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Frequency Regulation with Heterogeneous Energy
Resources: A Realization using Distributed Control
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Jorge Cortés Jan Kleissl Sonia Martı́nez Byron Washom

Abstract—This paper presents one of the first real-life demon-
strations of coordinated and distributed resource control for
secondary frequency response in a power distribution grid. A
series of tests involved up to 69 heterogeneous active distributed
energy resources consisting of air handling units, unidirectional
and bidirectional electric vehicle charging stations, a battery en-
ergy storage system, and 107 passive distributed energy resources
consisting of building loads and solar photovoltaic systems. The
distributed control setup consists of a set of Raspberry Pi end-
points exchanging messages via an ethernet switch. Actuation
commands for the distributed energy resources are obtained by
solving a power allocation problem at every regulation instant
using distributed ratio-consensus, primal-dual, and Newton-like
algorithms. The problem formulation minimizes the sum of
distributed energy resource costs while tracking the aggregate set-
point provided by the system operator. We demonstrate accurate
and fast real-time distributed computation of the optimization
solution and effective tracking of the regulation signal over
40 min time horizons. An economic benefit analysis confirms
eligibility to participate in an ancillary services market and
demonstrates up to $53k of potential annual revenue for the
selected population of distributed energy resources.

I. INTRODUCTION

Many recent efforts seek to integrate renewable energy re-
sources with the power grid to reduce the carbon footprint. The
high variability associated with wind and solar power can be
balanced using distributed energy resources (DERs) providing
ancillary services such as frequency regulation. Consequently,
there is a growing interest among market operators in DER
aggregations with flexible generation and load capabilities
to balance fluctuations in grid frequency and minimize area
control errors (ACE). The fast ramping rate and minimal
marginal standby cost put many DERs at an advantage against
conventional generators and make them suitable for participa-
tion in the frequency regulation market.

The fast ramping rates reduce the required power capacity
of DERs to only 10% of an equivalent generator to balance
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a frequency drop within 30 s [1]. However, most individual
DERs have small capacities, typically on the order of kWs
compared to 10 s of MW for conventional frequency control
resources. Commanding the required thousands to millions
of DERs to replace existing frequency regulation resources
over a large balancing area entails aggregating DERs that
are distributed at end points all over the grid on customer
premises. The dynamic nature, large number, and distributed
location of DERs requires coordination. This is in contrast to
existing frequency regulation [2] implementation with conven-
tional energy resources. For example, California Independent
System Operator (CAISO) requires all generators to submit
their bids once per regulation interval. Then, the setpoints
are assigned centrally to all resources every 2-4 s without
any consideration of operational costs [3]. While distributed
control has the potential to enable DER participation in the
frequency regulation market (e.g., [4]), there is a general lack
of large-scale testing to prove its effectiveness for widespread
adoption by system operators. The 2017 National Renew-
able Energy Laboratory Workshop on Autonomous Energy
Grids [5] concluded that “A major limitation in developing new
technologies for autonomous energy systems is that there are
no large-scale test cases (...). These test cases serve a critical
role in the development, validation, and dissemination of new
algorithms”.

The results of this paper are the outcome of a project under
the ARPA-e Network Optimized Distributed Energy Systems
(NODES) program1, which postulates DER aggregations as
virtual power plants that enable variable renewable penetra-
tions of at least 50%. The vision of the NODES program was
to employ state-of-the-art tools from control systems, com-
puter science, and distributed systems to optimally respond
to dynamic changes in the grid by leveraging DERs while
maintaining customer quality of service. The NODES program
required testing with at least 100 DERs at power. Here, we
demonstrate the challenges and opportunities of testing on a
heterogeneous fleet of DERs for eventual operationalization of
optimal distributed control at frequency regulation time scales.

Literature Review. To the best of our knowledge, real-world
testing of frequency regulation by DERs has been limited.
A Vehicle-to-Grid (V2G) electric vehicle (EV) [6] and two
Battery Energy Storage System (BESS) [7] provided frequency
regulation. 76 bitumen tanks were integrated with a simplified
power system model to provide frequency regulation via a
decentralized control algorithm in [8]. In buildings, a decen-
tralized control algorithm controlled lighting loads in a test

1https://arpa-e.energy.gov/arpa-e-programs/nodes
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room [9], centralized frequency control was applied to an air
handling unit (AHU) [10], [11], an inverter and four household
appliances [12], and four heaters in different rooms [13]. A
laboratory home with an EV and an AHU, and a number
of simulated homes were considered for demand response
in [14] through an aggregator at a 10 s level. Technologies for
widespread, but centrally controlled, cycling of air condition-
ers directly by utilities cf. [15] and aggregators are common
place for peak shifting, but occur over time scales of minutes
to hours. Industrial solutions enabling heterogeneous DERs to
track power signals also exist, but they are either centralized,
cf. [16] or require all-to-all communication [17].

Our literature review exposes the following limitations: (i)
centralized control or need for all-to-all communication [6],
[7], [10]–[17], which does not scale to millions of DERs;
(ii) small numbers of DERs [6], [7], [10]–[14]; (iii) lack of
diversity in DERs [6]–[11], [13], with associated differences in
tracking time scales and accuracy. No trial has been reported
that demonstrated generalizability to a real scenario with (i)
scalable distributed control and a (ii) large number of (iii)
heterogeneous DERs.

Statement of Contributions. To advance the field of real-
world testing of DERs for frequency control, we conduct a
series of tests using a group of up to 69 active and 107
passive heterogeneous DERs on the University of California,
San Diego (UCSD) microgrid [18]. To the best of the authors’
knowledge, this is the first work to consider such a large, di-
verse portfolio of real physical DERs for secondary frequency
response. As such, the major contributions of this work are:
• A detailed account of the testbed, including the DER

actuation and sampling interfaces, the distributed opti-
mization setup, and communication framework.

• A description of techniques to work around technical
barriers, provision of lessons learned, and suggestions for
future improvement.

• Evaluation of the performance of both the cyber and
physical layers, including an evaluation of eligibility
requirements for and the economic benefit of participating
in the ancillary services market.

Paper Overview. Frequency regulation is simulated on the
UCSD microgrid using real controllable DERs (Section III-C)
to follow the Pennsylvania-New Jersey-Maryland Interconnec-
tion (PJM) RegD signal [19] interpolated from 0.5Hz to 1Hz
(Sections III-B). The DER setpoint tracking is formulated as a
power allocation problem at every regulation instant (Section
III-A), and uses three types of provably convergent distributed
algorithms from [20]–[23] to solve the optimization problem;
see Appendix A. Setpoints are computed distributively on
multiple Raspberry Pi’s communicating via ethernet switches
(Section III-D). The setpoints are implemented on up to
176 DERs at power using dedicated command interfaces via
TCP/IP communication (Section III-E), the DER power out-
puts monitored (Section III-F), and their tracking performance
evaluated (Section III-G). Results (Section V) for the various
test scenarios described in Section IV show that the test
system tracks the signal with reasonable error despite delays
in response and inaccurate tracking behavior of some groups
of DERs, and qualifies for participation in the PJM ancillary
services market .

II. PROBLEM SETTING

This paper validates real-world DER controllability for par-
ticipation in secondary frequency regulation through demon-
stration tests implemented on a real distribution grid. The
tests showcase the ability of aggregated DERs to function as
a single market entity that responds to frequency regulation
requests from the independent system operator (ISO) by opti-
mally coordinating DERs. The goal is to monitor and actuate
a set of real controllable DERs to collectively track a typical
automatic generation control (AGC) signal issued by the ISO.

Three different distributed coordination schemes optimize
the normalized contribution of each DER to the cumulative
active power signal. Unlike simulated models, the use of real
power hardware exposes implementation challenges associated
with measurement noise, sampling errors, data communica-
tion problems, and DER response. To that end, precise load
tracking is pursued at timescales that differ by DER type
consistent with individual DER responsiveness and commu-
nication latencies, yet meet frequency regulation requirements
in aggregation.

The 69 kV substation and 12 kV radial distribution system
owned by UCSD to operate the 5 km2 campus was the
chosen demonstration testbed. It has diverse energy resources
with real-time monitoring and control capabilities, allowing
for active load tracking. This includes over 3 MW of solar
photovoltaic (PV) systems, 2.5 MW/5 MWh of BESS, building
heating ventilation and air conditioning (HVAC) systems in
14 million square feet of occupied space, and over 200
unidirectional V2G (V1G) [24] and V2G EV chargers. The
demonstration tests used a representative population of up to
176 such heterogeneous DERs to investigate tracking behavior
of specific DER types as well as their cooperative tracking
abilities. While the available DER capacity at UCSD far
exceeds the minimum requirements for an ancillary service
provider set by most ISOs (typically ∼ 1 MW), logistical
considerations and controller capabilities dictated the choice
of a DER population size with less aggregate power capacity
(up to 184 kW) for this demonstration. Since this magnitude
of power is insufficient to measurably impact the actual grid
frequency, we chose to simulate frequency regulation by
following a frequency regulation signal.

III. TEST ELEMENTS

Here, we elaborate on the different elements of the vali-
dation tests. These include the optimization formulation em-
ployed to compute DER setpoints (Section III-A), the ref-
erence AGC signal (Section III-B) and types of DERs used
to track it (Section III-C), the computing platform (Section
III-D), the actuation (Section III-E) and monitoring interfaces
(Section III-F), the performance metrics used to assess the cy-
ber and physical layers, and eligibility for market participation
(Section III-G).

A. Optimization Formulation

The optimization model for AGC signal tracking using
DERs can be mathematically stated as a separable resource
allocation problem subject to box constraints as follows:
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min
p∈Rn

f(p) =
n∑
i=1

fi(pi),

s.t.
n∑
i=1

pi = Pref,

pi ∈ [p
i
, pi], ∀i ∈ N = {1, . . . , n}.

(1)

The agents i ∈ N each have local ownership of a decision
variable pi ∈ R, representing an active power generation or
consumption quantity (setpoint), a local convex cost function
fi, and local box constraints [p, p], representing active power
capacity limits. Pref is a given active power reference value
determined by the ISO and transmitted to a subset of the agents
as problem data, see e.g. [25]. Pref is a signal that changes
over time, so a new instance of (1) is solved in real-time 1 s
intervals corresponding to these changes. Note that with just
1 s difference between the instances, the box constraints might
also change due to the limited ramp rates of DERs. In this
work we consider them constant and assume (1) is feasible.

For the validation tests, we used two types of cost func-
tions: constant and quadratic. Constant functions were used
for the Ratio-Consensus (RC) solver [20], which turns the
optimization into a feasibility problem. Quadratic functions
were used for the primal-dual based (PD) [21], [22] and
Distributed Approximate Newton Algorithm (DANA) [23]
methods. In short, RC prescribes dynamics which seek to
achieve consensus on a ratio of operating capacity with respect
to p

i
, pi so that the agents achieve

∑
i pi = Pref. PD and

DANA each are Lagrangian-based dynamics; in particular, PD
is gradient-based (“first-order”) and DANA is Newton-based
(“second-order”). See Appendix A for more technical detail
on these algorithms. The quadratic functions were artificially
chosen to produce satisfactorily diverse and representative
solutions to (1) for each DER population. Costs associated
with a physical or economic metric (e.g. deviation from a
building setpoint for AHUs, user-specified charging demands
for V1G and V2Gs, and resistive losses in a BESS) are of
great interest, but are far from trivial to model and thus not
the focus of this study. We split the total time period of
the signal, Pref into three equal segments, and implemented
RC, PD, and DANA in that order. Box constraints [p

i
, pi] are

given in Table I and were centered at zero for simplicity; for
example, an AHU i with 2 kW capacity has [p

i
, pi] = [−1, 1],

while a V2G j with ±5 kW capacity has [p
j
, pj ] = [−5, 5].

B. Regulation Signal

The 40 min RegD signal published by PJM [19] served as
the reference AGC signal for the validation tests, and was used
to obtain the value for Pref in (1). The normalized RegD signal,
contained in [−1, 1] (see Figure 1), was interpolated from
0.5 Hz to 1 Hz. The signal was then treated by subtracting the
normalized contributions of building loads and PV systems,
cf. Section III-C. Finally, the normalized signal was scaled by
a factor proportional to the total DER capacity

∑
i(pi − pi)

before sending to the optimization solvers. More precisely,

Pref = β

∑
i(pi − pi)

‖PRegD + PPV − Pb‖∞
(PRegD + PPV − Pb) , (2)

where PRegD refers to the normalized RegD signal data, PPV
and Pb respectively refer to the normalized PV generation and
building load data obtained from the UCSD ION server as
described in Section III-F, and 0 < β < 1 is an arbitrary
scaling constant. Note that this results in a different target
signal Pref for the different test scenarios considered in Sec-
tion IV due to the different power ratings of the DERs (cf.
Section III-C) used across the tests. For most test scenarios,
β = 0.75 to prevent extreme set points that would require
all DERs to operate at either pi or p

i
simultaneously, which

may be infeasible in some time steps due to slower signal
update times, see Table II. Each P in (2) is a vector with
2401 elements corresponding to each 1 s time step’s instance
of (1) over the 40 min time horizon.
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Fig. 1: Normalized PJM RegD signal.

C. DERs

The reference AGC signal was to be collectively tracked
using DERs consisting of HVAC AHUs, BESS, V1G and
V2G EVs, PV systems, and whole-building loads. Since PV
systems and (non-AHU) building loads were not controllable,
they participated in the test as passive DERs. Consequently,
the active DERs were commanded to track a modified target
signal derived by subtracting the net active power output of
passive DERs from the reference AGC signal and applying
appropriate scaling (cf. Section III-B). Table I lists the typical
net power capacity pi − pi of the different active DER types.

TABLE I: Typical power rating of active DER types

DER Type AHU V1G EV V2G EV BESS
Typical power

rating per DER type 2 kW 3.3 kW (Tests 0 & 1),
4.9 kW (Test 2) ± 5 kW ± 3 kW

The contribution of each active DER to the target signal
was defined with respect to a baseline power, around which
[p
i
, pi] was centered, to enable tracking of both positive and

negative ramps in the target signal. For DERs like V2G EVs
and BESS, which were capable of power adjustments in both
directions, the baseline was 0 kW. The baseline for V1G EVs
was defined to be halfway between their allowed minimum
and maximum charging rates, where the former was restricted
by the SAE J1772 charging standard to 1.6 kW. Similarly, the
baseline for AHUs was defined to be half of their power draw
when on. Further, since AHUs were limited to binary on-off
operational states, the continuous and arbitrarily precise AHU
setpoints obtained by solving (1) were rounded to the closest
discrete setpoint obtained from a combination of on-off states
before actuation.

AHU control was restricted, by UCSD Facilities Man-
agement, to specifying only DER setpoints and duration of
actuation; since building automation controllers could not be
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modified, model-based designs were impossible. This was to
avoid malfunctioning or disruptions to real physical infrastruc-
ture in the networked building management system that also
controls lighting, security, and fire protection systems.

D. Computing Setup
The DER active power setpoints were computed for the

entire 40-min test horizon prior to any device actuation using
a set of 9 Linux-based nodes. The nodes C1-C9 communicate
with each other over an undirected ring topology, cf. Fig. 2.
As one of the sparsest network topologies, where message
passing occurs only between a small number of neighbors, the
ring topology presents a challenging scenario for distributed
control. Since there were more active DERs than computing
nodes, the 9 nodes were mapped subjectively to the 69 active
DERs such that nodes C1-C2 computed the actuation setpoints
for the AHUs, C3 for V1G EVs, C4-C8 for V2G EVs and C9
for the BESS.

The computing steps are summarized in Algorithm 1. Each
computing node generated actuation commands as CSV files
containing the power setpoints for their respective group of
DERs at a uniform update rate of 1 Hz. Preliminary testing
revealed different response times across DER types, with
AHUs and V1G EVs exhibiting slower response than other
active DER types. DERs with response times greater than
1 s were subject to a stair-step control signal with a signal
update time consistent with DER responsiveness and constant
setpoints during intermediate time steps. Table II lists the
signal update times for the different DER types.

Algorithm 1 Computing process

Require: Map f : Ci → DER-type
1: Initialize time of last solution update tsol-updatei

= 0,
initial setpoints for DERs mapped to computing node Ci
as Pf(Ci), ∀i ∈ {1, . . . , 9}

2: for k = 0, . . . , 2400 do
3: for i = 1, . . . , 9 do
4: if k − tsol-updatei

== tsignal-updatei
then

5: Solve (1) to update Pf(Ci)(k)
6: tsol-updatei

= k
7: end if
8: Pf(Ci)(k)← Pf(Ci)(tsol-updatei

)
9: if mod(k, 60) == 0 then

10: Send Pf(Ci)(k) to DER type, f(Ci)
11: end if
12: end for
13: end for

E. Actuation Interfaces and Communication Framework
The actuation commands were issued using fixed IP com-

puters through dedicated interfaces that varied by DER type
as depicted in Fig. 2. The setpoints for AHUs were issued
through a custom Visual Basic program that interfaced with
the Johnson Control Metasys building automation software.
The power rate of the BESS was set via API-based com-
munication with a dedicated computer that controlled the
battery inverter. The V1G and V2G EVs charging rates were

adjusted through proprietary smart EV charging platforms of
the charging station operators. EVs using ChargePoint® V1G
stations were manually controlled via the load shedding feature
of ChargePoint’s station management software. The actuation
of EVs using PowerFlex® V1G chargers and Nuvve® V2G
chargers was automated and commands were issued via API-
based communication.

F. Power Measurements
The active power of all DERs was metered at a 1 Hz

frequency. The power outputs of individual PV systems and
building loads were obtained prior to the test from their
respective ION meters by logging data from the UCSD ION
Supervisory Control and Data Acquisition (SCADA) system
and aggregated to obtain the total power output of all PVs
and building loads. A moving average filter with a 20 s
time horizon was used to remove noise from the aggregate
measured data for these passive DERs. V2G EVs and BESS
power data were acquired using the same interfaces that were
used for their actuation, which logged data from dedicated
power meters.

Since neither AHUs nor the ChargePoint V1G EVs had
dedicated meters, they were monitored via their respective
building ION meters by subtracting a baseline building load
from the building meter power output. Assuming constant
baseline building load, any change in the meter outputs can be
attributed to the actuation of AHUs and V1G EVs. This as-
sumption is justifiable considering the tests were conducted at
0400 PT to 0600 PT on a weekend, when building occupancy
was likely zero and building load remained largely unchanged.
Noise in the ION meter outputs observed as frequent 15 -
30 kW spikes in the measured data for AHUs (Fig. 3) and
ChargePoint V1G EVs was treated by removing outliers and
passing the resulting signal through a 4 s horizon moving
average filter. Here, outliers refer to points that change in
excess of 50% of the mean of the 40 min signal in a 1 s
interval.

G. Performance Metrics
The performance of the distributed implementation (cyber-

layer) was measured by the normalized mean-squared-error
(MSE) between the distributed and true (i.e. exact) centralized
optimization solutions. The true solutions were computed
for each instance of (1) using a centralized CVX solver in
MATLAB [26]. The MSE was normalized by dividing by the
mean of the squares of the true solutions.

The tracking performance of the DERs was evaluated
through (i) the root-mean-squared-error (RMSE) in tracking

RMSE =

√√√√∑T
t=1(P

prov
t − P tar

t )2∑T
t=1(P

tar
t )2

, (3)

where P prov
t is the total power that was provided (measured),

and P tar
t is the target (commanded) regulation power at time

step t ∈ {1, . . . , T = 2401}; and (ii) the tracking delay,
computed as the time shift of the measured signal which yields
the lowest RMSE between the commanded and measured
signals. The sum of the delays due to local computation and
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Fig. 2: Communication architecture for computation and actuation of control policies.

communication between the computing nodes is capped by
the algorithm computation time, and would be less than 1 s.
Therefore, these delays are not explicitly considered in the
tracking delay calculation, and the computed tracking delay
only includes the device response times and measurement
delays.

The PJM Performance Score S following [27, Section 4.5.6]
was computed as a test for eligibility to participate in the
ancillary services market, and is given by the mean of a
Correlation Score Sc, Delay Score Sd, and Precision Score Sp:

Sc =
1

T − 1

T∑
t=1

(P prov
t − µprov)(P tar

t − µtar)

σprovσtar ,

Sd =

∣∣∣∣δ − 5 min
5 min

∣∣∣∣, Sp = 1− 1

T

T∑
t=1

∣∣∣∣P prov
t − P tar

t

µtar

∣∣∣∣,
S = 1/3(Sc + Sd + Sp),

where P prov
t and P tar

t are as in (3), µprov, µtar and σprov, σtar

denote their respective means and standard deviations, and δ is
the corresponding maximum delay in DER response for when
Sc was maximized. A performance score of at least 0.75 is
required for participating in the PJM ancillary services market.

IV. TEST SCENARIOS

In this section, we describe the test scenarios carried out on
the UCSD microgrid elaborating on the challenges we faced
and the differences across the tests, summarized by type of
DER in Table II.

A. Commonalities

A series of three tests were conducted on December 12,
2018 (Test 0), April 14, 2019 (Test 1) and December 17, 2019
(Test 2). All three tests involved a 40 min preparatory run
followed by a 40 min final test. Table II lists the type of

DERs across the tests. All tests were carried out during non-
operational hours (between 0400 PT and 0540 PT) to avoid
potential disruptions to building occupants with the exception
of V1G EVs in Test 2, which were tested at the start of the
work day (0900 - 1010 PT) to maximize fleet EV availability
(cf. Section IV-D). Day-time PV output data from February 24,
2019 was used as a proxy for an actual daytime PV signal.

TABLE II: Characteristics of each test by DER type.

DER Type AHU V1G EV V2G EV BESS
# DERs - Test 0 7 4 5 1
# DERS - Test 1 34 29 5 1
# DERs - Test 2 34 17 6 1

Signal updates 1 m

5 m
(Tests 0 & 1),

1 m
(Test 2)

1 s 20 s

DER Actuation

Synchronous
(Tests 0 & 1),

Two-stage: Stage 1
(Test 2)

Synchronous
(Tests 0 & 1),

Two-stage: Stage 2
(Test 2)

Operation Mode Automatic

Manual
(Tests 0 & 1),

Automatic
(Test 2)

Automatic

Time of test 0400 - 0500 PT 0400 - 0500 PT (Tests 0 & 1),
0900 - 1010 PT (Test 2)

Computing setup Semi-centralized using ROS (Tests 0 & 1),
Fully distributed using Raspberry Pi (Test 2)

B. Test 0

Test 0 was a preliminary calibration that was used to
examine the response times and tracking behavior of every
DER type and detect issues related to communication and
actuation.

1) DERs: Test 0 used only a representative sample of 17
DERs. The V1G and V2G population was composed of UCSD
fleet EVs plugged in at ChargePoint and Nuvve charging
stations, respectively.
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2) Computing Setup: 9 laptops running a Robotic Operat-
ing System (ROS) communicated via local Wi-Fi hotspot to
implement the distributed coordination algorithms and com-
pute the DER setpoints.

3) Actuation: All DERs were actuated synchronously.

C. Test 1
Test 1 was identical to Test 0 except in the number of DERs

utilized.
1) DERs: Test 1 used a larger population of 69 active DERs

and 107 passive DERs.
2) Computing Setup: The same semi-centralized ROS-

based computing setup as in Test 0 was used in Test 1. Given
that the available power capacity of fast-responding DERs such
as V2G and BESS was smaller than slow-responding DERs,
the steep ramping demands of the target signal were met by
upscaling the power of the fast responding DERs in solving
for the contribution of individual DERs. Another option would
have been to reduce the number of slow responding DERs,
but the funding agency stipulated prioritizing the number and
types of heterogeneous DERs over accuracy in signal tracking.
A real DER aggregator would instead require a more balanced
capacity of slow and fast DERs to ensure feasibility of tracking
these ramp features.

3) Actuation: All DERs were actuated synchronously.
Since the ChargePoint V1G EVs in Test 1 were operated via
manual input of DER setpoints (an interface to their API had
not been developed yet), to avoid overloading the (human)
operators, they were grouped into three groups and actuated
in a staggered fashion such that each of the three groups
maintained a signal update time of 5 min but were commanded
1 min apart from each other.

D. Test 2
Test 2 also used the entire population of DERs but sub-

stituted the cumbersome V1G population with more capable
V1G chargers and used a new distributed computing setup and
method of actuation based on lessons learned from Test 1.

1) DERs: The V1G EVs used in Test 1 performed poorly
owing to an unreliable actuation-interface that experienced
seemingly random stalling and lacked automated control ca-
pabilities. Therefore, 17 PowerFlex V1G charging stations
at one location replaced the distributed 29 V1G charging
stations used in Test 1. Since the PowerFlex interface did not
permit actuating individual stations, the 17 charging stations
participated in the test as a single aggregate DER. The 0930 –
1010 PT timing of the V1G EV part of the test coincided
with the start of the workday and a V1G EV population
that had only recently plugged in and therefore had ample
remaining charging capacity. The EVs were contributed by
UCSD employees and visitors randomly plugging in at the
PowerFlex charging stations just before the start of the trial.
An aggregate signal of 15 kW to 19 kW was distributed
equally amongst the 17 EVs.

In addition to the new V1G EVs, the V2G population in
Test 2 was replaced with a different set of Nuvve chargers
to resolve a tracking/noise issue during discharge-to-grid ob-
served in Test 1 and expanded to include an additional charger.

2) Computing Setup: Test 2 featured a fully distributed
architecture that consisted of a network of Raspberry Pi’s
that asynchronously communicated with each other via an
ethernet switch. In addition, a modified synchronization tech-
nique was implemented in the software which improved the
fidelity and robustness of message-passing. This upgraded
message-passing framework and synchronization technique for
both software and hardware resulted in significantly faster
communication between nodes.

3) Actuation: The order of AHU actuation was modified
in Test 2 to allow for device settling time and prevent in-
terference. In particular, in Tests 0 and 1, individual AHUs
were ordered and actuated using a protocol that was not
cognizant of settling times or building groupings, while the
protocol was revised in Test 2 to systematically command the
entire population of AHUs in a manner which maximized time
between consecutive actuations for an individual unit.

Test 2 also featured a two-stage approach of actuation
that was a result of the DER tracking behavior in Test 1.
Some DERs, such as BESS, V1G EVs and V2G EVs, tracked
quickly and accurately, whereas others, such as AHUs, tracked
poorly. The overall tracking performance in Test 2 was im-
proved by using “well-behaved” DERs to compensate for
AHU tracking errors by incorporating the error signal from
actuating AHUs in Stage 1 to the cumulative target signal
for BESS, V1G EVs and V2G EVs in Stage 2. Although
synchronous actuation of all participating DERs is preferred
in practice, the two-stage approach highlights the significance
of systematic characterization of DERs in minimizing ACE.

V. TEST RESULTS

A. Distributed Optimization/Cyber-Layer Results
In Table III, we present MSE results of our 1 s real-time

Raspberry-pi distributed optimization solutions (the “cyber-
layer” of the system).

TABLE III: Normalized mean-squared-error of distributed solutions
obtained from real-time 1 s intervals compared to centralized solver
solution for Test 2 (Section III-G)

DER Type RC PD DANA all
AHU 0 1.4× 10−7 2.8× 10−9 4.6× 10−8

V1G EVs 0 7.0× 10−8 1.7× 10−9 2.3× 10−8

V2G EVs 0 6.6× 10−5 5.0× 10−7 2.1× 10−5

BESS 0 2.0× 10−6 9.1× 10−8 6.5× 10−7

Total 0 1.8× 10−5 1.1× 10−7 4.9× 10−6

RC converged to the exact solution in all instances. This is
unsurprising, as the RC problem formulation does not account
for individual DER costs and thus, is a much simpler problem
with a closed-form solution. For PD and DANA, we obtained
excellent convergence, with errors on the order of 0.001%
in the worst cases. In general, DANA tended to converge
faster than PD in the sense that the obtained solutions were
more accurate under the same fixed 1 s computation time.
For our application with 1 s real-time windows, accuracy and
convergence differences did not affect the physical layer re-
sults in any tangible way, but applications with more stringent
accuracy or speed requirements may benefit from using a
faster algorithm like DANA. The differences between DER
populations can be largely attributed to the faster time scale
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of the V2G EVs (and to a lesser extent the BESS), see Table II.
Since the V2G EVs were responsible for the high-frequency
component of Pref, the solver was required to converge to
new solutions at every time step, which induced more error
compared to the slow V1G EVs and AHUs with relatively
static solutions.

B. Physical-Layer Test Results
We now present the results of the tracking performance

pertaining to the physical-layer of the experiment. We provide
only some selective plots for Test 0 and Test 1 in Fig. 3, and a
complete set of plots for each Test 2 DER population in Fig. 4.
Error and tracking delay data defined in Section III-G is given
in Table IV for Test 1 and Test 2. Data for Test 0 is omitted
due to its preliminary nature. The optimal shift described in
Section III-G is applied to each time series and hence some
areas in plots may appear like the provided signal anticipated
the target.
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Fig. 3: Selected plots from Tests 0 and 1. Top: AHU response
in Test 0. Note the poor tracking and spikes in the measured
response. Middle: V2G response in Test 1. Note the inaccuracy in
tracking during discharge-to-grid phases. Bottom: Total response in
Test 1. Note the large-magnitude, low-frequency features demonstrat-
ing some broad tracking behavior, but overall poor performance.

Signal tracking accuracy in Test 0 was generally poor
despite the small number of DERs employed, largely due to
inexperience in actuating the AHUs and V1Gs. In particular,
Fig. 3 reveals some oscillations in the AHU response. It
is overall difficult to determine if even large-feature, low-
frequency components of the signal were tracked. Further,
data gathering for V1Gs and AHUs was done via noisy and
unreliable building ION meters, which motivated the need for
outlier treatment (Section III-F) in Tests 1 and 2, and resulted
in the smoother and better tracking signal in the top plot of
Fig. 4.

Test 1 yielded a 111% RMSE for AHUs. We speculate that
the small 4 s delay in Test 1 is not representative of the actual
AHU delay due to random correlations dominating the time
shift for this large error. This is confirmed by a much better
AHU response in Test 2 with RMSE 12%, where a 105 s
delay is more likely to be representative of the true AHU
actuation delay. Given the poor visibility into AHU and V1G
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Fig. 4: Test 2 results. From top to bottom, AHU, V2G EVs, V1G
EVs, BESS, and total responses. Note the substantially improved
AHU, V2G, and total tracking performance compared to Figure 3.

controllers explained in Section IV, it is challenging to identify
the source of the poor tracking behavior. We speculate that
DER metering at the building level rather than the DER level
was a major source of error for AHU and V1G in Test 1.
This was largely resolved in Test 2 by utilizing a different
population of V1Gs with dedicated meters and by modifying
the actuation scheme for AHUs to be less susceptible to
metering errors as described in Section IV-D. Additionally,
the actuation-interface stalling for V1G EVs, described in
Section IV-C, was dominant in Test 1, resulting in the poor
tracking for V1Gs. Actuating-interface issues were resolved in
Test 2 by utilizing an automated control scheme for the V1Gs,
which led to significantly lower error.

The BESS emerged as the star performer achieving very
accurate tracking across all tests with no delay. The V2G EVs
also performed relatively well aside from a signal overshoot
issue observed during the discharge cycle in Test 1 seen in
Fig. 3. The issue was resolved in Test 2 by using V2G EV
charging stations from a different manufacturer (Princeton
Power), as described in Section IV-D. The V2G charging
stations deployed for these tests were pre-commercial or early
commercial models that had a few operating issues, such as
the overshoot issue during Test 1.

The inability of the AHUs to respond to steep, short ramps
(Fig. 4) could be due to slow start-up sequences programmed
into the building automation controllers to increase device
longevity or due to transients associated with driving their AC
induction electric motors. Tackling this would require dynamic
models and parameter identification of signal response and
delay. With the new V1G EV population in Test 2, tracking
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delay reduced from 40 s to 10 s and the tracking accuracy
improved significantly. The 1 kW bias seen in Fig. 4 is likely
due to rounding errors arising from the inability of PowerFlex
charging stations to accept non-integer setpoints.

The superior performance of the BESS and V2Gs motivated
the two-stage actuation scheme described in Section IV-D,
which contributed to reducing the total RMSE from 50% in
Test 1 to 10% in Test 2 (compare the bottom plots of Figs 3
and 4). The two-stage approach allows a sufficiently large
proportion of accurately tracking DERs to compensate for
the errors of the first stage, where tracking is worse. In this
way, poorly-tracking DERs, such as AHUs, can still contribute
by loosely tracking some large-feature, low-frequency com-
ponents of the target signal. The low-frequency contribution
reduces the required total capacity of the strongly-performing
DERs in the second stage leading to more fine-tuned signal
tracking in aggregation. Some recommended rules of thumb
for two-stage approach are: (i) Total capacity of first-stage
DERs is less than or equal to total capacity of second-stage
DERs. (ii) DERs in the first stage are capable of tracking
with < 50% RMSE. (iii) DER cost functions are such that the
deviation from the baseline is lower cost for first-stage DERs
than for second-stage. (iii) allocates a significant portion of
the target signal initially to first-stage DERs, freeing up DER
capacity in the second-stage for error compensation.

TABLE IV: Left: Relative root mean-squared-error of tracking error
by DER type. Right: Delay (optimal time-shift) of DER responses
in seconds.

DER Type Test 1 Test 2
AHU 1.11 0.12

V1G EVs 0.68 0.077
V2G EVs 0.30 0.060

BESS 0.054 0.018
Total 0.50 0.097

DER Type Test 1 Test 2
AHU 4 105

V1G EVs 40 10
V2G EVs 5 3

BESS 0 0
Total N/A N/A

C. Economic Benefit Analysis

Here, we evaluate the economic benefit of the proposed test
system, which is vital for wider scale adoption of DERs as
a frequency regulation resource in real electricity markets.
To this end, we take an approach similar to [10] to first
demonstrate that the testbed is eligible to participate in the
PJM ancillary services market. Following the PJM Manual
12 [27] (Section III-G), we compute a Correlation Score Sc
= 0.98, Delay Score Sd = 0.65, and Precision Score Sp =
0.91 from data for Test 2, and obtain a Performance Score
S = 0.85 ≥ 0.75, which confirms the eligibility to participate
in the PJM ancillary service market.

Next, we compute the estimated annual revenue assuming
that the resources are available throughout the day. Using
PJM’s ancillary service market data2 with our total (active)
DER capacity of 184 kW and performance score of 0.85,
the capability and performance credits for this population of
resources (cf. [28, Section 4]) would respectively be $135
and $11, for July 9, 2020. This gives an estimated amount
of $53,290 as the total annual revenue. Note that the 184 kW
DER capacity employed in this work represents less than 5%

2https://dataminer2.pjm.com/feed/reg prices/definition

of the total DER capacity and less than 0.5% of the total
capacity of the UCSD microgrid, cf. [18]. As such, the revenue
would significantly increase if more microgrid resources are
utilized for regulation, even with reduced availability.

VI. CONCLUSIONS

We have presented one of the first real-world demonstrations
of secondary frequency response in a distribution grid using
up to 176 heterogeneous DERs. The DERs include AHUs,
V1G and V2G EVs, a BESS, and passive building loads and
PV generators. The computation setup utilizes state-of-the-art
distributed algorithms to find the solution of a power allocation
problem. We show that the real-time distributed solutions are
close to the true centralized solution in an MSE sense. Tests
with real, controllable DERs at power closely track the given
active-power reference signal in aggregation. Further, our
economic benefit analysis shows a potential annual revenue of
$53K for the chosen DER population. These tests highlight the
importance of dedicated and noise-free measurement sensors
and a well-understood and reliable DER control interface for
precise signal tracking. Extensions of this work are ongoing
under DERConnect3, a new project at UCSD that aims to
develop a testbed consisting of 2500 DERs that allows for
online implementation of various distributed algorithms. As
is already recognized by the power systems community and
federal funding agencies such as ARPA-e and National Science
Foundation, large-scale power-in-the-loop testing is needed
for transitioning distributed technologies to real distribution
systems. We hope that this work spurs further testing and ul-
timately widespread adoption of coordinated resource control
algorithms by relevant players in industry.

APPENDIX A
DISTRIBUTED COORDINATION ALGORITHMS

In this section we describe the algorithms used in our
distributed computing platform to solve (1).

Ratio-Consensus (RC): The ratio-consensus of [20] com-
putes equitable contributions from all DERs without DER-
specific cost functions (or constant DER costs). The ratio-
consensus algorithm for providing Pref is given by

yi[k + 1] =
∑
j∈N i

1

| N i |
yj [k], zi[k + 1] =

∑
j∈N i

1

| N i |
zj [k],

yi[0] =

{
Pref
| I | − pi, i ∈ I,
−p

i
, i /∈ I,

zi[0] = pi − pi,

where, k is the iteration number, yi and zi are two auxiliary
variables maintained by each agent, N i denotes the neigh-
boring DERs of DER i, and p

i
and pi are the minimum

and maximum power level for DER i from the problem
formulation in Section III-A. I denotes the subset of DERs
which know the value of the reference signal. One can see that

p?i = p
i
+ lim
k→∞

yi[k]/zi[k](pi − pi)

= p
i
+
Pref −

∑
i pi∑

i pi − pi
(pi − pi),

3https://sites.google.com/ucsd.edu/derconnect/home



9

where p?i is then the power assignment for DER i.
Primal-Dual (PD): Both this dynamics and DANA (de-

scribed next) take into account the cost functions of the
DER types when computing the power setpoints, i.e., fi are
nonconstant. These functions are modeled as quadratics, which
is a common choice in generator dispatch [29]. The dynamics
is based on the discretization of the primal-dual dynamics [22]
for the augmented Lagrangian of the equivalent reformulated
problem, see [21], and it has a linear rate of convergence to
the optimizer. The algorithm is given byṗiẏi
λ̇i

 =


−
(
f ′i(pi) + λi + pi

∑
j∈N i

Lijyj − Pref/n
)

−
(∑

j∈N i
Lij(λj + xj − Pref/n) +

∑
j∈N 2

i
L2
ijyj

)
pi +

∑
j∈N i

Lijyj − Pref/n

 ,
where, L is the Laplacian matrix of the communication graph
(see [30]), yi is an auxiliary variable, and λi is the dual
variable associated with agent i. The update step is followed by
a projection of the primal variable pi onto the box constrained
local feasible set. These dynamics converge from any set of
initial conditions. Since this algorithm evolves in continuous
time, we use an Euler discretization with fixed step-size to
implement it in discrete time.

Distributed Approximate Newton Algorithm (DANA): The
Distributed Approximate Newton Algorithm (DANA) of [23]
has an improved rate of convergence compared to PD. This
algorithm solves the equivalent reformulated problem

min
z∈Rn

f(p0 + Lz) =
n∑
i=1

fi(p
0
i + Liz),

subject to p− p0 − Lz ≤ 0n,

p0 + Lz − p ≤ 0n,

(4)

where p0 is a vector of initial power levels of all the DERs
with

∑
i p

0
i = Pref, and z is the new variable of optimization.

The continuous time dynamics are given by

ż = −Aq∇z L(z, λ),
λ̇ = [∇λ L(z, λ)]+λ ,

where L is the Lagrangian of (4) and Aq is a positive definite
weighting on the gradient direction which provides distributed
second-order information. For brevity, we do not provide the
full details of the algorithm here, which can instead be found
in [23]. The cost functions are again taken to be quadratic with
strictly positive leading coefficients.
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