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Advances are made on ecosystem ser-
vices (ES) in lifecycle impact assessment
(LCIA).

This ES-LCIA framework integrates ES
cascade model in LCIA cause-effect
chain.

We use spatially explicit deterministic
modelling to assess four ES in rice farm-
ing.

We derive cost-benefit balances for a
unit of rice produced in China, India
and USA.

Negative cost-benefits for rice suggest
that ES suffer more impacts than
benefits.
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The integration of ecosystem service (ES) assessment with life cycle assessment (LCA) is important for develop-
ing decision support tools for environmental sustainability. A prequel study has proposed a 4-step methodology
that integrates the ES cascade framework within the cause-effect chain of life cycle impact assessment (LCIA) to
characterize the physical and monetary impacts on ES provisioning due to human interventions. We here follow
the suggested steps in the abovementioned study, to demonstrate the first application of the integrated ES-LCIA
methodology and the added value for LCA studies, using a case study of rice farming in the United States, China,
and India. Four ES are considered, namely carbon sequestration, water provisioning, air quality regulation, and
water quality regulation. The analysis found a net negative impact for rice farming systems in all three rice pro-
ducing countries, meaning the detrimental impacts of rice farming on ES being greater than the induced benefits
on ES. Compared to the price of rice sold in the market, the negative impacts represent around 2%, 6%, and 4% of
the cost of 1 kg of rice from China, India, and the United States, respectively. From this case study, research gaps
were identified in order to develop a fully operationalized ES-LCIA integration. With such a framework and guid-
ance in place, practitioners can more comprehensively assess the impacts of life cycle activities on relevant ES
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Rice farming

provisioning, in both physical and monetary terms. This may in turn affect stakeholders' availability to receive

such benefits from ecosystems in the long run.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

To comprehensively assess environmental impacts from products,
technologies or systems, quantitative and holistic tools and methodolo-
gies such as life cycle assessment (LCA) are required. LCA is an ISO-
methodology, which aims to quantify damages from human activities
to ecosystems, human health and resources (ISO, 2006). An essential el-
ement of LCA is the life cycle impact assessment (LCIA) phase, which
translates resource use or pollutant emissions into potential impacts
using modelling of environmental cause-effect chain. Yet, major gaps
still exist in the cause-effect chain, in particular in capturing damages
to ecosystems services (ES), which represent the flow of benefits eco-
systems provide to people (Verones et al., 2017). Many on-going re-
search efforts nowadays attempt to address the computational
challenges of integrating ES concepts into LCIA, as summarized in
Rugani et al. (2019). These efforts call for a systematic and consistent
methodology that accounts for the effects of human activities on ES pro-
visioning. Therefore, a dedicated working group aiming to address this
issue was established, under the United Nations (UN) Environment
Program's Life Cycle Initiative flagship project on global guidance for
LCIA indicators (UN Environment - Life Cycle Initiative, 2019; Verones
etal, 2017).

As a response, Rugani et al. (2019) proposed a methodology, abbre-
viated as ES-LCIA, that integrates the ES cascade framework within the
LCIA cause-effect chain to assess the impacts on ES provisioning. The
proposed ES-LCIA methodology involves four steps, which are essential
for addressing environmental costs and benefits resulting from human
interventions. Step I in the proposed methodology is the inventory col-
lection, the output of which is the life cycle inventory (LCI) associated
with the functional unit. Step II (i.e. impacts on ecological processes)
represents the interactions between the LCI and the ecological pro-
cesses. In the ES cascade framework this step is where human pressures
operate on ecosystems, while in LCA this step is where LCI (i.e. the in-
ventory of human pressures) is translated to midpoint and endpoint im-
pact indicators by applying characterization factors (CF). The outputs of
Step Il are the calculated impact category indicators. The alignment of ES
classes, LCI flows and LCIA indicators is provided in Table 2 of Rugani
et al. (2019). Step III calculates how the impacts from Step II influence
the capacity of ecosystems to deliver final ES.! For instance, within the
proposed model, the ecological processes that have been impacted can
be linked to one or more stressors, such as land use changes, and in
this case each type of land use can be regarded as a service provisioning
unit. The output of Step III is a matrix of ES supply change. Both semi-
quantitative and quantitative approaches can be applied in this step,
and more details are discussed in Rugani et al. (2019), who also suggest
to explore different solutions to create a robust model. It is worth men-
tioning that Step Il and Step III are likely to overlap to some degree. For
example, the global warming potential (GWP) includes the ecosystem's
response due to atmospheric CO, fertilization (i.e. increased CO, re-
moval that results from higher atmospheric CO, concentration). To
align the existing LCIA method for GWP into the Step Il and Step III di-
chotomy, a divorce of the ecosystem's response embedded within
GWP is needed, which can be difficult to implement. Step IV eventually
delivers a vector representing the benefits and costs associated with the
change in ES per functional unit. The value of ES can be quantified in
both physical terms and monetary units. The output from this step can

! Final ES are the end products of ecosystems that are directly relevant to beneficiaries;
Intermediate ES are those, which underpin the outputs of final ES, but are not directly used
by beneficiaries (Rugani et al., 2019).

be used to account for ES synergies and trade-offs. If monetary units
are used, an aggregated end-point cost-benefit balance can be
calculated.

For consistency and reliability, the methodology needs to be able to
simulate the functioning and response of ecosystem processes, and their
interactions with technological activities. The networks of technological
and ecological systems are complex and nonlinear. Therefore, the linear
scaling nature of conventional LCIA renders the tool insufficient for this
task. Instead, ecosystem modelling tools with complex, non-linear func-
tions may be necessary when it is clear that linear approximations result
in poor assumptions. This has been suggested in Rugani et al. (2019) asa
possible solution to overcome the dichotomy between Step Il and Step
Il mentioned above. These tools consider human impacts on ecosystem
structures and functions that underpin ES provisioning, as well as inter-
actions between processes at the ecosystem level.

Many ecological models are available to quantify the capacity of var-
ious ecosystem components to provide services (Grét-Regamey et al.,
2017; Posner et al., 2016; Turner et al., 2016). One example is i-Tree, a
tool for assessing and managing forests (i-Tree Canopy, 2018): the po-
tential sequestration capacity of CO, and criteria air pollutants (CAP)
can be quantified based on properly defined tree species, ages, and
other key parameters. Another example is a wetland model that was de-
veloped to quantify the capacity of a wetland to eliminate water pollut-
ants and excessive nutrient run-off (Kadlec, 1997). A third relevant
example is the Environmental Policy Integrated Climate (EPIC) model,
which is a cropping system model that can simulate the movement of
carbon, nitrogen, phosphorus, and sediment - and thus the impacts on
crop yield, soil loss, and water quality - with properly defined crop
types, management decisions, and weather and soil conditions (Texas
A&M AgriLife Research, 2015). LCI data (i.e. outputs of Step I) can be
used as inputs for ES modelling, the outputs of which depict the change
in ecosystem's capacity to provide ES (i.e. outputs of Step III), and can be
adapted for further benefit/cost assessment (i.e. Step IV) along the life
cycle. However, the full implementation of this coupling between LCI
and ES models can be complex and challenging, especially when the
background system also needs to be characterized.

For the proposed ES-LCIA framework to be operational, the changes
in ES provisioning need to be measured. To fulfil this need, ES account-
ing methods, such as the Techno-Ecological Synergy in LCA (TES-LCA)
developed by Liu and Bakshi (2019) can be employed. Two terminolo-
gies are introduced in TES-LCA for ES accounting, namely the supply
and demand of ES. “ES supply” is the capacity of ecosystems to provide
benefits to people, without harming its potential to provide these ben-
efits in the future. On the other hand, human activities demand ES to
mediate their impacts (hereinafter referred to as “ES demand”). For ex-
ample, manufacturing activities may emit CAP and thus demand the air
quality regulation ES provided by tree canopy to mitigate their harm to
human health and ecosystems. Many, but not all, ES demand flows are
represented in LCI databases as elementary flows (e.g. resource extrac-
tion flows from ground, pollutant emissions to air, etc.). In contrast,
most ES supply flows (e.g. climate mitigation, water purification, partic-
ulate matter removal from air, etc.) could be seen through the LCIA lens
as contributing to a reduction of impacts resulting from human activi-
ties. It is noteworthy that the demand for ES can exceed the ecosystem's
capacity to supply them. But such exceedance cannot be sustained in
the long run (Villamagna et al., 2013). For example, human activities
have emitted more greenhouse gases (GHG) than what the natural ca-
pacity could accommodate to sequester them, which has led to increas-
ing atmospheric CO, concentration, and thus negative impacts on
ecosystems. In this case, we can claim that our demand for ES has
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exceeded its supply. The difference between the two components can
provide an indication on whether the ecosystem has capacity to assim-
ilate additional impacts, while sustaining its capacity to supply ES in the
future. It also provides information about the reductions needed to op-
erate within nature's carrying capacity. To provide a better idea from
this perspective, they developed the sustainability metrics (vy). For a
given ES k, vy is defined by subtracting its demand (dy) from its supply
(sx) and then normalizing by its demand (Eq. (1)). vi ranges from —1 to
infinity. If vy is equal to —1, it indicates that there is no supply of ES. If vy
is higher than 0, the ecosystem can provide mitigation for supplemen-
tary demand.

o Sl(_dk
Vi = dl( (1)

In this study, we demonstrate the first application of the integrated
ES-LCIA assessment framework to a proof-of-concept case study of
rice farming, introduced as part of the flagship project aiming at provid-
ing global guidance on environmental LCIA indicators under the UN
Environment's Life Cycle Initiative (Frischknecht et al., 2016; UN
Environment - Life Cycle Initiative, 2019). This work is also relevant to
meeting the UN Sustainable Development Goals (SDG), such as SDG-
14 (“life below water”) or SDG 15 (“life on land”). We employ the
TES-LCA methodology for ES accounting. Three rice producing regions
are considered, namely, China, India and the United States (US). Four
ES are assessed, namely, carbon sequestration, water provisioning,
water quality regulation, and air quality regulation. Challenges and fu-
ture research needs to make this approach fully operational are identi-
fied and discussed in order to advance the understanding of how to
design and apply the integrated ES-LCIA framework.

2. Materials & methods
2.1. Goal and scope definition

The ES-LCIA framework proposed in Rugani et al. (2019), and briefly
summarized in Section 1, was applied to a modified version of the rice
case study proposed in Frischknecht et al. (2016). The original system
boundary included rice farming, processing, distribution, and cooking,
whereby the functional unit (FU) was represented by the consumption
of 1 kilogram (kg) of cooked rice in India, China and Switzerland (the
three consumer countries assumed in Frischknecht et al. (2016)). Be-
cause ES are expected to be more relevant to farming production, as
compared to other life cycle stages, the present case study focuses
only on the farming stage, thus redefining the FU to be the production
and harvesting of 1 kg of rice in China, India and the US. It is noteworthy
that the rice consumer countries and the rice producing countries are
different, since in Frischknecht et al. (2016), they assumed that the
rice was produced and processed in the US, and distributed and cooked
in Switzerland.

The goal of this study is to evaluate and compare the change in ES
provisioning where the land is managed to produce rice. Rice farming
requires extensive chemical inputs, irrigation, and tillage, and therefore
changes soil's properties and structure, as compared to the reference
scenario where land is fallow with no rice farming activity taking
place. The crop systems model EPIC is applied to model the cause-
effect chain from rice farm LCI flows to the change in ES provisioning.

Several ES were identified as particularly relevant to rice farming ac-
tivities, namely carbon sequestration, water provisioning, water quality
regulation, and air quality regulation. These services were classified
using the Common International Classification of Ecosystem Services
(CICES) framework (Haines-Young and Potschin, 2018). Table 1 shows
the selected ES quantified in this study according to the CICES 5.1 taxon-
omy. The CICES classification allows the matching between the impacts
from human activities (i.e. ES demand) and the capacity of ecosystems
to mediate the corresponding impacts (i.e. ES supply). The tick marks

represent the correspondence between ES and the substances included
in the LCI of the rice case study. The red cells represent the environmen-
tal intervention flows from human activities, generally assessed by the
LCA community; and the green cells are related to ecosystem function-
ing and are commonly considered by the ES community. The table de-
picts how we translate the terminologies between these two
communities in the ES-LCIA framework.

2.2. Integration of ES-LCIA modelling

Fig. 1 summarizes how the ES-LCIA integration proposed in Rugani
et al. (2019) has been adapted for this study, with details for each step
elaborated in each subsection below. All model and data files required
to reproduce the results in this study are available free of charge at
http://dx.doi.org/10.17632/m5xwds4x8r.1.

2.2.1. Data and modelling for Step |

In Step I (Fig. 1), changes in land use and management practices can
be modelled as an LCI flow (e.g., changing the tillage practice may act as
a stressor on the agricultural system). LCI data for irrigation water use
and fertilizer application rates for rice farming are based on
Frischknecht et al. (2016). We considered emissions of three GHGs,
namely carbon dioxide (CO,), nitrous oxide (N,O), and methane
(CHg4). Rather than relying on estimates from Frischknecht et al.
(2016), CO, and N,0 emissions were modelled using the EPIC model
to provide more spatial resolution for the case study. However, because
the EPIC model does not provide results for CH4 emissions, inventory
values from Frischknecht et al. (2016) were used for it.

The EPIC model was selected to compile part of LCI and assess the
impacts of farming activities on the change in ES because of three
main reasons. First, the proficiency of EPIC model has been previously
demonstrated and validated for the rice agroeconomic system (Xiong
et al., 2014). Second, the EPIC model utilizes spatially explicit data for
environmental characteristics, such as weather, soil, and management
practices, to simulate the impacts on ES provisioning. This enables a
comparison of performance between rice farms in the three countries,
China, India, and the United States. Third, the EPIC model quantifies
the changes in the capacity of ecosystems to provide services due to
the farming activity, relative to the reference scenario.

Various data sources were used to build these farming scenarios in
the EPIC model, with different degrees of assumptions. First, seeding
and harvesting dates were obtained from Sacks et al. (2010). Then, spe-
cific input data to characterize the local environmental conditions were
collected. Radiation and relative humidity data were obtained from the
National Aeronautics and Space Administration (NASA, 2018). Wind ve-
locity data were obtained from WindAtlas (2018). Daily minimum tem-
perature, daily maximum temperature, and precipitation data were
obtained from iAIMS Climatic Data (2018). Soil characteristics, such as
texture, density, and organic matter content, were obtained from
SoilGrid (2018). Finally, farm management practices, including the
amount and timing of chemical application, the type and timing for
field operations (i.e., tillage practices), and the use of machinery, were
modelled using the built-in rice management schedule in the EPIC
model and the data collected from the LCI developed in Frischknecht
etal. (2016).

The procedure discussed in Xiong et al. (2014), which provides
means and standard deviations of key crop parameters for rice farming
in difference continents, was used to calibrate our application of the
EPIC model. The calibration process adjusts influential parameters and
inputs of the EPIC model for them to stay within their reasonable ranges,
so that the model results are realistic. After the calibration, the EPIC
model can be executed to provide results for rice farms in the three
countries on farming energy use, GHG emissions, and nutrient runoff
(ie., nitrogen, phosphorus). Because the EPIC model does not have pes-
ticide profiles corresponding to those provided in the LCI of
Frischknecht et al. (2016), the pesticide impact factors were assumed
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Selected ecosystem service (ES) implemented in this study and grouped according to the Common International Classification of Ecosystem Services (CICES) 5.1 taxonomy.

Flows from Ecosystem Sphere
Terminology: ES supply or life cycle impact mitigation
Section Regulation & maintenance (biotic) Provisioning (abiotic)
Division Regulation of physical, Transformation of biochemical | Regulation of physical, Water
chemical, biological or physical inputs to ecosystems | chemical, biological
conditions conditions
Group Atmospheric composition = Mediation of wastes or toxic Water conditions Surface water used for
and conditions substances of anthropogenic nutrition, materials or
origin by living processes energy
Class Regulation of chemical Filtration/sequestration/storage/ | Regulation of the chemical Surface water used as a
composition of atmosphere = accumulation by micro- condition of freshwaters by material (non-drinking
and oceans organisms, algae, plants, and living processes purposes)
animals
Corresponding Carbon sequestration Air quality regulation Water quality regulation Water provisioning
terminology used in this
paper
Flows from CO (to air) N
Tech{lolo gy Sphere NOX (to air) 3
Terminology:
Life Cycle PM (to air) R
Inventory T J
or ES demand s(oey)
CHy (to air) N R
N0 (to air) N
CO; (to air) v
Nitrogen (to water) v
Phosphorus (to water) v
Water (from ground) N

to be 1 in this study, meaning that rice yield was not subject to pest
damages.

For the emissions of CAP, including carbon monoxide (CO), nitrogen
oxides (NOy), sulphur oxides (SOy), and particulate matter (PM;g), it is
assumed that they were primarily emitted due to the combustion of die-
sel in farming machinery, therefore the corresponding emission factors
were obtained from the GREET model (Energy Systems. Argonne
National Laboratory, 2018) to convert diesel consumption to CAP emis-
sions. Each LCI profile per FU contains resource, land, and emission
flows.

Inputs
Management inputs from
Frischknecht et al.(2016)

related to 1 kg of
harvested rice

Life Cycle

Inventory
(Step I)

Outputs 3: ES value
per 1 kg of harvested
rice obtained from the

monetization of the impacts

2.2.2. Data and modelling for Steps Il & 11

As indicated in Fig. 1, Steps Il and IIl are combined in this study be-
cause the EPIC model provides results for Steps Il and Il simultaneously
and it was not technically possible to decouple the ecosystem's response
from the impacts. However, merging Steps Il and III is still in line with
the scope of the cascade framework proposed in Rugani et al. (2019),
since there is no loss of information regarding the changes in the
ecosystem's capacity to supply ES due to the impacts on the production
system: this information is still considered within the supply-demand
approach.

Impacts on
Ecological
Processes and
ES Provisioning
(Step II - III)

Outputs 1: EPIC
modelling of ES
per 1 kg
of harvested rice

Outputs 2: EPIC
modelling/scenarios
of ES change per 1 kg
of harvested rice

Valuation

(Step 1V)

Fig. 1. Application of the ES-LCIA framework to the rice case study. Note that Step Il and Step III, as outlined in Fig. 1 of Rugani et al. (2019), are now combined and feedback loops are not

considered (as indicated by the dotted arrow).
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Step II characterizes the impacts on ecosystem structure and outputs
impact category indicators. In the context of this case study, rice farming
may change soil's properties and structure, and thus have environmen-
tal implications in various impact categories. The calculation of mid-
point indicators was not carried out explicitly in this study, but CFs
were used when trying to combine flows contributing to the same im-
pact category. For example, to calculate net climate regulation, CO5,
CHg4, and N,0 flows were converted to unit of mass of CO, equivalent.
Step III translates the change in land use (i.e., from fallow lands to rice
farms), to the change in the flow of final ES over time (i.e. the net ES
that are still available to the final beneficiary), which can be monetized
in Step IV.

On one hand, for carbon sequestration and water provisioning ES,
both their demand and supply are directly related to the rice farming ac-
tivity (i.e. the EPIC model can be utilized to quantify both the demand
and supply components). For example, which tillage practice to be im-
plemented affects the amount of fuel used (i.e., conventional tillage in-
curs more fuel consumption compared to no tillage). The different level
of CO, emission due to fuel combustion represents varied quantities of
ES demand. The tillage practice would also affect the percentage of
plant residues left on the field, thus changing the agro-ecosystem's ca-
pacity to supply carbon sequestration service in the form of soil organic
carbon.

On the other hand, for services of air quality regulation (the remedi-
ation of local ecosystem for CAP) and water quality regulation (self-
cleaning capacity of local water body for fertilizer runoff), only their de-
mands change with rice farming activities. For instance, different fuel
consumption rates result in different levels of air pollutants emissions;
while various amount of fertilizer application rates lead to various quan-
tities of nutrient runoff. However, the EPIC model does not provide an
estimate of the agro-ecosystem's capacity to provide these services
(i.e., their supplies). This might be due to a gap in modelling the
cause-effect relationship between midpoints impacts and ES provision-
ing or simply because the supply of these services from rice farming ac-
tivities are negligible. In both cases, we have assumed that the air and
water pollutants cannot be mitigated by the rice farming activity itself,
resulting in an onsite ES supply of 0. We refer to this as the “0% Supply”
scenario hereinafter.

Nonetheless, in this study, we want to demonstrate how the final ES
available from the land would change, as compared to the reference
land use scenario. To do so, and to cope with the lack of more site-
specific data, we have adopted a sensitivity analysis approach for the as-
sessment of air and water quality regulation ES, by constructing plausi-
ble land use scenarios where the supply of these services are made
available from the piece of land being managed to produce rice.

The supply of air quality regulation ES would have been available if
part of the land was used for reforestation. It was assumed that 5%,
10%, and 15% of the land area was used for forests to show how the re-
sults progress with different constructed scenarios. The removal rates of
CO,, CO, NOy, SO,, and PM; o by trees were available from the i-Tree Can-
opy tool, with a county-level resolution (i-Tree Canopy, 2018). Because
i-Tree data pertain to locations in the United States only, climate zones
were identified and matched to similar regions in the United States for
rice farming systems in China and India. The sequestration rates from
the counties within the corresponding United States climate zone
were averaged to approximate those from China and India rice farms.

Similarly, water quality regulation ES would have been provided if
part of the land was used for wetland construction, because wetlands
have a self-cleaning capacity. It was assumed that 0.5%, 1%, and 1.5% of
land area was used for wetland development. A wetland model was
used to determine nutrient removal capacity with a steady-state, first-
order approximation (Kadlec, 1997). Wetland inlet nutrient concentra-
tions were estimated based on the amount of nutrient and water runoff
from the EPIC model simulations. Outlet nutrient concentrations after
treatment depended on water surface temperature, hydraulic loading
rate, and wetland characteristics (i.e. area, bed porosity, and depth).

The provisioning of water quality regulation ES was calculated from
the difference between the inlet and outlet nutrient concentrations
and the amount of water runoff. The demand for water quality regula-
tion equalled the amount of nutrient runoff. Background concentrations
of nitrogen and phosphorus were 1 mg/L and 0.02 mg/L, respectively,
which set the limit for treatment. In this case, the supply of water qual-
ity regulation never exceeded demand (i.e., vi was never larger than 0,
while close to 0 indicated sustainable performance), because the as-
sumption is that the concentration of nitrogen and phosphorus at the
wetland outlet cannot be negative or less than the treatment limit.

Nonetheless, in the conceived scenarios, where part of land is used
for reforestation or wetland construction, the total amount of rice pro-
duced from the land would decrease. This might cause expansion of
rice farming elsewhere to satisfy the overall rice demand, which is be-
yond the scope of this study. It is noteworthy that trade-offs exist be-
tween ES (i.e., the ability of land to maintain rice yield versus other
types of ES, as mentioned above). The level of such a trade-off varies ac-
cording to the ES considered. Vide infra, a small wetland can mitigate
most of the nutrient runoff, with only little sacrifice in yield; while the
trade-off between air quality regulation and yield provisioning ES
might be more significant.

2.2.3. Data and modelling for Step IV

Finally, results from modelling ES changes from Step IIl were trans-
lated into monetary terms to derive a cost-benefit balance for the FU.
Monetary profit from rice farming was calculated from the difference
in ES provisioning and the cost of mitigating ecosystem impacts for
each service (Table 2). The rationale underpinning final ES valuation is
that if the demand of an ES does not exceed the carrying capacity of
the corresponding ecosystems to supply it, then there would be a net
“benefit”, which can be potentially applied to mitigate impacts from
other sources. Otherwise, a net “cost” is recorded.

2.3. Results for steps |

Average rice yield data were provided in Frischknecht et al. (2016)
as 7452, 6450, and 3500 kg/ha, respectively, for the United States,
China, and India farms. However, in the current study, all rice yields
were calculated endogenously within the EPIC model. The resulting
location-specific rice yields were 6226, 6202, and 3363 kg/ha, and
thus did not match exactly with those from Frischknecht et al. (2016),
especially for the United States farm. The differences could be resulted
from the use of localized information that includes spatial heterogeneity
when running the EPIC model, while the prior case study used regional,
average yield data.

24. Results for steps II-1Il

The results for the four ES under consideration, namely carbon se-
questration, water provisioning, air quality regulation, and water qual-
ity regulation, based on 1 FU (i.e.,, 1 kg of rice harvested), are
summarized in Fig. 2.

For carbon sequestration, the CO,, CH,, and N,O emissions from soil
and farming operations are regarded as “demand”; and the carbon con-
tent of plant residual incorporated into the soil as “supply” (Liu and
Bakshi, 2019) (Fig. 2a). Note that emissions of CH, and N,0O are com-
bined with CO, by applying their corresponding CF to calculate global
warming potential in terms of kg CO, equivalent. For all farms, the
amount of GHG emitted from rice paddy was lower than that can be se-
questered, resulting in positive v, metrics. These results are consistent
with Fan et al. (2015), which suggests that with proper management,
soil organic carbon accrual is feasible for rice farms, leading to net car-
bon gains. CH4 emissions also contributed to the global warming poten-
tial of rice farms, ranging from 23% for a farm in India to 58% for a farm in
the United States. However, in this study, the inventory for CH,
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Table 2
Monetary data collected for the valuation step of the cause-effect chain based on the cascade model proposed by Rugani et al. (2019).

Type of monetary data/rationale Original  Unit Reference Region Source Conversion Final monetary

value flow factor® value

Mean willingness to pay for off-farm surface water used for irrigation. 0.0270 2016 US Surface water Arkansas  (Knapp 1.07 0.0289 $/m?

$/m? (United et al,, 2018)
States)

Value of environmental externalities based on the average carbon tax rate 0.0783 2006 US GHGs Jiangsu (Lv et al,, 1.29 0.1010 $/kg

(among Sweden, Norway, Finland and Denmark = 14.25 €/t CO,-eq. $/kg emissions: (China) 2010) CO,-eq.
CO,-eq.  CHy, CO5, N;O

External benefit of carbon sequestrated by the farming system (using the 0.0782 2006 US Carbon Jiangsu (Lv et al,, 1.29 0.1009 $/kg C
same carbon tax rate) $/kg C sequestration (China) 2010) seq.

seq.

A Social Cost of Atmospheric Release (SCAR) model is used to provide a 0.73 2007US CO Global (Shindell, 1.25 09125 $/kg
valuation of air emissions in terms of damages per ton of pollutant (cost of $/kg average 2015) co
injury/replacement; scenario: median total; declining rate).

A Social Cost of Atmospheric Release (SCAR) model is used to provide a 47 2007 US NO. Global (Shindell, 1.25 58.7500 $/kg
valuation of air emissions in terms of damages per ton of pollutant (cost of $/kg average 2015) NO..
injury/replacement; scenario: median total; declining rate)

Value of air pollution removed by trees in the Greenbelt (rationale: potential ~ 5.01 2005 PM;o Ontario (Wilson, 0.97 48597 $/kg
costs of human impact if natural capital is depleted). CADS$/kg (Canada) 2008) PM;o

A Social Cost of Atmospheric Release (SCAR) model is used to provide a 42.00 2007 US SO, Global (Shindell, 1.25 52.5000 $/kg
valuation of air emissions in terms of damages per ton of pollutant (cost of $/kg average 2015) SO,
injury/replacement; scenario: median total; declining rate).

Value of environmental externalities based on the external cost of nitrogen 1.21 2006 US  Nitrogen Jiangsu (Lv et al, 1.29 1.5609 $/kgN
fertilizer. $/kg N (leaching & (China) 2010)

runoff)
Phosphorous abatement costs; lowest estimation. 1.50 Euro/kg  Phosphorous European  (Prokofieva 1.17 1.7550 $/kgP
P (leaching & average et al, 2011)
runoff)

2 Equivalent actual value adjusted with Consumer Price Index (CPI-inflation), in 2018 US$ (source of calculation: http://fxtop.com/en/currency-converter-past.php) Results.

emission was based on regional average values obtained from
Frischknecht et al. (2016), because the EPIC model does not simulate
CH,4 emissions.

The demand for water provisioning is characterized by irrigation
water use and the evapotranspiration rate of rice crop, while its supply
is determined by precipitation (Chan et al,, 2006; Liu and Bakshi, 2019).
The rice farm in India has the greatest water demand; however, if de-
mand is compared to supply using the vy metric, then the United
States farm performs the worst, with a vy of —0.25 (Fig. 2b). Comparing
China and United States farms, the supply of water is similar, but be-
cause the farm in China uses less irrigation water, its environmental per-
formance is better (i.e., the vy value for the Chinese farm is close to zero,
greater than the United States farm).

Results for air quality regulation for multiple air pollutants, i.e. CO,
NOy, PM;, and SO, are illustrated in Fig. 2c-f. Demands are determined
by their corresponding emissions from the combustion of diesel in
farming machinery. At the farm scale, the supply of air quality regula-
tion ES is approximately zero. Some deposition of air pollutants on
rice crops may occur; however, rice has a relatively small leaf area
index (Fagade and De Datta, 1971), therefore, its capability to provide
air quality regulation is limited and thus ignored. In the constructed
land use scenarios, we assume that part of farmland is converted to for-
est land to mitigate impacts of air pollutants and overall rice yields are
reduced proportionally. In these reforestation scenarios, supplies of
the air quality regulation ES are quantified by the CAP removal rates of
forests that surround the farmland. In Fig. 2c-f, only one demand
value is shown, since this value is consistent across all supply scenarios
due to the use of normalized results per kg of harvested rice. PM;o and
SO, emissions are completely assimilated by onsite forest under the
5% reforestation scenario (i.e. “5% Supply” scenario), leading to positive
vk values. However, the emissions of CO and NOy cannot be taken up
completely by onsite forests, even under the 15% reforestation scenario
(i.e. “15% Supply” scenario). For NOy, the 15% reforestation scenario as-
similates 25%-35% of emissions, resulting in vy values ranging from
—0.75 to —0.65.

Results are similar for water quality regulation (Fig. 2g-h). At the
farm scale, fertilizer runoff creates demand for water quality regulation

ES. However, these nutrients cannot be mitigated onsite, and therefore
the local ES supply is zero. Nutrient runoff into local watersheds may
be assimilated by receiving waters, but instream and lake processes can-
not be modelled within EPIC. Watershed and water quality models may
be used, but this is beyond the scope of the current study. Moreover,
local watershed information is not available for farms in China and
India; therefore, we construct scenarios in which 0.5%, 1%, and 1.5% of
land is used for wetland construction. We observe that the wetlands
have substantial impacts on reducing eutrophication (Fig. 2g-h). With
a 150 m? wetland per hectare (i.e. 10,000 m?) of land, nitrogen runoff
is decreased to background concentration for all three rice farms. For
farms in India and the United States, a 150 m? wetland is also able to re-
duce phosphorus runoff to background concentration; while for the
farm in China, the phosphorus concentration is reduced from 1 mg/L
to 0.037 mg/L. Even with a 50 m? wetland, nitrogen runoff concentra-
tions are reduced to background level for farms in India and the
United States; while nitrogen runoff from the farm in China is reduced
by 67%. With regards to phosphorus, a 50 m? wetland reduces runoff
concentrations by 67%, 77%, and 81% for China, India and the United
States farms, respectively.

2.5. Results for steps IV

Monetary valuation can be included as the last step of the cascade
modelling analysis, when the benefits and costs to human beings can
be expressed in terms of monetary values (Fig. 3). To estimate these
economic impacts, the difference between the supply and demand of
ES associated with 1 FU (Fig. 2) is multiplied by an average monetary
price related to each ES over the three countries (Table 2). Lower de-
mand for carbon sequestration compared to its supply (Figs. 2a and
3a) is reflected by a positive externality; while the three countries (ex-
cept for China for a marginal benefit associated with water provision-
ing) have negative externalities across the other ES classes. Negative
values are related to the cost of detrimental impacts associated with
higher demand (than supply) of those ES. When summed into a final
ES cost-benefit balance and compared to the price of rice sold in the
market (Fig. 3b) in order to understand the magnitude of such economic
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Fig. 2. Results from steps Il and Ill in Fig. 1 for: (a) Carbon Sequestration Service; (b) Water Provisioning Service; (c) Air Quality Regulation Service - CO; (d) Air Quality Regulation Service -
NOX; (e) Air Quality Regulation Service - PM,; (f) Air Quality Regulation Service - SOX; (g) Water Quality Regulation Service - Nitrogen; (h) Water Quality Regulation Service - Phosphorus.

impact, those externalities reveal a “negative” net value associated with
the FU (the monetary “demand” for ES is, on average, higher than the
monetary “supply” of ES across the different scenarios analysed in
Fig. 2). This value represents around 2%, 6%, and 4% of the cost of 1 kg

of rice from China, India, and the United States, respectively. From the
stakeholders' perspective, this would mean a “hidden” economic impact
that should instead be incorporated into the price of rice to compensate
for the lack of ES supply.
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Fig. 3. Results of valuation (step IV in Fig. 1): (a) monetary costs (value <0) and benefits (value >0); For air and water quality regulations, the mean value among supply-demand
difference scenarios is considered; (b) comparison between the price of 1 kg of harvested rice and the sum of the ES values shown in (a), in the form of ES cost-benefit balance, which
provides an indication of the potentially missing amount of externalities in the price of rice sold in the market.

3. Overall discussion: advantages, drawbacks and practical challenges

In this study, we have incorporated spatially explicit data to quantify
the demand and supply of ES using the EPIC model, instead of using ge-
neric/regional averaged data as in conventional LCA. As demonstrated in
the case study, performance varies within and across different farm re-
gions. This suggests that accounting for spatial heterogeneity in ES pro-
visioning is essential, because the same type and amount of
interventions may have different implications for ES provisioning de-
pending on the landscape context. Moreover, the perception and prior-
itization of different ES also vary according to the human needs on that
landscape context. For instance, water provision may be an essential
issue on a water scarce area, but not so much of an issue on an area
where water is abundant. The EPIC and similar ecological models cap-
ture the complex interactions between human activities and local eco-
systems. Therefore, they can evaluate how and to what extent human
interventions would change ES provisioning. Conventional LCA,
intended as a tool standardized according to the ISO 14044:2006 (ISO,
2006), is inadequate for such tasks due to its linear scaling nature. The
valuation step (Step IV) in our application is seemingly close to the
idea of “payments for ecosystem services” (PES) (Farley and Costanza,
2010) and “cap-and-trade” (Schmalensee and Stavins, 2017). PES is a
framework to incentivize the provision of ES by managing ecosystems,
in which monetary value is assigned to ES (in particular with regard
to non-marketed ES) to help decision-makers understand the environ-
mental externalities associated with the ES loss (Bellver-Domingo
et al., 2016). However, the PES approach does not aim to model a
cause-effect relationship to link the interventions from human activities
to the changes in ES provisioning. Our proposed ES-LCIA approach, on
the other hand, attempts to integrate the LCIA cause-effect chain with
ES cascade modelling.

In addition, even though demonstrated through an application to
rice farming systems, the ES-LCIA methodology is generic enough to
be applied to other sectors and products, where human activities are
impacting the ES provisioning and where ES synergies and trade-offs
exist. For example, this framework can be extended to assess the
food-energy-water nexus, and the relevant ES may include biomass
grown for nutritional purpose and as a source of energy, water provi-
sioning and quality regulation. Ecological models, such as the Soil &

Water Assessment Tool (SWAT, 2012), can be applied to model ES
flows and derive the cost-benefit balance. This framework may also be
adapted to solve sustainable supply chain design problems while ac-
counting for ES (Ghosh and Bakshi, 2019).

However, applying rigorously the ES-LCIA framework requires com-
plex procedures and many data and knowledge gaps have not been
filled yet. Therefore, we have made simplified assumptions, leading to
several limitations. First, the proposed methodology in Rugani et al.
(2019) has a feedback loop, where the changes in ES provisioning can
potentially feedback into the initial results from Step I and II. A conse-
quential approach may be required to quantitatively define the feed-
back amount, which is beyond the scope of this analysis. Second, as
has already been discussed in Section 2.2.2, Steps Il and IIl are combined
in this study because the EPIC model provides results for Steps Il and III
simultaneously. Even though there is “no loss of information”, the com-
bination leads to limited model functionalities (i.e. not able to obtain
separate results from Step Il and III).

Through the application, practical challenges have been identified
and future research work is required to make the framework fully oper-
ational. First, as demonstrated in the case study, the utilization of eco-
logical models requires an extensive amount of spatial data, the
collection and quality of which can present difficulties and increase un-
certainties of the modelling results. There are also uncertainties associ-
ated with the EPIC model parameters, e.g. the harvest index and the
planting density (Xiong et al., 2014). Uncertainties also exist in the val-
uation step when the monetisation of various environmental externali-
ties are summed up. For these reasons, the results obtained in this
analysis need to be interpreted with caution. Sensitivity analyses
could be performed to understand how these uncertainties would affect
the final results. However, this was beyond the scope of this study. The
time varying aspect of ES provisioning is also not accounted for.

Second, the consideration of ecosystems and their ES into the
assessed system boundaries renders the approach incompatible with
the current structure of LCA tools. Even though there have been re-
search efforts to develop computational structures for incorporating
the role of ES in LCA, they have not yet been implemented in commonly
used LCA tools (Liu et al., 2018a, 2018b; Weidema et al., 2018). Besides
this issue of practical implementation, other potential challenges in-
clude how the aggregation needs to be performed since there would
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be an increasing number of indicators that should be leveraged in the
final decision-making. In this analysis, we have utilized monetary aggre-
gation. Another possible aggregation scheme may be through normali-
zation and weighting, as with conventional LCA when converting
midpoint to endpoint indicators (ISO, 2006). In such cases, new normal-
ization and weighting schemes need to be devised.

Third, the current case study has considered only four ES, which the
authors deem to be most relevant to rice farming, and demand and sup-
ply of which are quantifiable to some extent. However, in order to better
understand the synergies and trade-offs, the integrated ES-LCIA frame-
work should take the advantage of ES classification schemes, such as
CICES, to come up with a list of comprehensive, mutually exclusive,
yet relevant ES (Haines-Young and Potschin, 2018). Of course, consis-
tent methods need to be developed in order to quantify the demand
and supply of each ES under concern. Information about ES demand is
generally available from LCI; while, information on supply can be ob-
tained from detailed ecological models or remote sensing. The proposed
framework would benefit from the application of additional models or
modelling systems that quantify a broad range of ES change per ecolog-
ical process (and affected land cover). A review of such methods, data,
and models is available from Turner et al. (2016) and Grét-Regamey
et al. (2017). A comprehensive and consensus-based matching should
also be performed between every elementary flow in LCI to the range
of ES classified in CICES. For example, the emission of CO, can be
matched with carbon sequestration service; while nitrogen fertilizer
runoff is associated with water quality regulation ES. In this way,
when ecological models are developed for each land cover type in
terms of their ability to provide a variety of ES, the ES demand and sup-
ply components can be quantified.

Finally, an additional challenge lies in defining the beneficiaries of ES
and the associated spatial extent of the assessment. Our study consid-
ered local beneficiaries. However, the assessment of ES should ideally
also be conducted at the serviceshed scale (Liu and Bakshi, 2019). Larger
boundaries increase complexity because other beneficiaries may com-
pete for the same ES. For example, allocation may be needed to deter-
mine the share of ES supply to each beneficiary. The sustainability
metric and monetary benefits can be quantified based on the
beneficiary's demand and the “allocated supply”. Alternatively, we can
calculate the supply and demand of ES in the entire serviceshed and
consider that if the serviceshed is operating within its carrying capacity,
all activities in it can also be considered to have this property. In such
case, it should be noted that different ES operate at different serviceshed
extents; for example, carbon sequestration has a global serviceshed
while air quality regulation has a regional serviceshed. More details on
this can be found in Liu and Bakshi (2019).

4. Conclusions and outlook

We implement a tailored cascade model to a case study on rice farm-
ing using the EPIC model to simulate changes in ES provisioning and
demonstrate the value of the integrated ES-LCIA assessment frame-
work. Even though the case study is developed using limited cascade
model functionalities (e.g., feedback loops were not included) and
narrowed to a few ES, the steps in our case study manifest the feasibility
and relevance of adopting an ES cascade modelling approach in the as-
sessment of cause-effect relationships between human interventions
and their impacts on intermediate and final ES provisioning. The opera-
bility and flexibility of our framework are also illustrated.

In addition, we demonstrate how the ES cascade model comple-
ments LCIA by including externalities associated with the supply and
demand of ES. The result of the cost-benefit balance for rice farming is
negative, suggesting that for the rice farming systems, as scoped and
modelled in this study, the impacts to ES are greater than the associated
benefits. Compared to the price of rice sold in the market, the net impact
on ES represents around 2%, 6%, and 4% of the cost of 1 kg of rice from

China, India, and the United States, respectively. This indicates the
extent of environmental externalities from ignoring the selected ES.

With such a framework and guidance in place, practitioners can
more comprehensively assess the impacts of life cycle activities on rele-
vant ES provisioning, in both physical and monetary terms. This may in
turn affect stakeholders' availability to receive such benefits from eco-
systems in the long run. In a wider context, the work conducted herein
can therefore contribute to better assess the environmental conse-
quences and interactions of human activities and thus contribute to
meeting the UN SDGs, such as SDG-14 (“life below water”) or SDG 15
(“life on land”).
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