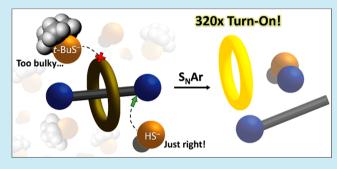


pubs.acs.org/OrgLett Letter

Nanohoop Rotaxane Design to Enhance the Selectivity of Reaction-Based Probes: A Proof-of-Principle Study

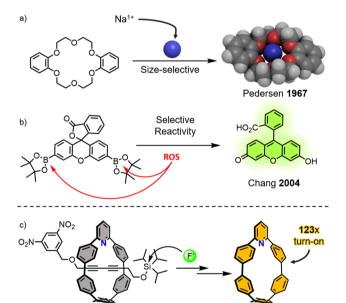
Claire E. Otteson, Carolyn M. Levinn, Jeff M. Van Raden, Michael D. Pluth,* and Ramesh Jasti*

Cite This: Org. Lett. 2021, 23, 4608-4612


ACCESS

Metrics & More

Article Recommendations


S Supporting Information

ABSTRACT: Mechanical interlocking of a nanohoop fluorophore and a reactive thread couples the benefits of a reaction-based probe with a sterically congested active site for enhanced selectivity. Advantageously, the thread design uses dual function stoppers that act as both a quencher and a trigger for sensing. In progress toward expanding this approach to biologically relevant analytes, this system is used to demonstrate steric differentiation and provide a selective turn-on fluorescent response with size selectivity for HS⁻ rather than larger thiolates.

he development of fluorescent sensors for biologically relevant analytes is a rapidly growing field of research, due in part to the utility, simplicity, and versatility of these systems. 1-5 These probes are used for detection and quantification of chemical species with documented roles in various disease states and also as tools to obtain a better understanding of biological processes. 1,4,6,7 In many cases, the effective concentration of a particular analyte can be linked with disease progression, and therefore the ability to study an analyte in a natural biological environment is critical.^{5,7,8} This requirement, however, presents a formidable challenge because probes need to be highly selective due to the large number of reactive species present in complex biological systems. Simultaneously, heightened sensitivity is required due to the low physiological concentrations of these species, all while operating in a very competitive solvent (water). 6-11 Obtaining analyte selectivity has traditionally relied on the creation of highly specific binding sites; however, these "lock-and-key" systems come with challenges (Figure 1a). 12 Sensors based solely on supramolecular or coordination-driven interactions can be heavily influenced by solvation effects and changes in pH, issues that are amplified in aqueous media. Alternatively, reaction-based probes can be designed to contain a "trigger" that reacts with an analyte of interest, and therefore, selectivity is a function of differences in reactivity (Figure 1b). 7,13-16 This mode of selectivity, however, can be difficult to achieve when considering a group of analytes with similar reactivity, such as reactive sulfur species (RSS). To our knowledge, a yet unexplored route to enhancing probe selectivity is the pairing of these two powerful methods of analyte sensing by constructing a sterically encumbered reactive probe via mechanical interlocking.

Mechanically interlocked molecules (MIMs) have recently garnered interest for a variety of biological applications. The

Figure 1. Classic examples of (a) size-selective ¹² and (b) reaction-based sensing platforms. ¹⁶ (c) A previously published nanohoop[2]-rotaxane-based fluorescent fluoride sensor. ²⁸

mechanical bonds of MIMs often give rise to unique molecular recognition sites not accessible via traditional covalent

Received: April 19, 2021 Published: June 1, 2021

chemistry, which can be useful for sensing, imaging, and drug delivery. 17-30 Furthermore, the steric encumbrance provided by the macrocyclic component of rotaxanes has been exploited to protect electron-deficient moieties from nucleophilic attack, modulate the reactivity of the thread component, and enhance the photophysical properties of dye-based axles. 18,30-33 Nanohoops are unique among macrocycles used for MIM synthesis, 34-36 due to their inherent fluorescence and highly rigid structure, particularly at small sizes.³⁷ As a consequence, minimal steric bulk is required to prevent dethreading via slippage, allowing for broad flexibility in thread design. Taking advantage of these properties, we recently illustrated the potential of nanohoop [2]rotaxanes as turn-on fluorescent sensors (Figure 1c). Use of an electron-deficient 2,5dinitrobenzylic alcohol as one of the stoppers quenches the fluorescence of the nanohoop in the interlocked state. A fluoride-triggered silyl deprotection of the triisopropylsilyl ether stopper results in dethreading of the macrocycle, dissociation of the quencher and fluorophore, and ultimately a 123-fold turn-on in fluorescence.

Building from this example, we sought to target a more challenging analyte to demonstrate the advantage of the congested reaction site of the interlocked sensor. As noted above, one group of analytes that has proved challenging to sense selectively is RSS. The smallest species in this family is hydrogen sulfide (H2S), one of three currently recognized gasotransmitters.³⁸ H₂S is involved in a wide variety of regulatory processes, and the diverse roles in human physiology make it an important target of research.³⁹⁻⁴ Selective reaction-based probes that rely on H₂S/HS⁻ nucleophilicity are often challenging to design because other biologically relevant nucleophilic thiols are present in much greater concentrations (low nM for H₂S vs low mM concentrations for glutathione). Herein, we report a novel turn-on fluorescent nanohoop [2]rotaxane⁵² for selective sensing of HS- in organic solution based on the welldocumented S_NAr reaction of thiolates with 2,4-dinitrophenyl (DNP) ethers. 44-46 We provide a proof-of-principle demonstration that encapsulation of a DNP ether thread within a nanohoop via mechanical interlocking effectively couples the benefits of a reactive probe with a sterically tailored active site, enhancing the selectivity of the probe.

As previously mentioned, our group recently accessed a variety of nanohoop [2]rotaxanes, where "2" denotes the number of component molecules in the MIM. These structures can be prepared by incorporation of a 2,6-pyridine unit into the backbone of a carbon nanohoop that can then participate in active metal templating via a Cadiot-Chodkiewicz (CC) cross-coupling reaction. 35,36,53,54 With this methodology in mind, rotaxane sensor 4 was envisioned with 1 as the templating macrocycle, which again is notable for its small size, rigidity, and fluorescence (Figure 2a). The thread component was designed to have two multifunctional DNP units that serve as stoppers, reactive probes, as well as fluorescence quenchers. To this end, terminal alkyne coupling partner 2 was prepared via deprotonation of DNP alcohol with potassium carbonate and reaction with propargyl bromide. The requisite halo-alkyne coupling partner 3 was then easily obtained in good yield via treatment of 2 with silver nitrite and N-bromosuccinimide. Treatment of both thread components 2 and 3 with [Cu(MeCN)₄][PF₆] in the presence of nanohoop 1 delivered the desired interlocked rotaxane 4 in 18% unoptimized yield. Notably, the isolated yellow solid was

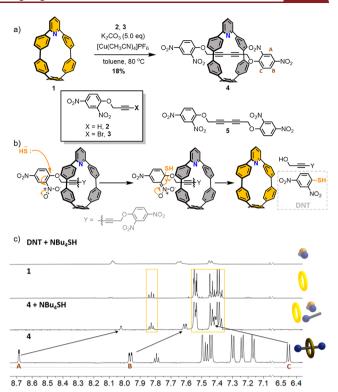


Figure 2. (a) Synthesis of rotaxane 4 and free thread 5, (b) proposed mechanism of rotaxane dethreading in the presence of HS^- , and (c) 1H NMR spectra (aromatic region) of rotaxane 4 in CD₃CN, before and after addition of 1 equiv of NBu₄SH, compared with free macrocycle 1 and DNT in the presence of NBu₄SH.

nonfluorescent in the solid and solution state as predicted. Free thread 5 was prepared as a control compound using similar methods. All compounds were characterized by 1H and $^{13}C\{^1H\}$ NMR spectroscopy, mass spectrometry, and IR spectroscopy (see SI for full details).

DNP reacts with HS⁻ via an S_NAr mechanism. 44,45 Based on this, we expected HS⁻ to react with rotaxane 4 to first generate a Meisenheimer complex (Figure 2b). Collapse of this intermediate would release 2,4-dinitrothiophenol (DNT), an equivalent of diyne, with subsequent dethreading of the nanohoop and a concomitant turn-on in fluorescence (Figure 2b). We first investigated this process via ¹H NMR spectroscopy. For these studies, we used the organic soluble tetrabutylammonium hydrosulfide (NBu₄SH) because HS⁻ is the most prevalent protonation state of H₂S under physiological conditions and is the active species responsible for cleavage of DNP groups. Figure 2c illustrates the immediate response upon treatment of 4.5 mM rotaxane 4 with 1 equiv of NBu₄SH in acetonitrile- d_3 at 25 °C. Consistent with the mechanism in Figure 2b, we see the return of free macrocycle 1 (resonances outlined in yellow) as well as the appearance of resonances that suggest the formation of S_NAr byproduct DNT. Moreover, at the conclusion of the experiment, the sample showed bright yellow fluorescence under UV irradiation, also consistent with dissociation of the thread from macrocycle 1.

Next, we investigated the kinetics of the dethreading events using time-course fluorescence and UV-vis experiments. We added 10, 50, or 100 equiv of NBu₄SH to a solution of rotaxane sensor 4 in degassed MeCN and monitored changes in the fluorescence and absorbance spectra over time (see SI

for further details.) Dethreading is complete within 30 min (based on lack of further change in fluorescence or UV—vis spectra) when either 50 or 100 equiv of NBu₄SH is introduced. With just 10 equiv of NBu₄SH, we see a 320-fold turn-on in nanohoop fluorescence, with the signal plateauing around 120 min (Figure 3). It should be noted that the immediate reaction

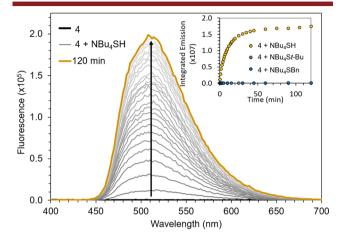
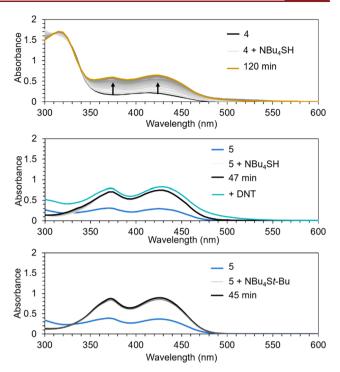



Figure 3. Time-course fluorescence (excitation 310 nm) of 4 (25 μ M in acetonitrile) before and after addition of 10 equiv of NBu₄SH over 120 min. Inlay: integrated fluorescence of 4 over 120 min in the presence of 10 equiv of NBu₄SH, NBu₄St-Bu, or NBu₄SBn.

seen by NMR is a consequence of the higher concentration regime utilized for NMR (4.45 mM 4) versus photophysical (25 μ M 4) studies. The corresponding absorbance spectra show steady consumption of NBu₄SH at 270 nm (SI Figures S7, S9, and S11) along with a steady increase in absorbance around 375 and 425 nm, attributed to formation of DNT (Figure 4, top). In contrast, the absorbance of the nanohoop (320 nm) remains relatively constant over the course of the experiment, as expected, since 1 and 4 have similar absorption profiles.

Curiously, at the end of experiments using 50 or 100 equiv of the nucleophile, a slightly decreased maximum fluorescence emission is observed. Consistent with this observation, a separate control experiment (SI Figure S32) demonstrated a slight decrease in fluorescence when the free nanohoop 1 was treated with 10 equiv of NBu₄SH in the absence of the thread, which may explain the lower overall fluorescence observed with high NBu₄SH concentrations. The same decrease in fluorescence of 1 is not observed when in the presence of up to 100 equiv of NBu₄Cl (SI Figure S33), suggesting that high concentrations of HS⁻ can slightly modulate the fluorescence of the nanohoop. A Stern–Volmer analysis of this system (SI Figure S34) suggests this is likely due to dynamic/collisional quenching. These concentrations of NBu₄SH, however, are significantly higher than would be found in biological systems.

At the outset of this work, we hypothesized that the steric hindrance created by interlocking the reactive thread within the compact nanohoop should enhance selectivity for small nucleophiles such as H_2S/HS^- . To investigate this size-based selectivity, we next repeated these experiments with both NBu₄St-Bu and NBu₄SBn, more sterically demanding thiolates. After 120 min in the presence of the larger nucleophiles, we observed virtually no turn-on fluorescence response, which is consistent with a significant steric selectivity for HS⁻ (Figure 3, inlay). To further confirm the effect of interlocking the reactive

Figure 4. Time-course UV–vis spectra of 4 with 10 equiv of NBu₄SH (top) and of 5 with 10 equiv of NBu₄SH followed by addition of DNT (middle) and 5 with 10 equiv of NBu₄St-Bu (bottom). All probe concentrations are 25 μ M each in acetonitrile.

unit, free thread 5 was also subjected to reaction with NBu₄SH, NBu₄St-Bu, and NBu₄SBn. In contrast to 4, free thread 5 shows an immediate growth of peaks at 375 and 425 (DNT) without change over time (Figure 4, middle/bottom), suggesting that the free thread reacts nearly instantaneously regardless of nucleophile identity. Finally, in a competition experiment, both 4 and 5 were combined (25 μ M each) with NBu₄St-Bu or NBu₄SBn (125 μM) and observed over time. While there is no change seen in the fluorescence spectrum over 30 min, addition of either thiolate results in the immediate appearance of S_NAr byproduct peaks in the UVvis spectra, consistent with the breakdown of free thread 5 only. Taken together, these results confirm the successful enhancement of selectivity for this particular reactive probe via mechanical interlocking. We hypothesize that this concept will be broadly applicable to enhancing the selectivity of reaction probes for smaller analytes.

In summary, we have designed a turn-on fluorescent probe for HS⁻ that shows excellent selectivity over *t*-BuS⁻ and BnS⁻. This study suggests the utility of such rotaxane-based probes to tune the size selectivity of reactive sensors due to the unique steric environment imparted by the mechanical bond. In conjunction with recent work in our laboratory toward creating biocompatible nanohoops for biological imaging/sensing, the development of these rotaxane sensor systems that can operate in aqueous media is an important and feasible next step. State We also note that the sensor reported here contains a symmetric thread where either end can function as a trigger. Future work investigating unsymmetric thread units that impart these nanohoop rotaxane sensors with enhanced function (e.g., payload release) is ongoing and will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.1c01348.

Detailed synthetic procedures and characterization data; NMR spectra; and detailed photophysical experimental procedures and data (PDF)

AUTHOR INFORMATION

Corresponding Authors

Michael D. Pluth — Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States; orcid.org/0000-0003-3604-653X; Email: pluth@uoregon.edu

Ramesh Jasti — Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States; orcid.org/0000-0002-8606-6339; Email: rjasti@uoregon.edu

Authors

Claire E. Otteson – Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States; orcid.org/0000-0002-0095-6729

Carolyn M. Levinn — Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States; orcid.org/0000-0001-7857-7465

Jeff M. Van Raden — Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States; ⊚ orcid.org/0000-0002-3505-5170

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.1c01348

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The research performed by C.E.O., J.M.V.R., and R.J. was supported by the National Science Foundation (CHE-1808791). C.E.O. was also supported by an NSF Research Traineeship (DGE-2022168). Work toward H₂S sensing by C.M.L. and M.D.P. is supported by the NIH (R01GM113030) and the NSF/GRFP (C.M.L., DGE-1309047). Mass spectrometry support was funded by the NSF (CHE-1625529).

REFERENCES

- (1) Mao, L.; Liu, Y.; Yang, S.; Li, Y.; Zhang, X.; Wei, Y. Recent advances and progress of fluorescent bio/chemosensors based on aggregation-induced emission molecules. *Dyes Pigm.* **2019**, *162*, 611.
- (2) Zhang, X.-Y.; Yang, Y.-S.; Wang, W.; Jiao, Q.-C.; Zhu, H.-L. Fluorescent sensors for the detection of hydrazine in environmental and biological systems: recent advances and future prospects. *Coord. Chem. Rev.* **2020**, *417*, 213367.

- (3) Zajac, M.; Chakraborty, K.; Saha, S.; Mahadevan, V.; Infield, D. T.; Accardi, A.; Qiu, Z.; Krishnan, Y. What biologists want from their chloride reporters a conversation between chemists and biologists. *J. Cell Sci.* **2020**, *133*, 1.
- (4) Chen, X.; Wang, F.; Hyun, J. Y.; Wei, T.; Qiang, J.; Ren, X.; Shin, I.; Yoon, J. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. *Chem. Soc. Rev.* **2016**, *45*, 2976.
- (5) Jiao, X.; Li, Y.; Niu, J.; Xie, X.; Wang, X.; Tang, B. Small-molecule fluorescent probes for imaging and detection of reactive oxygen, nitrogen and sulfur species in biological systems. *Anal. Chem.* **2018**, *90*, 533.
- (6) Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.; Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. *Science* **2006**, *312*, 217.
- (7) Chan, J.; Dodani, S. C.; Chang, C. J. Reaction-based small molecule fluorescent probes. *Nat. Chem.* **2012**, *4*, 973.
- (8) Bai, X.; Ng, K. K.-H.; Hu, J. J.; Ye, S.; Yang, D. Small-molecule-based fluorescent sensors for selective detection of reactive oxygen species in biological systems. *Annu. Rev. Biochem.* **2019**, *88*, 605.
- (9) Zuin, M.; Rigatelli, G.; Faggian, G.; L'Erario, R.; Chinaglia, M.; Roncon, L. Could advanced drug delivery systems be the future in cardiovascular revascularization medicine? *Vascular* **2017**, *25*, 447.
- (10) Veiseh, O.; Tang, B. C.; Whitehead, K. A.; Anderson, D. G.; Langer, R. Managing diabetes with nanomedicine: challenges and opportunities. *Nat. Rev. Drug Discovery* **2015**, *14*, 45.
- (11) Timko, B. P.; Dvir, T.; Kohane, D. S. Remotely triggerable drug delivery systems. *Adv. Mater.* **2010**, *22*, 4925.
- (12) Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017.
- (13) Bezner, B. J.; Ryan, L. S.; Lippert, A. R. Reaction-based luminescent probes for reactive sulfur, oxygen, and nitrogen species: analytical techniques and recent progress. *Anal. Chem.* **2020**, *92*, 309.
- (14) Cho, D.-G.; Sessler, J. L. Modern reaction-based indicator systems. *Chem. Soc. Rev.* **2009**, 38, 1647.
- (15) Eun Jun, M.; Roy, B.; Han Ahn, K. "Turn-on" fluorescent sensing with "reactive" probes. *Chem. Commun.* **2011**, *47*, 7583.
- (16) Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. A selective, cell-permeable optical probe for hydrogen peroxide in living cells. *J. Am. Chem. Soc.* **2004**, *126*, 15392.
- (17) Stoddart, J. F. Mechanically interlocked molecules (MIMs)-molecular shuttles, switches and machines. *Angew. Chem., Int. Ed.* **2017**, *56*, 11094.
- (18) Pairault, N.; Barat, R.; Tranoy-Opalinski, I.; Renoux, B.; Thomas, M.; Papot, S. Rotaxane-based architectures for biological applications. C. R. Chim. 2016, 19, 103.
- (19) Denis, M.; Qin, L.; Turner, P.; Jolliffe, K. A.; Goldup, S. M. A fluorescent ditopic rotaxane ion-pair host. *Angew. Chem., Int. Ed.* **2018**, *57*, 5315.
- (20) Denis, M.; Pancholi, J.; Jobe, K.; Watkinson, M.; Goldup, S. M. Chelating rotaxane ligands as fluorescent sensors for metal ions. *Angew. Chem., Int. Ed.* **2018**, *57*, 5310.
- (21) Lim, Y. C. J.; Marques, I.; Félix, V.; Beer, P. D. A chiral halogen-bonding [3]rotaxane for the recognition and sensing of biologically relevant dicarboxylate anions. *Angew. Chem., Int. Ed.* **2018**, *57*, 584.
- (22) Knighton, R. C.; Dapin, S.; Beer, P. D. Luminescent anion sensing by transition-metal dipyridylbenzene complexes incorporated into acyclic, macrocyclic and interlocked hosts. *Chem. Eur. J.* **2020**, 26, 5288.
- (23) Bak, K. M.; Porfyrakis, K.; Davis, J. J.; Beer, P. D. Exploiting the mechanical bond for molecular recognition and sensing of charged species. *Mater. Chem. Front.* **2020**, *4*, 1052.
- (24) Arunkumar, E.; Forbes, C. C.; Noll, B. C.; Smith, B. D. Squaraine-derived rotaxanes: sterically protected fluorescent near IR-dyes. *J. Am. Chem. Soc.* **2005**, *127*, 3288.
- (25) Craig, M. R.; Claridge, T. D. W.; Hutchings, M. G.; Anderson, H. L. Synthesis of a cyclodextrin azo dye [3]rotaxane as a single isomer. *Chem. Commun.* **1999**, 1537.

- (26) Zhai, C.; Schreiber, C. L.; Padilla-Coley, S.; Oliver, A. G.; Smith, B. D. Fluorescent self-threaded peptide probes for biological imaging. *Angew. Chem., Int. Ed.* **2020**, *59*, 23740.
- (27) Shaw, S. K.; Liu, W.; Gómez Durán, C. F. A.; Schreiber, C. L.; Betancourt Mendiola, M. de L.; Zhai, C.; Roland, F. M.; Padanilam, S. J.; Smith, B. D. Non-covalently pre-assembled high-performance near-infrared fluorescent molecular probes for cancer imaging. *Chem. Eur. J.* 2018, 24, 13821.
- (28) Ambrogio, M. W.; Thomas, C. R.; Zhao, Y. L.; Zink, J. I.; Stoddart, J. F. Mechanized silica nanoparticles: A new frontier in theranostic nanomedicine. *Acc. Chem. Res.* **2011**, *44*, 903.
- (29) Barat, R.; Legigan, T.; Tranoy-Opalinski, I.; Renoux, B.; Péraudeau, E.; Clarhaut, J.; Poinot, P.; Fernandes, A. E.; Aucagne, V.; Leigh, D. A.; Papot, S. A mechanically interlocked molecular system programmed for the delivery of an anticancer drug. *Chem.* **2015**, *6*, 2608.
- (30) Fernandes, A. E.; Viterisi, A.; Coutrot, F.; Potok, S.; Leigh, D. A.; Aucagne, V.; Papot, S. Rotaxane-based propetides: protection and enzymatic release of a bioactive pentapeptide. *Angew. Chem., Int. Ed.* **2009**, *48*, 6443.
- (31) Neal, E. A.; Goldup, S. M. Chemical consequences of mechanical bonding in catenanes and rotaxanes: isomerism, modification, catalysis and molecular machines for synthesis. *Chem. Commun.* **2014**, *50*, 5128.
- (32) Parham, A. H.; Windisch, B.; Vögtle, F. Chemical reactions in the axle of rotaxanes steric hindrance by the wheel. *Eur. J. Org. Chem.* **1999**, *1999*, *1233*.
- (33) Anderson, S.; Claridge, T. D. W.; Anderson, H. L. Azo-dye rotaxanes. Angew. Chem., Int. Ed. Engl. 1997, 36, 1310.
- (34) Van Raden, J. M.; Louie, S.; Zakharov, L. N.; Jasti, R. 2,2'-Bipyridyl-embedded cycloparaphenylenes as a general strategy to investigate nanohoop-based coordination complexes. *J. Am. Chem. Soc.* 2017, 139, 2936.
- (35) Van Raden, J. M.; White, B. M.; Zakharov, L. N.; Jasti, R. Nanohoop rotaxanes from active metal template syntheses and their potential in sensing applications. *Angew. Chem., Int. Ed.* **2019**, *58*, 7341
- (36) Van Raden, J. M.; Jarenwattananon, N.; Zakharov, L. N.; Jasti, R. Active metal template synthesis and characterization of a nanohoop [c2]daisy chain rotaxane. *Chem. Eur. J.* **2020**, *26*, 10205.
- (37) Darzi, E.; Jasti, R. The dynamic size-dependent properties of [5]-[12]cycloparaphenylenes. *Chem. Soc. Rev.* **2015**, *44*, 6401.
- (38) Wang, R. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J. 2002, 16, 1792.
- (39) Wu, D.; Hu, Q.; Liu, X.; Pan, L.; Xiong, Q.; Zhu, Y. Z. Hydrogen sulfide protects against apoptosis under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes. *Nitric Oxide* **2015**, 46, 204.
- (40) Rinaldi, L.; Gobbi, G.; Pambianco, M.; Micheloni, C.; Mirandola, P.; Vitale, M. Hydrogen sulfide prevents apoptosis of human PMN via inhibition of p38 and caspase 3. *Lab. Invest.* **2006**, 86, 391.
- (41) Katsouda, A.; Bibli, S.-I.; Pyriochou, A.; Szabo, C.; Papapetropoulos, A. Regulation and role of endogenously produced hydrogen sulfide in angiogenesis. *Pharmacol. Res.* **2016**, *113*, 175.
- (42) Kimura, H. Physiological role of hydrogen sulfide and polysulfide in the central nervous system. *Neurochem. Int.* **2013**, *63*, 492.
- (43) Hartle, M. D.; Pluth, M. D. A practical guide to working the H_2S at the interface of chemistry and biology. *Chem. Soc. Rev.* **2016**, 45, 6108.
- (44) Lin, V. S.; Chen, W.; Xian, M.; Chang, C. J. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. *Chem. Soc. Rev.* **2015**, *44*, 4596.
- (45) Yu, F.; Han, X.; Chen, L. Fluorescent probes for hydrogen sulfide detection and bioimaging. *Chem. Commun.* **2014**, *50*, 12234.
- (46) Shi, B.; Gu, X.; Fei, Q.; Zhao, C. Photoacoustic probes for real-time tracking of endogenous H₂S in living mice. *Chem. Sci.* **2017**, 8, 2150.

- (47) Cao, J.; Lopez, R.; Thacker, J. M.; Moon, J. Y.; Jiang, C.; Morris, S. N. S.; Bauer, J. H.; Tao, P.; Mason, R. P.; Lippert, A. R. Chemiluminescent probes for imaging H_2S in living animals. *Chem. Sci.* **2015**, *6*, 1979.
- (48) Bailey, T. S.; Pluth, M. D. Chemiluminescent detection of enzymatically produced hydrogen sulfide: Substrate hydrogen bonding influences selectivity for H₂S over biological thiols. *J. Am. Chem. Soc.* **2013**, *135*, 16697.
- (49) Montoya, L. A.; Pluth, M. D. Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells. *Chem. Commun.* **2012**, *48*, 4767.
- (50) Montoya, L. A.; Pearce, T. F.; Hansen, R. J.; Zakharov, L. N.; Pluth, M. D. Development of selective colorimetric probes for hydrogen sulfide based on nucleophilic aromatic substitution. *J. Org. Chem.* **2013**, *78*, 6550.
- (51) Lei, Y.; Wang, K.-P.; Chen, S.; Zhang, Q.; Hu, Z.-Q. A fluorescent probe based on tetrahydro[5]helicene for highly selective recognition of hydrogen sulfide. *Spectrochim. Acta, Part A* **2018**, 204, 295.
- (52) Otteson, C. E.; Levinn, C. M.; Van Raden, J. M.; Pluth, M. D.; Jasti, R. Nanohoop rotaxane design to enhance the selectivity of reaction based probes: a proof of principle study. *ChemRxiv* (preprint), **2020**, DOI: 10.26434/chemrxiv.13141283.v1 (accessed 2020-09-16 from *ChemRxiv*).
- (53) Denis, M.; Goldup, S. M. The active template approach to interlocked molecules. *Nat. Chem. Rev.* **2017**, *1*, 0061.
- (54) Berná, J.; Goldup, S. M.; Lee, A.-L.; Leigh, D. A.; Symes, M. D.; Teobaldi, G.; Zerbetto, F. Cadiot-Chodkiewicz active template synthesis of rotaxanes and switchable molecular shuttles with weak intercomponent interactions. *Angew. Chem., Int. Ed.* **2008**, *47*, 4392.
- (55) White, B. M.; Zhao, Y.; Kawashima, T. E.; Branchaud, B. P.; Pluth, M. D.; Jasti, R. Expanding the chemical space of biocompatible fluorophores: nanohoops in cells. *ACS Cent. Sci.* **2018**, *4*, 1173.