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Abstract 

 

A quintessential challenge for any perceptual system is the need to focus on task-relevant 

information without being blindsided by unexpected, yet important information. The human 

visual system incorporates several solutions to this challenge, one of which is a reflexive covert 

attention system that is rapidly responsive to both the physical salience and the task-relevance of 

new information. This paper presents a model that simulates behavioral and neural correlates of 

reflexive attention as the product of brief neural attractor states that are formed across the visual 

hierarchy at the moment when attention is engaged. Such attractors emerge from an attentional 

gradient distributed over a population of topographically organized neurons and serve to focus 

processing at one or more locations in the visual field, while inhibiting the processing of lower 

priority information. The model resolves key debates about the nature of reflexive attention, 

such as whether it is parallel or serial, and whether suppression effects are distributed in a spatial 

surround, or selectively at the location of distractors. Most importantly, the model develops a 

framework for understanding the neural mechanisms of visual attention as a spatiotopic decision 

process within a hierarchy and links them to observable correlates such as accuracy, reaction 

time, and the N2pc and PD components of the EEG. This last contribution is the most crucial for 

repairing the disconnect that exists between our understanding of behavioral and neural 

correlates of attention.  
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1 Introduction 

A quintessential challenge for any perceptual system is the need to focus on task-relevant 

information without being blindsided by unexpected information that is also important. For 

example, a driver must be able to stop in response to an unexpected obstacle even while 

searching intensely for a specific landmark. Understanding how perception meets this ubiquitous 

challenge is crucial for understanding how the brain balances the prioritization of sensory 

information according to its relevance.  

This challenge is matched by a multitude of attentional systems operating across different senses 

and time scales. For example in vision there are overt and covert forms of spatial attention, and 

within covert attention, there is a further distinction between a rapid transient/reflexive form of 

spatial attention and a slower sustained/volitional form (Jonides 1981; Muller & Rabbit 1992; 

Hopfinger & Mangun 1998; Nakayama & Mackeben 1989). There are also non-spatial forms of 

attention that allow us to select among spatially overlapping visual inputs (Neisser & Becklen 

1975). As cognitive scientists we are tasked with understanding the mechanisms of these various 

attentional systems. Decades of research have provided a multitude of data types that define the 

properties of visual attention, such as accuracy, reaction time and neural correlates such as Event 

Related Potentials (ERPs). These data have driven the development of many theories, but the 

great majority of them are linked to a small number of specific paradigms (e.g. a model of visual 

search, or a model of the attentional blink). Such models are a useful starting point, but their 

narrow focus makes it difficult to generalize across experimental paradigms, and also makes it 

easy to inadvertently overfit a theory to a specific kind of finding. Newell (1973) argued that 

instead of focusing on individual results as a way to attack or defend a theoretical edifice, we 

can use a collection of results most productively if we build a comprehensive model that 

addresses all of them. The approach used here is to build a model that is close to the algorithmic 

level of implementation (Marr 1982) and that maximizes the number of empirical constraints 

that can be applied (Love 2015) with a minimum of parameter adjustment. 

 

The model described here, termed RAGNAROC, which is short for Reflexive Attention Gradient 

through Neural AttRactOr Competition, is intended as a theoretical framework for 

understanding how the visual system implements a reflexive form attention. The model 

addresses data in different forms (e.g. accuracy, reaction time and EEG), and from different 

paradigms. The outcome of this approach is to provide (1) a computational implementation of 

reflexive attention, (2) an intuition for how different forms of data (e.g. accuracy, reaction time 

and EEG) emerge from a common set of neural mechanisms and (3) suggested resolutions for 
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several ongoing debates in the literature by showing how one model is able to account for 

distinct patterns of data (e.g. simultaneous attention to two stimuli but also suppression of 

competing representations) that are often taken as support for mutually incompatible positions in 

an ongoing debate. For the reader who is more interested in the conclusions than the model 

methods, there is a section in the discussion that focuses on the lessons that have been learned 

through the construction of the model.  

 

Scientific Philosophy of this account and intended audience :   

This paper is written primarily with the perspective of the experimental scientist in mindfor 

experimental psychologists.  Equations will be kept to a minimum, except for the appendix, and 

figures will be used to explain the model’s dynamics. Moreover, the development of 

RAGNAROC was driven almost entirely by data from visual cognition experiments, such that 

the neural mechanisms proposed here are the simplest possible solutions to explaining such data. 

TThus, the paper his paper adoptuses an shas a strongly an abductive approach to scientific 

discovery in which the simplest explanation for a series of empirical phenomena is sought. 

RAGNAROC is our current best guess at an abstraction of the mechanisms involved in reflexive 

attention, according to a list of empirical constraints. We consider the problem to exist in the M-

open class (Clarke, Clarke & Yu 2013), which is to say that it is practically intractableimpossible 

to specify an exact specification of the biological system.. Therefore, model verification is 

impossible in the proper sense. However Nevertheless, abstract neural models such as this one 

are neverthelessare a powerful way to distill insights and predictions to guide future research, 

and these are included in the general discussion. The paper concludes with a set of lessons and 

predictions that should be of interest to anyone who studies visual cognition.By publishing such 

predictions in advance of testing them, it is demonstrated that these predictions were generated 

a-priori.  

 

 

1.1 Reflexive AttentionThe complexity of understanding attention 

In the broadest of strokes, attention is perhaps best summarized as privileging certain 

representations at the expense of others and this prioritization takes many forms throughout the 

nervous system from internal control signals within the brain all the way down to concentrated 

hardwired receptor distributions in the fovea and fingertips. In terms of visual attention, a 

distinction is often drawn between voluntary attention, wherein volitional control mechanisms 

configure the spatial deployment of attention over an extended period of time and reflexive 
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attention, wherein the visual system reacts rapidly to stimulus onsets in order to attend them 

before the stimulus display changes or the eye moves (Jonides 1981; Muller & Rabbit 1992; 

Hopfinger & Mangun 1998; Nakayama & Mackeben 1989). The term reflexive invokes an 

analogy with muscle reflexes that are deployed rapidly in response to a stimulus, and without 

waiting for slower, deliberative processes. 

This reflexive form of attention presumably plays a key role in selecting important information 

for further processing when the eyes are making saccades frequently.  Moreover, it is known to 

be responsive to higher levels of cognitive control, such that  which means that stimuli are only 

available at any location on the retina for a brief period of time. It was originally suggested that 

this system is entirely automatic, and that subjects are unable to avoid attentional capture by 

singletons (i.e. stimuli that are physically dissimilar to other visible stimuli; Remington, 

Johnston, & Yantis 1992) but the attentional capture debate (Yantis 1996; Theeuwes 1991; Folk, 

Remington & Johnston, 1992; Woodman & Luck 1999; Egeth, Leonard & Leber 2011;  

Anderson, Laurent & Yantis 2011) has demonstrated that goals, expectations and rewards 

moderate how strongly stimuli can trigger or capture attention. Thus, when looking for a colored 

square, any uniquely colored stimulus has an enhanced influence on attention relative to a case 

in which someone is looking for a moving object or an object with a particular orientation. This 

task-based configuration is also responsive to categorical target signifiers such as letters among 

digits (Wyble, Potter, Bowman 2009; Nako, Wu & Eimer 2014), and superordinate concepts 

(e.g. "marine animal"; Wyble, Folk, Potter 2013). Likewise, neural data from the EEG reflect 

what are thought to be rapid attentional responses to task relevant colors (Eimer 1996); 

letters/words (Eimer 1996; Tan & Wyble 2015; Nako, Wu & Eimer 2014) and line drawings 

(Nako, Wu, Smith & Eimer 2014).  

 

 

 

 

 

 

 

Reflexive attention is essentially a semi-autonomous decision making system. Goals can 

influence what kinds of stimuli will be able to trigger attention, but the actual decision to deploy 
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attention is linked to the onset of a physical stimulus. Therefore, this system provides a tight 

coupling between bottom-up and top-down determinants of attentional control. Moreover, this 

form of covert attention is one of the earliest mechanisms involved in visual processing and 

presumably plays a key role in most aspects of daily vision, and should likewise manifest in a 

broad variety of tasks under the umbrella of visual cognition research.  

 

What we do not yet understand is how such a rapid form of attention would function at the level 

of neural mechanisms. The earliest theories of such attentional effects described how attention 

was first engaged at a cued location, and would remain there until disengagement (Posner REF, 

CHLOE?) 

Later theories elaborated the mechanisms proposing that attention For example, attention has 

been theorized to involves a combination of target enhancement (Eimer 1996), and suppression 

of distractors (Cepeda, Cave, & Bichot & Kim 1998, Gaspelin Leonard & Luck 2015). However, 

while it seems straightforward to postulate such attentional effects, building simulations of 

attention that are specified at the level of neural networks reveals that these operations are non-

trivial to implement in a visual system that is distributed across cortical regions. In such a 

system, it is not immediately obvious how neural representations could be tagged as belonging 

to a target or distractor.  One question that arises is how does the visual system rapidly 

determine which neurons are currently representing distractors in order that they can be 

suppressed? Furthermore, how does the brain implement such a coordinated modulatory 

attentional process across thies visual system’s network of interconnected maps without 

requiring an exhaustively large number of intra-cortical connections?. Limitations on white 

matter density mean that it is not feasible for all neurons to communicate directly with all other 

neurons, which makes seemingly straightforward decision-making approaches such as winner-

take-all (i.e. the strongest representation suppresses all others) difficult to implement in 

practiceimpractical.  

 

An additional complication arises when we consider that the attentional system cannot afford to 

implement a crisp categorical distinction between targets and distractors. No matter how 

strongly a person is engaged on a task, there must always be a possibility for task-irrelevant 

information to trigger attention so that the system remains responsive to unexpected dangers. 

This requirement explains why attentional capture is such a robust phenomenon. Participants can 

be told to ignore certain kinds of stimuli and yet those stimuli, when presented with sufficient 
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salience1, consistently produce capture costs (Theeuwes 1991). Thus, it must be the case that all 

stimuli, whether designated as targets or distractors by the experimental paradigm, are evaluated 

to some degree. One might be tempted to argue that inattentional blindness experiments (Rock, 

Linnett, Grant & Mack 1992;  Neisser & Becklen 1975; Simons, & Chabris 1999) demonstrate 

effective suppression of unexpected information. However, many subjects do notice the 

unexpected stimulus in such experiments. Moreover, the proportion of participants who noticed, 

for example, the black gorilla in Simons & Chabris (1999), was influenced by the attentional set 

of the observer. Those monitoring the players in black shirts noticed the black gorilla more often 

than those monitoring the players in white shirts. Thus it must be the case that specific visual 

features related to the task-irrelevant gorilla are evaluated.  

 

The goal of this paper is to better understand the architecture and neural mechanisms for 

implementing reflexive attention in a distributed visual system using computational modeling. 

This model will describe neural mechanisms that make reflexive decisions about where to 

deploy visual attention, and implement the consequences of those decisions (i.e. the 

enhancement and suppression of processing) as an integrated system. This model will be 

constrained by neurocomputationally formalized approach provides the luxury of using both 

behavioral and EEG data as constraints on model development. Thereby, a diverse set of 

constraints will be brought into contact with the theory, including neural plausibility at the 

architectural level, behavioral accuracy, and reaction time measures of attentional influences on 

behavior, and also the N2pc and PD EEG components which are commonly associated with 

stimulus-evoked visual attention deployment. Furthermore, because the model is a neural 

simulation that simulates EEG components, it provides an account of the underlying cause of 

those potentials in terms of neural mechanisms. 

 

Model scope. This model is not to be taken as a complete model of visual attention, which would 

be beyond the scope of any single paper. RAGNAROC does not address, for example, how 

attentional control affects eye movements (Rao, Zelinsky Hayhoe, & Ballard 2002; Zelinksy 

2008) or slower forms of covert attention that are more firmly under volitional control and can 

                                                        
1 In this work, to remain consistent with terminology in the attentional capture 
literature, the term salience will refer to physical features (e.g. color, shape) that 
stand out from neighboring stimuli because of their dissimilarity. Salience can also 
be used in a broader sense to refer to information that has importance for any 
reason, including task relevance (see Bowman & Wyble 2007).  
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be maintained for a prolonged duration (e.g. multiple object tracking Pyslyshyn & Storm 1988). 

The model includes a mechanism for the enhancement of information processing, but this is 

intended only as a proxy for more comprehensive explanations that would interface more 

directly with single-unit data (e.g. Reynolds & Heeger 2009; Beuth & Hamker 2015). Another 

variety of attentional mechanisms not addressed here are those that track object features rather 

than spatial locations (e.g. Neisser & Becklen 1975; Blaser, Pylyshyn & Holcombe 2000). In 

terms of anatomy, we describe the reflexive attentional system in terms of a hierarchy of 

multiple maps that is inspired by work on the macaque posterior cortex and reinforced by the 

fact that the lateralized EEG components associated with attention discussed here are also 

primarily posterior in origin. However it is likely that a combination of frontal and subcortical 

areas are involved in these processes, and it is not our intent to suggest that reflexive attention is 

exclusively mediated by posterior areas. Moreover, the model is focused on attention effects at 

approximately the time scale of one fixation, and thus is not directly applicable to tasks that 

require multiple cycles of attentional engagement.  

 

1.2  Behavioral evidence for covert attentional control mechanisms in vision 

1.2.1 Reflexive Attention 

Reflexive attention is likely to play a role in many visual tasks, and its likely effects can be 

observed in paradigms that produce attentional cueing (Posner 1980; see Chen & Wyble 2018) 

attentional capture (Theeuwes 1991, Folk, Remington & Johnston 1992; Yantis 1996) and the 

early lags of the attentional blink (Shapiro, Raymond & Arnell 1992; Chun & Potter 1995) 

(Figure 1). In these paradigms, the effect of attention varies according to the nature of the stimuli 

and the required response. For example, in cueing paradigms a visual cue increases the accuracy 

and decreases reaction times for a subsequent target at the same cued location, while having the 

opposite effect for targets at uncued locations. In attentional capture paradigms, a highly salient 

distractor causes slower and/or less accurate report of a target presented at a different location 

and enhanced report of a target at the same location as the salient singleton (Folk, et al. 1992). In 

attentional blink paradigms, when two targets  (T1 and T2) are presented sequentially at a 

Stimulus Onset Asynchrony (SOA) of about 100ms or less, the second target is easy to see but 

only when the two targets are presented at the same location (Visser Bischof & DiLollo 1999; 

Wyble & Swan 2015).  

 

1.2.2 Semi-Autonomous attentional control 
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During normal visual function, the eyes brief duration of eye movements requires a move 

rapidly and abruptly from one location to another which means that information is only available 

at a given location in the visual field for a few hundred milliseconds. Therefore it seems crucial 

that some form of attentional control is able tothat makes rapid decisions without waiting for 

confirmation from slower, volitional forms of cognitive control. In this view, reflexive attention 

is a solution to the demands of the saccadic visual system in that it provides a semi-autonomous 

decision-making process for selecting information from prioritized locations in the visual field. 

Reflexive attention is semi-autonomous in the sense that the decision process obeys a 

configuring attentional set that modifies how readily different stimulus attributes will trigger 

attention. Such attention is strongly driven by salient singletons 2 (Remington, Johnston, & 

                                                        
2 There is an ongoing debate concerning the ability of top-down goal settings to mediate 

attentional capture  (Awh, Belopolsky & Theeuwes 2012; Failing & Theeuwes 2018), 

with positions ranging from attention being entirely driven by Top-down factors, to the 

opposite extreme in which the first stage of attention is entirely driven by physical 

characteristics of stimuli.  

Figure 1. Paradigms that measure attentional effects often present two 
simultaneous or sequential stimuli and measure the influence of one on the other 
(e.g. a cue followed by a target, or a T1 followed by a T2). The blue bars indicate the 
inter-stimulus temporal separations that are most typically studied for three 
common paradigms. The red portion on the left is the temporal interval over which 
we consider reflexive attention to play a dominant role in the effect of one stimulus 
on the other. Other attentional effects that involve more volitional forms of 
processing are dominant at inter-stimulus longer asynchronies.  
. .  
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Yantis 1992 REF) but the likelihood of a stimulus to capture attention is also strongly affected 

by the similarity between a stimulus and the current goals of the subject (Folk, Remington & 

Johnston, 1992; Woodman & Luck 1999 REF CHECK; Egeth, Leonard & Leber 2011 REF 

CHECK, and to some degree the amount of reward a stimulus has received  ( Anderson, Laurent 

& Yantis 2011) 3 

This task-based configuration is even responsive to categorical target signifiers such as letters 

among digits (Wyble, Potter, Bowman 2009; Nako, Wu & Eimer 2014), and superordinate 

concepts (e.g. "marine animal"; Wyble, Folk, Potter 2013). Likewise, neural data from the EEG 

reflect what are thought to be rapid attentional responses to task relevant colors (Eimer 1996); 

letters/words (Eimer 1996; Tan & Wyble 2015; Nako, Wu & Eimer 2014) and line drawings 

(Nako, Wu, Smith & Eimer 2014). Therefore, this system provides a tight coupling between 

bottom-up (i.e. attention as driven by physical characteristics of the stimulus)  and top-down (i.e. 

attention as driven by expectations, goals and rapid learning) determinants of attentional control.  

This task-defined specificity coupled with the rapidity of reflexive attention provides a potent 

way for attention to select task-relevant information even when stimuli are changing rapidly (e.g. 

Potter 1976; Schneider & Shiffrin 1977).  

 

 

Despite the fact that reflexive attention is receptive to attentional signals,  

 

However the actual decision to deploy attention is made directly in response to stimulus onset. 

tThe partial autonomy of this system is evident in the phenomenon of attentional capture, 

wherein the attention system makes inappropriate and sometimes detrimental decisions about 

where to deploy attention when faced with highly distracting information in which attention can 

be deployed to stimuli that appear in locations of the visual field that are known to always be 

task-irrelevant (Remington, Johnston & Yantis 1992; Theeuwes 1992; Wyble, Folk & Potter 

2013; Folk, Leber & Egeth 2002). These studies show that certain kinds of salient stimuli that 

appear in locations of the visual field that are known to always be task-irrelevant by the 

experimental subject can nevertheless trigger the deployment of attention. Similarly, salient 

                                                        
3 There is an ongoing debate concerning the ability of top-down goal settings to mediate 

attentional capture  (Awh, Belopolsky & Theeuwes 2012; Failing & Theeuwes 2018), 

with positions ranging from attention being entirely driven by Top-down factors, to the 

opposite extreme in which the first stage of attention is entirely driven by physical 

characteristics of stimuli. 
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distractors that are expected and known to be irrelevant to the task will continue to distract 

attentional control mechanisms over many repeated trials (Remington, Johnston & Yantis 1992; 

Theeuwes 1992). If reflexive attention were not semi-autonomous, top down control signals 

would be able to ensure that stimuli presented in locations known to be irrelevant, or stimulus 

forms that are themselves known to be task irrelevant would never be able to trigger attention. 

Note that there are some cases in which top down control settings seem to eliminate salience-

based capture (Bacon & Egeth 1994).  

 

Another indication of automaticity comes from Krose & Julesz (1989) who demonstrated that 

cueing effects were localized to the specific location of a cue in a ring of stimuli, even when 

subjects were informed that the location of the target would typically be opposite to the location 

of the cue on the ring (see also Jonides 1981). Thus, expectation induced by both task 

instructions and experience with the task were unable to eliminate the immediate, reflexive 

deployment of attention to the specific location of cues at Cue-Target SOAs up to 260ms4. A 

finding in electrophysiology by Ansorge, Kiss, Worschech & Eimer (2011) showed that spatial 

cues which are never in the target’s position will nevertheless generate an N2pc component, with 

an amplitude that is weighted by top-down feature settings. 

 

A further line of evidence for automaticity is found in a series of experiments in which the cue (a 

pair of lines) was much larger than the target, and the subject could, in principle, learn how the 

cue’s properties (e.g. color or shape) determined which part of the cue indicated the likely 

location of the target (Kristjansson & Nakayama 2003; Kristjansson, Mackeben & Nakayama 

2001). It was found that subjects could learn simple relationships, such as that part of a cue (e.g. 

its left or right half) was more likely to cue a target’s location if that relationship remained 

consistent across trials.  

 

Another limitation on reflexive attention is that its temporal window is limited in duration, even 

when it would be advantageous for attention to remain engaged for a longer time period. A good 

example of this is the transient attention demonstration of Nakayama & Mackeben, (1989) in 

which, a cue appeared, and stayed on the screen to indicate the location of the target. Even 

though this cue stayed on the screen and was perfectly predictive of the target location, targets 

that occurred in the 200ms window after cue onset were reported more accurately than targets 

                                                        
4 CTSOAs were only evaluated in the range of 100-260ms.  
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appearing at later time points. This effect was replicated by Wilschut, Theeuwes & Olivers 

(2011) though with a smaller magnitude. This transient effect is not merely an alerting effect 

since it is spatially selective (Mu REFuller & Rabbitt 1989).  

 

Therefore, reflexive attention seems to be locked to the onset of a stimulus, being triggered at a 

the stimulus’ spatial and temporal coordinates. However, one aspect of attention that is amenable 

to control is what kinds of stimuli can trigger it. Remington, Folk & Johnston (1992) showed 

that attentional capture effects are moderated by the type of target, such that when subjects are 

trying to discriminate targets according to their color, distracting stimuli of the target's color are 

able to cause capture, while stimuli possessing other unique attributes (e.g. motion) have a 

weaker and sometimes non-existent ability to capture attention5. The functional advantage of 

attention being directed by top-down factors is clear, since it allows goals to direct attentional 

deployment to information that is more likely to be useful. This task-defined specificity coupled 

with the rapidity of reflexive attention provides a potent way for attention to select task-relevant 

information even when stimuli are changing rapidly (e.g. Potter 1976; Schneider & Shiffrin 

1977).  

 

1.2.3 Processing Enhancement at a cued or target location 

Several independent lines of research suggest that deploying reflexive attention enhances the 

processing of targets in the same corresponding location. For example, spatial cueing paradigms 

find that relative to an uncued condition, a cue will reduce the reaction time to respond to a 

probe at that location (Eriksen & Yeh 1985) or increase the accuracy of responding to a masked 

target at that location within about 100ms (Nakayama & Mackeben 1989; Cheal, Lyon & 

Gottlob 1994; Wyble, Bowman, Potter 2009). These effects typically onset very soon after a cue 

(i.e. within about 80ms). This rapid deployment of attention can be contrasted with a slower time 

course of attention when the cue indicates the to-be-attended location through a symbolic form 

such as an arrow (Cheal & Lyon 1991; Muller & Rabbit 1989). The key defining characteristic 

of the rapid onset of attentional enhancement seems to be that the cue and target appear at the 

same location, which dovetails with the semi-autonomous nature of reflexive attention. Another 

                                                        
5 There is an ongoing debate concerning the ability of top-down goal settings to mediate 

attentional capture  (Awh, Belopolsky & Theeuwes 2012; Failing & Theeuwes 2018), 

with positions ranging from attention being entirely driven by Top-down factors, to the 

opposite extreme in which the first stage of attention is entirely driven by physical 

characteristics of stimuli. 
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case of reflexive attention occurs when two targets are presented in close succession. If they are 

at the same location and at an SOA of ~100ms, the second target report is enhanced.  

 

While most studies use cues to trigger the deployment of attention, Wyble Bowman & Potter 

(2009). tested the hypothesis that targets trigger attention, given that the presumed role of 

reflexive attention is to rapidly enhance target processing. In a design that presented two 

sequential targets among distractors in a continuously changing array, it was found that report of 

a second target was more accurate, when it occurred immediately after a preceding target, and in 

the same spatial position. This spatially localized enhancement of processing is also consistent 

with the finding that lag-1 sparing effects in the attentional blink are strongly linked to spatial 

congruence between T1 and T2 (Visser Bischof & DiLollo 1999). 

 

1.2.4 Visual attention suppresses the processing of information at the location of 

distractors 

Because distractors are, by definition, not explicitly reported or responded to, it has been more 

difficult to understand how they are affected by attention. One source of information has been to 

record directly from neurons within the visual system and there are indications in 

neurophysiology that representations elicited by distractors are suppressed. In single-unit data 

from monkeys, neurons responsive to a distractor exhibit a sharp reduction in firing rate after 

about 100 ms when presented alongside a target in the visual field (Chelazzi, Miller, Duncan & 

Desimone 1993). This finding has been taken as evidence that targets and distractors engage in a 

competition that is biased towards the target (Desimone & Duncan 1995).  

 

In human behavior, evidence of distractor inhibition in response to a target takes two forms. 

First, information is suppressed in the surrounding vicinity of a target, as demonstrated by 

methods that askwhen subjects to report two targets presented in rapid sequence or 

simultaneouslyT and these methods reveal an effect termed Localized Attentional Interference 

(LAI), such that . For example, Mounts (2000) varied the separation of two sequential targets 

and that the second target iswas most accurately reported when it was in the same position as the 

first target, and much lessleast accurately reported in the area surrounding the first target (~3 

degrees)  and more accurate again at farther separations (Mounts (2000). Note that this paradigm 

does not measureThis is not a direct form of distractor suppression, since the effect is actually 

observed on a target.  directly but it does indicate that processing is suppressed in a region of the 

visual field near the target. Bahcall & Kowler (1999) presented a similar finding in which two 
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simultaneous targets were presented at various separations simultaneously, and their spatial 

proximity was varied. They found that accuracy of reporting both targets was higher when they 

were presented farther apart. Cutzu & Tsotsos (2003) also reported a similar finding using a cue 

and a single targetin which a cue induced a spatial inhibitory surround that was measured with 

target report accuracy. Hickey & Theeuwes (2011) showed that the effect of a distractor that 

captures attention is greater when spatially proximal to a target, which also implicates a 

proximity based form of inhibition, centered at the location of a highly-salient distractor.  

 

In addition to spatial inhibition in the surrounding vicinity of a targets, suppression is also 

focused centered at the spatial location of distractors. Cepeda, Cave, Bichot & Kim (1998) found 

that when distractors were presented concurrently with a to-be-reported target, a subsequent 

probe would be reported more slowly at the location of that distractor, compared to a previously 

blank location. The implication is that the distractors in the display were suppressed and this 

suppression carried forward in time to impeded the processing of probes presented at the same 

location. Similarly, Gaspelin, et al. (2015) found that probe letters in a spatial array following or 

coincident with a search display were harder to report if there had previously been a salient 

distractor at the location of that letter (although it is crucial to note that this only occurred when 

participants knew which specific feature to look for; this point will be discussed later).  

 

Thus there seems to bethere are two different kindslines of evidence for activedistractor 

inhibition, one which is spatially locked to the region surrounding a target, and the other 

centered which occurs at the location of distractors. The model presented below will attempt to 

reconcile these two forms of evidence.  

 

1.3 Electrophysiological correlates of visual attention  

 

An important complement to the behavioral evidence of reflexive attention are studies One of 

the most influential experimental approaches in the study of visuospatial attention that uses 

Event Related Potential (ERPs) extracted from the EEG, and likewise Event Related Fields 

(ERFs) from the MEG. ERPs and ERFs provide a measure of neural activity that is precisely 

timed to underlying neural events and thus provides crucial information about the relative timing 

of attentional processes. and therefore can be linked to distinct levels of processing.  

 

1.3.1 ERPs reflecting the current location of spatial attention 
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When spatial attention has been directed to a specific location prior to the onset of a stimulus, 

the ERPs evoked by that stimulus will differ according to whether it is inside or outside of the 

attended location. For example, components elicited by the onset of a visual stimulus early 

components such as the N1/P1 complex, elicited by the onset of a visual stimulus, are larger in 

amplitude for a stimulus that appears in an attended location (Mangun 1995; Hillyard & Anllo-

Vento 1998) and presumably reflects increased neural activity evoked by stimuli at those 

locations. Likewise, increased amplitude of the Steady State Visual Evoked Potential (SSVEP) 

for a flickering stimulus has served as a robust indicator of the location of attention and can last 

multiple seconds (Müller & Hillyard 2000). These effects indicate that ongoing spatial attention 

affects the processing of stimuli at the earliest levels of cortical processing. Moreover, they are 

also useful for demonstrating when shifts of attention have occurred, as in  

 

These early components can indicate short-term changes in the attentional state evoked by an 

immediately preceding stimulus. For example, in the case of Hopf, Boehler, Luck, Tsotsos, 

Heinze & Schoenfeld (2006), who demonstrated a neural correlate of the spatial distribution of 

surround suppression evoked by an attended stimulus (Mounts 2000). probe stimuli were 

presented 250 milliseconds after a target display, and the amplitude of the magnetic impulse 

induced by the probe in MEG mapped the spatial distribution of attention evoked by the target. 

The probe evoked a larger response when presented at the same location as the target, the lowest 

response when presented just next to the target and a more moderate response at more distal 

locations. Thus, the ERPs provide a measure of the spatial distribution of attention effects that 

resembles the behavioral measure of the spatial profile of attention described by Mounts (2000).  

 

 

 

1.3.2 ERPs indicating a change in the spatial distribution of attention 

Another class of EEG component is thought to indicate the neural mechanisms involved in the 

initiation deployment of attention. Unlike the N1/P1 and SSVEP, which indicate the influence of 

ongoing attentional states on the processing of new stimuli, this second class of ERPs indicate 

the active deployment of attention in response to the onset of new stimuli, a subset of which are 

to be attended and the others are to be ignored. These potentials, termed the N2pc and the PD, 

occur later in time than the modulations of the N1/P1, which is consistent with the idea that they 

reflect changes in attention evoked by new stimuli.  
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The N2pc component: 

The N2pc is a brief negativity elicited by a laterally presented target stimulus. The evoked 

potential is small in amplitude and occurs on posterior areas of the scalp contralateral to the 

target, approximately 200-300ms after the onset of the target, and is typically less than 100ms in 

duration. The original theories proposed by the seminal publications on the N2pc suggested that 

it reflects either the suppression of distractors (Luck & Hillyard, 1994) or the enhancement of 

the target (Eimer, 1996). The N2pc has also been referred to as a Posterior Contralateral 

Negativity or PCN (Töllner, Rangelov & Müller 2012).  

 

Newer findings have provided different perspectives. For example, it has been suggested that the 

N2pc reflects the process of individuating the target from surrounding stimuli, as its amplitude 

increases with the number of presented targets, but only when target numerosity is task relevant 

(Pagano & Mazza 2012). Also, Hickey, Di Lollo, & McDonald, (2009) suggested that when a 

target is paired with a contralateral distractor, the N2pc to the target is composed of two 

dissociable components: a negativity evoked by the target (the Nt) and a positivity evoked by the 

distractor (the PD). Since the N2pc is measured as a difference wave between target-contralateral 

and target-ipsilateral sides of the scalp, the PD would be measured as a negativity relative to the 

target, thus contributing to the N2pc amplitude. The Nt and PD components were isolated by 

presenting the distractor or the target, respectively, in the middle of the display, which eliminates 

their contributions to the ERP and reveals the neural signature evoked by the other stimulus. 

 

Another perspective on what processes are indicated by the N2pc stems from a finding in which 

two sequential targets are presented at either the same or different locations on the screen (Tan 

Wyble 2015;). In the same-location condition, subjects could easily see the second target, 

however it elicited no additional N2pc beyond the N2pc evoked by the first target. In contrast, 

when the second target was on the opposite side of the display, a strong second N2pc was 

evoked by that second target. In terms of behavior, subjects were actually better at reporting the 

same-location target, which did not evoke an N2pc, compared to the different-location target 

which did evoke an N2pc. From this work, theWe concludedsion is that the N2pc indicates only 

the process ofinitial locatinglization a to-be-attended stimulusof a target, rather than 

enhancement or suppression. This explains the missing-N2pc in the same-location result, since 

the second target inherits the attention deployed by the first target, and no additional N2pc is 

evoked. Moreover, this missing-N2pc phenomenon is only true when T1 and T2 are presented 

closely in time. At longer temporal separations (e.g. 600 ms), the T2 elicits a second N2pc, even 
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if subjects have a clear expectation that the target will occur in that location (Callahan-Flintoft & 

Wyble 2018). This finding is crucial because it underscores that reflexive attention is driven by a 

stimulus, and cannot be maintained for an extended period of time without stimuli to keep 

attention engaged.  

 

With these various theories in contention, it is clear that little consensus as to the underlying 

cause of the N2pc exists. Moreover, a crucial complexity of the N2pc literature is that distractors 

evoke an N2pc in certain cases (Hickey McDonald & Theeuwes 2006; Burra & Kerzel 2013; 

Kiss, Grubert, Petersen, & Eimer, 2012; McDonald, Green, Jannati, & Di Lollo, 2012; Liesefeld, 

Liesefeld, Töllner, & Müller 2017). Such findings highlight the complexity of attentional 

mechanisms and the difficulty of ascribing unitary functions to neural correlates.  

 

The PD Component: 

Another ERP related to attentional control is the PD component;, a positivity evoked in posterior 

scalp regions that are contralateral to a distractor (Hickey, McDonald & Theeuwes 2009). For 

example, a target presented in the middle of a display with a flanking distractor on the right or 

left has been found to elicit a positivity on the posterior scalp contralateral to the distractor. The 

fact that distractors selectively elicit a PD is additional evidence that inhibition is selectively 

deployed at the location of distractors and. This finding dovetails with behavioral evidence that 

distractors are selectively inhibited and reinforces the idea that attention has mechanisms for 

both enhancing and suppressing information in a spatially specific selective format.  

 

However, the situation becomes more complex when search difficulty is varied. When target 

search is made extremely easy by re-using the same target-defining feature on each trial and 

using many repeated trials, salient distractors can be ignored entirely, without producing a PD, or 

an observable behavioral cost (Barras & Kerzel 2016) suggesting that there in some cases 

distractors can be simply ignored rather than suppressedis no need to suppress distractors when 

selection is made extremely easy. In other cases salient distractors elicit a PD in the EEG and a 

minimal cost on the speed of finding the target (Burra & Kerzel 2013) with a concomitant 

suppression of the distractor’s location as measured by behavioral probes (Gaspelin, Leonard & 

Luck 2015; Gaspelin & Luck 2018). These results suggest that sometimes the distractor has the 

potential to interfere, and is inhibited to reduce its influence. . Finally, if the search task is made 

sufficiently difficult by varying the target’s defining feature from trial to trial, then the distractor 

evokes an N2pc, while also eliciting a strong behavioral capture cost (Burra & Kerzel 2013) 
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suggesting that in such cases there was a consistent failure to inhibit the distractor. This 

distractor-induced N2pc also supports the suggestion that distractors have an inherent salience 

which must be inhibited (Sawaki & Luck 2010).  

 

In broad strokes, tThese findings can be summarized as follows. When search is made extremely 

easy by using many trials and highly prescriptive visual targets, the visual system learns to 

exclude some kinds of distracting information without even requiring attentionwithout spatial 

attention. When the task becomes more difficult, distractors are suppressed by spatial inhibition 

mechanisms, eliciting a PD but no behavioral cost on target response. With a further increase in 

difficulty by using unpredictable singleton targets, distractors are not as effectively suppressed, 

such allowing them to that they produce an N2pc and a sizeable behavioral capture effect. Such 

findings complicate the straightforward attribution of the PD as a correlate of distractor 

suppression but also underscore the importance of building integrative theories that combine 

behavioral and neural forms of evidence. As we will argue below, these divergent findings can 

be explained as a range of outcomes that arise from the competition for attention between 

putative targets and distractors in a spatially topographic attentional priority map. 

 

2. Computational architectures for distractor suppression 

Moving to a discussion of how reflexive attentional control might be implemented, we begin by 

considering several architectures that could support the ability to selectivity enhance and  

suppress in response to a target.  

 

2.1  Assumptions 

This discussion is predicated on several assumptions that are implicit in existing models of 

attention. An anatomical assumption is that the visual system is hierarchically organized, 

beginning with low level feature extraction in cortical area V1 that projects to various cortical 

areas specialized for more specific kinds of information, such as color, and various forms (Van 

Essen & Maunsell 1983, Kravitz, Saleem, Baker, Ungerleider, & Mishkin, M. 2013; Konkle & 

Caramazza 2013). These higher-level representations are assumed to maintain the spatial 

topography of V1 albeit with larger receptive fields (DiCarlo & Maunsell 2003; Silver, Ress & 

Heeger 2005). This hierarchy places some important constraints on how different kinds of 

information flow through the model. Another crucial assumption is that there is no indicator that 

definitively determines which stimuli should be attended. Instead, the attentional system 

perceives stimuli with varying combinations of intrinsic salience and task relevance. It then 
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decides which stimuli to attend according to the broader goals of the organism, which may 

sometimes transcend the specific task imposed by the experimenter (i.e. if there was an 

earthquake, the subject would presumably notice). In other words, the notional distinction 

between targets and distractors as imposed by any specific task is not the ultimate designation of 

stimulus priority as far as the visual system is concerned. The system  must decide what will be 

attended and what will be suppressed on each trial and this decision is not pre-ordained by other 

a higher level cognitive systems, except perhaps in cases where the visual search is highly 

prescriptive and repeated many times (Theeuwes 2012; Burra & Kerzel 2013) 

 

A final crucial assumption is that there are no a-priori labels as to which neurons are 

processing to-be-attended vs to-be-ignored stimuli. When a decision has been made to attend to 

a stimulus, there must exist an efficient means to rapidly distribute the consequence of that 

decision across a diverse set of cortical areas. For example, a given neuron in early visual cortex 

may be firing in response to a stimulus that downstream areas of the visual system have 

determined should be attended, but how is credit assigned back to that neuron?   

 

Given these assumptions, a candidate model of reflexive attention must include mechanisms for 

making rapid decisions about where to attend, and also mechanisms that rapidly implement that 

decision by routing information between different portions of the visual system.  

 

2.2 Four potential architectures:  

It is helpful to understand the advantages and drawbacks of various architectures by which 

attentional decisions are could be communicated to other maps in a hierarchically organized 

visual system. To this end, this section outlines four possibilities. concerning how attentional 

enhancement and suppression effects would interact between different processing areas.  

 

2.2.1 Local Attentional Control: 

The simplest method of reflexive attention can be implemented is at the local circuit level. In 

such a model, stimuli are processed separately within different maps (Figure 2a). 

Representations of each stimulus compete within these cortical areas, and one or more winners 

of that local competition would be attended., according to internal mechanisms within that area. 

While simple, this architecture has difficulty explaining how stimuli of different kinds can affect 

one another. For example, attentional capture by a color singleton affects processing of a shape 

singleton target (e.g. Theeuwes 1991) which requires that . To explain such data requires an 
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attentional architecture in which decision consequences can propagate between maps selective 

for different kinds of information.  

 

2.2.2 Peer to Peer attentional control: 

The simplest architecture that allows attentional effects to propagate involves connections 

between cortical areas (Figure 2b illustrates a model in which). A any map that resolves a 

competition between stimuli projects signals toenhancement and suppression to  the other maps 

by using intracortical pathways that take advantage ofexploiting the spatiotopic correspondence 

between feature maps, thus so as to ensuringe that the correct locations are excited or inhibited 

across maps.  

 

The disadvantage of this architecture is that it requires an enormous number of intracortical 

projections. Each feature map within the visual system must send projections to every other map 

so that targets in one map can enhance or suppress representations in all other maps. Thus, the 

number of intra-areal connections grows as M*N2, where M is the number of neurons within 

each cortical area and N is the number of areas.  However it has been estimated that only about 

30% of the total proportion of possible intra-areal connections exists within the macaque visual 

system (Felleman & Van Essen 1991) which argues against strong peer-to-peer 

connectivityattentional control.  

 

2.2.3 Feedback Attentional Control: 

The third architecture is more efficient in terms of intracortical projection (Figure 2c) because it 

exploits the hierarchical nature of the visual system. Once a stimulus has won a local 

competition in any map, it projects a combination of enhancement and inhibition back down to 

the earliest levels of processing in the visual hierarchy (i.e. perhaps V1 or even LGN). These 

effects then propagate forward to the descendent visual processing areas. 

 

This approach requires fewer inter-areal connections than the peer-to-peer model, growing 

linearly with the number of feature maps. The selective tuning model of Tsotsos (2011) et al 

provides a thorough formalization of such a system.  
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The disadvantage of this approach is that resolving a competition between two stimuli 

represented in distinct feature maps would require multiple iterations of feedforward and 

feedback processing through the hierarchy since the higher level maps do not directly 

communicate with one another. Furthermore the suppressed information is cut off at the earliest 

level, which precludes it from analysis by higher levels of the visual system. This makes it 

difficult for deeper levels of meaning to be computed from stimuli that are not attended.  

 

2.2.4 Inhibition at a superordinate map:  

The final architecture that we consider, and the one that is used in RAGNAROC, confines the 

competition to a single cortical area: an attention map that is hierarchically superordinate to all 

of the spatiotopic maps that comprise the ventral visual system (Figure 2d)6. The attention map 

                                                        
6 For simplicity we assume that there is only a single cortical area that computes 
attentional priority, although the functionality would be essentially similar if there 
is a small family of interconnected cortical areas that mediate attention.  .  

Figure 2.  Illustration of four architectures for mediating the competition between 
two stimuli for which the most salient attributes are processed in different maps 
(e.g. color singleton vs a form singleton). The illustrations indicate how attentional 
enhancement and suppression effects elicited by a highly salient color singleton can 
propagate between areas.  
.  
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provides a compact method to make rapid decisions about where to deploy attention in the visual 

field, since it accumulates information about the priority of different stimuli from many 

subordinate topographic maps into a single brain region.  

 

Once a spatial region within the attention map has been sufficiently activated by input from 

subordinate maps, those neurons enhance the processing of information at the corresponding 

region of the earliest processing level, and that enhancement then carries forward through the 

ventral hierarchy. In this framework, Inhibition of distracting information is accomplished by 

inhibiting regions of the attention map rather than neurons within the subordinate maps. 

 

An important distinction of this architecture relative to the others is that there is no direct 

suppression of information in the subordinate layers. Instead, suppression is achieved indirectly 

by reducing the availability of attention at particular locations in the visual field. Thus, attention 

is represented as a gradient field of activation levels distributed across the spatial extent of the 

visual field (LaBerge & Brown 1989, Cheal Lyon & Gottlob 1994). Changes in these activation 

levels provides a convenient way to throttle the processing of information through all of the 

feature maps that are descended from the early visual area with a relative minimum of 

intracortical projections. This approach mitigates the disadvantages of the preceding 

architectures as follows. Attentional decisions can be made rapidly even between stimuli with 

distinct representations, since the competition occurs within a single map. Also, suppressing 

attentional priority, rather than representations in the subordinate layers, preserves the 

information at the earliest levels of processing, which allows a stimulus in an unattended region 

the chance to make contact with deeper levels of processing should it be required (i.e. no 

information is lost).  

 

 

3. RAGNAROC specification 

 

 

3.1  Inspiration from existing models 

There is a substantial literature on computational models of attention that collectively 

addresses a broad set of mechanisms and processes. The RAGNAROC model is informed by 

many of these models, theories and ideas. Starting from the very earliest cueing paradigms was 

the theory that attention is briefly engaged at a given location (Posner REF) which briefly 
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precludes it from being deployed elsewhere.  RAGNAROC implements a brief “lock-on” 

attractor state when attention is deployed, and this implementation is similar to the engagement 

of attention as originally proposed.   

 

 

Another One of the most formative models for our approach is the Theory of Visual 

Attention (TVA; Bundesen 1990; Bundesen, Habekost, & Kyllingsbæk, 2011), which provides a 

mathematical formulation for how goals adjust the pertinence of certain kinds of information 

(i.e. when one is looking for red digits, the pertinence of red is upweighted to increase the rate at 

which stimuli with that color are processed). This pertinence weighting applies across the entire 

visual field, which explains how stimuli are able to capture attention when they match top-down 

settings despite being located in a to-be-ignored location of the visual field. TVA also formalizes 

the understanding of stimulus-driven attention as a decision making process. In terms of 

implementing a hierarchical architecture for attention, the Koch & Ulman (1985) and Itti, Koch 

& Niebur (1998) models of salience were crucial for establishing the utility of a shared salience 

map, which accumulates information from subordinate layers of processing and allows them to 

compete on an even footing in a compact neural field. Li (2002) helped to establish the idea of 

salience being a product primarily of anatomically early levels of processing. Zehetleitner, Koch, 

Goschy & Müller (2013) elaborated the circuitry of competition at the top of this hierarchy, to 

provide an illustration of how attention operations decisions can be considered a race between 

competing selection operations.  

 

In terms of implementing selection,  

 

Whereas a salience map is an output of what amounts to a feed-forward process, the Selective 

Tuning (ST) model of Tsotsos (1995) illustrates how recurrent excitatory signals, propagating 

backwards through the visual hierarchy could implement the selection process at the earliest 

levels of the hierarchy. However, aAnother class of models has been even more influential in 

that highlightings the importance of recurrence in iteratively shaping the spatial profile of 

attention.  One of the clearest examples of this process is SAIM (Heinke & Humphreys 2003; 

cite more recent one REF) in which a pool of selection neurons interacts with incoming 

information to create a spatially localized selection and routing of information to a differenet 

group of neurons that represent the focus of attention.  In SAIM, the selection process is an 

emergent property of the shared topographic connectivity between the selection system and the 
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retinal input. Moreover, a series of top-down connections provides an additional form of 

resonance that selects for coherent objects that match the visual search template.  This idea is 

also present in adaptive resonance models by Grossberg and colleagues, and in particular the 

attentional shroud model of (Fazl, Grossberg & Mingolla 2009), which describes a process to 

delineate the boundaries for the purpose of learning. 

 suggests a metaphor of shrouds that drape across to-be-attended regions of the visual 

field (Fazl, Grossberg, & Mingolla 2009). 

 

The idea of reflexive attention, as a brief burst of enhancement to increase the processing at a 

particular moment in time was simulated in the STST (Bowman & Wyble 2007), eSTST 

(Wyble, Bowman & Nieuwenstein 2009); and Boost Bounce models (Olivers & Meeter 2008).  

Those models, especially the STST and eSTST, focused more on the time course of encoding of 

information into memory, whereas RAGNAROC could be conceived as a spatial attention front-

end to such models, replacing the simpler “blaster” mechanism that they employed. There has 

also been work on exploring the specific mechanism of how attention operates at the level of 

information processing, for example by showing that peripheral cues result in a combination of 

stimulus enhancement and noise reduction (Lu & Dosher 2000). The mechanism used here 

would be consistent with stimulus enhancement.   

 

3.2  How it works 

The focus of our modeling effort is to develop these ideas further, in close contact with a large 

body of empirical data, and also to extend the implications of such models to understanding the 

generators of attention-related ERPs. The RAGNAROC model simulates the consequences of 

attentional decisions rippling through the visual hierarchy, creating transient attractor dynamics 

that allow attention to lock-on (Tan & Wyble 2015; Callahan-Flintoft, Chen & Wyble 2018) to 

one or more locations. In this context, the term lock-on refers to a state in which top-down 

attentional enhancement at a given location amplifies feed-forward projections from stimuli at 

that same location to create a temporary attractor state that locks attention at a given location for 

a brief window of time. These lock-on states are similar in some respects to what was originally 

conceived of as attentional engagement (Posner REF), in that attention is strongly attached to 

the location of one (or more) stimuli through a combination of feedback dynamics. The model 

also simulates a natural process of disengagement from a given location due to the buildup of 

inhibition for sensory representations at attended locations.   
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Model outputs. The model simulates both the behavioral consequences of reflexive attentional 

deployment, measured in terms of accuracy and reaction time, while also simulating key ERP 

correlates of attention, such as the N2pc and the PD components. As a starting point, the model 

incorporates the convergent gradient-field (CGF) model of Tan & Wyble (2015), which 

provided a partial explanation for reflexive attention with a focus on target enhancement and the 

N2pc component.  

 

Stimulus Processing and Differentiation. In order to provide a theory of attention that can be 

applied to many different experimental contexts, we do not commit to the decoding of pixelwise 

representations. Instead, simulated neurons in each spatiotopic map represent the presence of 

attributes at locations with a granularity of 0.5 degrees of visual angle. These representations are 

segregated into distinct maps that are each specialized for particular kinds of stimuli, as in an 

assumption that is common to other models (Itti et al. (1998).  

 

Localizing and attending important stimuli. The RAGNAROC modelRAGNAROC is built with 

the assumptionassumes that attention must n essential function of the visual attention system is 

to determine the precise location of a to-be-attended stimulus from the coarse-grained location 

information carried by higher levels of the visual hierarchy(DiCarlo & Maunsell 2003), and then 

deploy attention to the corresponding location.  This is consistent with a broad range of findings 

as described above.  . We assume further that attention enhances the rate of processing of 

information at that location so as to enable the attended information to be encoded into memory 

more accurately and more rapidly. Such a model is consistent with findings that detection of a 

target facilitates the processing of a subsequent target at that same location (Wyble, Potter & 

Bowman 2009; Mounts 2000). This assumption is also consistent with the theory of biased 

competition (Chelazzi et al 1993) in which detection of a target allows neural responses from an 

attended stimulus to dominate responses from unattended stimuli.  

 

The distinction between Targets and Distractors. RAGNAROC assumes that targets and 

distractors are distinguished based on differences in priority(defined below), Another 

assumption of RAGNAROC is that most stimuli initially excite activity in the attention map 

because there is rarely a clear-cut distinction between targets and distractors for processes on the 

time scale of reflexive attention. The attention map represents stimuli only in varying levels of 

attentional priority (defined below), since a decision must be made to commit attention before 
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input from slower, more deliberate stimulus evaluations are completed. In this framework, 

targets (to the extent that the visual system perceives them as such) are successful at deploying 

attention because they elicit a more rapid priority signal at their location in the attention map. 

The decision process is, in effect, a race between competing representations, and the top-down 

attentional set plays a key role in helping task-relevant stimuli to win that race.  

 

However, the outcome of this race-based decision process is not pre-ordained and the attention 

system is prone to deploying attention to highly salient distractors , but task irrelevant distractors 

on some fraction of trials. Thus, the model explains attentional capture experiments as a mixture 

of trial outcomes, which often exhibit successful deployment of attention to the target, but 

sometimes allow a distractor to win the competition. The variability in these outcomes is 

mediated by trial-to-trial variability. 

 

Priority value. Each Stimulus in the visual field receives a priority value, which is a valuation of 

its ability to trigger the attentional system accordinglikely importance according to a 

combination of physical salience, and top-down contributions from attentional set (Figure 3). 

Physical salience reflects the degree to which a given stimulus stands out from other nearby 

stimuli in terms of low-level features  (e.g. color, orientation, luminance). Priority is also 

affected by the degree to which a stimulus matches the current attentional control settings . 

(Saenz, Buracas & Boynton 2002; Zhang & Luck 2009; Bundesen 1990 REF CHECK).  These 

attentional control settings prioritize simple features like color, or more complex attributes such 

as conceptual categories (e.g. dinner food, animal, etc) by upweighting feedforward activity 

from some maps and downweighting feedforward processing from other maps. We assume that 

the ability to select certain stimulus attributes for task-relevant weighting is governed by pre-

learned stimulus categories (e.g. contrasting letters vs. digits), but cannot easily be accomplished 

for arbitrary distinctions (e.g. select letters A, B, C from other letters). This follows from the 

work of Shiffrin & Schneider (1977) who demonstrated the ability to efficiently attend to 

previously learned categories, but not to arbitrary subsets of a category. Based on work 

suggesting that even conceptually defined target sets can be used to select information from 

RSVP (Potter 1976; Barnard, Scott, Taylor, May & Knightley 2004) or capture attention 

(Wyble, Folk & Potter 2013), it is assumed that prioritization can happen even at a conceptual 

level. 

 Other potential contributions to priority that will not be considered here could involve whether 

stimulus attributes have been associated with reward (Anderson, Laurent & Yantis 2011), have 
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been recently presented (Awh, Beloposky & Theeuwes 2012), were recently task relevant 

(Kadel, Feldmann-Wüstefeld &  Schubö 2017) or are relatively novel in time (i.e. an oddball). 

Thus, a strength of the attention-map framework is to allow a broad variety of influences to 

affect how stimuli are prioritized. 

 

Using Attentional control settings to prioritize targets:  To help guide attention towards targets, 

it is assumed that attentional control settings prioritize certain stimuli as defined by the current 

task in a spatially nonselective manner (Saenz, Buracas & Boynton 2002; Zhang & Luck 2009; 

Bundesen 1990). These attentional control settings prioritize simple features like color, or more 

complex attributes such as conceptual categories (e.g. dinner food, animal, etc) by upweighting 

feedforward activity from some maps and downweighting feedforward processing from other 

maps. We assume that the ability to select certain stimulus attributes for task-relevant weighting 

is governed by pre-learned stimulus categories (e.g. contrasting letters vs. digits), but cannot 

easily be accomplished for arbitrary distinctions (e.g. select letters A, B, C from other letters). 

This follows from the work of Shiffrin & Schneider (1977) who demonstrated the ability to 

efficiently attend to previously learned categories, but not to arbitrary subsets of a category. 

Figure 3. Illustration of how both intrinsic salience and top-down relevance cues can 
be mapped onto a single priority dimension. The figures illustrate canonical 
paradigms from attentional capture experiments. The top version of the paradigm 
uses a highly salient color singleton which results in priority values that are 
competitive with the less-salient target. When the target and distractor dimensions 
are switched, the shape singleton is not competitive with the color-singleton target. 
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Based on work suggesting that even conceptually defined target sets can be used to select 

information from RSVP (Potter 1976; Barnard, Scott, Taylor, May & Knightley 2004) or capture 

attention (Wyble, Folk & Potter 2013), it is assumed that prioritization can happen even at a 

conceptual level.  

 

 

3.2 RAGNAROC Architecture of the model 

3.2.1 A Hierarchy of Visual maps 

The visual system is composed of a hierarchy of maps that each represent the visual field and are 

connected so as to preserve a spatiotopic organization that is rooted in a retinotopic 

representation at the earliest level (Figure 4). No claims about the number and complexity of this 

hierarchy are necessary here as this is a model of general principals. Information propagates 

through the layers via feedforward excitation. The first layer of the model is termed Early Vision 

(EV) and simulates the earliest cortical regions in the visual hierarchy, which contains neurons 

with small receptive fields, such as V1. The second tier of layers is collectively termed Late 

Vision (maps LV1 and LV2) and contains neurons with larger receptive fields, corresponding to 

anatomical areas in the ventral visual stream that are thought to be specialized for different kinds 

of stimuli, such as V4 (color), FFA (faces), the EBA (body parts), the PPA (places), as well as 

distinctions between animate and inanimate stimuli, canonical size (Konkle & Carmazza 2013) 

and other distinctions that are as yet undiscovered. In our simulations, EV neurons have a 

simulated receptive field size of .5 degrees, while LV neurons have receptive fields of 3.5 

degrees width.  
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The third layer of the model’s hierarchy is the attention map (AM), which receives input from all 

of the subordinate LV maps7 and have the same diameter of receptive fields as LV neurons. 

Thus their receptive fields are extremely broad, because their input from the LV is already 

enlarged. The role of the AM is essentially to implement decision making across the visual field 

and to enact the consequences of that decision by sending modulatory projections down to the 

earliest level of the hierarchy. It does this by accumulating spatially imprecise activity from the 

subordinate LVs and then computing the spatiotopic location of the originating stimulus in the 

EV by summation. Convergent input from the LV maps initially forms an activation bump, 

centered at the location of each stimulus in the visual field. The correct localization of this bump 

                                                        
7 Direct projections from the EV to the AM could exist but they are not represented 
here for simplicity.  

Figure 4. Illustration of the model’s macro architecture (A) and the microcircuitry 
(B) of the attention map. In the hierarchy of visual areas, the cones reflect the set of 
neurons at a subordinate layer that excite a given neuron in the superordinate layer. 
Only two LV maps are shown here, but this architecture would generalize to 
additional levels. Differences in salience are implemented as stimulus-specific 
differences in feed-forward excitation between EV and LV. Top-down selection is 
implemented as feature-specific weights for an entire LV map between LV and AM. 
The Attention Map returns a location-specific gain enhancement at a given location 
in the EV. The grey II layer represents feedback inhibition for each LV node. The 
inset in B shows how neurons are interconnected within the AM. The small grey 
circles are Inhibitory Gating (IG) neurons, each of which has a competitive inhibitory 
relationship with a principle neuron of the AM. The principle neurons excite one 
another with a spatial distribution defined by a Difference of Gaussians (DoG). This 
connection corresponds to the black curved arrows in panel B.  
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follows naturally from the activation dynamics of the model since the AM neuron that resides at 

the corresponding topographic locus of the centroid of LV activity will receive the largest 

amount of input from the LV.  

 

When AM neurons are stimulated above threshold, a multiplicative attentional enhancement is 

applied to all neurons in the EV at the corresponding spatiotopic location. This modulation 

increases the strength of the feedforward input from that region of the visual field, which in turn 

increases the excitatory input to the AM. This dynamic creates a brief attractor state, in which 

the activated peak in the attention map is amplifying its own input. This condition we term a 

lock-on state and allows a precise, stable localization of attention despite the relatively coarse-

grained spatiotopy in the receptive field of the neurons. Furthermore, the activated AM neuron 

inhibits other surrounding neurons in the AM, which narrows the spatial focus of the lock-on 

state.  

 

Thus, the attention map integrates information from the subordinate feature maps to localize one 

or more targets and then projects an enhancement signal back down to earlier areas at the 

appropriate location(s). There have been a number of proposals for where such an AM might 

reside in the brain, including frontal cortex, parietal cortex and portions of the pulvinar nucleus 

(Shipp 2004). We note that a lateral, parietal location would be broadly consistent with the scalp 

topography of attention-related ERPs, which are typically larger above parietal cortex than 

directly over occipital, central or frontal areas (e.g. Tan, Wyble 2015). It is also possible that this 

functionality is distributed over several cortical areas, although that would come at the expense 

of intracortical white matter to mediate the competition.  

 

3.2.2 Attentional gating circuitry 

One of the key innovations in this model is the inhibitory control circuitry within the AM (the IG 

nodes in Figure 4B), which has been developed according to key findings in the literature. It 

allows attention to rapidly focus at a location, selectively inhibiting regions of the visual field 

that contain other visual stimuli. Moreover, the disinhibitory component of the circuit permits 

attention to be simultaneously focused at multiple locations when the stimuli are of similar 

priority.  

 

To ensure that attention is primarily inhibited at regions of the visual field that contain stimuli 

(Gaspelin et al 2015; Cepeda et al. 1998), gating circuits (the IG neurons in Figure 4b) ensure 
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that inhibition is only delivered to neurons receiving excitatory input from the visual field. Each 

IG neuron is paired with one principal neuron in the AM. An IG only becomes activated  when it 

receives lateral excitation from another AM neuron (i.e. the curved arrows at the top of Figure 

4B) and concurrent excitation from any LV neuron at its own spatial location (i.e. the rising 

arrow from LV to AM in Figure 4B). As a consequence, only AM neurons that are receiving 

feedforward excitation from the LV can be inhibited by another neuron in the AM. This prevents 

the AM from inhibiting locations of the visual field that are empty, matching behavioral data 

regarding the suppression of attention (Cepeda et al. 1998; Gaspelin et al. 2015).  

 

The disinhibitory component of this gating circuit acts to increase the stability of lock on states, 

such that once a decision to attend to a given location is reached, it is less likely that other 

stimuli will cause it to disengage. Each strongly active AM neuron inhibits its own IG neuron, a 

form of competitive inhibition that has been determined to have a similar stabilizing function in 

well-charted nervous systems such as the drosophila larva (Jovanic et al. 2016). With this circuit, 

multiple neurons in the AM can remain active, since they protect themselves from the inhibition 

generated by the other active AM neurons.  

 

3.2.3  Free and fixed parameters 

The model uses predominantly fixed-parameters according to a set of empirical constraints, 

which are listed below in section 4. These parameter values are invariant for all of the 

simulations provided below, except for a subset that vary in order to implement the experimental 

paradigm of each simulation (e.g. Timing and location). There are also two partially-fixed 

parameters that specify the physical salience and task-relevance (i.e. bottom-up and top-down) 

weightings of each stimulus type. The term partially-fixed reflects the fact that their relative 

values are determined by the experimental paradigms. E.g. in simulations of the additional–

singleton paradigm (Theeuwes 1991), we allow the specific value of the distractor's salience to 

vary, but it has to remain higher than the salience of the target. Finally, there is one additional 

free parameter that defines the accumulator threshold for a behavioral response for each 

experiment. This parameter is constrained to have a single value for all conditions of a given 

experiment and prevents behavioral accuracy values from being at ceiling or floor. The specific 

values of all parameters will be provided for each simulation in the appendix. 

 

3.3 Mechanisms of the model: 

3.3.1 Equations 
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The model uses rate-coded neurons, governed by the activation equations of O'Reilly & 

Munakata (2001) as shown in the Appendix. In these equations the activation level of each 

neuron is governed by three currents: excitatory, inhibitory and leak. This level of abstraction is 

a compromise that captures the properties of neuronal synaptic interactions in broad strokes, 

while allowing rapid exploration of different model architectures. Moreover, the distinction 

between excitatory and inhibitory currents provides a mapping to current flows underlying EEG 

components. This set of equations has been used effectively in previous simulations of 

attentional processes at similar time scales (e.g. Bowman & Wyble 2007)  

 

 

Each connection within the model is enumerated in Figure 5 and properties are described below. 

For simplicity, all maps have the same dimensionality and number of stages. Furthermore only 

two pathways are simulated here. The mechanisms used here generalize to more complex 

architectures with more layers and more pathways. All connections between or within layers are 

assumed to have either an identity projection (i.e. strictly topographic), a Gaussian spread, or a 

Difference of Gaussians (DoG). 

 

The following numbers indicate connections specified in Figure 5. 

 

1. Input to EV neurons: The EV represents the earliest stage of cortical visual 

processing in which neurons have extremely small receptive fields and 

color/orientation/frequency specific firing preferences. For the sake of simplicity, 

EV nodes are separated into different areas according to the kinds of stimuli 

presented, although in the brain these different neurons occupy the same cortical 

map. Input to a specific EV node is specified as a step function, since the 

simulations are of suprathreshold stimuli (i.e. a value changing from 0 to 1 while the 

stimulus is visible), which causes the corresponding EV node's membrane potential 

(MP) to charge up according to equations 1.1,1.2 and 1.3, see appendix.  
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2. Projection from EV to LV: When an EV node's membrane potential crosses 

threshold, it sends a feedforward excitation to an array of nodes in the corresponding 

LV maps. This projection is spatially weighted according to a Gaussian centered at 

the location of that EV node. The magnitude of this projection is the salience of the 

stimulus, and indicates its physical dissimilarity to other stimuli in the visual field 

according to the specific LV it projects to (e.g. a shape singleton would have a high 

salience in an LV map that is specific for form). Other accounts have shown how to 

compute salience for some classes of features such as color, orientation and 

luminance (Zelinsky 2008; Itti et al. 1998; Bruce & Tsotsos 2006). In RAGNAROC, 

we abstract over the process of computing salience to accommodate the broad 

diversity of tasks. Computing LV activation corresponds to equations 1.4-1.6 in the 

appendix. 

 

Figure 5. Illustration of the complete architecture for two distinct pathways during 
perception of two objects with highly distinct dimensions (e.g. form vs color). The 
left and the right side represent the same connections but for different stimuli. The 
bubbles indicate the spatial distribution and character of each connection. The 
traces above each layer illustrate a typical activation profile for that map in 
response to a stimulus. Note that attention affects both pathways, regardless of 
which stimulus triggered it. The numbers correspond to descriptors in the text. 
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3. Inhibitory feedback nodes in the LV: Each LV node has a dedicated inhibitory 

interneuron (labelled II), that provides feedback inhibition. This inhibitory feedback 

is crucial for emphasizing the onset of new information by causing the activity of 

any given LV neuron to drop after approximately 100ms, which is characteristic of 

single units in the visual system (e.g. Fig 9 of Chelazzi, Duncan, Miller & Desimone 

1998). Moreover, these II neurons cause attention to naturally disengage from a 

stimulus that remains constant on the retinal field. Computing II activation 

corresponds to equations 1.8 to 1.10 in the appendix. 

 

4. Projection from LV to AM: When an LV node crosses threshold, it projects 

feedforward excitation to an array of nodes in the AM according to a Gaussian 

profile centered at the location of the active LV node. LV nodes also excite IG 

nodes (see below) with the same Gaussian profile. The projections to both the AM 

and IG nodes include a parameter that represents the task-relevance (i.e. "top-

down") weighting of each stimulus type, and is fixed for each LV map. (e.g. to 

represent an attentional set for a specific color, all LV nodes for that color have an 

increased feedforward strength to the AM). Computing AM activation corresponds 

to equations 1.11 to 1.14 in the appendix. 

4.  

 

5. Inhibitory Gating Nodes (IG):  The IG nodes ensure that inhibition with the 

attention map only occurs at locations receiving input from an LV (see also Beuth & 

Hamker 2015). Each IG node is paired with a single AM node that it can inhibit. An 

IG node is excited by neighboring AM nodes according to a Difference Of 

Gaussians (DoG) activation profile. IG nodes are also excited by LV nodes. The 

total excitation of each IG node from these two sources (AM and LV) is capped 

such that concurrent AM and LV activity is required to raise an IG node above 

threshold. Thus, IG neurons exhibit the equivalent of a logical AND gate in that they 

require concurrent activation from two pathways in order to fire. Computing AM 

activation corresponds to equations 1.16 to 1.21 in the appendix. 

 

6. IG inhibiting the Attention Map: When activated by convergent AM and LV input, 

an IG node inhibits its corresponding AM node. This is the basis of inhibitory 
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suppression of attention within the model and corresponds to equation 1.12 in the 

appendix. .  

 

7. Attention Map inhibiting IG: The inhibition from AM->IG has a high threshold of 

activation, so that once a lock-on state has formed at a given location, the 

corresponding AM node protects itself from inhibition. This disinhibitory circuit 

increases the stability of an AM lock-on state, since AM neurons can protect 

themselves from inhibition generated by neighboring AM nodes. This inhibition 

corresponds to equation 1.19 in the appendix. 

 

8. Attentional Enhancement: Each AM node provides a gain modulation of synaptic 

transmission from EV to LV for all EV nodes at the same location. Note that 

enhancement of a given location in the EV occurs for the entire Gaussian spread of 

an EV neuron's feedforward projection, unselectively across all feedforward 

pathways. It is this modulation that creates the “lock-on” attractor between EV and 

AM since it allows an AM node to increase the gain on its own input. This 

enhancement corresponds to equations 1.4 and 1.15 in the appendix. 

    

9. AM excitatory Bias: There is a uniform level of bias input to the entire AM, keeping 

these neurons slightly active in the absence of input. This enhancement corresponds 

to equation 1.11 in the appendix.  

 

10.  Noise input: Intertrial variability is added to the model as modulations of the 

weights between the LV and AM, which represents fluctuations in attentional 

control. The variability is constant for a given trial and varies between trials as 

samples from a Gaussian distribution.  REF 

 

 

3.4 Example Simulations 

The following examples illustrate the model’s dynamics in response to several stimulus 

scenarios.  

 

3.4.1 The simplest case: Single stimulus 



RAGNAROC, a model of reflexive visual attention 
 

36 
 

When a single stimulus of sufficient priority is presented to the EV, it triggers a lock-on of 

attention at its spatiotopic location, which is a self-excitatory attractor state resonating between 

EV and the AM through the LV. Figure 6a illustrates the impulse response function in the AM 

elicited by a single stimulus. Figure 6b illustrates the time course of activation of each of the 

layers of the model centered at the location of the stimulus. 

 

3.4.2  Transition to the lock-on state 

We demonstrate that the lock-on state has the characteristics of an attractor by illustrating that a 

broad range of stimulus values evoke a bump in the AM of similar size and duration (Figure 7a). 

The rapid growth of this neuron’s activation is due to the attentional enhancement of 

feedforward activity from the EV after the corresponding node in the AM crosses the threshold 

value. The decrease in peak amplitude is a result of the drop in LV activity due to feedback 

inhibition from II.  

 

 

Figure 6. A. Evolution of a lock-on state across time and layers for a single stimulus. An initial 

feedforward wave of excitation from a single location in the EV triggers activation in the LV, which 

carries forward to a peak in the AM. Once the central peak of the AM activation crosses threshold, the 

surrounding IG neurons are activated producing surrounding inhibition in the AM.  B. Illustration of 
the time course of activation for each kind of node within the model in response to a stimulus.  
Subscripts x,y indicate the location of the stimulus while x+2,y2+2 indicate nodes at a 
neighboring location. 
Notable inflection points are when the AM

x,y
 node crosses its lower threshold, which triggers 

enhancement of the LV activation. This drives the AM
x,y

 node more strongly such that it passes 

its second threshold, allowing it to suppress the IG
x,y

 node. At this point attention is fully locked 

on to location x,y, since processing is enhanced at that location, and the IG has been inhibited. 
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3.4.3 Two stimuli 

Figure 8 depicts a comparison of AM activity for either one(A) or two stimuli(B,C). In the case 

of two stimuli, if one of them is of substantially higher priority, it will inhibit the AM at the 

location of the other (B). However if both stimuli are of very similar priority and nearly 

simultaneous, the two of them will always enter lock-on states simultaneously leading to a fully 

parallel deployment of attention (C). In such a case, each AM inhibits its paired IG (not shown 

in this figure), and the two lock-on states protect themselves from inhibition by the other. 

 

3.4.4 Sequential stimuli 

When stimuli onset sequentially, the first stimulus will typically be able to activate its Lock-on 

state and suppress activity of the second. In this way, a first target (T1) with a relatively low 

priority value can suppress attention to a second target (T2) since the temporal advantage of T1 

allows it to establish a lock on state before the T2 has a chance. 

 

3.5 Competitive Inhibition helps to stabilize attentional focus 

The competitive inhibition between AM and IG neurons was developed to meet empirical 

benchmarks and this particular case highlights a virtue of modelling biological systems, which is 

Figure 7:  Illustration of the time course of activation of a neuron in the AM centered 
at the location of a stimulus for varying amounts of activation strength of a stimulus 
from .01 to .6 in increments of .03. The inset plots peak amplitude as a function of 
activation strength. The takeaway point is that a lock-on state is an attractor, such 
that many different values of strength map onto the same amplitude of activation.  
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the ability to understand the value of particular mechanisms. RAGNAROC gives us the tools to 

understand that competitive inhibition improves the functionality of attention by increasing the 

stability of one or more lock-on states, allowing attention to be simultaneously deployed more 

easily, in accord with empirical findings such as Bay & Wyble (2014) and Goodbourn & 

Holcombe (2015). To illustrate the effect of competitive inhibition on the attentional state, 

Figure 9 compares the intact model (bottom two panels) to one in which the AM->IG inhibition 

has been removed (top two panels). This change preserves the center-surround inhibition, and 

the selective inhibition but does not allow AM nodes to competitively block their own inhibition. 

The figure illustrates how the duration of lock-on states for two temporally proximal stimuli is 

compromised without the inhibition.  

With the inhibition intact (bottom two panels), it is much easier for simultaneously (or nearly so) 

stimuli to evoke robust lock-on states because each protects itself from such interference. 

However within about 50ms, the window of attentional simultaneity has expired because the T1 

lock-on starts to inhibit nearby activity in the AM. This makes it difficult for T2 to establish its 

own lock-on state if it onsets between 50 and 100ms after the T1. The time course of this 

transition from simultaneous to sequential attention is in agreement with behavioral data 

showing the onset of attentional inhibition following a T1 onset (Mounts 2000, Experiment 2). 

The advantage of protecting the lock-on state of the T1 at the expense of the T2 is to reduce the 

volatility of attentional decisions in the case of dynamic or rapidly changing stimuli.  

Figure 8. Evolution of activity in the attention map over time for a single stimulus (A), 
and the same stimulus accompanied by a stimulus of lower priority (B). In the case 
where two stimuli have equal priority (C), attention is recruited at both locations.  
 



RAGNAROC, a model of reflexive visual attention 
 

39 
 

In contrast, when the competitive inhibition is removed (top two panels), the AM activations 

evoked by two stimuli always compete against one another, such that only T1 or T2 can be fully 

attended even when the stimuli onset simultaneously. 

3.6 Mapping model activity onto measurable data 

In order to compare the model against empirical benchmarks, it is necessary to map model 

activity to behavioral measures of accuracy and reaction time, as well as EEG correlates of 

attention such as the N2pc and PD. Figure 10 illustrates which activity states in the RAGNAROC 

model are used for generating data. 

 

3.6.1 Model configuration 

For each experiment, physical salience values and task-relevance weightings are configured for 

different kinds of stimuli in the task. To provide variability, task-relevance weightings are varied 

at random over repeated simulations, while the physical salience values remain fixed. Task-

relevance weights are initially varied according to a uniform distribution of possible values for 

each kind of stimulus in the task. For example in a salient-singleton attentional capture paradigm 

(Theeuwes 1992), the target stimulus has a physical  salience value of .15 and a range of task-

relevance weightings from .17 to .37 in 12 steps of .018. The singleton distractor has a physical 

salience of .3 and a range of relevance weightings from .07 to .27 in 12 steps of .018. The model 

is run for all possible combinations of these weightings, (e.g. 144 total simulations in this 

example). The simulations are then bootstrapped to form the simulated data set of an entire 

experiment. The bootstrap involves resampling 10,000 times according to a normal distribution 

(with mean centered at the median attention weight and a standard deviation of .75) under the 
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assumption that there is trial to 

trial variability in the attentional 

set of the observers that is 

normally distributed. For this 

bootstrapping, the normal 

distribution is mapped onto the 

bins of the uniformly distributed 

task-relevance weightings over a 

range of +/- 3 standard 

deviations. This bootstrapping 

determines both the simulated 

behavior (accuracy and RT, as 

appropriate) and the EEG traces 

for a given experiment. This is 

the only source of variability in 

the model when simulating EEG. 

For simulations of behavior, an 

additional source of noise is 

added during the bootstrapping, 

as described below.  

 

3.6.2 Simulating Behavior 

RAGNAROC simulates the 

successful detection or response 

to a target with a thresholded 

accumulator. The accumulator 

sums the time course of 

activation of all LV neurons that 

are activated over baseline (.5) 

for the target. For every trial, the area under the curve (AUC) is calculated for the entire time 

course of activation. A trial is considered accurate if this AUC exceeds a threshold value that is 

calibrated for each task, but is not allowed to vary for different conditions within a task. This 

threshold is a free parameter fit for a given task to achieve a particular accuracy value in one 

baseline condition chosen for each task. In order to introduce more variability and make 

Figure 9 Illustration of the robustness of lock on 
states to each of two stimuli where the second 
stimulus varies in the strength of bottom-up 
strength value of the T2 (horizontal axis) and 
temporal latency (vertical axis). Each point 
represents the total duration for which the AM 
neuron at the location of the stimulus (T1 or T2) 
is above threshold. The key takeaway is that 
without competitive inhibition (CI), T1 and T2 
compete destructively at short SOAs such that 
neither elicits a robust lock-on state. With 
inhibition intact, both stimuli can achieve a lock-
on state if presented with nearly identical 
onsets. However at longer SOAs T1 suppresses 
T2 enforcing a serialized deployment of 
attention. In this simulation, T1 and T2 were 
presented 4 degrees apart and have a duration 
of 120ms. Note that the T1 bottom-up weighting 
is fixed for all simulations and only the T2 
weighting is varied. The distinction between T1 
and T2 becomes notional when they are 
simultaneous. 
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simulations less sensitive to the 

particular threshold value, each 

simulated trial is jittered with 

random noise. This is done by 

adding 15% of the baseline 

condition’s average AUC times a 

random scalar (ranging from 0 to 1 

from a uniform distribution) for 

each trial. Reaction times are 

calculated as the time step at 

which the accumulator crossed 

threshold.  

 

3.6.3 Simulating EEG 

To translate from simulated 

neurons to EEG correlates is a 

hard problem that, in its most 

exact form, would require compartmental-level modeling of cortical neurons including all of the 

synapses in each layer, a fairly complete understanding of the neuroanatomy for each individual 

subject, and a model of the electrical properties of the tissue layers above the cortex (dura, fluid, 

skull, muscle, skin).  

 

However, it is possible to make effective progress with a much simpler model, given some 

starting assumptions to simplify the forward model for generating scalp potentials. Here, these 

assumptions are (1) that the attention map exists over a region of cortex situated in posterior-

lateral parietal areas of cortex (2) that EEG potentials are largely driven by excitatory synaptic 

input on pyramidal neurons oriented perpendicular to the scalp (Nunez & Cutillo 1995) (3) that 

an increase in this synaptic current within the attention map produces (on average) a negative 

voltage at the scalp and (4) An additional weighting parameter that determines the relative 

contribution of excitatory and inhibitory synaptic currents for all simulations. The advantage of 

such a simple model is that it provides fewer opportunities to overfit the observed EEG.  

 

Given these assumptions, RAGNAROC simulates lateralized EEG components associated with 

attention by summing synaptic currents across each half of the AM, and taking the difference of 

Figure 10 Activity within the RAGNAROC model 
is used to construct simulations of data in the 
form of behavioral accuracy, behavioral reaction 
time and EEG components. Behavioral data are 
extracted from the late vision area, which is 
assumed to drive the formation of memory 
representations and response decisions through 
mechanisms that are outside of the scope of the 
model. Simultaneously, synaptic currents within 
the attention map are measured to generate 
simulated ERPs such as the N2pc and the PD.  
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those sums relative to the side of the visual field that a particular stimulus was presented on. 

This is analogous to the measure of potentials such as the N2pc and PD, which are calculated as 

the difference in voltage between electrodes contralateral and ipsilateral to the side of the display 

containing a target (or a distractor in some cases).  

 

The synaptic currents are computed separately for each neuron as its excitatory current, minus its 

inhibitory current, with a floor of zero. The intuition behind this implementation is that 

excitatory currents are the primary drivers of the large dipoles that are observable at the scalp, 

and inhibitory inputs often shunt those excitatory currents by creating high conductance areas of 

the cell membrane closer to the soma (Koch, Douglas & Wehmeier 1990) 

 

The AM receives a uniform input to elevate all of the neurons above their resting potential. This 

provides a baseline level of excitatory current that is uniformly distributed across the attention 

map and therefore drops out during the subtraction of ipsilateral from contralateral. Activation or 

inhibition of nodes within the AM causes deviation away from this baseline level of current. 

When this current is summed across the halves of the attention map, laterally asymmetric 

differences in activation produce changes that are comparable to the N2pc and PD components 8. 

Note that using the sum of currents across a hemifield to simulate voltage means that increases 

in current for some neurons might be effectively invisible to the simulated EEG signal if there 

                                                        
8 For the sake of simplicity, we assume here that there is a constant level of 
resistance across the AM, such that voltage is directly proportional to current.  
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are also corresponding decreases in 

current for other neurons in the same 

half of the attention map (Figure 11). 

Furthermore, any negativity in the 

simulated voltage difference between 

the contralateral and ipsilateral sides 

of the map could be caused either by 

an increase in activity in the 

contralateral side, or a decrease in 

activity on the ipsilateral side. It is 

important to remember that there are 

only two possible polarities of a 

component, positive or negative, but 

there are (many!) more than two 

neural processes that could result in a 

scalp potential at a given latency. 

Therefore one cannot uniquely ascribe 

a given functional property to an ERP 

on the basis of a given 

polarity/latency. 

 

This ambiguity in the interpretation of simulated EEGs is not a shortcoming of the model, but 

rather reveals a complication inherent in the interpretation of all ERPs. This complication 

underscores the importance of understanding EEG signals at the level of their neural sources and  

the role of computational models in understanding those sources.  

 

3.6.4 Simulation of the N2pc 

In RAGNAROC, any lateralized stimulus that has the highest priority produces a simulated ERP 

that resembles an N2pc (Figure 12a). The onset and peak of the N2pc is caused by the initial 

activation bump in the AM. When the lock-on state is established, the AM activates its 

neighboring IG neurons, which adds an inhibitory region in the immediate surround. When the 

central peak is surrounded by inhibition, the sum total of synaptic currents on the contralateral 

side of the AM nearly cancel out and sometimes even reverse briefly producing a positivity. 

Thus, while RAGNAROC is in general agreement with the theory that the N2pc reflects 

Figure 11 Illustration of how different patterns 
of activity on ipsi and contralateral sides of 
simulated cortex can summate to produce either 
positive, negative or nil voltage differentials. 
Note that in F, the currents generated by the 
activity in the peak is effectively cancelled out 
by the surrounding inhibitory surround 
producing an effective Nil in the contralateral 
side. Note that “Nil” in this context doesn’t 
necessarily mean exactly 0, but sufficiently small 
that it is not detectable at a given level of 
experimental power.  
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processes associated with spatial attention, it suggests a more specific temporal relationship, 

which is that the N2pc reflects, in large part, the processes of localizing a target prior to 

attentional deployment, as in the CGF model (Tan & Wyble 2015). 

Thus, the model explains that the end of the N2pc does not indicate the end of attention, but 

rather the onset of surround suppression. This simulation provides a straightforward explanation 

for the brief duration of the N2pc, which is typically brief and followed by a positive swing 

(Brisson & Jolicouer 2006)  

 

3.6.5 Simulation of the PD 

The PD is an EEG component thought to reflect inhibition of distracting information in the visual 

field. In RAGNAROC, a PD can emerge whenever there is sufficient inhibition of activity in the 

attention map and this occurs in at least two ways. First, whenever two stimuli compete for 

attentional control and one of them loses, the AM is suppressed at the location of the loser 

(Figure 12b). This suppression reduces synaptic currents in the hemifield containing that 

stimulus and results in a net positivity in contralateral scalp electrodes. However, a PD also 

occurs when the surround suppression encircling an attended stimulus is large enough that it 

causes a net reduction in current for that half of the visual field. This imbalance would be 

reflected as a PD trailing an N2pc, and could occur even in the absence of a suppressed distractor 

(Figure 12a, see also Töllner, Zehetleitner, Gramann, & Müller 2011).  

 

These are the essential aspects of simulating behavioral effects as well as lateralized EEG 

components in the early time range following the onset of a stimulus array. In the next section 

we illustrate how specific empirical effects emerge in specific experimental contexts through 

these mechanisms.  

 

4. Simulations of Empirical Constraints 

4.1. Constraints in model development 

As in previous papers (Tan & Wyble 2015; Swan & Wyble 2014), the model is parameterized 

according to a set of extant findings in the literature. Once the model is able to simultaneously 

accommodate those findings with one set of fixed parameters, it can be used to generate insights 

about the underlying system and testable predictions for future work. The philosophy of this 

approach is to allow a large number of empirical constraints to inform the model's design, with 

as little parametric flexibility as possible. Here we list a series of behavioral and 

electrophysiological findings that we consider to be crucial for defining the functionality of 
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reflexive attention. Each of these findings is simulated with the same set of parameters, except 

for the configural parameters described in 3.2.3. The supplemental describes the exact set of 

parameters for each simulation. Given the large diversity of experimental paradigms that provide 

the constraints, the fits to the existing data are evaluated for their qualitative similarity to the 

data.  

 

4.2 Behavioral constraints: 

Figure 12 Illustration of how activation levels within the attention map 
produce simulations of N2pc and Pd components for commonly used 
experimental paradigms. Note that this is not intended to predict that 
distractors always elicit an N2pc. . 
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1. Covert spatial attention is triggered rapidly in response to a target or highly salient stimulus. 

This effect is measurable as an enhancement of accuracy and reduced reaction time for stimuli 

presented just after a cue, at that same location. The time course of this enhancement  peaks at 

about 100ms SOA (Nakayama & Mackeben 1989). Note that this transient form of attention is 

short lived even when the cue stays on the screen. It is difficult to precisely estimate the duration 

of this effect because it is followed by slower, more volitional forms of attention that sustains the 

attentional effect to differing degrees in differing paradigms. However, there have been 

consistent findings of enhanced perception at brief cue-target (Yeshurun & Carrasco 1999; 

Müller & Rabbitt 1989; Cheal &  Lyon 1991) or target-target intervals that attenuate at longer 

cue-target intervals. Targets elicit such attention as well (Wyble, Potter, Bowman 2009). 

RAGNAROC simulates the transient attention effect of Nakayama and Mackeben (1989) as a 

brief window of elevated accuracy in reporting a target when it follows another stimulus at the 

Figure 13  Behavioral constraints and 
simulations. (a) Accuracy of 
reporting a target indicates the 
transient nature of reflexive 
attention (N = 2, Nakayama & 
Mackeben 1987). (b) Reaction time 
to report a shape singleton target is 
increased in the presence of a salient 
color  distractor (Experiment 3 from 
Theeuwes 1992). (c) A singleton 
affects the reaction time to report a 
target only if it matches the type of 
target (Folk Remington & Johnston 
1992; Experiment 3). (d) The benefit 
of a valid cue, relative to a no-cue 
condition, is not diminished when 
two cues are used, suggesting 
simultaneous deployment of 
attention to two locations with 
minimal cost (Bay & Wyble 2014). 
(e) Accuracy of reporting a second 
target is affected by proximity to a 
preceding target with a spatial 
gradient (Mounts 2000). Note that 
the empirical data is reported as d’, 
but model accuracy is reported as 
accuracy since it lacks a mechanism 
for guessing. 
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same location because the second stimulus benefits from the lingering lock-on state created by 

the first stimulus. (Figure 13a, the two traces in the data plot indicate different subjects) 

 

2. This rapid deployment of attention is reflexive, which means that it is vulnerable to capture by 

a non-target stimulus that is either highly salient (Theeuwes 1992) or contains a target-defining 

attribute (Remington, Folk & Johnston 1992). This reflexive form of attention occurs even to 

locations that are known to always be task irrelevant (Lamy, Leber & Egeth 2004; Krose & 

Julesz 1989). Also, highly-salient distractors will trigger this form of attention regardless of 

instruction, or lengthy practice sessions (Theeuwes 1992; but see Kim & Cave 1999 for a 

counter example). RAGNAROC simulates the attentional capture effect of Theeuwes (1992) as a 

longer reaction time for a target in the presence of a distractor (Figure 13b). See the discussion 

section for an in depth discussion of precisely what causes the slower RTs in a capture paradigm.  

 

3. Attention can be biased towards stimuli containing certain features or attributes, provided that 

there exist well-learned, cognitively accessible distinctions between target-defining features and 

other stimuli (e.g. letters can be selected among digits but an arbitrary subset of letters cannot be 

efficiently selected from other letters without substantial training, Schneider & Shiffrin 1977). 

This target-defining attentional set is implemented across the entire visual field such that, for 

example, establishing a control setting for red at one location prioritizes red at all locations 

(Zhang & Luck 2009). RAGNAROC simulates attentional set as capture costs that are mediated 

by task-set from Folk, Remington & Johnston (1992). See Figure 13c. 

 

4. Attention can be deployed to two or more locations at the same time when stimuli are 

presented in parallel, but behaves more like a spotlight when targets are presented sequentially 

(Bichot et al. 1999; Dubois Hamker & VanRullen 2009; Bay & Wyble 2014). RAGNAROC 

simulates divided attention as an attentional benefit that is similar in size regardless of whether 

one or two locations are cued (Bay & Wyble 2014). See Figure 13d. 

 

5. Presenting a cue or target at one location causes subsequent targets presented at spatially 

proximal locations to be harder to perceive. This suppression is diminished with increasing 

spatial distance (Mounts 2000; Dubois et al. 2009). RAGNAROC simulates attentional 

suppression surrounding an attended region using two sequential targets as in Mounts (2000). 

See Figure 13e.  
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6. In the presence of a target, inhibition is localized at the spatiotopic location of non-target 

stimuli, in comparison to empty locations in the visual field. Thus, probe stimuli will be harder 

to perceive when they occur in the locations of singleton distractors in comparison with blank 

areas (Cepeda et al. 1998) or non-singleton distractors (Gaspelin, et al. 2015; Figure 2c). 

Moreover, this effect is dependent on the attentional set of the subject. It is present only when 

targets are defined by specific features, rather than by being a form singleton. RAGNAROC 

simulates increased suppression of attention at locations containing salient distractors when the 

top-down weightings from LV->AM are strongly biased towardsfor the target are increased the 

target (Figure 14 bottom two panels). When these weightings are weaker, the reverse pattern is 

obtained such that salient distractors evoke attentional enhancement rather than suppression 

(Figure 14, top two panels).  
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4.3 EEG Constraints 

Data concerning the N2pc (also referred to as the PCN by Tollner, Muller & Zehetleitner 2012) 

and PD components will be taken as constraints as well.  

4.3.3 Specific EEG Constraints:  

1. Presenting a target in either hemifield produces a brief negativity in EEG recorded on 

the contralateral, posterior side of the scalp called the N2pc (Luck & Hillyard 1994; Eimer 1996) 

or PCN (Töllner, Zehetleitner, Gramann & Müller 2011). This negativity typically peaks at 

about 250ms after target onset and is observed even in the absence of distractors on the same 

Figure 14 Experimental data from Gaspelin, Leonard & Luck (2015) 
alongside simulations. In panel A the data are from a condition in 
which the target was a shape singleton, but the subject did not know 
which of two shapes would be the singleton or the distractor. In this 
condition, report of the probe at the singleton color distractor was 
elevated. The model simulates this effect (B) as the result of weaker 
top-down attention which allows the salient distractor to successfully 
trigger attention on a large enough proportion of trials that report of 
the probe letter at that location is elevated. In panel C, the participant 
knows exactly what shape will contain the target and attention is 
inhibited at the location of the singleton distractor. This is simulated 
(D) by adopting stronger top-down settings, which allows the target to 
inhibit the distractor on nearly every trial, such that the probe letters 
at that location are reported less often across the entire block of trials. 



RAGNAROC, a model of reflexive visual attention 
 

50 
 

side of the display (Tan & Wyble 2015). RAGNAROC simulates this effect as a contralateral 

negative voltage for a target on one side of the visual field (Eimer 1996). See Figure 15a.  

 

2. Multiple targets in the same location in immediate succession will produce an N2pc only 

to the first target in the sequence, even for trials in which both targets were reported. Thus, the 

lack of a difference between the waveforms in one and two-target trials does not reflect a failure 

to attend or encode the second target  (Tan & Wyble 2015; Callahan-Flintoft et al. & Wyble 

2017; Callahan-Flintoft & Wyble 2018). When the two targets are presented in different 

locations of the visual field, there will be an N2pc to each of them in turn (Tan & Wyble 2015). 

This single-N2pc effect is only present when the two targets are presented within roughly 150ms 

and at exactly the same location. When the duration between targets is extended, a second N2pc 

is observed for the second target, even when it is in the same location as the first and also 

regardless of whether subjects know that the second target will appear in the same location as 

the first (Callahan-Flintoft & Wyble 2018; See Figure 15c). 

 

3. Multiple N2pcs can be evoked in rapid succession (e.g. at 10-100ms intervals), with no 

delay when targets are presented at different locations. When presenting a lateral target at 

intervals of 10, 20, 50 and 100ms relative to a preceding target, an N2pc is evoked with a target-

relative latency that is very similar (i.e. within 10ms) to that evoked by the first target. This 

finding indicates that deploying attention to one target does not affect the time course of 

attentional engagement to a second target within this short time frame (Grubert, Eimer 2014, 

Experiment 1). At longer separations, an attentional blink may be observed but the blink is not 

within the scope of the mechanisms of RAGNAROC See Figure 15d.  

 

4. The N2pc/PCN is often followed by a positive contralateral potential called the PD 

(Hickey et al. 2009; McDonald, Green, Jannati & DiLollo 2012) or Ptc (Hilimire, Mounts, Parks 

& Corballis 2010). This positivity has been particularly associated with the occurrence of a 

highly salient lateral distractor, although this positivity can occur without such a distractor 

(Töllner et al. 2011;  Hilimire, Hickey & Corballis 2011). RAGNAROC simulates this effect as 

a positive voltage after the N2pc for a lateralized target (Töllner, et al. 2011). See Figure 15e.  

 

5. A laterally presented salient distractor can produce an N2pc, and this N2pc will be larger 

if the distractor is presented without an accompanying target (Kiss, Grubert, Petersen, & Eimer 

2012; Hilimire, Hickey  & Corballis 2012; McDonald, et al. 2012). RAGNAROC simulates this 
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effect as a negative contralateral voltage after a lateralized distractor (McDonald et al. 2012). 

See Figure 15f.  

 

6. Specificity of the attentional set affects the degree to which targets and distractors 

produce N2pcs. When the task set does not predict a specific stimulus shape (e.g. when the task 

is to find the shape singleton), the distractor can elicit an N2pc (Hickey, et al. 2006; Burra & 

Kerzel 2013) because the top down weighting is less efficient, which allows a salient distractor 

to have higher relative priority. Furthermore, a target presented on the midline will reduce the 

distractor induced N2pc by competing with it for attention (Hilimire, et al. 2011; Hilimire & 

Corballis 2014; Figure 3c). Similarly, in the same condition an N2pc induced by a lateral target 

Figure 15  EEG constraints and 
simulations. Note that polarity is 
oriented according to the original source 
and thus switches between panels (a) A 
laterally presented target causes a brief 
contralateral negativity, even if it has a 
long duration (Eimer 1996; green 
window added to emphasize the time 
frame of the N2pc). (b) The N2pc to a 
second target is muted if it occurs very 
soon after and in the same location as a 
preceding target (Tan & Wyble 2014). (c) 
The second N2pc is of normal size if the 
two targets are far apart in time 
(Callahan-Flintoft & Wyble 2018). (d) 
When two highly-salient, unmasked 
targets are presented in rapid sequence 
at different locations, the N2pc to the 
second target is not much delayed 
(Grubert, Eimer 2014). (e) The N2pc is 
often followed by a deflection in the 
positive direction, particularly when 
there are nearby salient distractors, or in 
this case when the target itself is highly 
salient (Töllner, et al. 2011). (f) A 
laterally presented distractor can trigger 
an N2pc (McDonald et al. 2012). (g) With 
a highly predictable or salient target, the 
distractor produces a minimal N2pc and 
has little effect on the target’s N2pc (Exp 
2). When the target set is less specific the 
distractor has a greater effect on the 
target N2pc (Exp 1, Hilimire & Corballis 
2014). 
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is reduced by a centrally presented distractor (Hilimire & Corballis 2014). When the task set is a 

predictable singleton, then distractors produce a much weaker N2pc and the target induced N2pc 

is barely affected by the presence of a salient distractor. RAGNAROC simulates this effect as a 

specific ordering of N2pc amplitudes for different stimulus configurations across two different 

specificity manipulations (Hilimire & Corballis 2014). A similar result is obtained when the task 

is manipulated such that the distractor is of higher or lower salience than the target. For example, 

when the task is to detect a form singleton, a highly salient color singleton will reduce the 

target’s N2pc, but this is not true when the task is to detect a color singleton, and the distractor is 

a form singleton (Schubö,  2009). See Figure 15g.  

 

 

5.0 Discussion: what have we learned? 

The RAGNAROC model describes a set of neural mechanisms that explicates how 

attention reflexively responds to new visual input, and makes rapid decisions about which 

locations in the visual field to enhance and which to suppress. The decisions are mediated by 

attractor states and competitive inhibition that help to ensure that the decisions are stable and 

accurately targeted at the correct location. It is argued that this reflexive attentional system plays 

a key role in many experimental paradigms, and constitutes the first form of decisive filtering of 

visual information after it enters the brain.  

As a model, RAGNOROC is both an architecture, as well as a specific set of parameters 

that are calibrated against several decades of data that specify the time course of reflexive 

attention. Presumably, this time course reflects an adaptation imposed by other constraints of the 

visual system. For example, the operation of reflexive attention has to occur within the time span 

of a visual fixation, while the eye’s position is relatively stationary. During the time window of a 

single fixation, the representations throughout the visual hieararchy would be roughly in 

spatiotopic register, making it easy to determine which information is associated with the same 

object across different maps. 

 

  With the model developed and parameterized, the next steps are to use it as a tool to 

learn more about the underlying system, and to assert a series of testable predictions that can 

measure the validity of the model relative to the human system. We begin with a series of 

lessons that were learned through the model’s development and then proceed to some more 

specific predictions.  
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Lesson 1. Attention does not draw a clear distinction between targets and distractors. 

Experimental paradigms in experimental psychology often designate stimuli as targets or 

distractors according to their physical attributes and it is tempting to assume that the mind of the 

participant adopts the same crisp distinction. However, the visual system is presumably 

maintaining vigilance for all possible kinds of stimuli (e.g. consider whether the participant 

would react to an unexpected flash of light in an experimental context). To accomplish this feat 

of general vigilance, even during a highly explicit visual attention experiment, the visual system 

must evaluate all stimuli to determine which, if any, should be attended.  This idea was critical 

in two-stage models of attention (Treisman REF, Hoffman 1979), which posited explicitly that 

stimuli had to be evaluated in sequence to determine whether they were targets. RAGNAROC 

extends this idea to reflexive attention mechanisms such that, assumes that stimuli compete with 

a common currency of relative priority. Therefore, within the confines of the attention map, for 

at least the first two hundred milliseconds of processing, there is no categorical distinction 

between targets and distractors. Rather, all stimuli compete, and attention is deployed to the 

winners, and the losers are suppressed (though priority is biased towards stimuli that bear target-

defining attributes). The implications of this idea become more interesting when we think about 

tasks with multiple targets of varying priority. In such cases, the reflexive attentional system 

may initially allocate attention to the highest priority target and treat the other targets as 

distractors.  

 

Lesson 2: Visual Attention as a decision in continuous spaceprocess 

 

In RIn many attentional models, the attention or priority map at the top of the hierarchy 

accumulates information from subordinate maps to find locations of maximal priority. 

RAGNAROC,  illustrates another crucial function of such a priority map, which is the ability to 

implement decisions about where to attend within a continuous spatial dimension. A lock-on 

state in RAGNAROC is essentially a decision to commit attention to a given location within the 

spatiotopic coordinate frame of the visual system. tThe lock-on dynamics (including the 

enhancement at the attended location, the surround suppression and the suppression of the IG 

neurons) all serve to generate a commitment to attend to one or more locations anchor that 

decision. This anchoring ensures that once attention is committed, it will stay engaged for at 

least a brief window of time (roughly 100ms or so), rather than shifting abruptly from one 

location to another. These bursts of attentional lock-on provide stability to reflexive attention 

over the time span of typical visual fixations, and allow the entire visual stream to momentarily 
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synchronize representations across the multitude of maps distributed throughout the ventral and 

dorsal streams.  This is one means to address the classic notion of binding (Treisman REF). . 

Such synchronization could be important for creating a robust representation of a stimulus to 

drive memory and other task-related cognitive functions. Without the extra circuitry, reflexive 

attention would be prone to jumping rapidly from one stimulus to another, leading to jumbled 

and mismatched representations in the various maps of the ventral stream.  

Even more interesting, however is that RAGNAROC is able to implement these decisions over a 

many possible spatial configurations. For example, the activity in the AM could be confined to a 

single point, spread across multiple points, or be distributed across one or more large regions. 

 

 Thus, the AM in RAGNAROC illustrates how a neural sheet can make decisions in a 

continuous space, rather than among discrete alternatives as are typical in the case of race or 

diffusion models (Ratcliff & McKoon 2008).  

 

Lesson 3:  What does the N2pc/ PD complex reflect? 

A typical approach in theoretical work is to assign specific roles to particular EEG components. 

For example the N2pc is thought to reflect attention evoked by a target in some form while the 

PD reflects inhibition evoked by a distractor. However, as we note above, there are cases in 

which targets elicit PD components and distractors elicit an N2pc.This modeling approach 

illustrates why it is important to consider that there is a many-to-one mapping between current 

sources and ERPs. The neutrality of a scalp potential at a given latency could indicate a period 

of neural inactivity, but it could also be the case that there are strong underlying dipoles that 

happen to cancel one another out at that particular moment in time. It is therefore crucial to 

ultimately understand ERPs at their source level if we want to fully incorporate them into the 

inference process. In a similar fashion, there are several ways in which neural activity evoked by 

a stimulus could lead to a negativity or positivity. For example, RAGNAROC illustrates why the 

N2pc is often followed by positive rebound after about 100ms, even though the stimulus stays 

on the screen (Brisson & Jolicouer 2007). Furthermore, the model explains why this rebound can 

increase to the point of producing a trailing positivity as target salience is increased (e.g. Tollner 

et al. 2011) despite there being no specific distractor. 

 

Lesson 4. Experiment outcomes are a mixture of different trial outcomes 

In RAGNAROC, trial-to-trial variability in the simulations accounts for uncontrolled sources of 

variability (e.g. spontaneous fluctuations in attentional focus on the part of the subject) and is 
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essential for simulating different levels of accuracy. More importantly, the model clarifies how 

differences in the magnitude of an effect could reflect variation in the frequency of a given 

outcome, rather than differences in the size of the effect within each trial, a point that was also 

emphasized by Zehetleitner et al. (2013). For example, a given experiment that exhibits a weak 

attentional capture effect by a salient distractor, may in fact have a very strong capture effect, 

but only on a minority of trials. Likewise, a manipulation that produces a stronger N2pc in one 

condition may be altering the proportion of trials that contain an N2pc rather than the amplitude  

of the N2pc itself. van Zoest, Donk, & Theeuwes (2004) demonstrate that this point with eye 

movements.  

 

Lesson 5. Understanding reaction time costs in attentional capture 

The term attentional capture typically refers to a behavioral phenomenon of slowed responsesto 

a target due to the presence of a distractor, but what exactly causes the reduced performance?  In 

RAGNAROC , there are three possible patterns of attentional allocation when a target and at 

least one distractor are presented together. First, the target might trigger attention and suppress 

attention to the distractor(s); second, the target and distractor might trigger attention together; 

and third a distractor might trigger attention and suppress attention to the target. Each of these 

three possibilities produces a different RT for the target.  

 

RAGNAROC predicts that RTs would be fastest when the target is attended and the distractor is 

suppressed because this reduces interference caused by distractor processing. When both the 

target and the distractor are attended (i.e. simultaneous attention), RTs to the target would be 

slightly slowed because simultaneous lock-on states, while stable, are often slightly smaller 

compared to a case in which the target is clearly dominant. The final case produces the slowest 

RTs because the target is not enhanced by attention which reduces the strength of evidence for 

that target. 

 

The RAGNAROC model predicts that any given experimental block of an attentional 

capture experiment is composed of a combination of these three outcomes, with 

proportions determined by the relative priority of the targets and distractors. Thus, even in a 

paradigm that has minimal evidence of attentional capture at the group level, the distractor may 

nevertheless trigger the deployment of attention on a subset of trials depending on variation in 

the subject’s attentional focus. 
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Lesson 6. Architectural answers to the bottom-up/top-down attentional capture debate 

One of the most enduring discussions in the attentional literature is whether bottom-up stimuli 

are always able to capture attention, or are top-down attentional control signals able to override 

bottom-up salience. Driving this debate are classic findings that some kinds of distractors elicit 

capture costs consistently, even though they are never task relevant (Theeuwes 1991). In others 

studies, capture effects seem to be entirely contingent on top-down settings (Folk, Remington & 

Johnston 1992). This debate has continued without a clear resolution.  

 

In the model, there is a sense to which bottom-up selection occurs prior to top-down guidance 

because of the anatomical ordering of early vs later stages of processing. Differences in physical 

salience are represented at the junction between EV and LV, and differences in task-related 

attentional set are represented between the LV and AM. This means that a difference in physical 

salience will often manifest in the AM prior to a difference in task relevance simply because the 

EV neurons are earlier in the processing hierarchy, which allows them to determine which 

stimuli in the LV will cross threshold first. Figure 16 compares the time course of activation 

bumps generated by highly-salient, 

irrelevant stimuli, to less-salient but task 

relevant stimuli. Thus, the model exhibits a 

form of precedence that is in general 

agreement with Theeuwes Atchley & 

Kramer (2000). Moreover, this result is not 

due to specific parameter values, but rather 

is an outcome of the model's feedforward 

architecture. Since salience differences are 

thought to be processed earlier in the 

hierarchy (Zhaoping 2002), highly salient 

stimuli will tend to activate their 

corresponding LV nodes earlier than less 

salient stimuli. However, this temporal 

advantage does not mandate that salient 

stimuli will always be attended first, since a 

strong top-down weighting can ensure that a 

task-relevant, but lower-salience stimulus 

Figure 16. Simulation of the time 
course of attention map activation for 
two stimuli that have similar 
attentional priority, except that one 
has high salience and a low bottom-up 
weighting (BU: .2, TD: .15) while the 
other has the reverse (BU: .15, TD: .2). 
Of note, despite the higher peak of the 
high-TD stimulus, the high-BU 
stimulus has an earlier peak. This is an 
overlay of two traces; the two stimuli 
were simulated separately and had the 
same onset. 
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will establish a lock-on state more quickly than an irrelevant, higher-salience stimulus. 

 

Lesson 7. Architectural answers to the singleton-detection mode debate 

Another crucial issue in the attentional capture debate has been the idea that the singleton 

detection mode allows the system to select unique information for any attribute dimension (e.g. 

the red item among green items). The advantage of such a mode is that it does not need to be 

configured in advance for a specific value, preferring equally a red among green items or a green 

among red items. It has been suggested that subjects use singleton detection when looking for a 

target that has a unique property, such as a color or form singleton(Bacon & Egeth 1994). 

However, a limitation of singleton detection mode is that it cannot be directed towards a specific 

dimension. Thus, using singleton mode to detect an oddball shape will also prioritize an oddball 

color.  

 

Models like RAGNAROC make singleton-detection mode straightforward; it is simply the lack 

of a strong top-down set, which thereby allows stimuli with high physical salience to dominate 

the computation of attentional priority. This explains the observation that singleton detection 

mode cannot be specific for a given dimension. Moreover, since singleton mode is effectively 

the absence of a top-down set, it is the default search policy (Bacon & Egeth 1994; Lamy & 

Egeth 2003). 

 

Lesson 8: Architectural answers to the distractor suppression debate 

Competing accounts of inhibitory control in reflexive attention pit the notion of a suppressive 

surround (Mounts 2000; Cutzu & Tsotsos 2003; Tsotsos 2011) against accounts in which 

inhibition is selectively deployed to distractor locations (Cepeda et al. 1998; Gaspelin et al. 

2015). RAGNAROC illustrates how readily a single model can exhibit both behaviors 

depending on the paradigm that is being used. A spatial gradient in AM->IG connectivity 

simulates the surround inhibition effect of Mounts (2000). However, within that surround field, 

inhibition is selectively applied to the locations of stimuli as a function of their spatiotopic 

distance to the lock-on state.  

 

RAGNAROC thus explains why the Mounts paradigm and other paradigms which also surround 

the initial target with distractors such as Cutzu & Tsotsos (2003) were so successful in eliciting 

the inhibitory surround, while other paradigms have no clear pattern of inhibitory surround 

(Wyble & Swan 2015). In the Mounts paradigm, the first target is surrounded by a large number 
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of simultaneously presented distractors. This display is followed immediately by a second 

display that is used to probe the state of attention. According to the RAGNAROC, the dense 

field of distractors in the first display of Mounts (2000) plays a key role in revealing the shape 

and size of the inhibitory gradient, since each of those distractors will elicit inhibition in their 

location, and this inhibition will affect the following target. For paradigms in which the initial 

target is not surrounded by a dense field of distractors (e.g. Wyble & Swan 2015), the IG 

neurons in the large area surrounding the target are not stimulated by input from the LV and 

therefore the only inhibition that is actually expressed in the AM is that immediately 

surrounding the target's lock-on state.  

  

Lesson 9. The Competition for attention can result in a tie.  

The conventional notion of spatial attention is that it behaves like a spotlight, focusing on only 

one location at a time. This explanation provides a ready explanation for cueing costs and 

attentional capture effects, since attention directed at one location can therefore not be at 

another. However there is also mounting evidence that attention can be deployed simultaneously 

at two distinct locations (Bay & Wyble 2014; Bichot Cave & Pashler 1999; Kyllingsbaek & 

Bundesen 2007; Kawahara & Yamada 2012; Goodbourn & Holcombe 2015; see also the 

possibility of having multiple attention pointers or FINSTs (Pylyshyn & Storm REF). Of these, 

Goodbourn & Holcombe provide what is arguably the most compelling evidence of the 

simultaneity of attentional deployment by measuring the time course of selection at two discrete 

locations and finding essentially no lag for one vs two simultaneously cued locations. The 

RAGNAROC model provides an explanation for these seemingly incompatible sets of findings. 

The circuitry in the attention map is designed to encourage a competition between simultanoues 

items, however it is a competition in which there can be multiple winners, which allows 

simultaneous attention for two stimuli of approximately equal priority.  

 

Lesson 10. Reflexive Attention may have almost unlimited capacity.  

A common assumption of cognitive theories is that attentional limitations play a key role in 

determining performance in complex tasks. However, attention is a broad concept and it is often 

difficult to understand exactly what forms such limits take. In many cases, attention is equated 

with the ability to "process" information, which includes some mixture of identification, 

decision making, response generation, and memory encoding.  
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RAGNAROC embodies a specific definition of attention, which is the reflexive enhancement of 

feedforward excitation at a given location in the visual field deployed reflexively in response to 

a stimulus. In the model, this form of attention has no clearly defined limit in terms of the 

number of attended locations, since the model only simulates an increase in gain at a given 

location and that increase could occur at an almost arbitrary number of locations. The variability 

in the representations of multiple items coupled with the suppressive interactions in the AM 

makes it unlikely that more than a few locations would be attended in this way, but it is possible 

in principle. Thus, the model proposes that the earliest stage of attentional selection may operate 

without strict capacity limits. Of course, subsequent stages of processing are surely limited. For 

example, even if four stimuli produced simultaneous lock-on states, encoding them all into 

memory at the same time would produce interference. Parallel selection at early stages does not 

necessarily entail parallel processing at later stages.  

 

Lesson 11. Attention can be suppressed without suppressing the representations 

It is often suggested that distractors are inhibited during the selection of target information. 

Models like RAGNAROC elucidate an important distinction between suppressing the 

representation of a stimulus itself vs suppressing attention at the stimulus’ location. Suppressing 

a stimulus representation entails direct inhibition of the neurons that represent the attributes and 

features activated by that particular stimulus (e.g. Reynolds & Heeger 2009; Beuth & Hamker 

2011) with the potential to eliminate the active representation of that information from the 

nervous system. On the other hand, suppressing attention at the location of a stimulus, as in 

RAGNAROC, preserves the original information of the stimulus at the earliest layers of the 

visual system.  

 

It is, unfortunately, difficult to clearly distinguish between the two implementations of 

suppression using observations of accuracy or reaction time, since both forms of inhibition will 

reduce the ability to respond to a stimulus. However this difficulty illustrates an advantage of the 

modeling approach, since models are able to clarify distinctions of implementation that are not 

otherwise obvious (see also Lu & Dosher 1998 for an illustration of how models of noise 

exclusion can provide a more specific inference about the mechanisms of attention with the use 

of psychometric curves). Moreover, the model illustrates why it would be advantageous to 

suppress attention, rather than the representation. Suppressing the representation of a stimulus 

would require an enormous number of long-range connections to deliver inhibition to the 
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appropriate neurons throughout the set of LV maps. Suppression of attention is much simpler to 

implement, since the inhibitory circuitry is entirely self-contained within the AM. 

 

6:  Review of other theories 

There is an enormous literature of theories and models of visual attention. With a term as broad 

as attention, it is impossible to identify a canonical set of effects that all models should strive to 

explain and therefore a point-by-point comparison with other models is impossible. Speaking 

broadly, the RAGNAROC model occupies a relatively unique position in the modeling 

landscape by focusing on the neural mechanisms associated with reflexive attention at a short 

time scale and explaining the N2pc/ PD complex as the result of an impulse response function 

across a field of neurons. Other models have touched on the idea of simulating the N2pc 

(Fragopanagos, Kockelkoren, & Taylor 2005) but have not provided a complete picture of neural 

firing that would translate into a lateralized potential, nor linked to such a diversity of findings. 

  

This review will cover a subset of models that focus on the mechanisms of spatial attentional 

selection to point out commonalities and also points of divergence..  

This excludes, for example, models of the attentional blink, which typically focus on how 

processing of information affects attentional selection.  

 

Models inspired by neurophysiology. There is a family of models and theories of visual attention 

inspired by single unit neurophysiology in monkeys. Some of the research in this domain 

explores the properties of attention in spatial and feature domains. For example, the 

normalization model of Reynolds & Heeger (2009) proposes that the neural response to any 

given stimulus is downweighted by the activity of nearby stimuli. Thus, when one stimulus is 

attended, other stimuli in the vicinity will evoke less activity, all else being equal. The 

normalization model provides a straightforward, neurally plausible mechanism for the effects of 

attention at the level of single-unit data. Beuth & Hamker (2015) provide a more detailed 

account of how attention can be mediated at the level of cortical representations. Such models 

interface directly with single-unit data from a variety of cortical areas, although they do not 

explain the decision-making aspect of attention that is the focus of RAGNAROC. Instead, 

attention is directed by other mechanisms that are outside the scope of those models, making 

them complementary to this model. However, we consider it an open question as to whether the 

suppression of attention is best explained at the circuit level within earlier cortical areas, as in 
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Reynolds & Heeger (2009) and Beuth & Hamker (2015) or at a superordinate level as in 

RAGNAROC.  

 

Biased Competition. Another well known theory of attention is biased competition, in which 

stimuli compete with one another for representation in a neural system with overlapping 

receptive fields and the competition is biased in favor of neurons that respond preferentially to 

task-relevant information (Desimone & Duncan 1995). There is an important point of 

correspondence between the biased competition (BC) and the RAGNAROC accounts, which is 

that both incorporate an initial period of non-selective processing before the deployment of 

attention begins. In RAGNAROC, this is the time during which information feeds forward 

through the hierarchy to reach the AM. The RAGNAROC and BC models differ in the 

mechanism of enhancement, since the BC implements attention as a contraction of receptive 

fields around the target stimulus. The difference is key because at the core of BC is the idea that 

representational space is a limited resource, which strongly limits the ability to attend to multiple 

locations at once. In RAGNAROC, this first stage of attention has fewer limits and thus can be 

deployed to multiple locations in certain situations. With that being said, the effect of attention 

in RAGNAROC would manifest as a contraction of receptive fields around a given stimulus, 

since an attended stimulus would dominate nearby representations in LV.  

 

Theory of Visual Attention. The Theory of Visual attention (Bundesen 1990) is a mathematical 

abstraction of the process of attending to and perceiving one or more stimuli in a single display.  

In TVA, there are two ways to prioritize certain kinds of information selection: filtering, and 

pigeonholing. Filtering involves upweighting the priority for certain features, which increases 

the rate at which stimuli possessing those features attract attention. This is similar to attentional 

control settings in RAGNAROC. The pigeonholing mechanism relates to how efficiently certain 

kinds of information are categorized, which allows them to be reported and remembered. The 

TVA model thus represents two distinct types of attentional control setting, which might also be 

described as key feature and response feature (Botella, Barriopedro, & Suero 2001). The 

RAGNAROC model differs from the TVA model in that it provides a more complete model of 

the neural mechanisms associated with the computation and use of priority to direct spatial 

attention. The TVA model, on the other hand, provides a concise mathematical formulation of 

how two different kinds of filters interact to facilitate perception. A Neural implementation of 

TVA has been proposed (Bundesen et al. 2011), however it is less clear how such a model would 

scale up to a full working specification, since it requires a large scale winner-take-all 
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implementation to complete attentional selection. Given the similarity of the role of priority 

within the two models, it could be fruitful to consider the RAGNAROC as a 

neurophysiologically plausible front-end for computing the priority-based competitive selection 

process and the TVA as a clearer specification of subsequent processing.  

 

Guided Search. To better understand a number of complex patterns in the visual search 

literature, the Guided search model (Wolfe 1994) simulates how top down goals interact with 

bottom up salience signals to determine likely target locations. Like RAGNAROC, this model 

attempts to explain how the visual system mediates the balance between salience and task 

relevance. Its focus is on a longer time scale than reflexive attention, and incorporates both overt 

and covert forms of attention. RAGNAROC is complementary to this model, by explaining 

attentional dynamics at a short time scale, and with a greater emphasis on inhibitory processes.  

 

Feature Map Models. Another class of models simulates spatial attentional effects across sheets 

of neurons corresponding to different visual features. Perhaps the most canonical of such models 

is the salience model of Koch & Ulman (1985), which is architecturally quite similar to 

RAGNAROC. A descendent of this model is often invoked as a benchmark in computer vision 

algorithms (Itti, Koch & Niebur 1998). 

 

In such models, feature detectors in multiple channels (i.e. luminance, color, motion flicker) 

project to a master salience map that ultimately makes decisions about where attention will be 

deployed using a simple winner take-all mechanism, coupled with a form of memory that erases 

salience values at recently-visited locations. Like RANGAROC, this model uses salience as a 

common currency across all stimuli in the visual field, and would be able to simulate capture 

effects. The Itti, Koch & Niebur (1998) model has been foundational in understanding how 

simple mechanisms can reproduce complex gaze behavior when iterated over many distinct 

feature dimensions and levels of scale. Also, because the Itti et al. model simulates responses to 

pixelwise visual data, and can be compared against visual fixation data from human subjects, it 

set the stage for a generation of further modeling efforts.  

 

Itti et al.(1998) and RAGNAROC address phenomena at different time scales. The former is 

intended as a model of gaze behavior on time scales of a second or more, involving multiple 

fixations. RAGNAROC is developed to understand how covert attention deployment is 

computed anew with each visual fixation or significant change to the visual display. Moreover, 
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the salience map in Itti et al.(1998) lacks the inhibitory mechanisms to suppress distractors 

without first attending to them. The two models are thus complementary; they operate at distinct 

time scales, emphasize different kinds of processes and simulate fundamentally different kinds 

of data.  

 

Other models provide more direct simulations of neural processes of enhancement in neural 

sheets. The Selective Tuning model by Tostsos (1995; 2011) implements a form of inhibition in 

which detection at an upper level of the hierarchy produces surround inhibition at earlier layers 

of the hierarchy. This model is perhaps the most well-formulated attention model that has ever 

been proposed since it proposes a gating control circuitry that allows information to be 

effectively linked across differences in spatial invariance. Selective Tuning would reach several 

of the benchmarks described here, but does not propose a reactive control circuit. It applies 

inhibition in a region surrounding a target, irrespective of the presence of distractors. Moreover, 

in the full architecture, decisions to deploy attention are made independently for different 

stimulus dimensions and it is not precisely formulated how cross-dimensional competition 

between stimuli would be implemented at the time scale of reflexive attention (see p121, Tsotsos 

2011).  

 

Resonance models 

There is a variety of models by Grossberg and colleagues based on the overarching principle of 

adaptive resonance. One of the more recent of this series have proposed neural architectures for 

attentional control using an attentional shroud (Fazl, Grossberg & Mingolla 2009), which is 

essentially a means to delineate the boundaries of an object and then ensure consistent focus on 

that object during learning.  

REF  

SAY MORE HERE 

 

 

These ideas are both similar to the notion of the The notion of a shroud is not entirely unlike the 

lock-on states described here, which also emerge through properties of spatial topography.  are 

also shaped by the boundaries of the stimulus. The shroud model does not contain an explicit 

mechanism for inhibiting distractors, and its success in attentional focus in very complex 

displays could be offered as an example that distractor inhibition is not necessary. However in 
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terms of hitting the empirical benchmarks described here, it is not clear how well inhibitory 

effects would be simulated.  

 

The class of interacting neural sheet models includes a large number of others that make 

important contributions to understanding particular empirical phenomena. For example, Zirnsak, 

Beuth & Hamker (2011) simulate the temporal dynamics of attentional competition in response 

to one or more stimuli; Lanyon & Denham (2004) simulate eyegaze during visual search as a 

product of interacting attentional systems. Another class of models simulates how neglect 

symptoms arise from damage to the attentional system (Heinke & Humphreys 2003) at longer 

time scales than are considered here.  

 

The enormous variety of such models and their success at addressing such a broad range of 

phenomena across varying time scales illustrates the practical generalizability of the hierarchical 

attention architecture.  

  

7. Predictions: 

RAGNAROC is part of an ongoing investigation that involves a cyclic iteration between theory 

and experiment. Driving this cycle are a-priori predictions, that provide a roadmap for future 

experimental work to diagnose the model’s validity. By publishing these predictions in advance 

of testing them, we minimize the file drawer problem, which occurs when model tests are 

selected for publication after the results are known. Furthermore, our goal here is to specify an 

ambitious set of predictions, with the goal that some of them should be inaccurate. Since all 

models, being abstractions of the real system, are wrong by definition, the prediction/testing 

cycle should be most efficient when there is a mix of true and false predictions. True predictions 

give evidence that the model has at least some resemblance to the underlying system. However, 

it is the false predictions that are truly valuable, for they indicate where the model is inaccurate, 

and thereby guide further development of the theory.  

 

7.1 Competition within the attention map 

This set of predictions concerns the essential architecture of the model. Failure to validate them 

would require at a minimum, significant parameter or architectural changes. In RAGNAROC, 

the competition for attention exists between all stimuli, and the priority values of the stimuli are 

the common currency with which they compete. Since the attention map does not represent the 

distinction between targets and distractors, the following predictions should obtain: 
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Prediction 1. Lower priority targets will elicit AM suppression 

In RAGNAROC, input to the attention map does not distinguish between targets and distractors. 

A counterintuitive prediction of this assumption is that when a display contains two targets with 

sufficiently different priority values, the lower priority target will lose the competition and be 

treated as a distractor. This would mean that it elicits a weak N2pc when presented laterally, 

followed by a clear PD component as if it had been a distractor. In terms of behavior, the location 

of the low-priority target should exhibit the same lower probability of probe letter reporting as 

the salient distractors of Gaspelin et al. (2015). Target priority could be manipulated either by 

varying the salience of targets or their proximity to the task-defined attentional set in some 

feature dimension, such as color (Becker Folk & Remington 2013).  

 

Prediction 2. Higher priority distractors will more often elicit a lock-on state 

One of the most fundamental predictions of RAGNAROC is that all stimuli are evaluated by the 

attention system prior to the deployment of attention, which occurs after a competition is 

resolved within the attention map. Therefore, if a display consists of only distractors of three or 

more clearly discernable levels of salience (e.g. by adjusting their relative luminance), the 

distractors will elicit N2pc and PD components as if the most salient distractor were a target and 

the next most salient distractor were the key distractor in the additional singleton paradigm. The 

most salient distractor will also capture attention resulting in improved accuracy and reduced 

reaction times for probes (e.g. Gaspelin et al. 2015) at its location. Conversely, probes at the 

second-most salient distractor location will be less well perceived than distractors at the location 

of the least salient distractor. This prediction stems from the fact that the amount of inhibition 

delivered to the location of a lower-priority stimulus in the AM is proportional to its priority. 

Testing this prediction would require embedding distractor-only trials within a larger set of trials 

that contain targets as well. Some of these trials would contain probe letters as in Gaspelin et al. 

(2015) 

 

Note that that there is conflicting evidence about the ability of distractors to elicit an N2pc. 

Distractors that are highly salient on a different dimension than the target (e.g. color singleton 

distractors with shape singleton targets) elicit an N2pc, while a difference in salience along the 

same dimension (color) does not; Gaspar & McDonald 2014).  

 

Prediction 3. Salient Distractors can sustain an existing lock on state 
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One of the most counterintuitive predictions of RAGNAROC is that once an attentional lock-on 

state has been established by a target, it can be sustained by a distractor because the attention 

map is agnostic about target/distractor categories. Attentional control settings bias attention 

towards the target, but distractors also have excitatory connections to the AM; they just have 

reduced priority. Thus, in a similar manner as two sequential targets can maintain a lock-on state 

(Tan & Wyble 2015), a target followed by a distractor should also maintain the lock-on state. 

The prediction can be tested by presenting either three targets in sequence (i.e. letters among 

digits), at an SOA of about 120ms, or two targets separated by a single distractor that is similar 

to other distractors (i.e. a black digit), or two targets separated by a highly salient distractor (i.e. 

a red digit). It should be observed that for three targets in a row, the second and third targets 

elicit small-amplitude N2pcs that peak early  (roughly 30ms earlier than the relative latency of 

the T1’s N2pc). If the middle of the three targets is replaced by a highly salient distractor, the 

last target’s N2pc should still be early and small in amplitude. However in the case of two 

targets separated by a non salient distractor, that last target should evoke an N2pc of normal 

amplitude and latency since the lock-on state will have partially dissipated during the 300ms lag 

between the onset of the two targets. In behavior, the salient intervening distractor should result 

in more accurate report of the following target relative to the non-salient distractor condition, 

since the highly salient distractor sustains the lock-on state across the temporal gap between the 

targets.  

 

7.2 Unified Attentional Map: 

A central theme of the RAGNAROC architecture is that the competition for reflexive attention is 

confined to a small region of neural tissue this is sensitive only to stimulus priority. This allows 

the entirety of the visual system to participate in scene analysis, and yet make rapid, efficient 

and stable decisions about the allocation of attention. The priority map allows the priority signals 

generated by different stimuli to compete, taking into account their salience, task relevance, 

emotional/reward history, or any other potential factor that influences how a given stimulus 

should be prioritized. This idea of a single, superordinate attention map is also shared by many 

models of visual attention (Itti Koch et al 1998; .. Zelinsky2008) but not others (Tsotsos 2011). 

 

Prediction 4: EEG correlates of lock-on occur regardless of stimulus type 

A core finding of the lock-on state presents a straightforward means to test this architectural 

prediction. In Tan & Wyble(2014), it was found that two targets in the same location produced 



RAGNAROC, a model of reflexive visual attention 
 

67 
 

only an N2pc to the first target, which RAGNAROC explains as a carryover of the attentional 

lock-on state from one target to the next in the attention map.  

 

However, in that study, both targets were of the same kind (letters among digit distractors). If 

there is a single priority map, the carryover of lock-on from one stimulus to the next should 

occur even when T1 and T2 are of different types. Callahan-Flintoft & Wyble (2018) provided 

support for this prediction already by showing that targets could be defined by combinations of 

shape or color without disrupting the lock-on effect. It is nevertheless possible that the prediction 

may be falsified if the two targets were even more distinct. For example, RAGNAROC predicts 

that even if subjects are simultaneously looking for letters and faces of a particular gender, then 

two sequential targets (either letter-face or face-letter) should produce a clear N2pc only for the 

first of the two targets. Letters and faces should provide a strong test for the hypothesis since 

previous work has suggested that they are processed through sufficiently distinct channels in the 

visual system that the attentional blink evoked by a digit T1 has little effect on a face T2 (Awh et 

al. 2004). A failure to confirm this prediction would suggest that there are subdivisions of the 

priority map for stimuli that are highly distinct.  

 

7.3  Lock-on states in visual cueing: 

The RAGNAROC model implements a reflexive form of attention that should be common 

across many visual attention paradigms, including visual cueing. Thus, we should be able to 

predict behavioral and ERP effects for cueing experiments as well. Ansorge, Kiss, Worschech & 

Eimer (2011) have demonstrated that cues evoke clear N2pcs at moderate cue-target SOAs 

(200ms), as we would expect.  

 

Prediction 5. Lock-on states in visual cueing, valid trials 

The RAGNAROC model predicts that a lock-on state is sustained from one stimulus to the next. 

Thus, from a behavioral perspective, RAGNAROC explains cueing benefits at short SOAs, if 

one assumes that a valid cue initiates a lock-on state that carries forward in time to enhance the 

target. The model also generates EEG predictions for cueing experiments. Since the N2pc is 

caused by the formation of a new lock on state, then a validly cued trial with a short SOA should 

result in an N2pc appearing only for the cue, and not the subsequent target.  
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At longer SOAs (e.g. 500ms or more) between the cue and target, the lock-on state elicited by 

the cue would have disintegrated before the target appeared, with the result that both the cue and 

the target would produce a typical N2pc.   

 

Prediction 6. Lock-on states in visual cueing, invalid trials 

When a cue and target are not in the same location, then the cue and target will each elicit an 

N2pc at all SOAs, since the lock-on state elicited by a cue is spatially specific. Thus, a target in 

an invalid trial needs to build a new lock on state, which elicits a new N2pc. A failure to confirm 

these predictions would undercut the applicability of RAGNAROC’s simulation of attention 

related EEG components to cueing studies. 

 

 

8.0 Conclusions  

Reflexive visual attention is a cornerstone of our visual system’s ability to meet the challenge of 

rapidly choosing which information to selectively process, which pits stimuli that are inherently 

salient against those that are relevant for an ongoing task. A variety of experimental paradigms 

have provided a wealth of data that we have distilled into a common architecture for controlling 

the selection and suppression of information. The goal of the RAGNAROC model is to build a 

theoretical bridge between different paradigms (e.g. visual cueing and capture), and also 

between different kinds of data (e.g. behavior and EEG). While designing the model to hit its 

empirical benchmarks, we have developed circuits that implement competing attractor states to 

stabilize the deployment of attention within a continuous spatial dimensions.  

 

Moving forward, the model’s predictions are intended as a roadmap for further empirical 

investigation of reflexive attention and for creating links across paradigmatic boundaries. 

Testing these predictions will provide diagnostic data regarding the model’s validity, but more 

importantly, will drive further development of the model.  

 

 

[CHECK More here?  Discuss attending to one spatial location first, prior to attending to 

another, unless two stimuli appear simultaneously ]  

 

We can use this model to make inferences about the fact that attention can process multiple 

items in parallel. 
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While RAGNAROC is intended as a model of reflexive attention that can be deployed covertly, 

future work could extend these mechanisms as a partial explanation of the time course of eye 

movements in visual displays. Doing this would require an additional set of assumptions 

regarding how activity in the attention map drives the decision to commit visual saccades. 

Recent work that explores the time course and spatial distribution of initial saccades in visual 

search paradigms (e.g. Gaspelin, Leonard & Luck 2017) indicates that initial saccades are 

directed towards the location of salient distractors when the distractor’s location is not 

suppressed, but are directed away from salient distractors when that location is suppressed. 

These findings suggest that activity in the attention map contributes to the initial decision of 

where to commit an overt attentional response.  

 

The neural attractor framework of RAGNAROC could be incorporated as a front-end onto 

models of higher order cognitive phenomena. For example, in models of the attentional blink, 

the time course of target processing is often the central question, and such models have little to 

say about the time course of reflexive attention. Combining models such as RAGNAROC with 

models of the attentional blink (e.g. Olivers, & Meeter 2008; Wyble Bowman & Nieuwenstein 

2009; Taatgen, et al. 2009) has the potential for expanding our understanding of the spatial and 

temporal dynamics of attention out to the order of multiple seconds. The model also has the 

potential to benefit from recent innovations in computer-vision models by allowing us to 

simulate the spatial and temporal dynamics of attention to real-world video data under different 

task instructions.  

 

Ultimately, the goal of models like this is to fill in the explanatory gaps left by broad-sweeping 

theories of attention. By framing the scope of this model as covert, reflexive forms of attention, 

our goal is to provide a stable platform for thinking more concretely about the entire suite of 

attentional mechanisms that are inherent in the visual system, and how they might be linked to 

specific correlates.  
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Appendix 

 
MATLAB Code for running the simulations is available on the OSF at 
https://osf.io/rwynp/ 
 
Appendix 1, Equations 
Early Visual layer: 
These are the activation equations for each neuron in the EV layer, and note we 
represent each possible stimulus (T1 and T2) as having distinct EV neurons to 
reflect the fact that two distinct stimuli will activate distinct groups of neurons in 
V1 even if presented at the same location. These equations match those specified 
by O’Reilly & Munakata (2001) where Input, represents the presence of an input 
stimulus at a given location and time point (either 1 or 0) and EV represents the 
activation level of that neuron. dtVM is a time constant that dictates the rate of 
change of a neuron by scaling the excitatory, and leak currents. EE and EL are the 
reversal potentials for excitatory and leak currents.  

       , ,   * , , * , ,excite VMEV x y t dt EE EV x y t Input x y t    (1.1) 

     , ,   * , ,leak VMEV x y t dt EL EV x y t    (1.2) 

        , , 1   , , , , , ,excite leakEV x y t EV x y t EV x y t EV x y t      (1.3) 

 
Late Visual layer: 
The LV neurons have essentially the same dynamics except that they receive input 

from a region of EV neurons and the value of the input is scaled by a square-

masked Gaussian profile, (GRF) for computational efficiency.   

The variable Attn is the current value of attention as determined by activity at the 

corresponding location in the AM. EI is the reversal potential of the inhibitory 

current. IItoIT is a parameter that determines the strength of the feedback 

inhibition interneurons for each neuron. BUtype is a parameter that reflects the 

physical salience of a given stimulus type. The construct ()0 is a zero-bounded floor 

to prevent currents from going negative, which adds stability to the simulation at 

discrete time steps.  
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0

( , , ) * ( ( , , )) * *

( , ) * ( , , ) * ( ( , , ) )

excite VM type

mask mask

EV

x mask y mask

LV x y t dt EE LV x y t BU

GRF x y Attn x x y y t EV x x y y t Thresh
  

 

          
 

 (1.4) 

        
0

, ,   * , , * * , ,inhib VM ThreshLV x y t dt EI LV x y t IItoIT II x y t II     (1.5) 

     , ,   * , ,leak VMLV x y t dt EL LV x y t    (1.6) 

           , , 1   , , , , , , , , ,excite inhib leakLV x y t max EI LV x y t LV x y t LV x y t LV x y t      

 (1.7) 

The II neurons govern the feedback inhibition of the LV neurons following a similar 
dynamic as the EV.  

     _ 0
, ,  * , , *excite VM II threshII x y t dt LV x y t LV ITtoII    (1.8) 

     _, ,   * , ,leak VM IIII x y t dt EL II x y t    (1.9) 

  , , 1  ( , , ) ( , , ) ( , , )Excite LeakII x y t II x y t II x y t II x y t      (1.10) 

  

Attention Map: 
The AM neurons receive input from all LV maps (1-n) scaled by the same masked 
Gaussian profile GRF. LAI is a parameter that controls the magnitude of inhibitory 
suppression from the IG to the AM neurons. TDtype is a parameter that determines 
the top-down task relevance for a given stimulus.  

 
0

1

( , , ) * ( ( , , )) *

( , ) * ( ( , , ) ) *

excite VM

n mask mask

type LV type

type x mask y mask

AM x y t dt EE AM x y t

GRF x y LV x x y y t Thresh TD
   

 

       
   

REF  add attention bias of .2 to this equation 

(1.11) 

        
0

 , , * , , * , , *inhib VM threshAM x y t dt EI AM x y t IG x y t IG LAI   

 (1.12) 

     , ,   * , ,leak VMAM x y t dt EL AM x y t    (1.13) 
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          , , 1 , , , , , , , , ,excite inhib leakAM x y t max EI AM x y t AM x y t AM x y t AM x y t      

 (1.14) 

      
0

, ,   1, , , 1 *threshLowAttn x y t max log AM x y t AM Attnweight     (1.15) 

 

The IG neurons within the Attention Map receive joint input from the LV and the 
AM. For each IG neuron, the input from each of those two sources has a ceiling 
value  (MaxInputtoIG). Thus, the input from the LV and the AM to each IG neuron is 
computed separately.  
 

 0

1

( , , ) ( ,

( , ) * ( ( , , ) ) *

exciteLV

n mask mask

type LV type

type x mask y mask

IG x y t max MaxInputtoIG

GRF x y LV x x y y t Thresh TD
   



         

 (1.16) 

dimdim

0

' 1 ' 1

( , , ) ( * ( ( ', ', ) ) * ( ', ')*
yx

exciteAM AMLow

x y

IG x y t max MaxInputtoIG AM x y t Thresh DoG x y AMtoIG
 

   

 (1.17) 

DoG is the difference of two Gaussians as specified below.  
 

     
0

, ,  ( ( , , ) ( , , ))* * , ,excite ExciteLV ExciteAM IGIG x y t IG x y t IG x y t dtVM EE IG x y t    

 (1.18) 

 

     _ 0
, ,    * , , *inhib VM IG AMHighIG x y t dt AM x y t Thresh AMtoIGinhib   

 (1.19) 

  

     _, ,   * , ,leak VM IGIG x y t dt EL IG x y t    (1.20) 

           , , 1   , , , , , , , , ,excite inhib leakIG x y t max EI IG x y t IG x y t IG x y t IG x y t      

 (1.21) 

 

Gaussian Profile 
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  
 2 20.5

,  
x y

GRF x y e
 

   (1.22) 

  
   2 2 2 20.5 0.5

0

,   1* 2  -
x y outerGaussian x y innerGaussian

DoG x y e e
    

  
  (1.23) 

EEG Scalp Voltage  

 
dimdim

_ 0
1 1

( ) ( , , ) ( , , )
yx

excite EEG inhib

x y

EEGVoltage t AM x y t AM x y t
 

 
  
 
    (1.24) 

 

_

0

1

( , , ) * ( ( , , )) *

( , ) * ( ( *, , ) )

excite EEG VM EEG

n mask mask

type LV type

type x mask y mask

AM x y t dt EE AM x y t

GRF x y LV x x y y t Thresh TD
   

 

       
 

  (1.25) 

Fixed Parameters: 

dt_vm = .015 

dt_vm_II = .0025 

dt_vm_IG = .04 

EE = 30 

EL = 0; 

EI = -10; 

EEEEG = 65; 

 

Weights 

TDtype  = Free Parameter 

BUtype = Free Parameter 

 

ITtoII = .02 

IItoIT = 6.5 

AMtoIG = .4 

AMtoIGinhib = .25 

LAI = .45 

Attnweight = 2 

AMexcitebias = .2 

MaxInputtoIG = .35 

 

Thresholds 

ThreshEV = 7 

ThreshIT = 5 

ThreshII = 0 

ThreshIG = 8 

ThreshAMLow = 14 

ThreshAMHight = 22 
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Misc 

outerGaussian = .07 

innerGaussian = .2 
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Appendix 2, Fitted Parameters 

Sim Name Type1BU Type2BU Type3BU Type1TD Type2TD Type3TD Range 
Bay & Wyble 0.3 0.3 N/A 0.17 0.12 N/A 0.1 

Nakayama 0.15 0.15 N/A 0.18 0.18 N/A 0.1 

Theeuwes (with salient D) 0.15 0.3 N/A 0.27 0.17 N/A 0.1 

Theeuwes (without salient D) 0.15 0.05 N/A 0.27 0.17 N/A 0.1 

Mounts 0.3 0.3 N/A 0.24 0.24 N/A 0.1 
Gaspelin exp 1 (singleton 
search) 0.15 0.19 0.15 0.2 0.15 0.2 0.1 

Gaspelin exp 2 (feature search) 0.15 0.19 0.15 0.4 0.15 0.2 0.1 

LatDMidlineT 0.15 0.17 N/A 0.5 0.2 N/A 0.1 

Tan & Wyble 0.15 0.15 N/A 0.2 0.2 N/A 0.1 

Tollner (low) 0.17 0 N/A 0.15 0 N/A 0.1 

Tollner (med) 0.2 0 N/A 0.15 0 N/A 0.1 

Tollner (high) 0.23 0 N/A 0.15 0 N/A 0.1 

Hillimire (unpredictable) 0.15 0.15 N/A 0.22 0.22 N/A 0.1 

Hillimire (predictable) 0.15 0.15 N/A 0.4 0.25 N/A 0.1 

Eimer Grubert 0.6 0.6 N/A 0.7 0.7 N/A 0.1 

High TD 0.15 0 N/A 0.2 0 N/A N/A 

High BU 0.2 0 N/A 0.15 0 N/A N/A 

 

Sim Name Mean SD 
 
Threshold  

Bay & Wyble 3 0.75           10,891  

Nakayama 3 0.75             6,997  

Theeuwes (with salient D) 3 0.75           19,522  

Theeuwes (without salient D) 3 0.75           19,522  

Mounts 3 0.75           11,493  
Gaspelin exp 1 (singleton 
search) 3 0.75             8,667  

Gaspelin exp 2 (feature search) 3 0.75             8,667  

LatDMidlineT 3 0.75 N/A 

Tan & Wyble 3 0.75 N/A 

Tollner (low) 3 0.75 N/A 

Tollner (med) 3 0.75 N/A 

Tollner (high) 3 0.75 N/A 

Hillimire (unpredictable) 3 0.75 N/A 

Hillimire (predictable) 3 0.75 N/A 

Eimer Grubert 3 0.75 N/A 

High TD N/A N/A N/A 

High BU N/A N/A N/A 

 


