A
finding in electrophysiology by Ansorge, Kiss, Worschech & Eimer (2011) showed that spatial
cues which are never in the target’s position will nevertheless generate an N2pc component, with

an amplitude that is weighted by top-down feature settings.

A further line of evidence for automaticity is found in a series of experiments in which the cue (a
pair of lines) was much larger than the target, and the subject could, in principle, learn how the
cue’s properties (e.g. color or shape) determined which part of the cue indicated the likely
location of the target (Kristjansson & Nakayama 2003; Kristjansson, Mackeben & Nakayama
2001). It was found that subjects could learn simple relationships, such as that part of a cue (e.g.
its left or right half) was more likely to cue a target’s location if that relationship remained

consistent across trials.

Another limitation on reflexive attention is that its temporal window is limited in duration, even
when it would be advantageous for attention to remain engaged for a longer time period. A good
example of this is the transient attention demonstration of Nakayama & Mackeben, (1989) in
which, a cue appeared, and stayed on the screen to indicate the location of the target. Even
though this cue stayed on the screen and was perfectly predictive of the target location, targets

that occurred in the 200ms window after cue onset were reported more accurately than targets

4 CTSOAs were only evaluated in the range of 100-260m:s.
11
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appearing at later time points. This effect was replicated by Wilschut, Theeuwes & Olivers

(2011) though with a smaller magnitude. This transient effect is not merely an alerting effect

since it is spatially selective (Mu REFuller & Rabbitt 1989).

1.2.3 Processing Enhancement at a cued or target location

Several independent lines of research suggest that deploying reflexive attention enhances the
processing of targets in the same corresponding location. For example, spatial cueing paradigms
find that relative to an uncued condition, a cue will reduce the reaction time to respond to a

probe at that location (Eriksen & Yeh 1985) or increase the accuracy of responding to a masked

target at that location within about 100ms (Nakayama & Mackeben 1989; Cheal, Lyon &
Gottlob 1994; Wyble, Bowman, Potter 2009).-Fhese-effectstypically-onsetverysoon-atteracue
‘i.E.%. "Iithiﬂ 'ibe‘]t 8"1%5). 1 l Ls 1 s 1 a¥s ls Yol 1 s 3 1

~The key defining characteristic

of the rapid onset of attentional enhancement seems to be that the cue and target appear at the

same location, which dovetails with the semi-autonomous nature of reflexive attention. Another

>‘There is an ongoing debate concerning the ability of top-down goal settings to mediate
attentional capture (Awh, Belopolsky & Theeuwes 2012; Failing & Theeuwes 2018),
with positions ranging from attention being entirely driven by Top-down factors, to the
opposite extreme in which the first stage of attention is entirely driven by physical
characteristics of stimuli.

12
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case of reflexive attention occurs when two targets are presented in close succession. If they are

at the same location and at an SOA of ~100ms, the second target report is enhanced.

Wyble Bowman & Potter

(2009).

the-same-spatial pesitien—This spatially localized enhancement of processing is also consistent
with the finding that lag-1 sparing effects in the attentional blink are strongly linked to spatial
congruence between T1 and T2 (Visser Bischof & DiLollo 1999).

1.2.4 Visual attention suppresses the processing of information at the location of
distractors

Because distractors are, by definition, not explicitly reported or responded to, it has been more
difficult to understand how they are affected by attention. One source of information has been to
record directly from neurons within the visual system and there are indications in
neurophysiology that representations elicited by distractors are suppressed. In single-unit data
from monkeys, neurons responsive to a distractor exhibit a sharp reduction in firing rate after
about 100 ms when presented alongside a target in the visual field (Chelazzi, Miller, Duncan &
Desimone 1993). This finding has been taken as evidence that targets and distractors engage in a

competition that is biased towards the target (Desimone & Duncan 1995).

In human behavior, evidence of distractor inhibition in response to a target takes two forms.
First, information is suppressed in the surrounding vicinity of a target, as demonstrated by
methods-that-askwhen subjects te-report two targets presented in rapid sequence-o+
simulttaneoushy T-and-these methods reveal an effect termed Localized Attentional Interference
(LAI), such that -

and-thatthe second target iswas most accurately reported when #-was-in the same position as the
first target, and much lessleast accurately reported in the area surrounding the first target (~3
degrees) and more accurate again at farther separations (Mounts (2000). Nete-that this-paradigm
dees-netmeasureThis is not a direct form of distractor suppression, since the effect is actually

observed on a targel, direetbbuiibdesndioniothabproee sine bomppeeseddnnpesion o bbe
visualfield-nearthe-tarset-Bahcall & Kowler (1999) presented a similar finding in which two

13



RAGNAROC, a model of reflexive visual attention

simultaneous targets were presented at various separations-simutaneoushyand their spatial
_p Fe*”q:”tfl WS !1’]}2]' \d. y - - or ~t1 £ - ~‘-/ ~ ngo "i .
were-presentedfartherapart—Cutzu & Tsotsos (2003) also reported a similar finding using a cue

and a single targeti : 2

targetreportaceuracy. Hickey & Theeuwes (2011) showed that the effect of a distractor that
captures attention is greater when spatially proximal to a target, which also implicates a

proximity based form of inhibition, centered at the location of a highly-salient distractor.

In addition to spatial inhibition in the surrounding vicinity of a targets, suppression is also
feeused-centered at the spatial location of distractors. Cepeda, Cave, Bichot & Kim (1998) found
that when distractors were presented concurrently with a to-be-reported target, a subsequent
probe would be reported more slowly at the location of that distractor, compared to a previously
blank location. The implication is that the distractors in the display were suppressed and this
suppression carried forward in time to impeded the processing of probes presented at the same
location. Similarly, Gaspelin, et al. (2015) found that probe letters in a spatial array following or
coincident with a search display were harder to report if there had previously been a salient
distractor at the location of that letter (although it is crucial to note that this only occurred when

participants knew which specific feature to look for; this point will be discussed later).
Thus there-seems-to-bethere are two differentkindslines of evidence for activedistractor
inhibition, one which-is-spatially-locked to the region surrounding a target, and the other

centered which-oeeurs-at the location of distractors. The model presented below will attempt to

reconcile these two forms of evidence.

1.3 Electrophysiological correlates of visual attention

An important complement to the behavioral evidence of reflexive attention are studies One-of

that uses

Event Related Potential (ERPs) extracted from the EEG, and likewise Event Related Fields
(ERFs) from the MEG. ERPs and ERFs provide a measure efneural-activity-that is precisely

timed to underlying neural events and thus provides crucial information about the relative timing

of attentional processes.-

1.3.1 ERPs reflecting the current location of spatial attention

14
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When spatial attention has been directed to a specific location prior to the onset of a stimulus,
the ERPs evoked by that stimulus will differ according to whether it is inside or outside of the
attended location. For example, components elicited by the onset of a visual stimulus earhy

components-such as the N1/P1 complex, elicited-by-the-onset-of a~visual stimulus, are larger in
amplitude for a stimulus that appears in an attended location (Mangun 1995; Hillyard & Anllo-

Vento 1998) and presumably reflects increased neural activity evoked by stimuli at those
locations. Likewise, increased amplitude of the Steady State Visual Evoked Potential (SSVEP)
for a flickering stimulus has served as a robust indicator of the location of attention and can last
multiple seconds (Miiller & Hillyard 2000). These effects indicate that ongoing spatial attention

affects the processing of stimuli at the earliest levels of cortical processing. Morcover, they are

also useful for demonstrating when shifts of attention have occurred, as in

immediately preceding stimulus—Forexamplein-the-ease-of- Hopf, Boehler, Luck, Tsotsos,
Heinze & Schoenfeld (2006), who demonstrated a neural correlate of the spatial distribution of
surround suppression evoked by an attended stimulus (Mounts 2000). prebe-stimuli-were

1.3.2 ERPs indicating a change in the spatial distribution of attention

Another class of EEG component is thought to indicate the neural mechanisms involved in the

initiation deploymentof attention. Unlike-the NP and SSVEP which-indieate the-intluenec-of

to-be-attended-and-the-others-are to-be-ignored-These potentials, termed the N2pc and the Pp,

occur later in time than the modulations of the N1/P1, which is consistent with the idea that they

reflect changes in attention evoked by new stimuli.
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The N2pc component:

The N2pc is a brief negativity elicited by a laterally presented target stimulus. The evoked
potential is small in amplitude and occurs on posterior areas of the scalp contralateral to the
target, approximately 200-300ms after the onset of the target, and is typically less than 100ms in
duration. The original theories proposed by the seminal publications on the N2pc suggested that
it reflects either the suppression of distractors (Luck & Hillyard, 1994) or the enhancement of
the target (Eimer, 1996). The N2pc has also been referred to as a Posterior Contralateral
Negativity or PCN (T6llner, Rangelov & Miiller 2012).

Newer findings have provided different perspectives. For example, it has been suggested that the
N2pc reflects the process of individuating the target from surrounding stimuli, as its amplitude
increases with the number of presented targets, but only when target numerosity is task relevant
(Pagano & Mazza 2012). Also, Hickey, Di Lollo, & McDonald, (2009) suggested that when a
target is paired with a contralateral distractor, the N2pc to the target is composed of two
dissociable components: a negativity evoked by the target (the Nt) and a positivity evoked by the
distractor (the Pp). Since the N2pc is measured as a difference wave between target-contralateral
and target-ipsilateral sides of the scalp, the Pp would be measured as a negativity relative to the
target, thus contributing to the N2pc amplitude. The Nt and Pp components were isolated by
presenting the distractor or the target, respectively, in the middle of the display, which eliminates

their contributions to the ERP and reveals the neural signature evoked by the other stimulus.

Another perspective on the N2pc stems from a finding in which
two sequential targets are presented at either the same or different locations on the screen (Tan
Wyble 2015:;). In the same-location condition, subjects could easily see the second target,
however it elicited no additional N2pc beyond the N2pc evoked by the first target. In contrast,
when the second target was on the opposite side of the display, a second N2pc was
evoked by that second target. In terms of behavior, subjects were better at reporting the
same-location target, which did not evoke an N2pc, compared to the different-location target
which did evoke an N2pc. conclu that the N2pc indicates only
the loca , rather than
enhancement or suppression. This explains the missing-N2pc in the same-location result, since
the second target inherits the attention deployed by the first target, and no additional N2pc is
evoked. Moreover, this missing-N2pc phenomenon is only true when T1 and T2 are presented

closely in time. At longer temporal separations (e.g. 600 ms), the T2 elicits a second N2pc, even
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if subjects have a clear expectation that the target will occur in that location (Callahan-Flintoft &
Wyble 2018). This finding is crucial because it underscores that reflexive attention is driven by a
stimulus, and cannot be maintained for an extended period of time without stimuli to keep

attention engaged.

With these various theories in contention, it is clear that little consensus as to the underlying
cause of the N2pc exists. Moreover, a crucial complexity of the N2pc literature is that distractors
evoke an N2pc in certain cases (Hickey McDonald & Theeuwes 2006; Burra & Kerzel 2013;
Kiss, Grubert, Petersen, & Eimer, 2012; McDonald, Green, Jannati, & Di Lollo, 2012; Liesefeld,
Liesefeld, Tollner, & Miiller 2017). Such findings highlight the complexity of attentional

mechanisms and the difficulty of ascribing unitary functions to neural correlates.

The Pp Component:
Another ERP related to attentional control is the Pp-component;; a positivity evoked in posterior

scalp regions that are contralateral to a distractor (Hickey, McDonald & Theeuwes 2009). Lo

fact that distractors selectively elicit a Pp is additional evidence that inhibition is selectively

deployed at the location of distractors and-

reinforces the idea that attention has mechanisms for

. When target

However,

search is made extremely easy by re-using the same target-defining feature on each trial and
using many repeated trials, salient distractors can be ignored entirely, without producing a Pp, or
an observable behavioral cost (Barras & Kerzel 2016) suggesting that there-in some cases

distractors can be simply ignored rather than suppressedis

>asv. In other cases salient distractors elicit a Pp in the EEG and a

minimal cost on the speed of finding the target (Burra & Kerzel 2013) with a concomitant
suppression of the distractor’s location as measured by behavioral probes (Gaspelin, Leonard &
Luck 2015; Gaspelin & Luck 2018). These results suggest that sometimes the distractor has the
potential to interfere, and is inhibited to reduce its influence.— Finally, if the search task is made
sufficiently difficult by varying the target’s defining feature from trial to trial, then the distractor

evokes an N2pc, while also eliciting a strong behavioral capture cost (Burra & Kerzel 2013)
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suggesting that in such cases there was a consistent failure to inhibit the distractor. This
distractor-induced N2pc also supports the suggestion that distractors have an inherent salience

which must be inhibited (Sawaki & Luck 2010).

hese findings can be summarized as follows. When search is made extremely

easy by using many trials and highly prescriptive visual targets, the visual system learns to
exclude some kinds of distracting information

. When the task becomes more difficult, distractors are suppressed by spatial inhibition
mechanisms, eliciting a Pp but no behavioral cost on target response. With a further increase in
difficulty by using unpredictable singleton targets, distractors are not as effectively suppressed,

produce an N2pc and a sizeable behavioral capture effect. Such

findings complicate the straightforward attribution of the Pp as a correlate of distractor
suppression but also underscore the importance of building integrative theories that combine
behavioral and neural forms of evidence. As we will argue below, these divergent findings can
be explained as a range of outcomes that arise from the competition for attention between

putative targets and distractors in a spatially topographic attentional priority map.

2. Computational architectures for distractor suppression
Moving to a discussion of how reflexive attentional control might be implemented, we begin by
considering several architectures that could support the ability to selectivity enhance and

suppress in response to a target.

2.1 Assumptions

This discussion is predicated on several assumptions that are implicit in existing models of
attention. An anatomical assumption is that the visual system is hierarchically organized,
beginning with low level feature extraction in cortical area V1 that projects to various cortical
areas specialized for more specific kinds of information, such as color, and various forms (Van
Essen & Maunsell 1983, Kravitz, Saleem, Baker, Ungerleider, & Mishkin, M. 2013; Konkle &
Caramazza 2013). These higher-level representations are assumed to maintain the spatial
topography of V1 albeit with larger receptive fields (DiCarlo & Maunsell 2003; Silver, Ress &
Heeger 2005). This hierarchy places some important constraints on how different kinds of
information flow through the model. Another crucial assumption is that there is no indicator that
definitively determines which stimuli should be attended. Instead, the attentional system

perceives stimuli with varying combinations of intrinsic salience and task relevance. It then
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decides which stimuli to attend according to the broader goals of the organism, which may

sometimes transcend the specific task imposed by the experimenter (i.c. if there was an

earthquake, the subject would presumably notice). In other words, the notional distinction

between targets and distractors as imposed by any specific task is not the ultimate designation of
stimulus priority as far as the visual system is concerned. The system must decide what will be
attended and what will be suppressed on each trial and this decision is not pre-ordained by other
a-higherlevelcognitive-systems, except perhaps in cases where the visual search is highly
prescriptive and repeated many times (Theeuwes 2012; Burra & Kerzel 2013)

A final crucial assumption is that there are no a-priori labels as to which neurons are
processing to-be-attended vs to-be-ignored stimuli. When a decision has been made to attend to
a stimulus, there must exist an efficient means to rapidly distribute the consequence of that
decision across a diverse set of cortical areas. For example, a given neuron in early visual cortex
may be firing in response to a stimulus that downstream areas of the visual system have

determined should be attended, but how is credit assigned back to that neuron?

Given these assumptions, a candidate model of reflexive attention must include mechanisms for
making rapid decisions about where to attend, and also mechanisms that rapidly implement that

decision by routing information between different portions of the visual system.

2.2 Four potential architectures:
It is helpful to understand the advantages and drawbacks of various architectures by which
attentional decisions are-could be communicated te-ether+maps-in a hierarchically organized

visual system. Te-this-end this section outlines four possibilities. concerning how-attentional

2.2.1 Local Attentional Control:
The simplest method of reflexive attention-can-be-implemented is at the local circuit level. In

such a model, stimuli are processed separately within different maps (Figure 2a).

Representations of each stimulus compete within these cortical areas, and one or more winners

of that local competition would be attended.;accord:

=
fe

While simple, this architecture has difficulty explaining how stimuli of different kinds can affect
one another. For example, attentional capture by a color singleton affects processing of a shape

singleton target (e.g. Theeuwes 1991) which requires that -
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decision consequences can propagate between maps selective

for different kinds of information.

2.2.2 Peer to Peer attentional control:

> O 3 - S

between-cortical-areas{Figure 2b illustrates a model in which}-A any map that resolves a

competition between stimuli projects signals-teenhancement and suppression to -the-other maps
by wsino-tntraesrtiealpathveays ake-advantase-ofexploiting the spatiotopic correspondence

between feature maps. thus-se-as-te ensuringe that the correct locations are excited or inhibited

acCross maps.

The disadvantage of this architecture is that it requires an enormous number of intracortical
projections. Each feature map within the visual system must send projections to every other map
so that targets in one map can enhance or suppress representations in all other maps. Thus, the
number of intra-areal connections grows as M*N?, where M is the number of neurons within
each cortical area and N is the number of areas. However it has been estimated that only about
30% of the total proportion of possible intra-areal connections exists within the macaque visual
system (Felleman & Van Essen 1991) which argues against strong peer-to-peer

conneetivityattentional control.

2.2.3 Feedback Attentional Control:

The third architecture is more efficient in terms of intracortical projection (Figure 2c) because it
exploits the hierarchical nature of the visual system. Once a stimulus has won a local
competition in any map, it projects a combination of enhancement and inhibition back down to
the earliest levels of processing in the visual hierarchy (i.e. perhaps V1 or even LGN). These

effects then propagate forward to the descendent visual processing areas.
This approach requires fewer inter-areal connections than the peer-to-peer model, growing

linearly with the number of feature maps. The selective tuning model of Tsotsos (2011) et al

provides a thorough formalization of such a system.
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The disadvantage of this approach is that resolving a competition between two stimuli
represented in distinct feature maps would require multiple iterations of feedforward and
feedback processing through the hierarchy since the higher level maps do not directly
communicate with one another. Furthermore the suppressed information is cut off at the earliest
level, which precludes it from analysis by higher levels of the visual system. This makes it

difficult for deeper levels of meaning to be computed from stimuli that are not attended.

2.2.4 Inhibition at a superordinate map:
The final architecture that we consider, and the one that is used in RAGNAROC, confines the
competition to a single cortical area: an attention map that is hierarchically superordinate to at

of the spatiotopic maps that comprise the ventral visual system (Figure 2d)°. The attention map

A. Local B. Peer to Peer

N NS

|F Fairistimilus c Color stimulus ~——p» Excitatory m=p- Enhance/ - Enhancement/ |

connecticn Inhibition Suppression

C. Feedback D. Hierarchical ;mmm? Attentlon

.\3..} N F

Figure 2. Illustration of four architectures for mediating the competition between
two stimuli for which the most salient attributes are processed in different maps
(e.g. color singleton vs a form singleton). The illustrations indicate how attentional
enhancement and suppression effects elicited by a highly salient color singleton can
propagate between areas.

6 For simplicity we assume that there is only a single cortical area that computes
attentional priority, although the functionality would be essentially similar if there
is a small family of interconnected cortical areas that mediate attention. .
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provides a compact method to make rapid decisions about where to deploy attention in the visual
field, since it accumulates information about the priority of different stimuli from many

subordinate topographic maps into a single brain region.

Once a spatial region within the attention map has been sufficiently activated by input from
subordinate maps, those neurons enhance the processing of information at the corresponding

region of the earliest processing level, and that enhancement then carries forward through the

ventral hierarchy. In this framework,

there is no direct

suppression of information in the subordinate layers. Instead, suppression is achieved indirectly
by reducing the availability of attention at particular locations in the visual field. Thus, attention
is represented as a gradient field of activation levels distributed across the spatial extent of the
visual field (LaBerge & Brown 1989, Cheal Lyon & Gottlob 1994). Changes in these activation
levels provides a convenient way to throttle the processing of information through all of the
feature maps that are descended from the early visual area with a relative minimum of
intracortical projections. This approach mitigates the disadvantages of the preceding
architectures as follows. Attentional decisions can be made rapidly even between stimuli with
distinct representations, since the competition occurs within a single map. Also, suppressing
attentional priority, rather than representations in the subordinate layers, preserves the
information at the earliest levels of processing, which allows a stimulus in an unattended region
the chance to make contact with deeper levels of processing should it be required (i.e. no

information is lost).

3. RAGNAROC specification

3.1 Inspiration from existing models

There is a substantial literature on computational models of attention that collectively
addresses a broad set of mechanisms and processes. The RAGNAROC model is informed by

many of these models, theories and ideas. Starting from the very earliest cueing paradigms was

the theory that attention is briefly engaged at a given location (Posner REF) which briefly
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precludes it from being deploved elsewhere. RAGNAROC implements a brief “lock-on”

attractor state when attention is deployed, and this implementation is similar to the engagement

of attention as originally proposed.

Another One-of the mest-formative models for our approach is the Theory of Visual
Attention (TVA; Bundesen 1990; Bundesen, Habekost, & Kyllingsbak, 2011), which provides a
mathematical formulation for how goals adjust the pertinence of certain kinds of information
(i.e. when one is looking for red digits, the pertinence of red is upweighted to increase the rate at
which stimuli with that color are processed). This pertinence weighting applies across the entire
visual field, which explains how stimuli are able to capture attention when they match top-down
settings despite being located in a to-be-ignored location of the visual field. TVA also formalizes
the understanding of stimulus-driven attention as a decision making process. In terms of
implementing a hierarchical architecture for attention, the Koch & Ulman (1985) and Itti, Koch
& Niebur (1998) models of salience were crucial for establishing the utility of a shared salience
map, which accumulates information from subordinate layers of processing and allows them to
compete on an even footing in a compact neural field. Li (2002) helped to establish the idea of
salience being a product primarily of anatomically early levels of processing. Zehetleitner, Koch,
Goschy & Miiller (2013) elaborated the circuitry of competition at the top of this hierarchy, to
provide an illustration of how attention eperations-decisions can be considered a race between

competing selection operations.

In terms of implementing selection,

-ess-the Selective

Tuning (ST) model of Tsotsos (1995) illustrates how recurrent excitatory-signals, propagating
backwards through the visual hierarchy could implement the selection process at the earliest

levels of the hierarchy. However, aAnother class of models has been even more influential in

that-highlightings the importance of recurrence in iteratively shaping the spatial profile of

attention. One of the clearest examples of this process is SAIM (Heinke & Humphreys 2003;

cite more recent one REF) in which a pool of selection neurons interacts with incoming

information to create a spatially localized selection and routing of information to a differenet

group of neurons that represent the focus of attention. In SAIM, the selection process is an

emergent property of the shared topographic connectivity between the selection system and the
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retinal input. Moreover, a series of top-down connections provides an additional form of

resonance that selects for coherent objects that match the visual search template. This idea is

also present in adaptive resonance models by Grossberg and colleagues. and in particular the

attentional shroud model of (Fazl, Grossberg & Mingolla 2009), which describes a process to

delineate the boundaries for the purpose of learning.

The idea of reflexive attention, as a brief burst of enhancement to increase the processing at a

particular moment in time was simulated in the STST (Bowman & Wyble 2007), eSTST
(Wyble, Bowman & Nieuwenstein 2009); and Boost Bounce models (Olivers & Meeter 2008).
Those models, especially the STST and eSTST, focused more on the time course of encoding of
information into memory, whereas RAGNAROC could be conceived as a spatial attention front-
end to such models, replacing the simpler “blaster” mechanism that they employed. There has
also been work on exploring the specific mechanism of how attention operates at the level of
information processing, for example by showing that peripheral cues result in a combination of
stimulus enhancement and noise reduction (Lu & Dosher 2000). The mechanism used here

would be consistent with stimulus enhancement.

3.2 How it works

The focus of our modeling effort is to develop these ideas further, in close contact with a large
body of empirical data, and also to extend the implications of such models to understanding the
generators of attention-related ERPs. The RAGNAROC model simulates the consequences of
attentional decisions rippling through the visual hierarchy, creating transient attractor dynamics

that allow attention to lock-on (Tan & Wyble 2015; Callahan-Flintoft, Chen & Wyble 2018) to

one or more locations. In this context, the term lock-on refers to a state in which top-down
attentional enhancement at a given location amplifies feed-forward projections from stimuli at
that same location to create a temporary attractor state that locks attention at a given location for

a brief window of time. These lock-on states are similar in some respects to what was originally

conceived of as attentional engagement (Posner REF), in that attention is strongly attached to

the location of one (or more) stimuli through a combination of feedback dynamics. The model

also simulates a natural process of disengagement from a given location due to the buildup of

inhibition for sensory representations at attended locations.
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Model outputs. The model simulates both the behavioral consequences of reflexive attentional

deployment, measured in terms of accuracy and reaction time, while also simulating key ERP

correlates of attention, such as the N2pc and the Pp components. As-a-starting point-the medel

Stimulus Processing and Differentiation. In order to provide a theory of attention that can be
applied to many different experimental contexts, we do not commit to the decoding of pixelwise
representations. Instead, simulated neurons in each spatiotopic map represent the presence of
attributes at locations with a granularity of 0.5 degrees of visual angle. These representations are

segregated into distinct maps that are each specialized for particular kinds of stimuli, as in an

semp e thnhesmmentesthermedebott et al. (1998),

Localizing and attending important stimuli. FThe RAGNAROCmedelRAGNAROC is-builtwith
the-assumptionassumes that attention must n-essential-funetion-of the-visual attentionsystermis

te determine the precise location of a to-be-attended stimulus from the coarse-grained location

information carried by higher levels of the visual hierarchy(DiCarlo & Maunsell 2003), and then

deploy attention to the corresponding location. This is consistent with a broad range of findings

The distinction between Targets and Distractors. RAGNAROC assumes that targets and

distractors are distinguished based on differences in priority(defined below), Anether

attentional-priorify-{defined-belew)-since a decision must be made to commit attention before
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input from slower, more deliberate stimulus evaluations are completed. In this framework,
targets (to the extent that the visual system perceives them as such) are successful at deploying
attention because they elicit a more rapid priority signal at their location in the attention map.
The decision process is, in effect, a race between competing representations, and the top-down

attentional set plays a key role in helping task-relevant stimuli to win that race.

However, the outcome of this race-based decision process is not pre-ordained and the attention

system is prone to deploying attention to highly salient distractors ;
on some fraction of trials. Thus, the model explains attentional capture experiments as a mixture
of trial outcomes, which often exhibit successful deployment of attention to the target, but

sometimes allow a distractor to win the competition.

Priority value. Each Stimulus in the visual field receives a priority value, which is a valuation of

its ability-to-trigger-the-attentional system-aeceordinglikely importance according to a

combination of physical salience, and top-down contributions from attentional set (Figure 3).

Physical salience reflects the degree to which a given stimulus stands out from other nearby
stimuli in terms of low-level features (e.g. color, orientation, luminance). Priority is also
affected by the degree to which a stimulus matches the current attentional control settings -

(Saenz, Buracas & Boynton 2002:; Zhang & Luck 2009:; Bundesen 1990 REF CHECK). These

attentional control settings prioritize simple features like color, or more complex attributes such

as conceptual categories (e.g. dinner food, animal, etc) by upweighting feedforward activit

from some maps and downweighting feedforward processing from other maps. We assume that
the ability to select certain stimulus attributes for task-relevant weighting is governed by pre-
learned stimulus categories (e.g. contrasting letters vs. digits), but cannot easily be accomplished

for arbitrary distinctions (e.g. select letters A, B, C from other letters). This follows from the

work of Shiffrin & Schneider (1977) who demonstrated the ability to efficiently attend to

previously learned categories, but not to arbitrary subsets of a category. Based on work

suggesting that even conceptually defined target sets can be used to select information from
RSVP (Potter 1976; Barnard, Scott, Taylor, May & Knightley 2004) or capture attention

(Wyble, Folk & Potter 2013), it is assumed that prioritization can happen even at a conceptual

level.

-Other potential contributions to priority that will not be considered here could involve whether

stimulus attributes have been associated with reward (Anderson, Laurent & Yantis 2011), have
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Stimulus A. Attentional Capture Paradigm (Shape target)
Target T |I| .Color
@ @ Other Singleton Target
Low salience High salience  Mod. salience
® @ Low relevance  Lowrelevance High relevance
1 @\ P
- \ Weak Strong
Color Singleton Priority Value
Other
Stimulus B. Attentional Capture Paradigm (Color target)
Target -—" ® Shape
@ o Other  Singleton  Target
Low salience Mod. salience  High salience
@ Lowrelevance  Lowrelevance High relevance
' Weak Strong
Shape Singleton Priority Value

Figure 3. Illustration of how both intrinsic salience and top-down relevance cues can
be mapped onto a single priority dimension. The figures illustrate canonical
paradigms from attentional capture experiments. The top version of the paradigm
uses a highly salient color singleton which results in priority values that are
competitive with the less-salient target. When the target and distractor dimensions
are switched, the shape singleton is not competitive with the color-singleton target.

been recently presented (Awh, Beloposky & Theeuwes 2012), were recently task relevant
(Kadel, Feldmann-Wiistefeld & Schubd 2017) or are relatively novel in time (i.e. an oddball).

Thus, a strength of the attention-map framework is to allow a broad variety of influences to

affect how stimuli are prioritized.
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3.2 RAGNAROC Architecture ef-the-medel

3.2.1 A Hierarchy of Visual maps

The visual system is composed of a hierarchy of maps that each represent the visual field and are
connected so as to preserve a spatiotopic organization that is rooted in a retinotopic

representation at the earliest level (Figure 4). No claims about the number and complexity of this

hierarchy are necessary here-as ipats. Information propagates

g
through the layers via feedforward excitation. The first layer of the model is termed Early Vision
(EV) and simulates the earliest cortical regions in the visual hierarchy, which contains neurons
with small receptive fields, such as V1. The second tier of layers is collectively termed Late
Vision (maps LV1 and LV2) and contains neurons with larger receptive fields, corresponding to
anatomical areas in the ventral visual stream that are thought to be specialized for different kinds
of stimuli, such as V4 (color), FFA (faces), the EBA (body parts), the PPA (places), as well as
distinctions between animate and inanimate stimuli, canonical size (Konkle & Carmazza 2013)
and other distinctions that are as yet undiscovered. In our simulations, EV neurons have a

simulated receptive field size of .5 degrees, while LV neurons have receptive fields of 3.5

degrees width.
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The third layer of the model’s hierarchy is the attention map (AM), which receives input from all
of the subordinate LV maps’ and have the same diameter of receptive fields as LV neurons.
Thus their receptive fields are extremely broad, because their input from the LV is already
enlarged. The role of the AM is essentially to implement decision making across the visual field
and to enact the consequences of that decision by sending modulatory projections down to the
earliest level of the hierarchy. It does this by accumulating spatially imprecise activity from the
subordinate LVs and then computing the spatiotopic location of the originating stimulus in the
EV by summation. Convergent input from the LV maps initially forms an activation bump,

centered at the location of each stimulus in the visual field. The correct localization of this bump

A B

Lateral Circuitry: IG
See Panel B P g A \
/ ‘ DoG ‘ NN
4
Top-down J
Attentional Control / _
. 4
Late Vision (
L) e
+ Il layer /
Salience \
Weights ( o e Nodes
_> Excitatory
_. Inhibition
=g Amplification

Visual Input *

Figure 4. Illustration of the model’s macro architecture (A) and the microcircuitry
(B) of the attention map. In the hierarchy of visual areas, the cones reflect the set of
neurons at a subordinate layer that excite a given neuron in the superordinate layer.
Only two LV maps are shown here, but this architecture would generalize to
additional levels. Differences in salience are implemented as stimulus-specific
differences in feed-forward excitation between EV and LV. Top-down selection is
implemented as feature-specific weights for an entire LV map between LV and AM.
The Attention Map returns a location-specific gain enhancement at a given location
in the EV. The grey Il layer represents feedback inhibition for each LV node. The
inset in B shows how neurons are interconnected within the AM. The small grey
circles are Inhibitory Gating (IG) neurons, each of which has a competitive inhibitory
relationship with a principle neuron of the AM. The principle neurons excite one
another with a spatial distribution defined by a Difference of Gaussians (DoG). This
connection corresponds to the black curved arrows in panel B.

7 Direct projections from the EV to the AM could exist but they are not represented
here for simplicity.
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follows naturally from the activation dynamics of the model since the AM neuron that resides at
the corresponding topographic locus of the centroid of LV activity will receive the largest

amount of input from the LV.

When AM neurons are stimulated above threshold, a multiplicative attentional enhancement is
applied to all neurons in the EV at the corresponding spatiotopic location. This modulation
increases the strength of the feedforward input from that region of the visual field, which in turn
increases the excitatory input to the AM. This dynamic creates a brief attractor state, in which
the activated peak in the attention map is amplifying its own input. This condition we term a
lock-on state and allows a precise, stable localization of attention despite the relatively coarse-
grained spatiotopy in the receptive field of the neurons. Furthermore, the activated AM neuron
inhibits other surrounding neurons in the AM, which narrows the spatial focus of the lock-on

state.

Thus, the attention map integrates information from the subordinate feature maps to localize one
or more targets and then projects an enhancement signal back down to earlier areas at the
appropriate location(s). There have been a number of proposals for where such an AM might
reside in the brain, including frontal cortex, parietal cortex and portions of the pulvinar nucleus
(Shipp 2004). We note that a lateral, parietal location would be broadly consistent with the scalp
topography of attention-related ERPs, which are typically larger above parietal cortex than
directly over occipital, central or frontal areas (e.g. Tan, Wyble 2015). It is also possible that this
functionality is distributed over several cortical areas, although that would come at the expense

of intracortical white matter to mediate the competition.

3.2.2 Attentional gating circuitry

One of the key innovations in this model is the inhibitory control circuitry within the AM (the IG
nodes in Figure 4B), which has been developed according to key findings in the literature. It
allows attention to rapidly focus at a location, selectively inhibiting regions of the visual field
that contain other visual stimuli. Moreover, the disinhibitory component of the circuit permits
attention to be simultaneously focused at multiple locations when the stimuli are of similar

priority.

To ensure that attention is inhibited at regions of the visual field that contain stimuli

(Gaspelin et al 2015; Cepeda et al. 1998), gating circuits (the IG neurons in Figure 4b) ensure
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that inhibition is only delivered to neurons receiving excitatory input from the visual field. Each
IG neuron is paired with one principal neuron in the AM. An IG only becomes activated when it
receives lateral excitation from another AM neuron (i.e. the curved arrows at the top of Figure
4B) and concurrent excitation from any LV neuron at its own spatial location (i.e. the rising
arrow from LV to AM in Figure 4B). As a consequence, only AM neurons that are receiving
feedforward excitation from the LV can be inhibited by another neuron in the AM. This prevents
the AM from inhibiting locations of the visual field that are empty, matching behavioral data

regarding the suppression of attention (Cepeda et al. 1998; Gaspelin et al. 2015).

The disinhibitory component of this gating circuit acts to increase the stability of lock on states,
such that once a decision to attend to a given location is reached, it is less likely that other
stimuli will cause it to disengage. Each strongly active AM neuron inhibits its own IG neuron, a
form of competitive inhibition that has been determined to have a similar stabilizing function in
well-charted nervous systems such as the drosophila larva (Jovanic et al. 2016). With this circuit,
multiple neurons in the AM can remain active, since they protect themselves from the inhibition

generated by the other active AM neurons.

3.2.3 Free and fixed parameters

The model uses predominantly fixed-parameters according to a set of empirical constraints,
which are listed below in section 4. These parameter values are invariant for all of the
simulations provided below, except for a subset that vary in order to implement the experimental
paradigm of each simulation (e.g. Timing and location). There are also two partially-fixed
parameters that specify the physical salience and task-relevance (i.e. bottom-up and top-down)
weightings of each stimulus type. The term partially-fixed reflects the fact that their relative
values are determined by the experimental paradigms. E.g. in simulations of the additional—
singleton paradigm (Theeuwes 1991), we allow the specific value of the distractor's salience to
vary, but it has to remain higher than the salience of the target. Finally, there is one additional
free parameter that defines the accumulator threshold for a behavioral response for each
experiment. This parameter is constrained to have a single value for all conditions of a given
experiment and prevents behavioral accuracy values from being at ceiling or floor. The specific

values of all parameters will be provided for each simulation in the appendix.

3.3 Mechanisms of the model:

3.3.1 Equations
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The model uses rate-coded neurons, governed by the activation equations of O'Reilly &
Munakata (2001) as shown in the Appendix. In these equations the activation level of each
neuron is governed by three currents: excitatory, inhibitory and leak. This level of abstraction is
a compromise that captures the properties of neuronal synaptic interactions in broad strokes,
while allowing rapid exploration of different model architectures. Moreover, the distinction
between excitatory and inhibitory currents provides a mapping to current flows underlying EEG
components. This set of equations has been used effectively in previous simulations of

attentional processes at similar time scales (e.g. Bowman & Wyble 2007)

Each connection within the model is enumerated in Figure 5 and properties are described below.
For simplicity, all maps have the same dimensionality and number of stages. Furthermore only
two pathways are simulated here. The mechanisms used here generalize to more complex
architectures with more layers and more pathways. All connections between or within layers are
assumed to have either an identity projection (i.e. strictly topographic), a Gaussian spread, or a

Difference of Gaussians (DoG).

The following numbers indicate connections specified in Figure 5.

1. Inputto EV neurons: The EV represents the earliest stage of cortical visual
processing in which neurons have extremely small receptive fields and
color/orientation/frequency specific firing preferences. For the sake of simplicity,
EV nodes are separated into different areas according to the kinds of stimuli
presented, although in the brain these different neurons occupy the same cortical
map. Input to a specific EV node is specified as a step function, since the
simulations are of suprathreshold stimuli (i.e. a value changing from 0 to 1 while the
stimulus is visible), which causes the corresponding EV node's membrane potential

(MP) to charge up according to equations 1.1,1.2 and 1.3, see appendix.
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Figure 5. Illustration of the complete architecture for two distinct pathways during
perception of two objects with highly distinct dimensions (e.g. form vs color). The
left and the right side represent the same connections but for different stimuli. The
bubbles indicate the spatial distribution and character of each connection. The
traces above each layer illustrate a typical activation profile for that map in
response to a stimulus. Note that attention affects both pathways, regardless of
which stimulus triggered it. The numbers correspond to descriptors in the text.

2. Projection from EV to LV: When an EV node's membrane potential crosses

threshold, it sends a feedforward excitation to an array of nodes in the corresponding

LV maps. This projection is spatially weighted according to a Gaussian centered at

the location of that EV node. The magnitude of this projection is the salience of the

stimulus, and indicates its physical dissimilarity to other stimuli in the visual field

according to the specific LV it projects to (e.g. a shape singleton would have a high

salience in an LV map that is specific for form). Other accounts have shown how to

compute salience for some classes of features such as color, orientation and

luminance (Zelinsky 2008; Itti et al. 1998; Bruce & Tsotsos 2006). In RAGNAROC,

we abstract over the process of computing salience to accommodate the broad

diversity of tasks. Computing [V activation corresponds to equations 1.4-1.6 in the

appendix.
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Inhibitory feedback nodes in the LV: Each LV node has a dedicated inhibitory
interneuron (labelled II), that provides feedback inhibition. This inhibitory feedback
is crucial for emphasizing the onset of new information by causing the activity of
any given LV neuron to drop after approximately 100ms, which is characteristic of
single units in the visual system (e.g. Fig 9 of Chelazzi, Duncan, Miller & Desimone

1998). Moreover, these Il neurons cause attention to naturally disengage from a

stimulus that remains constant on the retinal field. Computing II activation

corresponds to equations 1.8 to 1.10 in the appendix.

4. Projection from LV to AM: When an LV node crosses threshold, it projects

feedforward excitation to an array of nodes in the AM according to a Gaussian
profile centered at the location of the active LV node. LV nodes also excite IG
nodes (see below) with the same Gaussian profile. The projections to both the AM
and IG nodes include a parameter that represents the task-relevance (i.e. "top-
down") weighting of each stimulus type, and is fixed for each LV map. (e.g. to

represent an attentional set for a specific color, all LV nodes for that color have an

increased feedforward strength to the AM). Computing AM activation corresponds

to equations 1.11 to 1.14 in the appendix.

Inhibitory Gating Nodes (IG): The IG nodes ensure that inhibition with the
attention map only occurs at locations receiving input from an LV (see also Beuth &
Hamker 2015). Each IG node is paired with a single AM node that it can inhibit. An
IG node is excited by neighboring AM nodes according to a Difference Of
Gaussians (DoG) activation profile. IG nodes are also excited by LV nodes. The
total excitation of each IG node from these two sources (AM and LV) is capped
such that concurrent AM and LV activity is required to raise an IG node above
threshold. Thus, IG neurons exhibit the equivalent of a logical AND gate in that they

require concurrent activation from two pathways in order to fire. Computing AM

activation corresponds to equations 1.16 to 1.21 in the appendix.

IG inhibiting the Attention Map: When activated by convergent AM and LV input,
an IG node inhibits its corresponding AM node. This is the basis of inhibitory



RAGNAROC, a model of reflexive visual attention

10.

suppression of attention within the model and corresponds to equation 1.12 in the

appendix. -

Attention Map inhibiting IG: The inhibition from AM->IG has a high threshold of
activation, so that once a lock-on state has formed at a given location, the
corresponding AM node protects itself from inhibition. This disinhibitory circuit
increases the stability of an AM lock-on state, since AM neurons can protect
themselves from inhibition generated by neighboring AM nodes. This inhibition

corresponds to equation 1.19 in the appendix.

Attentional Enhancement: Each AM node provides a gain modulation of synaptic
transmission from EV to LV for all EV nodes at the same location. Note that
enhancement of a given location in the EV occurs for the entire Gaussian spread of
an EV neuron's feedforward projection, unselectively across all feedforward
pathways. It is this modulation that creates the “lock-on” attractor between EV and
AM since it allows an AM node to increase the gain on its own input. This

enhancement corresponds to equations 1.4 and 1.15 in the appendix.

AM excitatory Bias: There is a uniform level of bias input to the entire AM, keeping

these neurons slightly active in the absence of input. This enhancement corresponds

to equation 1.11 in the appendix.

Noise input: Intertrial variability is added to the model as modulations of the
weights between the LV and AM, which represents fluctuations in attentional
control. The variability is constant for a given trial and varies between trials as

samples from a Gaussian distribution. REF

3.4 Example Simulations

The following examples illustrate the model’s dynamics in response to several stimulus

scenarios.

3.4.1 The simplest case: Single stimulus
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Figure 6. A. Evolution of a lock-on state across time and layers for a single stimulus. An initial
feedforward wave of excitation from a single location in the EV triggers activation in the LV, which
carries forward to a peak in the AM. Once the central peak of the AM activation crosses threshold, the
surrounding IG neurons are activated producing surrounding inhibition in the AM. B. Illustration of
the time course of activation for each kind of node within the model in response to a stimulus.
Subscripts x,y indicate the location of the stimulus while x+2,y2+2 indicate nodes at a
neighboring location.

Notable inflection points are when the AMX‘y node crosses its lower threshold, which triggers

enhancement of the LV activation. This drives the AMXy node more strongly such that it passes
its second threshold, allowing it to suppress the Iny node. At this point attention is fully locked
on to location x,y, since processing is enhanced at that location, and the IG has been inhibited.

When a single stimulus of sufficient priority is presented to the EV, it triggers a lock-on of
attention at its spatiotopic location, which is a self-excitatory attractor state resonating between
EV and the AM through the LV. Figure 6a illustrates the impulse response function in the AM
elicited by a single stimulus. Figure 6b illustrates the time course of activation of each of the

layers of the model centered at the location of the stimulus.

3.4.2 Transition to the lock-on state

We demonstrate that the lock-on state has the characteristics of an attractor by illustrating that a
broad range of stimulus values evoke a bump in the AM of similar size and duration (Figure 7a).
The rapid growth of this neuron’s activation is due to the attentional enhancement of
feedforward activity from the EV after the corresponding node in the AM crosses the threshold
value. The decrease in peak amplitude is a result of the drop in LV activity due to feedback

inhibition from II.
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Figure 7: Illustration of the time course of activation of a neuron in the AM centered
at the location of a stimulus for varying amounts of activation strength of a stimulus
from .01 to .6 in increments of .03. The inset plots peak amplitude as a function of
activation strength. The takeaway point is that a lock-on state is an attractor, such
that many different values of strength map onto the same amplitude of activation.

3.4.3 Two stimuli

Figure 8 depicts a comparison of AM activity for either one(A) or two stimuli(B,C). In the case
of two stimuli, if one of them is of substantially higher priority, it will inhibit the AM at the
location of the other (B). However if both stimuli are of very similar priority and nearly

simultaneous, the two of them will always enter lock-on states simultaneously leading to a fully

parallel deployment of attention (C). In such a case, each AM inhibits its paired IG (not shown

in this figure), and the two lock-on states protect themselves from inhibition by the other.

3.4.4 Sequential stimuli

When stimuli onset sequentially, the first stimulus will typically be able to activate its Lock-on
state and suppress activity of the second. In this way, a first target (T 1) with a relatively low
priority value can suppress attention to a second target (T2) since the temporal advantage of T1

allows it to establish a lock on state before the T2 has a chance.

3.5 Competitive Inhibition helps to stabilize attentional focus

The competitive inhibition between AM and IG neurons was developed to meet empirical

benchmarks and this particular case highlights a virtue of modelling biological systems, which is
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Figure 8. Evolution of activity in the attention map over time for a single stimulus (A),
and the same stimulus accompanied by a stimulus of lower priority (B). In the case
where two stimuli have equal priority (C), attention is recruited at both locations.

the ability to understand the value of particular mechanisms. RAGNAROC gives us the tools to
understand that competitive inhibition improves the functionality of attention by increasing the
stability of one or more lock-on states, allowing attention to be simultaneously deployed more
easily, in accord with empirical findings such as Bay & Wyble (2014) and Goodbourn &
Holcombe (2015). To illustrate the effect of competitive inhibition on the attentional state,
Figure 9 compares the intact model (bottom two panels) to one in which the AM->IG inhibition
has been removed (top two panels). This change preserves the center-surround inhibition, and
the selective inhibition but does not allow AM nodes to competitively block their own inhibition.
The figure illustrates how the duration of lock-on states for two temporally proximal stimuli is

compromised without the inhibition.

With the inhibition intact (bottom two panels), it is much easier for simultaneously (or nearly so)
stimuli to evoke robust lock-on states because each protects itself from such interference.
However within about 50ms, the window of attentional simultaneity has expired because the T1
lock-on starts to inhibit nearby activity in the AM. This makes it difficult for T2 to establish its
own lock-on state if it onsets between 50 and 100ms after the T1. The time course of this
transition from simultaneous to sequential attention is in agreement with behavioral data
showing the onset of attentional inhibition following a T1 onset (Mounts 2000, Experiment 2).
The advantage of protecting the lock-on state of the T1 at the expense of the T2 is to reduce the

volatility of attentional decisions in the case of dynamic or rapidly changing stimuli.
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In contrast, when the competitive inhibition is removed (top two panels), the AM activations
evoked by two stimuli always compete against one another, such that only T1 or T2 can be fully

attended even when the stimuli onset simultaneously.

3.6 Mapping model activity onto measurable data

In order to compare the model against empirical benchmarks, it is necessary to map model
activity to behavioral measures of accuracy and reaction time, as well as EEG correlates of
attention such as the N2pc and Pp. Figure 10 illustrates which activity states in the RAGNAROC

model are used for generating data.

3.6.1 Model configuration

For each experiment, physical salience values and task-relevance weightings are configured for
different kinds of stimuli in the task. To provide variability, task-relevance weightings are varied
at random over repeated simulations, while the physical salience values remain fixed. Task-
relevance weights are initially varied according to a uniform distribution of possible values for
each kind of stimulus in the task. For example in a salient-singleton attentional capture paradigm
(Theeuwes 1992), the target stimulus has a physical salience value of .15 and a range of task-
relevance weightings from .17 to .37 in 12 steps of .018. The singleton distractor has a physical
salience of .3 and a range of relevance weightings from .07 to .27 in 12 steps of .018. The model
is run for all possible combinations of these weightings, (e.g. 144 total simulations in this
example). The simulations are then bootstrapped to form the simulated data set of an entire
experiment. The bootstrap involves resampling 10,000 times according to a normal distribution

(with mean centered at the median attention weight and a standard deviation of .75) under the
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assumption that there is trial to
trial variability in the attentional
set of the observers that is
normally distributed. For this
bootstrapping, the normal
distribution is mapped onto the
bins of the uniformly distributed
task-relevance weightings over a
range of +/- 3 standard
deviations. This bootstrapping
determines both the simulated
behavior (accuracy and RT, as
appropriate) and the EEG traces
for a given experiment. This is

the only source of variability in

the model when simulating EEG.

For simulations of behavior, an
additional source of noise is
added during the bootstrapping,

as described below.

3.6.2 Simulating Behavior
RAGNAROC simulates the
successful detection or response
to a target with a thresholded
accumulator. The accumulator
sums the time course of
activation of all LV neurons that

are activated over baseline (.5)
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Figure 9 Illustration of the robustness of lock on
states to each of two stimuli where the second
stimulus varies in the strength of bottom-up
strength value of the T2 (horizontal axis) and
temporal latency (vertical axis). Each point
represents the total duration for which the AM
neuron at the location of the stimulus (T1 or T2)
is above threshold. The key takeaway is that
without competitive inhibition (CI), T1 and T2
compete destructively at short SOAs such that
neither elicits a robust lock-on state. With
inhibition intact, both stimuli can achieve a lock-
on state if presented with nearly identical
onsets. However at longer SOAs T1 suppresses
T2 enforcing a serialized deployment of
attention. In this simulation, T1 and T2 were
presented 4 degrees apart and have a duration
of 120ms. Note that the T1 bottom-up weighting
is fixed for all simulations and only the T2
weighting is varied. The distinction between T1
and T2 becomes notional when they are
simultaneous.

for the target. For every trial, the area under the curve (AUC) is calculated for the entire time

course of activation. A trial is considered accurate if this AUC exceeds a threshold value that is

calibrated for each task, but is not allowed to vary for different conditions within a task. This

threshold is a free parameter fit for a given task to achieve a particular accuracy value in one

baseline condition chosen for each task. In order to introduce more variability and make
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simulations less sensitive to the
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Figure 10 Activity within the RAGNAROC model  each trial. Reaction times are
is used to construct simulations of data in the
form of behavioral accuracy, behavioral reaction
time and EEG components. Behavioral data are which the accumulator crossed
extracted from the late vision area, which is threshold.

assumed to drive the formation of memory

representations and response decisions through

mechanisms that are outside of the scope of the ~ 3.6.3 Simulating EEG

model. Simultaneously, synaptic currents within g translate from simulated
the attention map are measured to generate
simulated ERPs such as the N2pc and the PD.

Sum of activation condition’s average AUC times a

calculated as the time step at

neurons to EEG correlates is a
hard problem that, in its most
exact form, would require compartmental-level modeling of cortical neurons including all of the
synapses in each layer, a fairly complete understanding of the neuroanatomy for each individual
subject, and a model of the electrical properties of the tissue layers above the cortex (dura, fluid,

skull, muscle, skin).

However, it is possible to make effective progress with a much simpler model, given some
starting assumptions to simplify the forward model for generating scalp potentials. Here, these
assumptions are (1) that the attention map exists over a region of cortex situated in posterior-
lateral parietal areas of cortex (2) that EEG potentials are largely driven by excitatory synaptic
input on pyramidal neurons oriented perpendicular to the scalp (Nunez & Cutillo 1995) (3) that
an increase in this synaptic current within the attention map produces (on average) a negative
voltage at the scalp and (4) An additional weighting parameter that determines the relative
contribution of excitatory and inhibitory synaptic currents for all simulations. The advantage of

such a simple model is that it provides fewer opportunities to overfit the observed EEG.

Given these assumptions, RAGNAROC simulates lateralized EEG components associated with

attention by summing synaptic currents across each half of the AM, and taking the difference of
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those sums relative to the side of the visual field that a particular stimulus was presented on.
This is analogous to the measure of potentials such as the N2pc and Pp, which are calculated as
the difference in voltage between electrodes contralateral and ipsilateral to the side of the display

containing a target (or a distractor in some cases).

The synaptic currents are computed separately for each neuron as its excitatory current, minus its
inhibitory current, with a floor of zero. The intuition behind this implementation is that
excitatory currents are the primary drivers of the large dipoles that are observable at the scalp,
and inhibitory inputs often shunt those excitatory currents by creating high conductance areas of

the cell membrane closer to the soma (Koch, Douglas & Wehmeier 1990)

The AM receives a uniform input to elevate all of the neurons above their resting potential. This
provides a baseline level of excitatory current that is uniformly distributed across the attention
map and therefore drops out during the subtraction of ipsilateral from contralateral. Activation or
inhibition of nodes within the AM causes deviation away from this baseline level of current.
When this current is summed across the halves of the attention map, laterally asymmetric
differences in activation produce changes that are comparable to the N2pc and Pp components .
Note that using the sum of currents across a hemifield to simulate voltage means that increases

in current for some neurons might be effectively invisible to the simulated EEG signal if there

8 For the sake of simplicity, we assume here that there is a constant level of
resistance across the AM, such that voltage is directly proportional to current.
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Figure 11 Illustration of how different patterns
of activity on ipsi and contralateral sides of
simulated cortex can summate to produce either
positive, negative or nil voltage differentials.
Note that in F, the currents generated by the
activity in the peak is effectively cancelled out
by the surrounding inhibitory surround
producing an effective Nil in the contralateral
side. Note that “Nil” in this context doesn’t
necessarily mean exactly 0, but sufficiently small
that it is not detectable at a given level of
experimental power.

are also corresponding decreases in
current for other neurons in the same
half of the attention map (Figure 11).
Furthermore, any negativity in the
simulated voltage difference between
the contralateral and ipsilateral sides
of the map could be caused either by
an increase in activity in the
contralateral side, or a decrease in
activity on the ipsilateral side. It is
important to remember that there are
only two possible polarities of a
component, positive or negative, but
there are (many!) more than two
neural processes that could result in a
scalp potential at a given latency.
Therefore one cannot uniquely ascribe
a given functional property to an ERP
on the basis of a given

polarity/latency.

This ambiguity in the interpretation of simulated EEGs is not a shortcoming of the model, but

rather reveals a complication inherent in the interpretation of all ERPs. This complication

underscores the importance of understanding EEG signals at the level of their neural sources and

the role of computational models in understanding those sources.

3.6.4 Simulation of the N2pc

In RAGNAROC, any lateralized stimulus that has the highest priority produces a simulated ERP

that resembles an N2pc (Figure 12a). The onset and peak of the N2pc is caused by the initial

activation bump in the AM. When the lock-on state is established, the AM activates its

neighboring IG neurons, which adds an inhibitory region in the immediate surround. When the

central peak is surrounded by inhibition, the sum total of synaptic currents on the contralateral

side of the AM nearly cancel out and sometimes even reverse briefly producing a positivity.

Thus, while RAGNAROC is in general agreement with the theory that the N2pc reflects
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processes associated with spatial attention, it suggests a more specific temporal relationship,
which is that the N2pc reflects, in large part, the processes of localizing a target prior to
attentional deployment, as in the CGF model (Tan & Wyble 2015).

Thus, the model explains that the end of the N2pc does not indicate the end of attention, but
rather the onset of surround suppression. This simulation provides a straightforward explanation
for the brief duration of the N2pc, which is typically brief and followed by a positive swing
(Brisson & Jolicouer 2006)

3.6.5 Simulation of the Pp

The Pp is an EEG component thought to reflect inhibition of distracting information in the visual
field. In RAGNAROC, a Pp can emerge whenever there is sufficient inhibition of activity in the
attention map and this occurs in at least two ways. First, whenever two stimuli compete for
attentional control and one of them loses, the AM is suppressed at the location of the loser
(Figure 12b). This suppression reduces synaptic currents in the hemifield containing that
stimulus and results in a net positivity in contralateral scalp electrodes. However, a Pp also
occurs when the surround suppression encircling an attended stimulus is large enough that it
causes a net reduction in current for that half of the visual field. This imbalance would be
reflected as a Pp trailing an N2pc, and could occur even in the absence of a suppressed distractor

(Figure 12a, see also Tollner, Zehetleitner, Gramann, & Miiller 2011).

These are the essential aspects of simulating behavioral effects as well as lateralized EEG
components in the early time range following the onset of a stimulus array. In the next section
we illustrate how specific empirical effects emerge in specific experimental contexts through

these mechanisms.

4. Simulations of Empirical Constraints

4.1. Constraints in model development

As in previous papers (Tan & Wyble 2015; Swan & Wyble 2014), the model is parameterized
according to a set of extant findings in the literature. Once the model is able to simultaneously
accommodate those findings with one set of fixed parameters, it can be used to generate insights
about the underlying system and testable predictions for future work. The philosophy of this
approach is to allow a large number of empirical constraints to inform the model's design, with
as little parametric flexibility as possible. Here we list a series of behavioral and

electrophysiological findings that we consider to be crucial for defining the functionality of
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Figure 12 Illustration of how activation levels within the attention map
produce simulations of N2pc and Pd components for commonly used
experimental paradigms. Note that this is not intended to predict that
distractors always elicit an N2pc. .

reflexive attention. Each of these findings is simulated with the same set of parameters, except
for the configural parameters described in 3.2.3. The supplemental describes the exact set of
parameters for each simulation. Given the large diversity of experimental paradigms that provide
the constraints, the fits to the existing data are evaluated for their qualitative similarity to the

data.

4.2 Behavioral constraints:
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1. Covert spatial attention is triggered rapidly in response to a target or highly salient stimulus.
This effect is measurable as an enhancement of accuracy and reduced reaction time for stimuli
presented just after a cue, at that same location. The time course of this enhancement peaks at
about 100ms SOA (Nakayama & Mackeben 1989). Note that this transient form of attention is
short lived even when the cue stays on the screen. It is difficult to precisely estimate the duration
of this effect because it is followed by slower, more volitional forms of attention that sustains the
attentional effect to differing degrees in differing paradigms. However, there have been
consistent findings of enhanced perception at brief cue-target (Yeshurun & Carrasco 1999;
Miiller & Rabbitt 1989; Cheal & Lyon 1991) or target-target intervals that attenuate at longer
cue-target intervals. Targets elicit such attention as well (Wyble, Potter, Bowman 2009).

RAGNAROC simulates the transient attention effect of Nakayama and Mackeben (1989) as a

Figure 13 Behavioral constraints and
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brief window of elevated accuracy in reporting a target when it follows another stimulus at the
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same location because the second stimulus benefits from the lingering lock-on state created by

the first stimulus. (Figure 13a, the two traces in the data plot indicate different subjects)

2. This rapid deployment of attention is reflexive, which means that it is vulnerable to capture by
a non-target stimulus that is either highly salient (Theeuwes 1992) or contains a target-defining
attribute (Remington, Folk & Johnston 1992). This reflexive form of attention occurs even to
locations that are known to always be task irrelevant (Lamy, Leber & Egeth 2004; Krose &
Julesz 1989). Also, highly-salient distractors will trigger this form of attention regardless of
instruction, or lengthy practice sessions (Theeuwes 1992

). RAGNAROC simulates the attentional capture effect of Theeuwes (1992) as a
longer reaction time for a target in the presence of a distractor (Figure 13b). See the discussion

section for an in depth discussion of precisely what causes the slower RTs in a capture paradigm.

3. Attention can be biased towards stimuli containing certain features or attributes, provided that
there exist well-learned, cognitively accessible distinctions between target-defining features and
other stimuli (e.g. letters can be selected among digits but an arbitrary subset of letters cannot be
efficiently selected from other letters without substantial training, Schneider & Shiffrin 1977).
This target-defining attentional set is implemented across the entire visual field such that, for
example, establishing a control setting for red at one location prioritizes red at all locations
(Zhang & Luck 2009). RAGNAROC simulates attentional set as capture costs that are mediated
by task-set from Folk, Remington & Johnston (1992). See Figure 13c.

4. Attention can be deployed to two or more locations at the same time when stimuli are
presented in parallel, but behaves more like a spotlight when targets are presented sequentially
(Bichot et al. 1999; Dubois Hamker & VanRullen 2009; Bay & Wyble 2014). RAGNAROC
simulates divided attention as an attentional benefit that is similar in size regardless of whether

one or two locations are cued (Bay & Wyble 2014). See Figure 13d.

5. Presenting a cue or target at one location causes subsequent targets presented at spatially
proximal locations to be harder to perceive. This suppression is diminished with increasing
spatial distance (Mounts 2000; Dubois et al. 2009). RAGNAROC simulates attentional
suppression surrounding an attended region using two sequential targets as in Mounts (2000).

See Figure 13e.

47



RAGNAROC, a model of reflexive visual attention

6. In the presence of a target, inhibition is localized at the spatiotopic location of non-target
stimuli, in comparison to empty locations in the visual field. Thus, probe stimuli will be harder
to perceive when they occur in the locations of singleton distractors in comparison with blank
areas (Cepeda et al. 1998) or non-singleton distractors (Gaspelin, et al. 2015; Figure 2c).
Moreover, this effect is dependent on the attentional set of the subject. It is present only when
targets are defined by specific features, rather than by being a form singleton. RAGNAROC
simulates increased suppression of attention at locations containing salient distractors when the
top-down weightings

(Figure 14 bottom two panels). When these weightings are weaker, the reverse pattern is
obtained such that salient distractors evoke attentional enhancement rather than suppression

(Figure 14, top two panels).
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Figure 14 Experimental data from Gaspelin, Leonard & Luck (2015)
alongside simulations. In panel A the data are from a condition in
which the target was a shape singleton, but the subject did not know
which of two shapes would be the singleton or the distractor. In this
condition, report of the probe at the singleton color distractor was
elevated. The model simulates this effect (B) as the result of weaker
top-down attention which allows the salient distractor to successfully
trigger attention on a large enough proportion of trials that report of
the probe letter at that location is elevated. In panel C, the participant
knows exactly what shape will contain the target and attention is
inhibited at the location of the singleton distractor. This is simulated
(D) by adopting stronger top-down settings, which allows the target to
inhibit the distractor on nearly every trial, such that the probe letters
at that location are reported less often across the entire block of trials.

4.3 EEG Constraints

Data concerning the N2pc (also referred to as the PCN by Tollner, Muller & Zehetleitner 2012)
and Pp components will be taken as constraints as well.

4.3.3 Specific EEG Constraints:

1. Presenting a target in either hemifield produces a brief negativity in EEG recorded on
the contralateral, posterior side of the scalp called the N2pc (Luck & Hillyard 1994; Eimer 1996)
or PCN (Téollner, Zehetleitner, Gramann & Miiller 2011). This negativity typically peaks at

about 250ms after target onset and is observed even in the absence of distractors on the same
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side of the display (Tan & Wyble 2015). RAGNAROC simulates this effect as a contralateral

negative voltage for a target on one side of the visual field (Eimer 1996). See Figure 15a.

2. Multiple targets in the same location in immediate succession will produce an N2pc only
to the first target in the sequence, even for trials in which both targets were reported. Thus, the
lack of a difference between the waveforms in one and two-target trials does not reflect a failure
to attend or encode the second target (Tan & Wyble 2015; Callahan-Flintoft et al. & Wyble
2017; Callahan-Flintoft & Wyble 2018). When the two targets are presented in different
locations of the visual field, there will be an N2pc to each of them in turn (Tan & Wyble 2015).
This single-N2pc effect is only present when the two targets are presented within roughly 150ms
and at exactly the same location. When the duration between targets is extended, a second N2pc
is observed for the second target, even when it is in the same location as the first and also
regardless of whether subjects know that the second target will appear in the same location as

the first (Callahan-Flintoft & Wyble 2018; See Figure 15¢).

3. Multiple N2pcs can be evoked in rapid succession (e.g. at 10-100ms intervals), with no
delay . When presenting a lateral target at
intervals of 10, 20, 50 and 100ms relative to a preceding target, an N2pc is evoked with a target-
relative latency that is very similar (i.e. within 10ms) to that evoked by the first target. This
finding indicates that deploying attention to one target does not affect the time course of
attentional engagement to a second target within this short time frame (Grubert, Eimer 2014,
Experiment 1). At longer separations, an attentional blink may be observed but the blink is not

within the scope of the mechanisms of RAGNAROC See Figure 15d.

4. The N2pc/PCN is often followed by a positive contralateral potential called the Pp
(Hickey et al. 2009; McDonald, Green, Jannati & DilLollo 2012) or Ptc (Hilimire, Mounts, Parks
& Corballis 2010). This positivity has been particularly associated with the occurrence of a
highly salient lateral distractor, although this positivity can occur without such a distractor
(Tollner et al. 2011; Hilimire, Hickey & Corballis 2011). RAGNAROC simulates this effect as
a positive voltage after the N2pc for a lateralized target (T6llner, et al. 2011). See Figure 15e.

5. A laterally presented salient distractor can produce an N2pc, and this N2pc will be larger
if the distractor is presented without an accompanying target (Kiss, Grubert, Petersen, & Eimer

2012; Hilimire, Hickey & Corballis 2012; McDonald, et al. 2012). RAGNAROC simulates this
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effect as a negative contralateral voltage after a lateralized distractor (McDonald et al. 2012).

See Figure 15f.

6.

Specificity of the attentional set affects the degree to which targets and distractors

produce N2pcs. When the task set does not predict a specific stimulus shape (e.g. when the task

is to find the shape singleton), the distractor can elicit an N2pc (Hickey, et al. 2006; Burra &

Kerzel 2013) because the top down weighting is less efficient, which allows a salient distractor

to have higher relative priority. Furthermore, a target presented on the midline will reduce the

distractor induced N2pc by competing with it for attention (Hilimire, et al. 2011; Hilimire &

Corballis 2014; Figure 3c). Similarly, in the same condition an N2pc induced by a lateral target
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Figure 15 EEG constraints and
simulations. Note that polarity is
oriented according to the original source
and thus switches between panels (a) A
laterally presented target causes a brief
contralateral negativity, even if it has a
long duration (Eimer 1996; green
window added to emphasize the time
frame of the N2pc). (b) The N2pcto a
second target is muted if it occurs very
soon after and in the same location as a
preceding target (Tan & Wyble 2014). (c)
The second N2pc is of normal size if the
two targets are far apart in time
(Callahan-Flintoft & Wyble 2018). (d)
When two highly-salient, unmasked
targets are presented in rapid sequence
at different locations, the N2pc to the
second target is not much delayed
(Grubert, Eimer 2014). (e) The N2pcis
often followed by a deflection in the
positive direction, particularly when
there are nearby salient distractors, or in
this case when the target itself is highly
salient (Tollner, et al. 2011). (f) A
laterally presented distractor can trigger
an N2pc (McDonald et al. 2012). (g) With
a highly predictable or salient target, the
distractor produces a minimal N2pc and
has little effect on the target’s N2pc (Exp
2). When the target set is less specific the
distractor has a greater effect on the
target N2pc (Exp 1, Hilimire & Corballis
2014).
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is reduced by a centrally presented distractor (Hilimire & Corballis 2014). When the task set is a
predictable singleton, then distractors produce a much weaker N2pc and the target induced N2pc
is barely affected by the presence of a salient distractor. RAGNAROC simulates this effect as a
specific ordering of N2pc amplitudes for different stimulus configurations across two different
specificity manipulations (Hilimire & Corballis 2014). A similar result is obtained when the task
is manipulated such that the distractor is of higher or lower salience than the target. For example,
when the task is to detect a form singleton, a highly salient color singleton will reduce the
target’s N2pc, but this is not true when the task is to detect a color singleton, and the distractor is

a form singleton (Schubd, 2009). See Figure 15g.

5.0 Discussion: what have we learned?

The RAGNAROC model describes a set of neural mechanisms that explicates how
attention reflexively responds to new visual input, and makes rapid decisions about which
locations in the visual field to enhance and which to suppress. The decisions are mediated by
attractor states and competitive inhibition that help to ensure that the decisions are stable and
accurately targeted at the correct location. It is argued that this reflexive attentional system plays
a key role in many experimental paradigms, and constitutes the first form of decisive filtering of
visual information after it enters the brain.

As a model, RAGNOROC is both an architecture, as well as a specific set of parameters
that are calibrated against several decades of data that specify the time course of reflexive
attention. Presumably, this time course reflects an adaptation imposed by other constraints of the
visual system. For example, the operation of reflexive attention has to occur within the time span
of a visual fixation, while the eye’s position is relatively stationary. During the time window of a
single fixation, the representations throughout the visual hieararchy would be roughly in
spatiotopic register, making it easy to determine which information is associated with the same

object across different maps.

With the model developed and parameterized, the next steps are to use it as a tool to
learn more about the underlying system, and to assert a series of testable predictions that can
measure the validity of the model relative to the human system. We begin with a series of
lessons that were learned through the model’s development and then proceed to some more

specific predictions.
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Lesson 1. Attention does not draw a clear distinction between targets and distractors.
Experimental paradigms in experimental psychology often designate stimuli as targets or
distractors according to their physical attributes and it is tempting to assume that the mind of the
participant adopts the same crisp distinction. However, the visual system is presumably
maintaining vigilance for all possible kinds of stimuli (e.g. consider whether the participant
would react to an unexpected flash of light in an experimental context). To accomplish this feat
of general vigilance, even during a highly explicit visual attention experiment, the visual system

must evaluate all stimuli to determine which, if any, should be attended. This idea was critical

in two-stage models of attention (Treisman REF, Hoffiman 1979), which posited explicitly that

stimuli had to be evaluated in sequence to determine whether they were targets. RAGNAROC

extends this idea to reflexive attention mechanisms such that, assumes-that-stimuli-compete-with
a-common-currency-of relative priority—Therefore-within the confines of the attention map, for

at least the first two hundred milliseconds of processing, there is no categorical distinction

between targets and distractors. Rather, all stimuli compete, and attention is deployed to the

winners, and the losers are suppressed (though priority is biased towards stimuli that bear target-

defining attributes). The implications of this idea become more interesting when we think about

tasks with multiple targets of varying priority. fa-such-ecases;thereflexive attentional-system
SRTPIRTIgRT : he hicl ) I he ol

Lesson 2: Visual Attention as a decision i#—continnons-spaceprocess

RAGNAROC, +

~tFhe lock-on dynamics (including the

enhancement at the attended location, the surround suppression and the suppression of the IG

neurons) all serve to generate a commitment to attend to one or more locations ancherthat

for at

least a brief window of time (roughly 100ms or so);ratherthan-shiftingabropthy-fremone
location-te-anether. These bursts of attentional lock-on provide stability to reflexive attention

over the time span of typical visual fixations, and allow the entire visual stream to momentarily
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synchronize representations across the multitude of maps distributed throughout the ventral and

dorsal streams. This is one means to address the classic notion of binding (Treisman REF). -

s—Without the extra circuitry, reflexive
attention would be prone to jumping rapidly from one stimulus to another, leading to jumbled
and mismatched representations in the various maps of the ventral stream.

Even more interesting, however is that RAGNAROC is able to implement these decisions over a

many possible spatial configurations. For example, the activity in the AM could be confined to a

single point, spread across multiple points, or be distributed across one or more large regions.

Lesson 3: What does the N2pc/ Pp complex reflect?

A typical approach in theoretical work is to assign specific roles to particular EEG components.
For example the N2pc is thought to reflect attention evoked by a target in some form while the
Pp reflects inhibition evoked by a distractor. However, as we note above, there are cases in
which targets elicit Pp components and distractors elicit an N2pc.This modeling approach
illustrates why it is important to consider that there is a many-to-one mapping between current
sources and ERPs. The neutrality of a scalp potential at a given latency could indicate a period
of neural inactivity, but it could also be the case that there are strong underlying dipoles that
happen to cancel one another out at that particular moment in time. It is therefore crucial to
ultimately understand ERPs at their source level if we want to fully incorporate them into the
inference process. In a similar fashion, there are several ways in which neural activity evoked by
a stimulus could lead to a negativity or positivity. For example, RAGNAROC illustrates why the
N2pc is often followed by positive rebound after about 100ms, even though the stimulus stays
on the screen (Brisson & Jolicouer 2007). Furthermore, the model explains why this rebound can
increase to the point of producing a trailing positivity as target salience is increased (e.g. Tollner

et al. 2011) despite there being no specific distractor.

Lesson 4. Experiment outcomes are a mixture of different trial outcomes
In RAGNAROOQ, trial-to-trial variability in the simulations accounts for uncontrolled sources of

variability (e.g. spontaneous fluctuations in attentional focus on the part of the subject) and is
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essential for simulating different levels of accuracy. More importantly, the model clarifies how
differences in the magnitude of an effect could reflect variation in the frequency of a given
outcome, rather than differences in the size of the effect within each trial, a point that was also
emphasized by Zehetleitner et al. (2013). For example, a given experiment that exhibits a weak
attentional capture effect by a salient distractor, may in fact have a very strong capture effect,
but only on a minority of trials. Likewise, a manipulation that produces a stronger N2pc in one
condition may be altering the proportion of trials that contain an N2pc rather than the amplitude

of the N2pc itself.

Lesson 5. Understanding reaction time costs in attentional capture

The term attentional capture typically refers to a behavioral phenomenon of slowed responsesto
a target due to the presence of a distractor, but what exactly causes the reduced performance? In
RAGNAROC, there are three possible patterns of attentional allocation when a target and at
least one distractor are presented together. First, the target might trigger attention and suppress
attention to the distractor(s); second, the target and distractor might trigger attention together;
and third a distractor might trigger attention and suppress attention to the target. Each of these

three possibilities produces a different RT for the target.

RAGNAROC predicts that RTs would be fastest when the target is attended and the distractor is
suppressed because this reduces interference caused by distractor processing. When both the
target and the distractor are attended (i.e. simultaneous attention), RTs to the target would be
slightly slowed because simultaneous lock-on states, while stable, are often slightly smaller
compared to a case in which the target is clearly dominant. The final case produces the slowest
RTs because the target is not enhanced by attention which reduces the strength of evidence for

that target.

The RAGNAROC model predicts that any given experimental block of an attentional

capture experiment is composed of a combination of these three outcomes, with

proportions determined by the relative priority of the targets and distractors. Thus, even in a
paradigm that has minimal evidence of attentional capture at the group level, the distractor may
nevertheless trigger the deployment of attention on a subset of trials depending on variation in

the subject’s attentional focus.
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Lesson 6. Architectural answers to the bottom-up/top-down attentional capture debate

One of the most enduring discussions in the attentional literature is whether bottom-up stimuli
are always able to capture attention, or are top-down attentional control signals able to override
bottom-up salience. Driving this debate are classic findings that some kinds of distractors elicit
capture costs consistently, even though they are never task relevant (Theeuwes 1991). In others
studies, capture effects seem to be entirely contingent on top-down settings (Folk, Remington &

Johnston 1992). This debate has continued without a clear resolution.

In the model, there is a sense to which bottom-up selection occurs prior to top-down guidance
because of the anatomical ordering of early vs later stages of processing. Differences in physical
salience are represented at the junction between EV and LV, and differences in task-related
attentional set are represented between the LV and AM. This means that a difference in physical
salience will often manifest in the AM prior to a difference in task relevance simply because the
EV neurons are earlier in the processing hierarchy, which allows them to determine which
stimuli in the LV will cross threshold first. Figure 16 compares the time course of activation

bumps generated by highly-salient,

30 T
High TD

High BU irrelevant stimuli, to less-salient but task

relevant stimuli. Thus, the model exhibits a
form of precedence that is in general

agreement with Theeuwes Atchley &

Activation

Kramer (2000). Moreover, this result is not

due to specific parameter values, but rather

0 ‘ : : is an outcome of the model's feedforward
Oms Time 600ms

Figure 16. Simulation of the time
course of attention map activation for
two stimuli that have similar
attentional priority, except that one
has high salience and a low bottom-up

architecture. Since salience differences are
thought to be processed earlier in the
hierarchy (Zhaoping 2002), highly salient

stimuli will tend to activate their

weighting (BU: .2, TD:.15) while the
other has the reverse (BU: .15, TD: .2).
Of note, despite the higher peak of the
high-TD stimulus, the high-BU
stimulus has an earlier peak. This is an
overlay of two traces; the two stimuli
were simulated separately and had the
same onset.

corresponding LV nodes earlier than less
salient stimuli. However, this temporal
advantage does not mandate that salient
stimuli will always be attended first, since a
strong top-down weighting can ensure that a

task-relevant, but lower-salience stimulus
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will establish a lock-on state more quickly than an irrelevant, higher-salience stimulus.

Lesson 7. Architectural answers to the singleton-detection mode debate

Another crucial issue in the attentional capture debate has been the idea that the singleton
detection mode allows the system to select unique information for any attribute dimension (e.g.
the red item among green items). The advantage of such a mode is that it does not need to be
configured in advance for a specific value, preferring equally a red among green items or a green
among red items. It has been suggested that subjects use singleton detection when looking for a
target that has a unique property, such as a color or form singleton(Bacon & Egeth 1994).
However, a limitation of singleton detection mode is that it cannot be directed towards a specific
dimension. Thus, using singleton mode to detect an oddball shape will also prioritize an oddball

color.

Models like RAGNAROC make singleton-detection mode straightforward; it is simply the lack
of a strong top-down set, which thereby allows stimuli with high physical salience to dominate
the computation of attentional priority. This explains the observation that singleton detection
mode cannot be specific for a given dimension. Moreover, since singleton mode is effectively
the absence of a top-down set, it is the default search policy (Bacon & Egeth 1994; Lamy &
Egeth 2003).

Lesson 8: Architectural answers to the distractor suppression debate

Competing accounts of inhibitory control in reflexive attention pit the notion of a suppressive
surround (Mounts 2000; Cutzu & Tsotsos 2003; Tsotsos 2011) against accounts in which
inhibition is selectively deployed to distractor locations (Cepeda et al. 1998; Gaspelin et al.
2015). RAGNAROC illustrates how readily a single model can exhibit both behaviors
depending on the paradigm that is being used. A spatial gradient in AM->IG connectivity
simulates the surround inhibition effect of Mounts (2000). However, within that surround field,
inhibition is selectively applied to the locations of stimuli as a function of their spatiotopic

distance to the lock-on state.

RAGNAROC thus explains why the Mounts paradigm and other paradigms which also surround
the initial target with distractors such as Cutzu & Tsotsos (2003) were so successful in eliciting
the inhibitory surround, while other paradigms have no clear pattern of inhibitory surround

(Wyble & Swan 2015). In the Mounts paradigm, the first target is surrounded by a large number
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of simultaneously presented distractors. This display is followed immediately by a second
display that is used to probe the state of attention. According to the RAGNAROC, the dense
field of distractors in the first display of Mounts (2000) plays a key role in revealing the shape
and size of the inhibitory gradient, since each of those distractors will elicit inhibition in their
location, and this inhibition will affect the following target. For paradigms in which the initial
target is not surrounded by a dense field of distractors (e.g. Wyble & Swan 2015), the IG
neurons in the large area surrounding the target are not stimulated by input from the LV and
therefore the only inhibition that is actually expressed in the AM is that immediately

surrounding the target's lock-on state.

Lesson 9. The Competition for attention can result in a tie.
The conventional notion of spatial attention is that it behaves like a spotlight, focusing on only
one location at a time. This explanation provides a ready explanation for cueing costs and
attentional capture effects, since attention directed at one location can therefore not be at
another. However there is also mounting evidence that attention can be deployed simultaneously
at two distinct locations (Bay & Wyble 2014; Bichot Cave & Pashler 1999; Kyllingsbaek &
Bundesen 2007; Kawahara & Yamada 2012; Goodbourn & Holcombe 2015

). Of these,
Goodbourn & Holcombe provide what is arguably the most compelling evidence of the
simultaneity of attentional deployment by measuring the time course of selection at two discrete
locations and finding essentially no lag for one vs two simultaneously cued locations. The
RAGNAROC model provides an explanation for these seemingly incompatible sets of findings.
The circuitry in the attention map is designed to encourage a competition between simultanoues
items, however it is a competition in which there can be multiple winners, which allows

simultaneous attention for two stimuli of approximately equal priority.

Lesson 10. Reflexive Attention may have almost unlimited capacity.

A common assumption of cognitive theories is that attentional limitations play a key role in
determining performance in complex tasks. However, attention is a broad concept and it is often
difficult to understand exactly what forms such limits take. In many cases, attention is equated
with the ability to "process" information, which includes some mixture of identification,

decision making, response generation, and memory encoding.

58



RAGNAROC, a model of reflexive visual attention

RAGNAROC embodies a specific definition of attention, which is the reflexive enhancement of
feedforward excitation at a given location in the visual field deployed reflexively in response to
a stimulus. In the model, this form of attention has no clearly defined limit in terms of the
number of attended locations, since the model only simulates an increase in gain at a given
location and that increase could occur at an almost arbitrary number of locations. The variability
in the representations of multiple items coupled with the suppressive interactions in the AM
makes it unlikely that more than a few locations would be attended in this way, but it is possible
in principle. Thus, the model proposes that the earliest stage of attentional selection may operate
without strict capacity limits. Of course, subsequent stages of processing are surely limited. For
example, even if four stimuli produced simultaneous lock-on states, encoding them all into
memory at the same time would produce interference. Parallel selection at early stages does not

necessarily entail parallel processing at later stages.

Lesson 11. Attention can be suppressed without suppressing the representations

It is often suggested that distractors are inhibited during the selection of target information.
Models like RAGNAROC elucidate an important distinction between suppressing the
representation of a stimulus itself vs suppressing attention at the stimulus’ location. Suppressing
a stimulus representation entails direct inhibition of the neurons that represent the attributes and
features activated by that particular stimulus (e.g. Reynolds & Heeger 2009; Beuth & Hamker
2011) with the potential to eliminate the active representation of that information from the
nervous system. On the other hand, suppressing attention at the location of a stimulus, as in
RAGNAROC, preserves the original information of the stimulus at the earliest layers of the

visual system.

It is, unfortunately, difficult to clearly distinguish between the two implementations of
suppression using observations of accuracy or reaction time, since both forms of inhibition will
reduce the ability to respond to a stimulus. However this difficulty illustrates an advantage of the
modeling approach, since models are able to clarify distinctions of implementation that are not
otherwise obvious (see also Lu & Dosher 1998 for an illustration of how models of noise
exclusion can provide a more specific inference about the mechanisms of attention with the use
of psychometric curves). Moreover, the model illustrates why it would be advantageous to
suppress attention, rather than the representation. Suppressing the representation of a stimulus

would require an enormous number of long-range connections to deliver inhibition to the
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appropriate neurons throughout the set of LV maps. Suppression of attention is much simpler to

implement, since the inhibitory circuitry is entirely self-contained within the AM.

6: Review of other theories

There is an enormous literature of theories and models of visual attention. With a term as broad
as attention, it is impossible to identify a canonical set of effects that all models should strive to
explain and therefore a point-by-point comparison with other models is impossible. Speaking
broadly, the RAGNAROC model occupies a relatively unique position in the modeling
landscape by focusing on the neural mechanisms associated with reflexive attention at a short
time scale and explaining the N2pc/ Pp complex as the result of an impulse response function
across a field of neurons. Other models have touched on the idea of simulating the N2pc
(Fragopanagos, Kockelkoren, & Taylor 2005) but have not provided a complete picture of neural

firing that would translate into a lateralized potential, nor linked to such a diversity of findings.

This review will cover a subset of models that focus on the mechanisms of spatial attentional

selection

Models inspired by neurophysiology. There is a family of models and theories of visual attention
inspired by single unit neurophysiology in monkeys. Some of the research in this domain
explores the properties of attention in spatial and feature domains. For example, the
normalization model of Reynolds & Heeger (2009) proposes that the neural response to any
given stimulus is downweighted by the activity of nearby stimuli. Thus, when one stimulus is
attended, other stimuli in the vicinity will evoke less activity, all else being equal. The
normalization model provides a straightforward, neurally plausible mechanism for the effects of
attention at the level of single-unit data. Beuth & Hamker (2015) provide a more detailed
account of how attention can be mediated at the level of cortical representations. Such models
interface directly with single-unit data from a variety of cortical areas, although they do not
explain the decision-making aspect of attention that is the focus of RAGNAROC. Instead,
attention is directed by other mechanisms that are outside the scope of those models, making
them complementary to this model. However, we consider it an open question as to whether the

suppression of attention is best explained at the circuit level within earlier cortical areas, as in
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Reynolds & Heeger (2009) and Beuth & Hamker (2015) or at a superordinate level as in
RAGNAROC.

Biased Competition. Another well known theory of attention is biased competition, in which
stimuli compete with one another for representation in a neural system with overlapping
receptive fields and the competition is biased in favor of neurons that respond preferentially to
task-relevant information (Desimone & Duncan 1995). There is an important point of
correspondence between the biased competition (BC) and the RAGNAROC accounts, which is
that both incorporate an initial period of non-selective processing before the deployment of
attention begins. In RAGNAROQC, this is the time during which information feeds forward
through the hierarchy to reach the AM. The RAGNAROC and BC models differ in the
mechanism of enhancement, since the BC implements attention as a contraction of receptive
fields around the target stimulus. The difference is key because at the core of BC is the idea that
representational space is a limited resource, which strongly limits the ability to attend to multiple
locations at once. In RAGNAROC, this first stage of attention has fewer limits and thus can be
deployed to multiple locations in certain situations. With that being said, the effect of attention
in RAGNAROC would manifest as a contraction of receptive fields around a given stimulus,

since an attended stimulus would dominate nearby representations in LV.

Theory of Visual Attention. The Theory of Visual attention (Bundesen 1990) is a mathematical
abstraction of the process of attending to and perceiving one or more stimuli in a single display.
In TVA, there are two ways to prioritize certain kinds of information selection: filtering, and
pigeonholing. Filtering involves upweighting the priority for certain features, which increases
the rate at which stimuli possessing those features attract attention. This is similar to attentional
control settings in RAGNAROC. The pigeonholing mechanism relates to how efficiently certain
kinds of information are categorized, which allows them to be reported and remembered. The
TV A model thus represents two distinct types of attentional control setting, which might also be
described as key feature and response feature (Botella, Barriopedro, & Suero 2001). The
RAGNAROC model differs from the TVA model in that it provides a more complete model of
the neural mechanisms associated with the computation and use of priority to direct spatial
attention. The TV A model, on the other hand, provides a concise mathematical formulation of
how two different kinds of filters interact to facilitate perception. A Neural implementation of
TVA has been proposed (Bundesen et al. 2011), however it is less clear how such a model would

scale up to a full working specification, since it requires a large scale winner-take-all
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implementation to complete attentional selection. Given the similarity of the role of priority
within the two models, it could be fruitful to consider the RAGNAROC as a
neurophysiologically plausible front-end for computing the priority-based competitive selection

process and the TV A as a clearer specification of subsequent processing.

Guided Search. To better understand a number of complex patterns in the visual search
literature, the Guided search model (Wolfe 1994) simulates how top down goals interact with
bottom up salience signals to determine likely target locations. Like RAGNAROC, this model
attempts to explain how the visual system mediates the balance between salience and task
relevance. Its focus is on a longer time scale than reflexive attention, and incorporates both overt
and covert forms of attention. RAGNAROC is complementary to this model, by explaining

attentional dynamics at a short time scale, and with a greater emphasis on inhibitory processes.

Feature Map Models. Another class of models simulates spatial attentional effects across sheets
of neurons corresponding to different visual features. Perhaps the most canonical of such models
is the salience model of Koch & Ulman (1985), which is architecturally quite similar to
RAGNAROC. A descendent of this model is often invoked as a benchmark in computer vision

algorithms (Itti, Koch & Niebur 1998).

In such models, feature detectors in multiple channels (i.e. luminance, color, motion flicker)
project to a master salience map that ultimately makes decisions about where attention will be
deployed using a simple winner take-all mechanism, coupled with a form of memory that erases
salience values at recently-visited locations. Like RANGAROC, this model uses salience as a
common currency across all stimuli in the visual field, and would be able to simulate capture
effects. The Itti, Koch & Niebur (1998) model has been foundational in understanding how
simple mechanisms can reproduce complex gaze behavior when iterated over many distinct
feature dimensions and levels of scale. Also, because the Itti et al. model simulates responses to
pixelwise visual data, and can be compared against visual fixation data from human subjects, it

set the stage for a generation of further modeling efforts.

Itti et al.(1998) and RAGNAROC address phenomena at different time scales. The former is
intended as a model of gaze behavior on time scales of a second or more, involving multiple
fixations. RAGNAROC is developed to understand how covert attention deployment is

computed anew with each visual fixation or significant change to the visual display. Moreover,
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the salience map in Itti et al.(1998) lacks the inhibitory mechanisms to suppress distractors
without first attending to them. The two models are thus complementary; they operate at distinct
time scales, emphasize different kinds of processes and simulate fundamentally different kinds

of data.

Other models provide more direct simulations of neural processes of enhancement in neural
sheets. The Selective Tuning model by Tostsos (1995; 2011) implements a form of inhibition in
which detection at an upper level of the hierarchy produces surround inhibition at earlier layers
of the hierarchy. This model is perhaps the most well-formulated attention model that has ever
been proposed since it proposes a gating control circuitry that allows information to be
effectively linked across differences in spatial invariance. Selective Tuning would reach several
of the benchmarks described here, but does not propose a reactive control circuit. It applies
inhibition in a region surrounding a target, irrespective of the presence of distractors. Moreover,
in the full architecture, decisions to deploy attention are made independently for different
stimulus dimensions and it is not precisely formulated how cross-dimensional competition
between stimuli would be implemented at the time scale of reflexive attention (see p121, Tsotsos

2011).

Resonance models

SAY MORE HERE

These ideas are both similar to the notion of the Fhe-netion-ofa-shroudisnet-entirely-unlike the

lock-on states described here, which also emerge through properties of spatial topography. are

63



RAGNAROC, a model of reflexive visual attention

The class of interacting neural sheet models includes a large number of others that make
important contributions to understanding particular empirical phenomena. For example, Zirnsak,
Beuth & Hamker (2011) simulate the temporal dynamics of attentional competition in response
to one or more stimuli; Lanyon & Denham (2004) simulate eyegaze during visual search as a
product of interacting attentional systems. Another class of models simulates how neglect
symptoms arise from damage to the attentional system (Heinke & Humphreys 2003) at longer

time scales than are considered here.

The enormous variety of such models and their success at addressing such a broad range of
phenomena across varying time scales illustrates the practical generalizability of the hierarchical

attention architecture.

7. Predictions:

RAGNAROC is part of an ongoing investigation that involves a cyclic iteration between theory
and experiment. Driving this cycle are a-priori predictions, that provide a roadmap for future
experimental work to diagnose the model’s validity. By publishing these predictions in advance
of testing them, we minimize the file drawer problem, which occurs when model tests are
selected for publication after the results are known. Furthermore, our goal here is to specify an
ambitious set of predictions, with the goal that some of them should be inaccurate. Since all
models, being abstractions of the real system, are wrong by definition, the prediction/testing
cycle should be most efficient when there is a mix of true and false predictions. True predictions
give evidence that the model has at least some resemblance to the underlying system. However,
it is the false predictions that are truly valuable, for they indicate where the model is inaccurate,

and thereby guide further development of the theory.

7.1 Competition within the attention map

This set of predictions concerns the essential architecture of the model. Failure to validate them
would require at a minimum, significant parameter or architectural changes. In RAGNAROC,
the competition for attention exists between all stimuli, and the priority values of the stimuli are
the common currency with which they compete. Since the attention map does not represent the

distinction between targets and distractors, the following predictions should obtain:

64



RAGNAROC, a model of reflexive visual attention

Prediction 1. Lower priority targets will elicit AM suppression

In RAGNAROC, input to the attention map does not distinguish between targets and distractors.
A counterintuitive prediction of this assumption is that when a display contains two targets with
sufficiently different priority values, the lower priority target will lose the competition and be
treated as a distractor. This would mean that it elicits a weak N2pc when presented laterally,
followed by a clear Pp component as if it had been a distractor. In terms of behavior, the location
of the low-priority target should exhibit the same lower probability of probe letter reporting as
the salient distractors of Gaspelin et al. (2015). Target priority could be manipulated either by
varying the salience of targets or their proximity to the task-defined attentional set in some

feature dimension, such as color (Becker Folk & Remington 2013).

Prediction 2. Higher priority distractors will more often elicit a lock-on state

One of the most fundamental predictions of RAGNAROC is that all stimuli are evaluated by the
attention system prior to the deployment of attention, which occurs after a competition is
resolved within the attention map. Therefore, if a display consists of only distractors of three or
more clearly discernable levels of salience (e.g. by adjusting their relative luminance), the
distractors will elicit N2pc and Pp components as if the most salient distractor were a target and
the next most salient distractor were the key distractor in the additional singleton paradigm. The
most salient distractor will also capture attention resulting in improved accuracy and reduced
reaction times for probes (e.g. Gaspelin et al. 2015) at its location. Conversely, probes at the
second-most salient distractor location will be less well perceived than distractors at the location
of the least salient distractor. This prediction stems from the fact that the amount of inhibition
delivered to the location of a lower-priority stimulus in the AM is proportional to its priority.
Testing this prediction would require embedding distractor-only trials within a larger set of trials
that contain targets as well. Some of these trials would contain probe letters as in Gaspelin et al.

(2015)

Note that that there is conflicting evidence about the ability of distractors to elicit an N2pc.
Distractors that are highly salient on a different dimension than the target (e.g. color singleton
distractors with shape singleton targets) elicit an N2pc, while a difference in salience along the

same dimension (color) does not; Gaspar & McDonald 2014).

Prediction 3. Salient Distractors can sustain an existing lock on state
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One of the most counterintuitive predictions of RAGNAROC is that once an attentional lock-on
state has been established by a target, it can be sustained by a distractor because the attention
map is agnostic about target/distractor categories. Attentional control settings bias attention
towards the target, but distractors also have excitatory connections to the AM; they just have
reduced priority. Thus, in a similar manner as two sequential targets can maintain a lock-on state
(Tan & Wyble 2015), a target followed by a distractor should also maintain the lock-on state.
The prediction can be tested by presenting either three targets in sequence (i.e. letters among
digits), at an SOA of about 120ms, or two targets separated by a single distractor that is similar
to other distractors (i.e. a black digit), or two targets separated by a highly salient distractor (i.e.
ared digit). It should be observed that for three targets in a row, the second and third targets
elicit small-amplitude N2pcs that peak early (roughly 30ms earlier than the relative latency of
the T1’s N2pc). If the middle of the three targets is replaced by a highly salient distractor, the
last target’s N2pc should still be early and small in amplitude. However in the case of two
targets separated by a non salient distractor, that last target should evoke an N2pc of normal
amplitude and latency since the lock-on state will have partially dissipated during the 300ms lag
between the onset of the two targets. In behavior, the salient intervening distractor should result
in more accurate report of the following target relative to the non-salient distractor condition,
since the highly salient distractor sustains the lock-on state across the temporal gap between the

targets.

7.2 Unified Attentional Map:

A central theme of the RAGNAROC architecture is that the competition for reflexive attention is
confined to a small region of neural tissue this is sensitive only to stimulus priority. This allows
the entirety of the visual system to participate in scene analysis, and yet make rapid, efficient
and stable decisions about the allocation of attention. The priority map allows the priority signals
generated by different stimuli to compete, taking into account their salience, task relevance,
emotional/reward history, or any other potential factor that influences how a given stimulus
should be prioritized. This idea of a single, superordinate attention map is also shared by many

models of visual attention (Itti Koch et al 1998; .. Zelinsky2008) but not others (Tsotsos 2011).
Prediction 4: EEG correlates of lock-on occur regardless of stimulus type

A core finding of the lock-on state presents a straightforward means to test this architectural

prediction. In Tan & Wyble(2014), it was found that two targets in the same location produced
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only an N2pc to the first target, which RAGNAROC explains as a carryover of the attentional

lock-on state from one target to the next in the attention map.

However, in that study, both targets were of the same kind (letters among digit distractors). If
there is a single priority map, the carryover of lock-on from one stimulus to the next should
occur even when T1 and T2 are of different types. Callahan-Flintoft & Wyble (2018) provided
support for this prediction already by showing that targets could be defined by combinations of
shape or color without disrupting the lock-on effect. It is nevertheless possible that the prediction
may be falsified if the two targets were even more distinct. For example, RAGNAROC predicts
that even if subjects are simultaneously looking for letters and faces of a particular gender, then
two sequential targets (either letter-face or face-letter) should produce a clear N2pc only for the
first of the two targets. Letters and faces should provide a strong test for the hypothesis since
previous work has suggested that they are processed through sufficiently distinct channels in the
visual system that the attentional blink evoked by a digit T1 has little effect on a face T2 (Awh et
al. 2004). A failure to confirm this prediction would suggest that there are subdivisions of the

priority map for stimuli that are highly distinct.

7.3 Lock-on states in visual cueing:

The RAGNAROC model implements a reflexive form of attention that should be common
across many visual attention paradigms, including visual cueing. Thus, we should be able to
predict behavioral and ERP effects for cueing experiments as well. Ansorge, Kiss, Worschech &
Eimer (2011) have demonstrated that cues evoke clear N2pcs at moderate cue-target SOAs

(200ms), as we would expect.

Prediction 5. Lock-on states in visual cueing, valid trials

The RAGNAROC model predicts that a lock-on state is sustained from one stimulus to the next.
Thus, from a behavioral perspective, RAGNAROC explains cueing benefits at short SOAs, if
one assumes that a valid cue initiates a lock-on state that carries forward in time to enhance the
target. The model also generates EEG predictions for cueing experiments. Since the N2pc is
caused by the formation of a new lock on state, then a validly cued trial with a short SOA should

result in an N2pc appearing only for the cue, and not the subsequent target.
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At longer SOAs (e.g. 500ms or more) between the cue and target, the lock-on state elicited by
the cue would have disintegrated before the target appeared, with the result that both the cue and
the target would produce a typical N2pc.

Prediction 6. Lock-on states in visual cueing, invalid trials

When a cue and target are not in the same location, then the cue and target will each elicit an
N2pc at all SOAs, since the lock-on state elicited by a cue is spatially specific. Thus, a target in
an invalid trial needs to build a new lock on state, which elicits a new N2pc. A failure to confirm
these predictions would undercut the applicability of RAGNAROC’s simulation of attention

related EEG components to cueing studies.

8.0 Conclusions

Reflexive visual attention is a cornerstone of our visual system’s ability to meet the challenge of
rapidly choosing which information to selectively process, which pits stimuli that are inherently
salient against those that are relevant for an ongoing task. A variety of experimental paradigms
have provided a wealth of data that we have distilled into a common architecture for controlling
the selection and suppression of information. The goal of the RAGNAROC model is to build a
theoretical bridge between different paradigms (e.g. visual cueing and capture), and also
between different kinds of data (e.g. behavior and EEG). While designing the model to hit its
empirical benchmarks, we have developed circuits that implement competing attractor states to

stabilize the deployment of attention within a continuous spatial dimensions.

Moving forward, the model’s predictions are intended as a roadmap for further empirical
investigation of reflexive attention and for creating links across paradigmatic boundaries.
Testing these predictions will provide diagnostic data regarding the model’s validity, but more

importantly, will drive further development of the model.

[CHECK More here? Discuss attending to one spatial location first, prior to attending to

another, unless two stimuli appear simultaneously |

We can use this model to make inferences about the fact that attention can process multiple

items in parallel.
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While RAGNAROC is intended as a model of reflexive attention that can be deployed covertly,
future work could extend these mechanisms as a partial explanation of the time course of eye
movements in visual displays. Doing this would require an additional set of assumptions
regarding how activity in the attention map drives the decision to commit visual saccades.
Recent work that explores the time course and spatial distribution of initial saccades in visual
search paradigms (e.g. Gaspelin, Leonard & Luck 2017) indicates that initial saccades are
directed towards the location of salient distractors when the distractor’s location is not
suppressed, but are directed away from salient distractors when that location is suppressed.
These findings suggest that activity in the attention map contributes to the initial decision of

where to commit an overt attentional response.

The neural attractor framework of RAGNAROC could be incorporated as a front-end onto
models of higher order cognitive phenomena. For example, in models of the attentional blink,
the time course of target processing is often the central question, and such models have little to
say about the time course of reflexive attention. Combining models such as RAGNAROC with
models of the attentional blink (e.g. Olivers, & Meeter 2008; Wyble Bowman & Nieuwenstein
2009; Taatgen, et al. 2009) has the potential for expanding our understanding of the spatial and
temporal dynamics of attention out to the order of multiple seconds. The model also has the
potential to benefit from recent innovations in computer-vision models by allowing us to
simulate the spatial and temporal dynamics of attention to real-world video data under different

task instructions.

Ultimately, the goal of models like this is to fill in the explanatory gaps left by broad-sweeping
theories of attention. By framing the scope of this model as covert, reflexive forms of attention,
our goal is to provide a stable platform for thinking more concretely about the entire suite of
attentional mechanisms that are inherent in the visual system, and how they might be linked to

specific correlates.
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Appendix

MATLAB Code for running the simulations is available on the OSF at
https://osf.io/rwynp/

Appendix 1, Equations

Early Visual layer:

These are the activation equations for each neuron in the EV layer, and note we
represent each possible stimulus (T1 and T2) as having distinct EV neurons to
reflect the fact that two distinct stimuli will activate distinct groups of neurons in
V1 even if presented at the same location. These equations match those specified
by O’Reilly & Munakata (2001) where Input, represents the presence of an input
stimulus at a given location and time point (either 1 or 0) and EV represents the
activation level of that neuron. dtVM is a time constant that dictates the rate of
change of a neuron by scaling the excitatory, and leak currents. EE and EL are the
reversal potentials for excitatory and leak currents.

EV, .. (x,y,t)z dt,,, *(EE—EV(x,y,t))*[nput(x, ,t) (1.1)
EV, (x,3,1)= dt,, *(EL—EV (x,,1)) (1.2)
EV(x,y,t +1): EV(x, y,t) +EV, . (x, y,t) +EV, (x, y,t) (1.3)

Late Visual layer:
The LV neurons have essentially the same dynamics except that they receive input

from a region of EV neurons and the value of the input is scaled by a square-
masked Gaussian profile, (GRF) for computational efficiency.

The variable Attn is the current value of attention as determined by activity at the
corresponding location in the AM. EI is the reversal potential of the inhibitory
current. IItolT is a parameter that determines the strength of the feedback
inhibition interneurons for each neuron. BUype is a parameter that reflects the
physical salience of a given stimulus type. The construct ()o is a zero-bounded floor
to prevent currents from going negative, which adds stability to the simulation at

discrete time steps.
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LV, .(x, y,t) =dt,,, *(EE—-LV(x,y,t))*BU,*

mask mask

z Z GRF(x",y")* Attn(x +x", y + y", ) *(EV (x + x', y + y',t) — Threshy, ),
x'=—mask y'=—mask

(1.4)

LV, (X, 58)= dtyy, *(EI =LV (x, y,1))* HtoIT* (1 (x,,t) = Iy, ), (1.5)
LV, (x,3,8)= dty,, *(EL—-LV (x,3,1)) (1.6)

LV (x,y,t+1)= max{El,LV(x, )+ LV, (6, 3,8)+ LV, (x,0,8)+ LV, (, y,z)}

(1.7)

The Il neurons govern the feedback inhibition of the LV neurons following a similar
dynamic as the EV.

e (X, 0,1) = diyyy  *(LV (x,3,8) =LV, ), * ITtoll (1.8)
1, (x,y,t): dtyy *(EL—II(x,y,t)) (1.9)
I[(x, y,t+ 1): H(x,y,t)+1I, . (x,y,t)+1I,,, (x,9,t) (1.10)

Attention Map:
The AM neurons receive input from all LV maps (1-n) scaled by the same masked
Gaussian profile GRF. LAl is a parameter that controls the magnitude of inhibitory
suppression from the IG to the AM neurons. TDype is a parameter that determines
the top-down task relevance for a given stimulus.

AM, ;. (x, y,t) = dty,, * (EE - AM (x, y,1)) *

mask mask

Z Z z GRF(x',y")*(LV,,,(x+ X',y +y',t)=Thresh,, ), *TD,,

type=1 x'=—mask y'=—mask

(L.11)
AMinhib (x’ y’t) = dtVM *(E[_AM(xa yat))*(IG(X, y;t)_IGthresh )0 *LAl
(1.12)
AMleak ('x’ y’t): dtVM *(EL_AM(X»J’J)) (113)
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AM(x, y,t +1) = max{EI, AM (x,y,t) +AM, .. (x,y,t) +AM, .. (x,y,t) +AM,,, (x,y,t)}

(1.14)

Attn(x,y,t)= max(l,log(AM (x,3.0) =AM 500+ 1)0 *Attnweight) (1.15)

The IG neurons within the Attention Map receive joint input from the LV and the
AM. For each IG neuron, the input from each of those two sources has a ceiling
value (MaxInputtolG). Thus, the input from the LV and the AM to each IG neuron is
computed separately.

1G, ...y (X, y,t) = max(MaxInputtolG,

mask mask

Z Z Z GRE(x",y")*(LV,, (x+x',y+y',t)=Thresh,, ), *TD,

type=1 x'=—mask y'=—mask

(1.16)

dimx dimy
1G, ... (X, ¥,t) = max(MaxInputtolG * Z Z (AM (x',y',t)=Thresh,,,, ), * DoG(x',y")* AMtolG

x'=l y'=l

(1.17)

DoG is the difference of two Gaussians as specified below.

IG xcite (‘x’ y’[’)z (IGExciteLV('x’ y’ t) +IGExciteAM ('x’ y’ t)) * dtVMIG *(EE _[G(X, yﬂt))o

€.

(1.18)

1G, . (x, y,t) = dt,, *(AM(x, y,t) —Thresh ., )O * AMtolGinhib
(1.19)
1G,, (x,y,t)z dtyy, 16 *(EL—IG(x,y,t)) (1.20)

IG(x, y,t+l)= max {EI, IG(x, y,t)+IGml.te (x, y,t)+IGmhib (x,y,t)+IGlmk (x, y,t)}

(1.21)

Gaussian Profile
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70A5(x2 +y2)

GRF(x,y) =e

—0.5(x%+ y2 outerGaussian —0.5(x%+ y2 innerGaussian
DoG(x,y) =—1*l:2€ (%) -e ()

0

EEG Scalp Voltage

xdim ydim
EEGVOltage(t) = |: Z Z (AMa\tcite_EEG (‘x9 y’ t) + AMinhib (x’ y’ t))0:|

x=1 y=l

AMexciteiEEG (x,y,t) =dt,,, *(EE ; — AM (x, y,1))*
n mask mask

Z Z GRE(x',y")*(LV,, (x+x",y+y',t)=Thresh,, ), *TD,
type=1 x'=—mask y'=—mask

Fixed Parameters:
dt vm = .015
dt_vm_II = .0025
dt vm_IG = .04
EE =30

EL=0;

ElI=-10;

EEEEG = 65,

Weights
TDype = Free Parameter
BU,pe = Free Parameter

ITtoll = .02

1ItolT = 6.5
AMtolG = 4
AMtolGinhib = .25
LAl = 45
Attnweight = 2

MaxInputtolG = .35

Thresholds
Threshgy =7
Threshir = 5
Threshy = 0
Threshic = 8
Threshayrow = 14
Threshamrign = 22
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Misc
outerGaussian = .07
innerGaussian = .2
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Appendix 2, Fitted Parameters
TypelBU Type2BU

Sim Name

Bay & Wyble

Nakayama

Theeuwes (with salient D)
Theeuwes (without salient D)
Mounts

Gaspelin exp 1 (singleton
search)

Gaspelin exp 2 (feature search)
LatDMidlineT

Tan & Wyble

Tollner (low)

Tollner (med)

Tollner (high)

Hillimire (unpredictable)
Hillimire (predictable)

Eimer Grubert

High TD

High BU

Sim Name

Bay & Wyble

Nakayama

Theeuwes (with salient D)
Theeuwes (without salient D)

Mounts
Gaspelin exp 1 (singleton
search)

Gaspelin exp 2 (feature search)
LatDMidlineT

Tan & Wyble

Tollner (low)

Tollner (med)

Tollner (high)

Hillimire (unpredictable)
Hillimire (predictable)
Eimer Grubert

High TD

High BU
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Mean

N/A
N/A

0.3
0.15
0.15
0.15

0.3

0.15
0.15
0.15
0.15
0.17

0.2
0.23
0.15
0.15

0.6
0.15

0.2

w w w w w

W W W W w w w w w w

SD

N/A
N/A

0.3
0.15
0.3
0.05
0.3

0.19
0.19
0.17
0.15
0

0

0
0.15
0.15
0.6

Type3BU TypelTD Type2TD

N/A
N/A
N/A
N/A
N/A

0.15
0.15

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Threshold

0.75
0.75
0.75
0.75
0.75

0.75
0.75

10,891

6,997
19,522
19,522
11,493

8,667
8,667

0.75 N/A
0.75 N/A
0.75 N/A
0.75 N/A
0.75 N/A
0.75 N/A
0.75 N/A
0.75 N/A

N/A

N/A

0.17
0.18
0.27
0.27
0.24

0.2
0.4
0.5
0.2
0.15
0.15
0.15
0.22
0.4
0.7
0.2
0.15

0.12
0.18
0.17
0.17
0.24

0.15
0.15
0.2
0.2
0

0

0
0.22
0.25
0.7

Type3TD

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

0.2
0.2



