
 

Radiation reaction near the classical limit in aligned crystals
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An accelerated charged particle emits electromagnetic radiation. If the driving force is sufficiently
strong, the radiated energy becomes comparable to the kinetic energy of the particle and the backaction of
the emitted radiation (radiation reaction) significantly alters the dynamics of the particle. The Landau-
Lifshitz (LL) equation has been proposed as the classical equation to describe the dynamics of a charged
particle in a strong electromagnetic field when the effects of radiation reaction are taken into account.
Hitherto, the experimental problem in validating the LL equation has been to achieve sufficiently strong
fields for the radiation reaction to be important without quantum effects being prominent. Notwithstanding,
here we provide a quantitative experimental test of the LL equation by measuring the emission spectrum for
a wide range of settings for 50 GeV positrons crossing aligned silicon single crystals near the (110) planar
channeling regime as well as 40 and 80 GeV electrons traversing aligned diamond single crystals near the
h100i axial channeling regime. The experimental spectra are in remarkable agreement with predictions
based on the LL equation of motion with small quantum corrections for recoil and, in case of electrons, spin
and reduced radiation emission, as well as with a more elaborate quantum mechanical model. Our
experiment clearly shows the inadequacy of the Lorentz force as the sole agent of force on the particles in
the classical limit, due to its absence of radiative energy loss in describing the dynamics of high-energy
charged particles in strong electromagnetic fields like those in aligned single crystals.
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I. INTRODUCTION

The Lorentz force accounts for the dynamics of charged
particles moving in the presence of electromagnetic fields
and represents a cornerstone of classical electrodynamics
[1,2]. This fundamental relation is complemented by
Maxwell’s equations, which describe the evolution of the
electromagnetic field due to charged particles in motion. A
well-known consequence of Maxwell’s equations is that
accelerated charged particles emit electromagnetic radia-
tion [1,2]. Under typical experimental conditions the
energy radiated by a charged particle is negligible com-
pared to its kinetic energy, such that the radiation can be
safely neglected in determining the dynamics of the
particle. However, it was realized already at the beginning
of the twentieth century [3–5] that if the particle undergoes
large accelerations, the amount of energy radiated becomes

comparable to its kinetic energy such that it is essential to
include the backaction of the radiation, called the radiation
reaction, on the dynamics of the particle [6,7]. Such large
accelerations, due to strong external electromagnetic fields
(called strong-field effects), are achievable for ultrarelativ-
istic particles penetrating single crystals. The reader is
referred to [8] for a thorough discussion of the history of the
radiation reaction problem, and to [9–11] for an introduc-
tion to strong-field effects in crystals.
The equation of motion for a light, charged particle in a

strong external electromagnetic field must take into account
the reaction of the radiation on its dynamics. This is done
by the Lorentz-Abraham-Dirac (LAD) equation [3–5]. The
LAD equation, however, has peculiar and problematic
features. They originate in a dependence of the additional
force due to radiation reaction on the time derivative of the
acceleration, which makes the LAD equation structurally
“non-Newtonian.” The presence of the derivative of the
acceleration allows for the existence of unphysical (“run-
away”) solutions, with the particle acceleration increasing
exponentially even if no external field is present. Runaway
solutions can be removed by transforming the LAD equation
into an integro-differential equation [7]. However, as a result
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of this remedy, the particle starts to accelerate before it is
acted upon by the external force, which violates the causality
principle.
The Landau-Lifshitz (LL) equation provides an alternative

to the controversial LAD equation. It rests on a perturbation
expansion which requires the radiation-reaction force to be
much smaller than the Lorentz force in the instantaneous rest
frame of the charged particle [2]. For an electron moving in
an external static electric fieldE and vanishingmagnetic field
the LL equation reduces to [2]

dp
dt

¼ eEþ 2e3

3mc3

�
γðv · ∇ÞEþ e

mc2
ðv ·EÞE

−γ2
e

mc2
v

�
E2 −

�
v ·E
c

�
2
��

: ð1Þ

Here e ¼ −jej is the charge of the electron, p ¼ γmv
its momentum, m its mass, and v its velocity while
γ ¼ ð1 − v2=c2Þ−1=2 denotes the Lorentz factor.
The radiation reaction phenomenon, and its relation to

the LL equation, have been under active investigation in
recent years both theoretically [12–27] and to some extent
experimentally [28–30] (see the recent reviews [31–33] for
previous publications). This paper addresses the validity of
the LL equation in characterizing radiation reaction near
the classical limit by comparing theoretical simulations
based on the LL equation to a combination of new and
previously published [34] experimental radiation spectra
recorded for high-energy electrons and positrons penetrat-
ing aligned single crystals.
The dynamics of the particles, and the emitted radiation,

is sensitive to the magnitude of the quantum nonlinearity/
strong-field parameter χ defined as

χ2 ¼ ðFμνuνÞ2=E2
0; E0 ¼ m2c3=eℏ; ð2Þ

where Fμν is the electromagnetic field tensor, uν the four-
velocity of the electron (in units of c), and E0 ≃ 1.32 ×
1016 V=cm the critical field, see e.g., [35]. The classical
limit is reached for χ tending to 0, while quantum effects
influence the emission spectra already well before χ
approaches unity and are dominant for large values of χ.
For emission in a constant field, χ is the ratio of ℏωc to the
primary energy (up to a factor of 3 depending on the
convention for the numerical factor entering the definition
of ωc), where ωc is the critical frequency for synchrotron
radiation according to classical electrodynamics. For a field
that is purely electric (E) in the laboratory and transverse to
the direction of motion, which is essentially what is
experienced by a positron or an electron penetrating a
crystal under or near channeling conditions, we have
χ ¼ γE=E0. Note that in this case Eq. (1) simplifies as
two terms disappear.
The condition for application of the perturbation

approach used to derive the LL equation is that the fields

experienced by the radiating electron or positron in its rest
frame are small compared with m2c4=e3 [2]. This may be
expressed as δ ≪ 1 where the classical parameter δ, the
aforementioned ratio, may conveniently be expressed as
δ ¼ χα although neither χ nor the fine-structure constant
α ¼ e2=ℏc ≃ 1=137 appear in classical physics. For a
highly relativistic electron or positron, the radiative damp-
ing force is proportional to γ2, Eq. (1), and for a purely
electric field transverse to the direction of motion the
ratio of the damping force to the external force is η ¼
γ2rejejE=mc2 (up to a factor of 2=3) where re ¼ e2=mc2

denotes the classical electron radius. Alternatively, η may
be expressed as η ¼ γδ, that is

η ¼ αγχ ¼ αγ2E=E0: ð3Þ

For experimental investigations approaching the classical
regime, i.e., for χ ≪ 1, it is therefore necessary to have
large Lorentz factors, γ ≫ 1, for the magnitude of the
radiation damping force to be appreciable in comparison
with the Lorentz force, that is, to achieve a non-negligible
η. As emphasized by Landau and Lifshitz in a footnote [2],
and likely surprising on first account, a large value of the
ratio of the damping force to the Lorentz force “does not in
any way contradict” the application of the perturbation
approach to the derivation of the LL equation. Since the
damping force is longitudinal and the primary force due to
the crystal field transverse, their ratio is not Lorentz
invariant. After stating the formula for the ratio of the
damping force to the external force, Landau and Lifshitz
derive an energy Ecrit that the particle cannot exceed after
passing through the external field.
In the planning of the experiments the expected per-

centage of energy lost to radiation is important. It can be
estimated as the average radiative damping force times
crystal thickness dc divided by primary energy γmc2. For a
transverse electric field this ratio may be expressed as

Δ ¼ 2dchχ2i=3γa0 ¼ 2dchχ2iα=3γƛC; ð4Þ

where a0 ≡ ℏ2=me2 is the Bohr radius (of hydrogen)
and ƛC ≡ ℏ=mc the (reduced) Compton wavelength of
the electron.
Under our experimental conditions we have χ ≲ 0.1 so

δ ≪ 1 is clearly fulfilled. With η attaining values roughly in
the range 10–100 the radiation-reaction force dominates the
dynamics of the particles while χ is still sufficiently small
that the influence of quantum effects is expected to be
moderate. Quantum effects could be avoided by using
weaker fields, i.e., smaller χ, but the magnitude of the LL
force would then decrease and its effect would be difficult
to detect. Our experimental conditions therefore provide an
ideal avenue for testing the applicability of the Landau-
Lifshitz equation. As a “standard accelerator” comparison,
the magnetic dipole energy loss according to the Lienard
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formula takes place with a characteristic distance given
as cτ ¼ 3χ−2γa0=2 ð¼ dc=ΔÞ in the high-energy limit,
where, in this magnetic case, χ ¼ γB=B0 where B0 ¼
4.41 × 109 T (cB0 ¼ E0). For a 50 GeV electron in a
2 T field this distance is 6 orders of magnitude larger than
the thicknesses of the crystals in our experiments as it
equals almost 4 km, a distance over which the particle
energy loss has to be replenished by the rf system for the
particle to remain in the accelerator.
We report experimental results on the spectrum of

photons emitted by positrons and electrons crossing aligned
single crystals in the regimes of planar and axial channel-
ing. The dynamics of the charged particles is strongly
altered by the self-electromagnetic field. Our study presents
the first high-statistics quantitative test of the classical LL
equation near the classical limit by measuring the single
photon emission spectra of electric charges accelerated in
strong background fields. Previous tests employing intense
laser radiation [29,30] were based on comparison between
the final and the initial energy distribution of ultrarelativ-
istic electrons interacting with a tightly focused terawatt
laser, a setup with challenges e.g., in terms of shot-to-shot
stability. An advantage of using aligned single crystals is
that the electric fields are stationary, stable, and well
described, while the fields produced by high-intensity
lasers are inherently unstable. In this experiment 50 GeV
positrons cross silicon single crystals in directions close to
(110) planes and 40–80 GeV electrons cross diamond
single crystals in directions close to the h100i axis.
Other applications of crystals to address the radiation

reaction process have been investigated theoretically
including exploration of the change in angular divergence
of electrons and positrons traversing an oriented single
crystal close to the channeling regime [36,37].

An attractive phenomenon to investigate using the
interaction of electrons with crystalline fields, which is
not easily accessible with a laser field, is the Schott term in
the classical radiation reaction. The Schott term, which is
the first term in square brackets in Eq. (1), contains a
derivative with respect to position. Since the crystalline
fields have a rapid transverse variation, they vary over an Å
or less whereas laser wavelengths are of the order microns,
the fields from a crystal have a significant advantage to
disclose the effect of the Schott term. We have, however,
investigated this in the present context and have found in
simulations that under our experimental conditions the
effect of the Schott term, taking the effect of multiple
scattering into account, amounts to at most a few percent
and, hence, is too small to detect reliably.

II. SIMULATION

A. Trajectories

When a charged particle is incident at a small angle to a
major crystallographic direction, its motion is in first

approximation governed by successive, correlated small-
angle collisions with screened target nuclei. Effectively, the
trajectory of the particle is determined by the continuum
potential obtained by smearing the atomic charges along
the axis or the planes with which it is nearly aligned,
[38,39] and [10,11]. The continuum potential (energy)
varies in the two directions transverse to the axis in the
former case, and in the single transverse direction to
the planes in the latter. In the axial case, for instance,
the continuum potential reads

UðrÞ ¼ 1

d

Z
∞

−∞
dzVðr; zÞ; ð5Þ

where V denotes the potential energy pertaining to the
interaction between the projectile and a target atom, z is the
coordinate along the atomic row, r the transverse distance
to the center of the axis, and d is the average spacing
between atoms along it. For a single isolated row of atoms,
U has rotational symmetry, Eq. (5). For a true crystal there
will be a periodicity in transverse space, U ¼ UðrÞ. In the
numerical work we use the Doyle-Turner potential which is
based on an analytical approximation to relativistic Hartree-
Fock atomic potentials. For a single row of atoms and unit
projectile charge it reads

UðrÞ ¼ � e2

a0

2a20
d

X4
i¼1

ai
Ci

e−r
2=Ci ; ð6Þ

where the sign reflects that of the incoming charge (�jej),

Ci ¼ CiðρÞ≡ bi=4π2 þ ρ2; ð7Þ

and ρ denotes the two-dimensional root-mean-square
thermal displacement of the atom from the equilibrium
position. For details and explicit values of the coefficients
ai (Å) and bi (Å

2) see [40,41], for values of the thermal
vibration amplitude see [42]. The Doyle-Turner potential
for a single continuum plane similarly takes the form

UðxÞ ¼ �2π1=2
e2

a0
a20ndp

X4
i¼1

ai
C1=2
i

e−x
2=Ci ; ð8Þ

where x is the distance from the plane, dp the distance
between neighboring planes, and n the atomic density.
For a particle of mass M and energy E whose motion is

governed by the continuum potential, the z-component of
the force exerted by the crystal vanishes. Hence its
longitudinal momentum pz will be a constant of motion.
In consequence also the “longitudinal energy” Ez ≡
ðp2

zc2 þM2c4Þ1=2 as well as its “transverse” counterpart
E⊥ ≡ E − Ez are conserved. The latter is composed of
the potential energy belonging to the interaction with the
continuum crystal and kinetic energy associated with the
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transverse motion. Channeling corresponds in our setup to
bound motion of the electrons around a single string of
atoms respectively of the positrons between a set of
adjacent planes, that is, to the kinetic energy associated
with the transverse motion being less than the depth or
height U0 of the continuum potential. For GeV electrons
and positrons quantum states are close lying and the motion
is effectively classical. This is revealed by an estimate
of the number of bound states of transverse motion. The
number of bound states is proportional to the Lorentz factor
γ in the axial case and to γ1=2 in the planar case, where the
constant of proportionality depends on the target material
and is of order 1 for electrons but larger for positrons.
In the current investigation γ ∼ 105. For a thorough dis-
cussion of the motion of charged particles in aligned
single crystals, including details on the differences and
similarities between planar and axial channeling, the reader
is referred to the original publication by Lindhard [38], the
extensive lecture notes by Andersen [39], as well as review
articles [10,11].

The “critical angle” or “Lindhard angle” provides a
measure for incidence angles to crystal axes or planes
below which a high fraction of the incoming particles will
be channeled. In the axial case, where it is usually denoted
ψ1, the critical angle assumes the value

ψ1 ¼
ffiffiffiffiffiffiffiffiffiffi
4Ze2

pvd

s
¼ αffiffiffi

γ
p

β

ffiffiffiffiffiffiffiffiffiffi
4Za0
d

r
ð9Þ

for unit-charge impact at momentum p and velocity v ¼ βc
on a target of atomic number Z. In the planar case the
corresponding expression is

ψp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ze2ndpCa

pv

s
¼ αffiffiffi

γ
p

β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Za0ndpCa

q
; ð10Þ

where C2 is a constant normally set to 3 and a is the atomic
screening length usually chosen as the Thomas-Fermi value
a ¼ 0.885a0Z−1=3. Note that ψ1 and ψp both scale as
1=ðpvÞ1=2, that is, for high values of the Lorentz factor they
decrease in proportion to 1=

ffiffiffi
γ

p
. Critical angles for different

energy and crystal combinations relevant in this investiga-
tion are listed in Table I.

The motion of a penetrating charged particle according
to the continuum model is perturbed by the difference
between the true lattice potential, accounting for discrete-
ness of target constituents and fluctuations in position due
to thermal vibrations and quantum behavior, and the
continuum potential. In the simulations below we account
for scattering on individual target atoms and electrons by
adding, at each time step in the integration, a velocity
change selected at random according to a Gaussian dis-
tribution of width proportional to the root-mean-square
multiple scattering angle pertaining to the distance traveled

during the time step (the factor of proportionality chosen is
1=2, see end of Sec. II B). As in other simulations, e.g.,
[43], the deflection in the continuum potential is neglected
in the calculation of this scattering. The error committed by
such omission appears for diffraction and bremsstrahlung
in oriented single crystals in the quantum perturbation limit
as a reduction by 10%–20% below the amorphous yield of
the incoherent contribution, see e.g., [11] (the reduction
factor, typically 0.8–0.9, is 1 minus a Debye-Waller factor
in the Born approximation). The unsystematic or incoher-
ent scattering is presumed to follow the local density of the
scatterer since multiple scattering is dominated by close
collisions [39].
With the assumption of uncorrelated electron and nuclear

contributions to multiple scattering, the mean-square scat-
tering angle is the sum of the mean-square angles belonging
to each of the two types of collisions. By introduction of the
radiation length X0 corresponding to the (average) density
of target atoms, the result derived in [1] for the nuclear
contribution over a distance Δl may, for projectiles of unit
charge and velocities near c, be expressed as

hθ2in
Δl

¼ 4πα−1m2c4

E2

1

X0

nnðrÞ
n

; ð11Þ

where the constant in the numerator equals ð21.2 MeVÞ2.
For a single transverse direction, the mean-square scatter-
ing angle is half the value displayed in Eq. (11) corre-
sponding to a constant of ð15.0 MeVÞ2. When applied in
Eq. (11) the radiation length should not include the electron
contribution, that is,

1

X0

¼ 4αr2enZ2 ln ð184Z−1=3Þ; ð12Þ

where the argument of the logarithm is according to [44]. It
may be noted that the formula quoted in [44] for the root-
mean-square multiple scattering angle in one dimension
contains a slightly different constant than the 15.0 MeV
corresponding to the expression (11), namely 13.6 MeV. As
explained in [45], fits to numerical simulations produce
13.6 MeValong with a depth dependence of the root-mean-
square scattering angle containing a logarithmic term. Our
simplified implementation of the multiple scattering is
inconsistent with such dependence. We therefore stick to
the expression (11), the error committed being at the same

TABLE I. Critical Lindhard angle ψp (plane), ψ1 (axis) and
Baier angle ΘB for the energy and crystal combinations used in
the experiment.

Crystal Energy Critical angle ΘB

C h100i 40 GeV 50 μrad
175 μrad

80 GeV 35 μrad
Si ð110Þ 50 GeV 23 μrad 45 μrad
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level as those due to the other approximations made in the
simulations.
For impact of a heavy particle of unit charge at high γ,

the electronic contribution to the mean-square multiple
scattering angle (two independent transverse directions)
attains the value [46]

hθ2iel
Δl

¼ 4πr2e
γ2

�
ln
�
2mγ2c2

I
− 1

��
nelðrÞ; ð13Þ

where I is the mean ionization potential. In this form, the
average of the squared scattering angle due to collisions
with target electrons has been expressed in terms of the
electronic stopping power. Restriction to close collisions is
included by division by a factor of 2 reflecting the
equipartition between close and distant collisions in elec-
tronic stopping (see also [38,47]). While it is standard to
apply (13) the expression may appear odd since it contains
the local electron density along with the global electronic
stopping logarithm (fromBethe’s expression for the stopping
power) which corresponds to a maximum range of inter-
action increasingwith γ, reaching far beyond a single channel
at the energies considered in our study. Furthermore, at these
energies the stopping logarithm is actually smaller than that
appearing in (13) due to polarization of the target electron
gas, the so-called density effect. But without the density
effect there is equipartition between close and distant
collisions for heavy particles and hence Eq. (13) applies.
For electron or positron impact the electronic contribution
will actually be less since, due to kinematics, close collisions
contribute less than for heavy particles, in our case approx-
imately 1=3 less.We have ignored this difference and applied
Eq. (13) for the electronic contribution to the multiple
scattering. The electronic contribution is generally of minor
importance except for “proper” channeled positrons which
move through the crystal in open channels far from target
nuclei. Such proper channeled positrons constitute a small
fraction of all particles, even for the most restrictive cuts.
In the harmonic approximation for interatomic forces the

local density of target nuclei to enter Eq. (11) reads

nstringn ðrÞ ¼ 1

πρ2d
e−r

2=ρ2 ð14Þ

for an isolated row of atoms and

nplanen ðxÞ ¼ ndpffiffiffi
π

p
ρ
e−x

2=ρ2 ð15Þ

for a single plane. The same distributions were applied in
the derivation of the expressions (6)–(8) for the continuum
potential. The local electron density may be obtained from
Doyle and Turner’s fit to the x-ray scattering factor [40].
For an isolated string of atoms the density is given as [48]

nstringel ðrÞ ¼ 1

πd

X4
i¼1

aðXÞi

CðXÞ
i

e−r
2=CðXÞ

i þ cðXÞnstringn ðrÞ; ð16Þ

where

CðXÞ
i ¼ CðXÞ

i ðρÞ≡ bðXÞi =4π2 þ ρ2: ð17Þ

For an isolated plane, the expression is

nplaneel ðxÞ ¼ ndpffiffiffi
π

p
X4
i¼1

aðXÞiffiffiffiffiffiffiffiffiffi
CðXÞ
i

q e−x
2=CðXÞ

i þ cðXÞnplanen ðxÞ: ð18Þ

For details and explicit values of the coefficients cðXÞ, aðXÞi ,

and bðXÞi see [40]. Note that cðXÞ þP
4
i¼1 a

ðXÞ
i ¼ Z.

B. Radiation

In our computational analysis each individual positron
or electron follows a classical trajectory characterized by
the instantaneous position rðtÞ, the instantaneous velocity
vðtÞ ¼ βðtÞc, and the instantaneous acceleration _vðtÞ ¼
_βðtÞc. According to classical electrodynamics, the electro-
magnetic energy Eγc radiated per unit of frequencyω and of
solid angle Ω is given by [1]

d2Eγc

dωdΩ
¼ e2

4π2c

����
Z

∞

−∞

n× ½ðn−βÞ× _β�
ð1−n ·βÞ2 eiωðt−n·r=cÞdt

����2; ð19Þ

where n ¼ ðsinϑ cosφ; sinϑ sinφ; cos ϑÞ is the direction
of emission with polar and azimuthal angles ϑ and φ
defined relative to a suitable axis and dΩ ¼ sinϑdϑdφ.
Equation (19) is in accordance with the relativistic gener-
alization of the Larmor formula (the Liénard formula) for
the radiated power [1].

If the only non-negligible quantum effect is the photon
recoil it can be taken into account by a simple substitution
of the frequency variable in the classical photon number
spectrum regardless of the details of the motion of the
particle [49]. Based on the Weizsäcker-Williams method
[1,50], but bypassing the actual computation of the virtual
photon spectrum, Lindhard showed that for spin-0 particles
with energy E, substituting the frequency ω by

ω� ¼ ω=ð1 − ℏω=EÞ ð20Þ

in the classical number spectrum gives exactly the quantum
number spectrum for single-photon emission [49]:

dNc

dℏω
ðω�Þ ¼ dNq

dℏω
ðωÞ: ð21Þ

This implies that the intensity spectrum translates as
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dEγq

dℏω
ðωÞ ¼ ω

ω�
dEγc

dℏω
ðω�Þ: ð22Þ

The result (22) is confirmed by a full quantum mechanical
calculation for a spinless particle moving in a constant
magnetic field carried out many years prior to Lindhard’s
investigation [51]. Therefore, when effects related to the
spin of the positrons or the electrons can be neglected,
employing the substitution of the frequency variable in
Eq. (19) according to the prescription Eq. (22) will
reproduce the full quantum spectrum. We call this model
the substitution model.
To include the effects of both the quantum recoil and the

spin in the radiation process, we apply a result obtained
based on the semiclassical method by Baier and Katkov [9],
in which the particle motion is treated classically whereas
the interaction with the radiation field is quantal and to first
order. For a general trajectory Belkacem, Cue and Kimball
give the spectrum as [52]

d2Eγ

dℏωdΩ
¼ α

4π2

�
E�2 þ E2

2E2
jIj2 þ ðℏωÞ2

2E2γ2
jJj2

�
; ð23Þ

where E� ¼ E − ℏω, (E�ω� ¼ Eω) and I and J are
given by

I ¼
Z

∞

−∞

n × ½ðn − βÞ × _β�
ð1 − n · βÞ2 eiω

�ðt−n·r=cÞdt; ð24Þ

J ¼
Z

∞

−∞

n · _β
ð1 − n · βÞ2 e

iω�ðt−n·r=cÞdt: ð25Þ

For derivations, see [53,54]. We call this the BCK model.
The radiation resulting from the unsystematic scattering

on target constituents, which we account for in our model
through the inclusion of multiple scattering in the deter-
mination of the trajectory entering the radiation integrals,
Eqs. (19), (24), and (25), poses a separate challenge. For a
small change in velocity happening over a distance suffi-
ciently short that the variation of the phase in the expo-
nential factor in the intensity (19) is negligible, that is, for a
distance short compared to the formation length, the
radiated intensity amounts to

dEγ

dω
¼ 2

3π

e2

c
γ2jΔβj2 ð26Þ

according to classical electrodynamics [1]. The result holds
for jΔβj smaller than, approximately, 2=γ (dipole regime)
beyond which the intensity becomes small. A derivation
based on the BCK formula (23) yields [54]

dEγ

dℏω
¼ 2

3π
αγ2jΔβj2

�
1 −

ℏω
E

þ 3

4

�
ℏω
E

�
2
�
; ð27Þ

which reduces to (26) in the classical limit. In the
simulations, the distance traveled during one time step is
much smaller than the formation length. The time steps
used are such that essentially all velocity changes computed
according to the multiple scattering distributions in one
time step are less than 2=γ and hence contribute to the
radiation according to Eq. (26) or Eq. (27). However, in the
collision with a single atom, the mean-square scattering
angle is about twice the average of the square of the
scattering angles contributing to bremsstrahlung. In other
words, if jΔβj2 in (27) is replaced by hθ2i as given by
Eq. (11), a radiation intensity twice that given by the Bethe-
Heitler formula for bremsstrahlung results. Hence the
radiation associated with unsystematic scattering is over-
estimated by a factor of 2, essentially, in our implementa-
tion. See also [55] for a similar note. To account for this,
we reduce the multiple scattering, Eqs. (11) and (13),
by a factor of 2. This reduction may be seen as a way to
compensate for the dipole approximation implicitly
imposed by our numerical procedure to the multiple-
scattering contribution to the radiation. Our simulations
then produce the correct high-energy Bethe-Heitler tails of
the radiation spectra visible beyond the coherent contribu-
tion pertaining to motion in the continuum potential. The
reduced redistribution over “transverse energies” is
expected to have minor influence on the radiation spectra.

C. Quantum reduction of the damping force

Generally, the energy radiated by an electron or a
positron following a classical trajectory is higher according
to classical than to quantum electrodynamics. Hence, the
LL equation overestimates the radiation reaction in case
quantum effects are of any influence. A priori there is no
cure for this since a quantum version of the LL equation
does not exist. However, under certain circumstances, the
emission process appears as if the electromagnetic field
were constant, and for such a field the ratio of the radiated
energy, quantum to classical, is known. This may be
utilized to reduce the damping force contained in the LL
equation, albeit in an approximate manner.
When the variation in angle of a charged particle passing

through the crystal is large compared to the opening angle
of the radiation cone, 1=γ, the emitted radiation approaches
that pertaining to a (locally) constant electromagnetic field.
The critical channeling angle decreases slower than the
opening angle of the radiation cone with increasing energy.
At high energies, a charge traversing the crystal far beyond
the channeling region will experience deflections beyond
1=γ when incident with angles to the plane/axis less than
ΘB ¼ U0=m [11]. For a silicon crystal oriented along the
(110) plane ΘB is ≃45 μrad, while for a diamond crystal
oriented along the h100i axis of diamond we find
ΘB ≃ 175 μrad. In the positron experiment, ΘB is only
twice the critical angle and only 4 times the opening angle
of the radiation cone, so a constant field approximation
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(CFA) is dubious here as also discussed in [34]. In the
electron experiment, on the other hand, ΘB is around
3.5 (5) times the critical angle at 40 GeV (80 GeV) and
14 (28) times the opening angle of the radiation cone, so the
CFA is expected to work quite well in and near the axial
channeling regime.
As a measure of the applicability of the CFA under

channeling conditions, the authors of [9] introduced the
parameter ρc ¼ 2U0E=m2 (termed ξ2 in the strong-field
laser community and known as the dipolarity parameter).
It reduces to ρc ¼ 2ΘB=γ−1 which assumes a value close to
9 for planar channeling of 50 GeV positrons and around
55 (27) for 80 GeV (40 GeV) electrons axially channeled.
The large value of ρc in the latter case again indicates that
CFA is a very useful approach for channeled electrons in
our experiment, in particular at the highest energy, whereas
its modest value in the former case points towards a limited
use of CFA for the positrons as also shown in [34] by
explicit calculation of spectra.
A quantum correction to the intensity of the emitted

radiation inherent in the LL equation may be included in
an approximate manner for the axial case by multiplying the
radiation reaction force contained in the LL equation by a
damping factor defined as the ratio between the quantum and
classical radiation intensity in the constant field approxima-
tion. An approximate expression for this factor is

GðχÞ ¼ ½1þ 4.8ð1þ χÞ lnð1þ 1.7χÞ þ 2.44χ2�−2=3: ð28Þ

The accuracy of the analytical expression (28) is within 2%
for all values of χ [9], and GðχÞ has been validated
experimentally in [56].

D. Implementation

The classical radiation formula, Eq. (19), may be applied
for any trajectory including trajectories determined from
the LL equation. This is not the case for the semiclassical
models since they are first-order approximations in the
interaction with the radiation field, that is, they only apply
for single-photon emission. Hence the semiclassical models
only allow for pure Lorentz-force trajectories. The elec-
trons and positrons in our experiment emit multiple
photons when traversing a thick crystal. To adapt the
semiclassical models to this scenario, we divide the crystal
in sufficiently thin sections so that the probability for
photon emission in each section is low. The radiation
spectrum is evaluated in each section and the exit position
and momentum of a particle in one section determine its
initial conditions for the next section. Two schemes are
applied. One, which comes in a number of variants, is based
on the LL equation. The other, which serves as a bench-
mark for the first, is not based on the LL equation, but
accounts for quantum stochasticity. The stochastic scheme
is almost identical to that presented in [34]. A minimum
photon energy of 1 GeV is taken in this scheme.

When dividing the crystal into smaller sections it is
important that the section length is longer than the
formation length lf ¼ 2γ2ðE − ωÞ=Eω of most photons
emitted by the particle. For a positron or an electron of 40 to
80 GeVemitting a 5 GeV photon we have lf of around 0.4
to 2 μm. A section length of 20 μm is used for the axial
case, which is significantly longer than the formation
length of a typical photon in our experiment, but short
enough that the emission probability is small. For 40 GeV
electrons, only photons of energy less than 120 MeV have
formation lengths longer than 20 μm, while for 80 GeV the
limit is 0.5 GeV. In the planar case a similar analysis has led
to the choice of a section length of 0.1 mm, which
corresponds to the formation length of 40 MeV photons.
The radiative losses during the penetration of a section,

albeit small, imply a time dependence of the energy of the
radiating particle and, hence, of the frequency ω�, Eq. (20).
Since ω� appears in the exponential phase factor of the
radiation integrals, the spectrum then depends on the initial
phase. This is nonphysical. We eliminate the ambiguity by
fixing the energy of the particle, where explicit in the
radiation integrals, to its initial value when entering the
section. We refer to this procedure as the constant energy
scheme (CES). Despite the name, the particle trajectory in
the section is determined by the LL equation.
The gradual radiative energy loss due to coherent

scattering on crystal atoms, that is, due to the deflection
in the continuum potential, is contained in the LL equation.
Energy loss due to radiation emission associated with
unsystematic scattering on individual nuclei and electrons
is evaluated numerically in each integration step and
subtracted. From Eq. (27) the loss corresponding to a
scattering angle θ is

ΔE ¼ 1

2π
αγ3mc2θ2 ð29Þ

by integration over photon energies.
In the stochastic scheme a charged particle traverses a

section governed only by the Lorentz force. The radiation
spectrum from the charge is evaluated in each section using
the BCK model and the probability for photon emission is
calculated based on the spectrum. This probability and the
spectrum is used to determine if a photon is emitted in the
section and, if so, to fix its energy. If a photon is emitted,
the particle loses an amount of energy equal to the energy
of the emitted photon and continues into the next section.
The corresponding change in particle momentum is
obtained through the simplifying assumption that the
photon is emitted in the direction of motion of the radiating
particle, that is, only the magnitude of the momentum is
changed, not the direction. The stochastic scheme does not
involve the LL equation. Compared to the implementation
of the model in [34], our implementation does not require
the motion to be periodic, which is essential when
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considering electrons traversing axially aligned crystals. The
stochastic scheme presented in [57] is discussed in [34].
As described in [58], the task of evaluating the theo-

retical radiation spectra for particles penetrating oriented
single crystals is not easy and, to our knowledge, not many
programs exist which are capable of doing this. One first
has to solve the equation of motion for particles moving in
the continuum potential inside the crystal, and afterwards
integrate each trajectory using one of the radiation integrals
mentioned earlier. Since the radiation integrals are differ-
ential in energy (dℏω) and emission angle (dΩ), we have to
compute the integral for each emission angle in space for
each photon energy to produce a full radiation spectrum.
Each trajectory is influenced by stochastic perturbations
due to multiple Coulomb scattering and the initial con-
ditions vary according to angle of incidence within the
beam profile and point of entry into the crystal. As a result
we have to make an average spectrum from thousands of
individual incident particles before we can compare the
simulated spectrum to an experimental spectrum. A spec-
trum from a single beam of particles hitting a specific
crystal is not unlikely to consist of 5 × 108 integrals over
the trajectory, which contains approximately 1 × 106 points
in time per mm crystal traversed.
In Sec. IV the theoretical spectra are compared to the

experimental spectra using two types of simulations. The
first type of simulation produces a radiation spectrum from
a clean beam penetrating an aligned crystal based on the
theory described previously. Such theoretical spectra can-
not be compared directly to experimental data because of
the experimental environment smearing out the true spec-
trum emitted from within the crystal. Because of this we
developed a second simulation which produces a spectrum
of the response of the experimental setup from the
theoretical spectrum produced by the first type of simu-
lation. In this simulation, the response of the experimental
setup is based on the geometry of the experiment, physics
processes (multiple Coulomb scattering through the beam
line elements, multiple Coulomb scattering of the pair
created in the converter foil), the Mimosa-26 detector
resolution, the conversion of two hits within 50 μm into
a single hit, and the opening “Borsellino” angle of the pair
(of the order mc2=ℏω, with a known distribution). The
output of the simulation is a data file identical to what we
get from the experiment, this data file is then analyzed as
with the experimental data files and a simulated spectrum is
produced. The simulation of the experiment is also what
produces the amorphous spectra we compare to the
amorphous experimental spectra, here we use the Bethe-
Heitler cross section when particles penetrate the crystal.
In some of our figures we display what we term an

enhancement spectrum, which is the radiation spectrum
emitted by particles traversing an aligned single crystal,
divided by the radiation spectrum from particles with
identical initial conditions traversing the same crystal

placed in an amorphous orientation, that is, far from any
major crystallographic axis or plane. For experimental
radiation spectra, the enhancement spectra use the spectrum
measured by orienting the crystal in an amorphous ori-
entation for normalization. When simulated spectra are
compared to experimental data, the simulated spectra are
normalized to a bremsstrahlung spectrum simulated by
substituting the cross section for photon emission in the
target crystal, in the simulation of the experiment, by
the Bethe-Heitler cross section [44]. Purely theoretical
enhancement spectra are simply normalized to the analyti-
cal Bethe-Heitler radiation spectrum.
In Fig. 1(a) we show enhancement spectra for 50 GeV

positrons traversing a 0.1 mm thin silicon single crystal
channeled in the (110) plane calculated by the CES. Particle
entry angles are confined between�30 μrad with respect to
the plane, and sampled from a Gaussian distribution with a
mean of 0 and divergence of 100 μrad. Since the radiative
energy loss due to coherent scattering in this case amounts
to a few GeV/mm, we see no effect of the LL equation. In
all models, the spectrum produced in 0.1 mm of (110)
silicon by trajectories governed by the LL equation is
essentially indistinguishable from that where the positron
motion is governed solely by the Lorentz force.
Comparing the different models, three important obser-

vations are apparent:
(1) Quantum corrections are observed near the peak of

the enhancement spectrum which corresponds to
coherent scattering on crystal constituents.

(2) The substitution and BCK models produce essen-
tially identical results up to 20 GeV, as expected.

(3) At high energy, where the coherent effects have
vanished, the substitution model fails due to neglect
of effects of the positron spin.

It should be noted that the level of the high-energy tail,
which is due to incoherent scattering on target constituents,
is below that pertaining to a uniform particle flux through
the target due to focusing in low-density regions resulting
from the channeling motion [38]. For the high-energy tail
of the spectrum, the discrepancy between the classical and
BCK model derives from the last factor in Eq. (27), a
signature of the Bethe-Heitler bremsstrahlung formula,
which reduces to 3=4 in the high-energy limit.
In Fig. 1(b) we show theoretical enhancement spectra for

80 GeV electrons traversing a 20 μm thin diamond single
crystal with incident angles ψ < ψ1 relative to the h100i
axis. Under these conditions the radiative energy loss is
∼50 GeV per mm. Again, we still see essentially no effect
of the LL equation on the spectrum due to the small
thickness. The discrepancy between the two semiclassical
models, although moderate, points out that the spin con-
tribution cannot be neglected in this case. Due to the larger
value of χ̄, 0.06 in Fig. 1(b) compared to 0.015 in Fig. 1(a),
quantum corrections affect the electron spectra across
almost the entire energy range, including its peak.
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(a) (b)

FIG. 1. (a) Theoretical enhancement spectra for 50 GeV positrons channeled in the (110) plane of a 0.1 mm thick Si crystal. Full-
drawn spectra pertain to trajectories determined by the LL equation of motion. Dotted spectra pertain to trajectories determined by the
Lorentz force. Spectra obtained in the classical model are drawn in red, spectra obtained with the substitution model appear in purple,
BCK spectra are drawn in blue. The inset shows the spectra on a logarithmic intensity scale all the way up to the primary energy.
(b) Theoretical enhancement spectra for 80 GeV electrons channeled along the h100i axis of a 20 μm thick diamond single crystal.
Spectra obtained using the classical model are drawn in red, spectra obtained using the BCK model in the CES are drawn in blue, and
spectra obtained using the substitution model in the CES are drawn in purple. Dotted lines show spectra obtained using pure Lorentz-
force trajectories, solid lines indicate the LL equation has been used, and dashed lines are spectra calculated for trajectories determined
by the LL equation including the GðχÞ correction.

(a) (b)

FIG. 2. (a) Theoretical enhancement spectra for 50GeVpositrons channeled in the (110) plane of a 6.2mm thick Si single crystal. Spectra
drawn in solid lines, except purple, pertain to trajectories determined by the LL equation of motion. Dotted spectra pertain to trajectories
determined by theLorentz force. Spectra obtained in the classicalmodel are drawn in red, spectra obtainedwith the substitutionmodel using
the CES appear in yellow, BCK spectra using the CES are drawn in blue. The purple spectrum is calculated by the application of the
stochastic scheme. The inset shows the spectra on a logarithmic intensity scale all the way up to the primary energy. The quantum models
(yellow, blue and purple) overlap in the coherent regionwhere they are hard to distinguish. (b) Theoretical enhancement spectra for 80GeV
electrons channeled along the h100i crystallographic axis of a 1.0mm thick diamond single crystal. Spectra obtained in the classical model
are drawn in red, spectra from the BCKmodel using the CES appear in blue, and a spectrum simulated in the stochastic scheme is drawn in
purple. Pure Lorentz-force trajectories have been used for the dotted spectra, the LL equation has been used for solid-line spectra, except
purple, and dashed lines display spectra based on the LL equation with the GðχÞ correction.
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From the discussion above we see that including the LL
force for thin crystals has no effect on the radiation spectrum
in the planar regime and almost no effect in the axial regime.
Since the spin contribution is non-negligible for the axial
case, we will use the BCK model in both the CES and
stochastic schemes when calculating electron spectra.
Figure 2(a) displays the theoretical enhancement spectra

for 50 GeV positrons traversing a 6.2 mm Si crystal,
parallel to the (110) plane. Particle entry angles are
confined between �30 μrad with respect to the plane,
and sampled from a Gaussian distribution with a mean of 0
and divergence of 100 μrad. The spectra are evaluated
using each model and scheme described above, and it is
evident that quantum effects are non-negligible even at
χ ¼ 0.015. We see that the substitution and BCK models
(CES) give identical spectra around the peak, and that the
BCK model includes the high-energy bremsstrahlung tail
from random scattering in the crystal. This shows that
quantum effects related to spin are negligible when looking
at the channeling radiation, and only the kinematic effect of
photon recoil is important in our regime. We also see that
quantum stochastic effects are negligible. Therefore, we
choose to use the substitution model in our analysis of the
planar channeling spectra due to its simple kinematic
interpretation.
Figure 2(b) shows the theoretical spectra for 80 GeV

electrons traversing a 1.0 mm diamond single crystal in the
h100i axial channeling regime with incident angles
ψ < ψ1. The incoming electrons have the same distribution
as the positrons do in the planar case. It is clear that
quantum effects are non-negligible. There is a noticeable
difference between the spectra produced using the LL
equation with and without the damping factor GðχÞ. When
the damping factor is included, the BCK model using the
LL equation in the CES agrees quite well with the
stochastic model in the region beyond the peak, but it is
clear that stochastic effects cannot be neglected entirely in
the axial channeling regime.

III. EXPERIMENTS

The experiments were performed at the H4 beam line of
the CERN SPS by the NA63 collaboration. Four silicon

single crystals and two diamond single crystals with
thicknesses ranging from 1.0 to 6.2 mm were used, aligned
with the beam along the (110) plane or h100i axis. The
experimental runs using silicon single crystals were per-
formed in 2017, and the runs using diamond single crystals
were performed in 2018. A schematic of the 2017 setup is
shown in Fig. 3. Essentially the same setup was used for the
2018 experiment except the scintillators were placed
between the crystal and the large magnet instead of
between the helium encasing and the crystal.
A 200 μm converter foil of amorphous tantalum corre-

sponding to 5% of the radiation length (3.8% chance of pair
production) was employed to generate eþ =e− pairs from
the emitted photons which were subsequently analyzed in a
magnetic spectrometer, see Fig. 3. The magnetic spectrom-
eter measures the deflection angle of both the electron and
the positron produced by the photon, and by knowing the
field of the magnet we can find the energy of each particle,
and in turn the energy of the original photon, assuming that
the energy of the converted photon is much larger than the
rest mass of an electron.
Each Mimosa has a detection area of 1 cm × 2 cm; this

means that alignment of the beam through the telescope
arm spanned by M1–M6 has to be precise. It also means
that we have an energy cutoff in the magnetic spectrometer,
because low-energy particles produced by low-energy
photons will be deflected outside the detection area of
M5 and M6. Ensuring that low-energy photons are
deflected outside M5 and M6 and by using a thin converter
foil, this procedure enables us to measure the single-photon
spectrum in the radiation-reaction regime where many
photons are emitted by a single electron or positron, thus
the problem of photon pileup is avoided.
The scintillators S1–S3 produce a trigger signal for the

Mimosas to save their data buffer. S1 and S3 are mm thin
scintillation sheets, while S2 is a cm thick scintillation sheet
with a hole in its center with a radius of 5 mm. A successful
trigger is thus S1þ !S2þ S3, meaning that both S1 and S3
have to give a signal while S2 has to be quiet. As mentioned
above, the placement of the scintillators has been switched
between the 2017 experiment and the 2018 experiment.
The selected locations each have advantages and disadvan-
tages. By placing the scintillators before the crystal, we are
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FIG. 3. Experimental setup during the 2017 experiment. A schematic representation of the experimental setup in the H4 beam line in
the SPS North Area at CERN. The symbols “Sj,” with j ¼ 1, 2, 3, denote the scintillators and the symbols “Mi,” with i ¼ 1;…; 6,
denote “Mimosa-26” position-sensitive detectors with a resolution of 3.5 μm.
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able to trigger on a much “cleaner” beam, as it has not yet
been perturbed by penetration of the crystal. When placing
the scintillators after the crystal, the initial direction of each
particle determined by M1 and M2 has not yet been
perturbed by the penetration of the scintillators before it
hits the crystal. In practice we have not seen any difference
between the two placements.
For each beam configuration a background measurement

has been made where the radiation is measured with the
target crystal removed. The background consists of photons
produced by bremsstrahlung from the beam hitting material
such as vacuum windows, scintillators, collimators, and air
gaps upstream of the large magnet. This background
spectrum is subtracted from each measurement with a
target resulting in a pure crystal spectrum. To mimic the
experimental conditions, a simulation of the background
spectrum is made by placing material in the beam path
matching that which is present in the experiment.
Simulated spectra with the target crystal in place then
includes the material producing the background photons,
and from those we subtract the simulated background with
no crystal installed to obtain the pure crystal spectra. The
simulated background agrees well with the background
measured in the experiment.

IV. RESULTS AND DISCUSSION

When the beam divergence is significantly larger than
the critical Lindhard angle, as is the case in our experi-
ments, many particles in the beam are initially outside the
channeling region. As a result, the average value of the
strong-field parameter, χ̄, which the beam particles are
exposed to, will be different from that experienced if they
were all immediately channeled. For positrons in the planar
channeling regime, χ̄ will be larger for the full beam than
for channeled positrons. For electrons incident on a crystal
oriented along an axis, χ̄ will be smaller for the full beam of
electrons than for channeled electrons. Simulated values of

χ̄,
ffiffiffiffiffi
χ2

q
and expected energy loss Δ from Eq. (4) for

different energies, crystals, and entry angles are listed in
Table II.
In the analysis of the experimental data and in our

simulations we make various cuts on the angle of incidence
of the projectiles in order to vary those parameters that are
essential for our investigation. Among these, the strong-
field parameter, defined in Eq. (2), plays a dual role. In
itself the magnitude of χ determines how strongly the
spectra are influenced by quantum effects like recoil and
spin. Entering the ratio, η, of the radiative damping force to

TABLE II. The average strong-field parameter χ̄, the root mean square of the strong field parameter
ffiffiffiffiffi
χ2

q
, the expected energy loss Δ

from Eq. (4), the average energy loss of the particles according to the trajectory ΔELL for trajectories calculated using the LL force, the
fractional difference between average energy lost according to the trajectory and according to the full spectrum r ¼
ΔEspectrum=ΔEtrajectory for trajectories calculated using the Lorentz equation including the LL force without and with the GðχÞ
correction, rLL and rLL;GðχÞ respectively. The spectral energy loss is calculated with the BCK model using the CES. Data is shown for the

different cuts, crystals, crystal thicknesses dc, and energies E used in the experiment. The values of χ̄,
ffiffiffiffiffi
χ2

q
, Δ, and ΔELL are evaluated

using the GðχÞ correction for the electrons and the pure LL for the positrons, while rLL;GðχÞ is calculated using the GðχÞ correction and
rLL is calculated without for both positrons and electrons.

Crystal dc E Cut χ̄
ffiffiffiffiffi
χ2

q
Δ ΔELL rLL rLL;GðχÞ

C h100i 1.0 mm 40 GeV No cut 0.0305 0.050 40% 26% 0.52 0.80
2ψ1 < ψ < 4ψ1 0.0293 0.048 37% 24% 0.50 0.76

ψ1 > ψ 0.0337 0.054 47% 20% 0.59 0.91
80 GeV No cut 0.0563 0.091 68% 34% 0.40 0.75

2ψ1 < ψ < 4ψ1 0.0551 0.090 66% 33% 0.58 0.78
ψ1 > ψ 0.0640 0.101 83% 42% 0.49 0.93

1.5 mm 40 GeV No cut 0.0282 0.046 52% 34% 0.54 0.80
2ψ1 < ψ < 4ψ1 0.0277 0.046 50% 33% 0.52 0.77

ψ1 > ψ 0.0311 0.050 61% 41% 0.60 0.91
80 GeV No cut 0.0511 0.084 86% 45% 0.42 0.75

2ψ1 < ψ < 4ψ1 0.0505 0.084 85% 44% 0.43 0.77
ψ1 > ψ 0.0576 0.093 104% 54% 0.51 0.93

Si (110) 1.1 mm 50 GeV No cut 0.0155 0.021 5% 6% 0.66 0.74
ψ < 30 μrad 0.0140 0.017 4% 5% 0.84 0.94

2.0 mm No cut 0.0155 0.020 9% 12% 0.67 0.75
ψ < 30 μrad 0.0130 0.017 7% 9% 0.84 0.94

4.2 mm No cut 0.0143 0.017 17% 21% 0.68 0.75
ψ < 30 μrad 0.0124 0.014 13% 16% 0.83 0.93

6.2 mm No cut 0.0139 0.017 24% 30% 0.71 0.78
ψ < 30 μrad 0.0116 0.014 17% 20% 0.84 0.93
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the external force as η ¼ γχα, Eq. (3), the magnitude of χ
further reflects the magnitude of the radiation reaction at
given projectile energy. We wish to minimize quantum
effects but aim to maximize the radiation reaction.
Selecting particles with different impact angles, for in-
stance aiming for those initially channeled versus excluding
such particles, is one way of trying to learn how best to
handle this conflict of interests. Another parameter we vary
by making specific selections in angle of incidence is the

ratio of the opening angle of the radiation cone to the
typical angle of excursion of the projectiles whose motion
in first approximation is governed by the continuum crystal
potential. This parameter, which typically varies much
more between the cuts than the strong-field parameter, is
a measure of how well a constant-field approximation for
the radiation-emission process will work.
For the positrons, an angular cut selecting particles with

angles smaller than 30 μrad to the planar direction is made.

FIG. 4. Radiation power spectra obtained for 50 GeV positrons passing 1.1, 2.0, 4.2, and 6.2 mm thick silicon crystals aligned with the
(110) plane, and the corresponding amorphous spectra. Only particles with entry angle between �30 μrad with respect to the crystal
planes are included. The two topmost figures show experimental data and calculations obtained with a beam with a divergence of
σ⊥ ¼ 100 μrad in the direction transverse to the plane, while the three remaining figures are obtained for a beam with a divergence of
σ⊥ ¼ 85 μrad. The theoretical spectra calculated using the substitution model in the CES are shown for trajectories deriving from the LL
equation (“RR sim”) as red solid lines and for Lorentz-force trajectories (“noRR sim”) as yellow dashed lines. The simulated amorphous
spectra (“Amorphous sim”) is shown in solid green curves. The data from the planar aligned crystal (“Aligned exp”) is shown in blue
triangles while the data from the amorphous setting (“Amorphous exp”) appear as purple squares.
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With this cut, which covers the channeling region (see
Table I), the maximum value of χ̄ is reached for the thinnest
crystal, 1.1 mm, which is χ̄ ≈ 0.014, otherwise it is χ̄ ≈
0.016 when no cuts are made. As a result, the positrons are
closer to the classical regime χ̄ ≪ 1 than in the previous
investigation [28] that was performed in the regime where
quantum stochasticity, spin, and single photon recoil played
a dominant role. We note that the value of χ̄ falls with
increasing thickness of the crystals because the energy of
the particle is lower in the later part of a thick crystal than in
the beginning. Data and simulations for positrons using the
30 μrad cut are shown in Figs. 4 and 9, while Figs. 5 and 10
are without angular cuts.
For the electrons we have made two angular cuts. The

first cut selects particles with angles smaller than the critical

angle (see Table I) and hence includes all initially chan-
neled electrons. The second cut selects particles in a
“donut” around the axis, with angles between 2 and 4
times the critical angle, and thereby excludes all channeled
electrons. For both cuts we have χ̄ ≈ 0.06 for the 1.0 mm
crystal at 80 GeV, with the value for the donut falling 14%
below that for the central cut. Such value of the strong-field
parameter is large enough that quantum effects significantly
influence the spectrum but, yet, it is smaller than that used
previously [28]. Spectra for the critical-angle cut are shown
in Fig. 7 and spectra for the donut cut appear in Fig. 8.
Figure 6 displays spectra for electrons without any cuts on
the angle of incidence.
As seen in Table II, Eq. (4) substantially overestimates

the energy loss compared to the simulated energy loss for

FIG. 5. As Fig. 4 but including all positrons in the beam.
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the electrons when including the GðχÞ correction. On the
other hand, when excluding GðχÞ everywhere, Δ is never
more than 1% off ΔELL (not shown in the table). For the
positrons the prediction underestimates the energy loss by
around 20% in all cases compared to the simulated results
without the GðχÞ correction. As the simulation includes
energy loss by incoherent scattering based on Eq. (29), we
expect that the simulated energy loss would be higher than
what Eq. (4) predicts. The ratio of energy lost due to
incoherent scattering and the LL equation is much lower for
the electrons than for the positrons where this ratio is
around 10%–20% and only a few percent for the electrons,
explaining the underestimated energy loss by Eq. (4).
“Amorphous spectra” are recorded and simulated for

both positrons and electrons by orienting the crystals far
from all low-index crystallographic orientations. These
spectra are in good agreement with the Bethe-Heitler
spectrum for amorphous targets of the same material and

density, when a combined detection efficiency of about 3=4
(with slight variations between targets due to the small
variation in the beam conditions) is taken into account.
Since the Bethe-Heitler spectrum is well known, this
constitutes a reassuring test of the simulation algorithm.
Having experimental data for both the axial and planar

channeling regimes provides us with the unique opportu-
nity to investigate the applicability of the LL equation over
a wide range of values of χ and to estimate the regions
where quantum effects can be treated as perturbations to the
classical theory.
Figure 4 shows power spectra for a 30 μrad angular cut

on the incident positron beam. The power spectrum is the
intensity spectrum divided by the crystal thickness, hence
the 1/mm dimension. A clear agreement is observed
between the experimental data and theoretical spectra based
on the LL equation and the substitution model for all crystal
thicknesses. When excluding the radiation-reaction force

FIG. 6. Radiation power spectra obtained for 40 GeV (left) and 80 GeV (right) electrons traversing 1.0 mm (bottom) and 1.5 mm (top)
thick diamond crystals aligned to the h100i axis, and the corresponding amorphous spectra. The beam divergences are ½σx; σy� ¼
½192; 89� μrad and ½σx; σy� ¼ ½129; 75� μrad for the 40 and 80 GeV beam, respectively, with x and y both approximately aligned with
(110) planes. The theoretical spectra calculated using the BCK model in the CES are shown for trajectories deriving from the LL
equation without the GðχÞ correction (RR sim) as green dotted lines, from the LL equation including the GðχÞ correction (“RR GðχÞ
sim”) as red solid lines, and for pure Lorentz-force trajectories (“noRR sim”) as yellow dashed lines. The spectra calculated using the
BCK model in the stochastic scheme (“stochastic sim”) are shown as dash-dotted blue lines while the simulated amorphous spectra
(“Amorphous sim”) appear solid purple. The data from the axially aligned crystal (“Aligned exp”) is shown in blue triangles while the
data from the amorphous setting (“Amorphous exp”) appear in purple squares.
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contained in the LL equation, the discrepancy between data
and theory increases with the crystal thickness. For entry
angles less than 30 μrad the coherent part of the spectrum
originating from the motion in continuum potential reaches
up to 10–15 GeV. Radiation beyond this point is due to
incoherent scattering, mainly multiple Coulomb scattering
on nuclei. For well-channeled positrons moving between a
set of planes, the average density of nuclei encountered
along their trajectories is much lower than in an amorphous
material. This means that the incoherent part of the aligned
spectrum is lower than the amorphous spectrum.
The positron data are taken with two beam configura-

tions with different angular divergence σ and beam direc-
tion with respect to the detectors, due to an unexpected
long-duration interruption of the SPS caused by technical
problems. The beam with the smaller divergence,
σ ¼ 85 μrad, has an entry angle which is slightly tilted
with respect to the telescope arm spanned by M1–M6,
meaning that less particles will reach M3–M6, but the beam
hits the scintillator hole with the same amount of particles
as with the σ ¼ 100 μrad beam. For this reason the tighter
beam has a lower intensity than the broader beam.
Figure 5 displays the power spectra for the full positron

beam. The peak intensity is essentially as for the cut, Fig. 4,
but due to the higher value of χ̄, the coherent part of the

spectra extends to higher photon energies. As is particularly
evident for the thicker crystals, the experimental data again
clearly favors the simulation based on the LL equation over
that accounting for the pure Lorentz force only. Since all
particles in the beam are included with a beam divergence
reaching σ ¼ 100 μrad, particles in the angular distribution
with large angles are likely not to reach M3–M6. Under this
condition it is challenging to simulate the experiment
because the position of the detectors and the beam entry
angles are input parameters of the simulation. As a result,
the discrepancies seen between data and simulation spectra
generally are larger for the full beam compared to the
spectra in Fig. 4 where angular cuts have been applied.
Nevertheless it is clear that inclusion of the LL damping
force is essential. With the full beam we do not see an effect
of beam focusing on the incoherent part of the spectrum
since only a minor fraction of the positrons are channeled.
Figure 6 shows power spectra for the full electron beam.

For electrons, the difference between the theoretical curves
including and excluding the radiation reaction as described
by the LL equation are large even for the 1 mm crystal. The
experimental data falls roughly halfway between the two
sets of theory curves in all cases. For the full electron beam
conditions (Table II), χ̄ varies from 0.03 to 0.06. At such
values of χ̄, even though smaller than 1, the LL equation

FIG. 7. As Fig. 6 but including only electrons with entry angle less than the critical Lindhard angle ψ1 with respect to the crystal axis.
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overestimates the radiation emitted leaving the electrons
with less energy going forward through the crystal. This
results in lowering the emission rate for the remaining
length of the crystal and an underestimation of the total
radiation emitted. The conditions are reflected by the
damping factor GðχÞ attaining values considerably less
than 1, for instance, Gð0.06Þ ¼ 0.76. When multiplying
GðχÞ on the radiative damping force in the LL equation the
resulting radiation spectra fit the experimental findings
quite well but slightly underestimate the data. The stochas-
tic scheme, which is not based on the LL equation, also
produces spectra that fit the experimental data well with, in
general, even less deviations.
By comparing the electron and the positron data, it is

evident that electrons at lower energy on axis produce a
much higher enhancement over the amorphous spectrum
than do positrons at a higher energy on a plane. One reason
is that axial continuum potentials are stronger than their
planar counterparts by a factor of up to about 10, another is
that electrons spend more time than positrons in the vicinity
of the nuclei which is the location of the strongest electric
field. Typically the total radiative energy loss is higher for
the electrons than for the positrons for the crystals used in
our experiments, cf. Table II.
Figure 7 displays power spectra for electrons excluding

ones incident to the crystal axis at angles larger than the

Lindhard critical angleψ1; see Table I for actual values ofψ1.
With this cut, the radiation process for electrons following
trajectories determined by the continuum potential proceeds
as if they are in a locally constant electromagnetic field. This
is especially true for the highest electron energy, cf. Sec. II C.
Accordingly, the simulated spectra, based on theLLequation
with the G-factor included on the damping term, fit the
experimental data very well. Generally, these spectra repro-
duce the data as well as does the stochastic scheme which
underlines the effectiveness of the LL equation when the
quantum effects in the radiation process are properly
included. Only near the peak in some of the spectra does
the stochastic scheme appear slightly superior.
Applying the cuts in Fig. 7 to the incident electron beam

we see that more photons are emitted on average per
electron than for the full beam but also that the hardness of
the spectrum is lower than in the full-beam spectra. By
comparing Figs. 6 and 7 we observe that confinement of
particles to the axis enhances the spectrum more at lower
than at higher energies, with the high-energy end of the
spectrum essentially remaining the same up to focusing
effects due to channeling.
Figure 8 shows power spectra where the incoming

electrons are confined to entry angles between 2ψ1 and
4ψ1 with respect to the crystal axis. These spectra are
similar to the spectra obtained with the full beam, Fig. 6.

FIG. 8. As Fig. 6 but including only electrons with entry angle between 2ψ1 and 4ψ1 with respect to the crystal axis.
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Since much of the beam lies within this cut, the similarity
between spectra is no surprise. It is worth noting that the
agreement between the stochastic curve and the simulation
based on LL equation, including the damping factor GðχÞ,
is nearly perfect around the peak. Yet, when electrons move
well outside the channeling region, the procedure of
applying the damping factor is less justified as G pertains
to emission in a constant field.

The photon emission spectra, shown in Figs. 4 to 8,
display features that cannot be reproduced if only the
Lorentz force is used to calculate the particle trajectories.
Moreover, the agreement is remarkably good between our
experimental data and theory that includes radiation reac-
tion according to the LL equation with proper inclusion of
quantum effects. Nevertheless, due to the unavoidable
quantum corrections introduced in the radiation spectra,

FIG. 9. Enhancement spectra for 50 GeV positrons passing 1.1, 2.0, 4.2, and 6.2 mm thick silicon crystals aligned to the (110) plane.
Only particles with entry angle between �30 μrad with respect to the crystal planes are included. Solid lines pertain to spectra where
radiation-reaction effects are included via the substitution model in the CES (“RR”). Dashed lines pertain to spectra where radiation-
reaction effects are excluded (“noRR”). Triangles show experimental data with statistical error bars (“exp”). The purple and green lines
show pure theoretical calculations of the channeling radiation divided by the analytical Bethe-Heitler bremsstrahlung spectrum
(“Theory”), while the red and yellow curves display enhancement spectra where both the amorphous and the channeling spectrum have
been through the experimental simulation and analysis routine (“sim”).
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there exists a discrepancy between the energy loss pre-
dicted by the LL equation and the energy loss obtained by
integrating the radiation spectrum. In the planar channeling
regime, this discrepancy is 16%–17% for well-channeled
particles and approximately 30% for the full positron beam
(see Table II). The discrepancy easily reaches 50% for the
electrons in our experiment. The discrepancy is smallest for
well-channeled positrons since they emit the relatively
softest radiation whereby a smaller quantum correction
results. Nonchanneled positrons and the electrons have a
larger discrepancy. The discrepancy is generally largest in
the axial channeling regime due to the stronger fields. As is
evident from Table II, inclusion of the damping factor GðχÞ
improves the situation dramatically by producing a sub-
stantial reduction of discrepancies. The modest energy loss

difference of 7% for ψ < ψ1, when including the damping
factor at the highest electron energy, can be taken as an
indication of the quality of the procedure applied and
validates the constant-field approach to the radiation
process for high-energy channeled electrons.
The agreement between experiment and theory-based

simulation where we include the LL equation is supported
by looking at the enhancement spectra on Figs. 9 and 10.
Here the theory-based simulation curves do not rely on an
intricate analysis algorithm as we divide the theoretical
curves by the analytical Bethe-Heitler spectrum. These
enhancement spectra are directly comparable to the exper-
imental enhancement spectra as the perturbations to the
spectra from the experimental setup are removed during
division. In addition, the experimental data is directly based

FIG. 10. As Fig. 9 but including all positrons in the beam.

C. F. NIELSEN et al. PHYS. REV. D 102, 052004 (2020)

052004-18



on data obtained from the aligned crystal divided by data
obtained in the amorphous orientation (Bethe-Heitler), and
are thus, at least to first order, independent of selection
criteria for the pairs, detection efficiencies etc. Due to poor
statistics of the amorphous data set for the diamond single
crystals we do not show similar figures for the axial case
but since the simulation includes the same physical effects
the same conclusion can be drawn.

V. CONCLUSION

We investigated the necessity of radiation reaction for
several unique cases near the classical limit in aligned crystals.
The energy losses are moderate in the planar channeling
regime for 50 GeV positrons so it could be expected that the
spectra obtained neglecting radiation-reaction effects would
be roughly adequate, but the experiments and simulations
clearly show that this is not the case. The results of our
experiments demonstrate that the pure Lorentz force is
inadequate to describe the dynamics of electric charges when
moving in strong electromagnetic fields. The simulations
without radiation reaction overestimate the emitted radiation
for both axial and planar channeling, even with χ̄ ≪ 1. In
contrast, predictions according to the Landau-Lifshitz equa-
tion, when accounting for the photon recoil in the radiation
spectra through the substitution model, result in remarkable
agreement with the experimental radiation spectra pertaining
to planar channeled 50 GeV positrons. For the axially
channeled electrons in our experiment it is even more
essential to include the radiation reaction than for the
positrons. For axially channeled 40 and 80 GeV electrons
we find that theoretical spectra calculated using trajectories
obtained from the Landau-Lifshitz equation with the radia-
tion-reaction force multiplied by GðχÞ convincingly repro-
duce our experimental data for all cuts, energies, and crystal
thicknesses when accounting for photon recoil and particle
spin. Due to the large energy loss experienced by the particle
as it traverses the crystal, exclusion of the GðχÞ correction
leads to an underestimation of the emitted radiation intensity
in the latter parts of the crystal. We note further that the
stochastic scheme based on the BCK model generally
reproduces the theoretical spectra well and, as noted also
in [34], that this scheme does not rely on the constant-field
approximation which is the origin of the GðχÞ factor.

Recording the radiation emitted at different values of the
strong-field parameter, χ̄ ≈ 0.01–0.06 (see Table II), has
allowed us to probe the border between the classical and the
quantum-mechanical description of radiation reaction. We
find that particularly planar channeling of 50 GeV positrons
provides a regime where quantum corrections cannot be
neglected but they also do not dominate, a compromise that
must be made to illustrate the effect of the LL equation. We
further see that even with a relatively small value of the
strong-field parameter, as χ ≃ 0.03 encountered by 40 GeV
electrons in the axial channeling regime of a diamond
crystal aligned along the h100i axis, quantum effects
(particle spin, photon recoil, and reduction of the radiation
intensity) have a significant influence on the radiation-
emission spectrum. The most drastic influence of radiation
reaction encountered in our experiments, and of quantum
effects, appears for axially channeled electrons at the
highest applied energy, 80 GeV, where χ attains its largest
value χ ≃ 0.06.
The detailed results and analysis presented above clearly

demonstrate that the Landau-Lifshitz equation, with suit-
able modifications, is applicable in a very wide regime of
combinations of particle energies, crystal orientations,
materials, and thicknesses to describe the phenomenon
of radiation reaction. Overall, our results strongly point
towards the LL equation as a very satisfactory answer to the
century-old problem of radiation reaction in classical
electrodynamics.
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T. Pérez, T. Vinci, and M. Grech, From quantum to classical
modeling of radiation reaction: A focus on the radiation
spectrum, arXiv:1802.02927.

[28] T. N. Wistisen, A. Di Piazza, H. V. Knudsen, and
U. I. Uggerhøj, Experimental evidence of quantum radia-
tion reaction in aligned crystals, Nat. Commun. 9, 795
(2018).

[29] J. M. Cole et al., Experimental Evidence of Radiation
Reaction in the Collision of a High-Intensity Laser Pulse
with a Laser-Wakefield Accelerated Electron Beam, Phys.
Rev. X 8, 011020 (2018).

[30] K. Poder et al., Experimental Signatures of the Quantum
Nature of Radiation Reaction in the Field of an Ultraintense
Laser, Phys. Rev. X 8, 031004 (2018).

[31] R. T. Hammond, Relativistic particle motion and radiation
reaction in electrodynamics, Electron. J. Theor. Phys. 6, 221
(2010).

[32] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H.
Keitel, Extremely high-intensity laser interactions with
fundamental quantum systems, Rev. Mod. Phys. 84, 1177
(2012).

[33] D. Burton and A. Noble, Aspects of electromagnetic
radiation reaction in strong fields, Contemp. Phys. 55,
110 (2014).

[34] T. N. Wistisen, A. Di Piazza, C. F. Nielsen, A. H. Sørensen,
and U. I. Uggerhøj (CERN NA63 Collaboration), Quantum
radiation reaction in aligned crystals beyond the local
constant field approximation, Phys. Rev. Research 1,
033014 (2019).

[35] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,
Quantum Electrodynamics (Pergamon, New York, 1989).

[36] M. Khokonov, Self-focusing and angular distribution of
electrons moving in the field of atomic rows, JETP Lett. 56,
333 (1992).

[37] M. Khokonov, Angular distributions of relativistic charged
particles in oriented crystals, JETP 76, 849 (1993).

[38] J. Lindhard, Influence of crystal lattice on motion of
energetic charged particles, Mat. Fys. Medd. Dan. Vid.
Selsk 34, No. 14, 1 (1965).

[39] J. U. Andersen, Notes on channeling, Aarhus University,
2018, https://phys.au.dk/forskning/publikationer/lecture-
notes/.

[40] P. A. Doyle and P. S. Turner, Relativistic Hartree–Fock
X-ray and electron scattering factors, Acta Crystallogr.
Sect. A 24, 390 (1968).

[41] J. U. Andersen, E. Bonderup, E. Lægsgaard, B. B. Marsh,
and A. H. Sørensen, Axial channeling radiation from MeV
electrons, Nucl. Instrum. Methods Phys. Res. 194, 209
(1982).

[42] O. H. Nielsen and W. Weber, Displacement correlations in
covalent semiconductors, J. Phys. C 13, 2449 (1980).

[43] A. V. Korol, A. V. Solov’yov, and W. Greiner, Channeling
and Radiation in Periodically Bent Crystals, Springer Series
on Atomic, Optical and Plasma Physics Vol. 69 (Springer-
Verlag, Berlin, 2013).

C. F. NIELSEN et al. PHYS. REV. D 102, 052004 (2020)

052004-20

https://doi.org/10.1103/RevModPhys.77.1131
https://doi.org/10.1016/0168-583X(96)00349-7
https://doi.org/10.1016/0168-583X(96)00349-7
https://doi.org/10.1016/j.physletb.2019.02.034
https://doi.org/10.1007/s10701-019-00279-7
https://doi.org/10.1103/PhysRevLett.113.134801
https://doi.org/10.1103/PhysRevLett.112.015001
https://doi.org/10.1103/PhysRevE.89.021201
https://doi.org/10.1103/PhysRevE.89.021201
https://doi.org/10.1103/PhysRevLett.113.044801
https://doi.org/10.1103/PhysRevLett.113.044801
https://doi.org/10.1103/PhysRevE.91.023207
https://doi.org/10.1088/1367-2630/17/5/053025
https://doi.org/10.1088/1367-2630/17/5/053025
https://doi.org/10.1103/PhysRevE.91.053105
https://doi.org/10.1088/1367-2630/18/7/073035
https://doi.org/10.1103/PhysRevLett.116.044801
https://doi.org/10.1016/j.physletb.2016.10.083
https://doi.org/10.1103/PhysRevLett.118.105004
https://doi.org/10.1017/S0022377817000642
https://doi.org/10.1017/S0022377817000642
https://doi.org/10.1103/PhysRevE.97.043209
https://doi.org/10.1103/PhysRevE.97.043209
https://arXiv.org/abs/1802.02927
https://doi.org/10.1038/s41467-018-03165-4
https://doi.org/10.1038/s41467-018-03165-4
https://doi.org/10.1103/PhysRevX.8.011020
https://doi.org/10.1103/PhysRevX.8.011020
https://doi.org/10.1103/PhysRevX.8.031004
https://doi.org/10.1103/RevModPhys.84.1177
https://doi.org/10.1103/RevModPhys.84.1177
https://doi.org/10.1080/00107514.2014.886840
https://doi.org/10.1080/00107514.2014.886840
https://doi.org/10.1103/PhysRevResearch.1.033014
https://doi.org/10.1103/PhysRevResearch.1.033014
https://phys.au.dk/forskning/publikationer/lecture-notes/
https://phys.au.dk/forskning/publikationer/lecture-notes/
https://phys.au.dk/forskning/publikationer/lecture-notes/
https://phys.au.dk/forskning/publikationer/lecture-notes/
https://doi.org/10.1107/S0567739468000756
https://doi.org/10.1107/S0567739468000756
https://doi.org/10.1016/0029-554X(82)90517-1
https://doi.org/10.1016/0029-554X(82)90517-1
https://doi.org/10.1088/0022-3719/13/13/005


[44] M. Tanabashi et al. (Particle Data Group), Review of
Particle Physics, Phys. Rev. D 98, 030001 (2018).

[45] G. R. Lynch and O. I. Dahl, Approximations to multiple
Coulomb scattering, Nucl. Instrum. Methods Phys. Res.,
Sect. B 58, 6 (1991).

[46] A. M. Taratin, Particle channeling in a bent crystal, Phys.
Part. Nucl. 29, 437 (1998).

[47] E. Bonderup, Penetration of charged particles throughmatter,
Aarhus University, 1981, https://phys.au.dk/forskning/
publikationer/lecture-notes/.

[48] T. V. Jensen and A. H. Sørensen, Bremsstrahlung from
relativistic bare heavy ions: Nuclear and electronic contri-
butions in amorphous and crystalline materials, Phys. Rev.
A 87, 022902 (2013).

[49] J. Lindhard, Quantum-radiation spectra of relativistic par-
ticles derived by the correspondence principle, Phys. Rev. A
43, 6032 (1991).

[50] E. J. Williams, Correlation of certain collision problems
with radiation theory, Mat. Fys. Medd. Dan. Vid. Selsk 13,
No. 4, 1 (1935).

[51] A. N. Matveev, The role of spin in the radiation from a
“Radiating” electron, Sov. Phys. JETP 4, 409 (1957).

[52] A. Belkacem, N. Cue, and J. Kimball, Theory of crystal-
assisted radiation and pair creation for imperfect alignment,
Phys. Lett. 111A, 86 (1985).

[53] J. Kimball, N. Cue, and A. Belkacem, Crystal-assisted
quantum electrodynamics; pair production and radiation,
Nucl. Instrum. Methods Phys. Res., Sect. B 13, 1 (1986).

[54] T. N. Wistisen, Quantum synchrotron radiation in the case of
a field with finite extension, Phys. Rev. D 92, 045045 (2015).

[55] J. S. Bell, Bremsstrahlung from multiple scattering, Nucl.
Phys. 8, 613 (1958).

[56] K. K.Andersen, J. Esberg,H.Knudsen, H. D. Thomsen, U. I.
Uggerhøj, P. Sona, A.Mangiarotti, T. J. Ketel, A. Dizdar, and
S. Ballestrero (CERN NA63 Collaboration), Experimental
investigations of synchrotron radiation at the onset of the
quantum regime, Phys. Rev. D 86, 072001 (2012).

[57] A. Xavier, A simulation code for channeling radiation by
ultrarelativistic electrons or positrons, Nucl. Instrum. Meth-
ods Phys. Res., Sect. B 48, 278 (1990).

[58] C. F. Nielsen, GPU accelerated simulation of channeling
radiation of relativistic particles, Comput. Phys. Commun.
252, 107128 (2020).

[59] https://nice.ku.dk/.

RADIATION REACTION NEAR THE CLASSICAL LIMIT IN … PHYS. REV. D 102, 052004 (2020)

052004-21

https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1016/0168-583X(91)95671-Y
https://doi.org/10.1016/0168-583X(91)95671-Y
https://doi.org/10.1134/1.953085
https://doi.org/10.1134/1.953085
https://phys.au.dk/forskning/publikationer/lecture-notes/
https://phys.au.dk/forskning/publikationer/lecture-notes/
https://phys.au.dk/forskning/publikationer/lecture-notes/
https://phys.au.dk/forskning/publikationer/lecture-notes/
https://doi.org/10.1103/PhysRevA.87.022902
https://doi.org/10.1103/PhysRevA.87.022902
https://doi.org/10.1103/PhysRevA.43.6032
https://doi.org/10.1103/PhysRevA.43.6032
https://doi.org/10.1016/0375-9601(85)90811-4
https://doi.org/10.1016/0168-583X(86)90461-1
https://doi.org/10.1103/PhysRevD.92.045045
https://doi.org/10.1016/0029-5582(58)90185-8
https://doi.org/10.1016/0029-5582(58)90185-8
https://doi.org/10.1103/PhysRevD.86.072001
https://doi.org/10.1016/0168-583X(90)90122-B
https://doi.org/10.1016/0168-583X(90)90122-B
https://doi.org/10.1016/j.cpc.2019.107128
https://doi.org/10.1016/j.cpc.2019.107128
https://nice.ku.dk/
https://nice.ku.dk/
https://nice.ku.dk/

