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Abstract
Automated Lane Centering (ALC) systems are convenient and
widely deployed today, but also highly security and safety crit-
ical. In this work, we are the first to systematically study the
security of state-of-the-art deep learning based ALC systems
in their designed operational domains under physical-world
adversarial attacks. We formulate the problem with a safety-
critical attack goal, and a novel and domain-specific attack
vector: dirty road patches. To systematically generate the at-
tack, we adopt an optimization-based approach and overcome
domain-specific design challenges such as camera frame inter-
dependencies due to attack-influenced vehicle control, and the
lack of objective function design for lane detection models.

We evaluate our attack on a production ALC using 80 sce-
narios from real-world driving traces. The results show that
our attack is highly effective with over 97.5% success rates
and less than 0.903 sec average success time, which is sub-
stantially lower than the average driver reaction time. This
attack is also found (1) robust to various real-world factors
such as lighting conditions and view angles, (2) general to
different model designs, and (3) stealthy from the driver’s
view. To understand the safety impacts, we conduct experi-
ments using software-in-the-loop simulation and attack trace
injection in a real vehicle. The results show that our attack can
cause a 100% collision rate in different scenarios, including
when tested with common safety features such as automatic
emergency braking. We also evaluate and discuss defenses.

1 Introduction
Automated Lane Centering (ALC) is a Level-2 driving au-
tomation technology that automatically steers a vehicle to
keep it centered in the traffic lane [1]. Due to its high con-
venience for human drivers, today it is widely available on
various vehicle models such as Tesla, GM Cadillac, Honda
Accord, Toyota RAV4, Volvo XC90, etc. While convenient,
such system is highly security and safety critical: When the
ALC system starts to make wrong steering decisions, the hu-
man driver may not have enough reaction time to prevent
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safety hazards such as driving off road or colliding into ve-
hicles in adjacent lanes. Thus, it is imperative and urgent to
understand the security property of ALC systems.

In an ALC system, the most critical step is lane detection,
which is generally performed using a front camera. So far,
Deep Neural Network (DNN) based lane detection achieves
the highest accuracy [2] and is adopted in the most performant
production ALC systems today such as Tesla Autopilot [3].
Recent works show that DNNs are vulnerable to physical-
world adversarial attacks such as malicious stickers on traf-
fic signs [4, 5]. However, these methods cannot be directly
applied to attack ALC systems due to two main design chal-
lenges. First, in ALC systems, the physical-world attack gen-
eration needs to handle inter-dependencies among camera
frames due to attack-influenced vehicle actuation. For exam-
ple, if the attack deviates the detected lane to the right in a
frame, the ALC system will steer the vehicle to the right ac-
cordingly. This causes the following frames to capture road
areas more to the right, and thus directly affect their attack
generation. Second, the optimization objective function de-
signs in prior works are mainly for image classification or
object detection models and thus aim at changing class or
bounding box probabilities [4, 5]. However, attacking lane
detection requires to change the shape of the detected traffic
lane, making it difficult to directly apply prior designs.

The only prior effort that studied adversarial attacks on a
production ALC is from Tencent [6], which fooled Tesla Au-
topilot to follow fake lane lines created by white stickers on
road regions without lane lines. However, it is neither attack-
ing the designed operational domain for ALC, i.e., roads with
lane lines, nor generating the perturbations systematically by
addressing the design challenges above.

To fill this critical research gap, in this work we are the
first to systematically study the security of DNN-based ALC
systems in their designed operational domains (i.e., roads with
lane lines) under physical-world adversarial attacks. Since
ALC systems assume a fully-attentive human driver prepared
to take over at any time [1, 7], we identify the attack goal
as not only causing the victim to drive out of the current



lane boundaries, but also achieving it shorter than the average
driver reaction time to road hazard. This thus directly breaks
the design goal of ALC systems and can cause various types of
safety hazards such as driving off road and vehicle collisions.

Targeting this attack goal, we design a novel physical-world
adversarial attack method on ALC systems, called DRP (Dirty
Road Patch) attack, which is the first to systematically ad-
dress the design challenges above. First, we identify dirty
road patches as a novel and domain-specific attack vector
for physical-world adversarial attacks on ALC systems. This
design has 2 unique advantages: (1) Road patches can appear
to be legitimately deployed on traffic lanes in the physical
world, e.g., for fixing road cracks; and (2) Since it is common
for real-world roads to have dirt or white stains, using similar
dirty patterns as the input permutations can allow the mali-
cious road patch to appear more normal and thus stealthier.

With this attack vector, we then design systematic mali-
cious road patch generation following an optimization-based
approach. To efficiently and effectively address the first design
challenge without heavyweight road testing or simulations, we
design a novel method that combines vehicle motion model
and perspective transformation to dynamically synthesize
camera frame updates according to attack-influenced vehicle
control. Next, to address the second design challenge, one
direct solution is to design the objective function to directly
change the steering angle decisions. However, we find that the
lateral control step in ALC that calculates steering angle deci-
sions are generally not differentiable, which makes it difficult
to effectively optimize. To address this, we design a novel
lane-bending objective function as a differentiable surrogate
function. We also have domain-specific designs for attack
robustness, stealthiness, and physical-world realizability.

We evaluate our attack method on a production ALC sys-
tem in OpenPilot [8], which is reported to have close perfor-
mance to Tesla Autopilot and GM Super Cruise, and better
than many others [9]. We perform experiments on 80 attack
scenarios from real-world driving traces, and find that our
attack is highly effective with over 97.5% success rates for
all scenarios, and less than 0.903 sec average success time,
which is substantially lower than 2.5 sec, the average driver
reaction time (§3.1). This means that even for a fully-attentive
driver who can take over as soon as the attack starts to take
effect, the average reaction time is still not enough to prevent
the damage. We further find this attack is (1) robust to real-
world factors such as different lighting conditions, viewing
angles, printer color fidelity, and camera sensing capability,
(2) general to different lane detection model designs, and (3)
stealthy from the driver’s view based on a user study.

To understand the potential safety impacts, we further con-
duct experiments using (1) software-in-the-loop simulation
in a production-grade simulator, and (2) attack trace injec-
tion in a real vehicle. The simulation results show that our
attack can successfully cause a victim running a produc-
tion ALC to hit the highway concrete barrier or a truck in

the opposite direction with 100% success rates. The real-
vehicle experiments show that it causes the vehicle to col-
lide with (dummy) road obstacles in all 10 trials even with
common safety features such as Automatic Emergency Brak-
ing (AEB) enabled. Demo videos are available at: https:
//sites.google.com/view/cav-sec/drp-attack/. We also ex-
plore and discuss possible defenses at DNN level and those
based on sensor/data fusion.

In summary, this work makes the following contributions:
• We are the first to systematically study the security of

DNN-based ALC in the designed operational domains
under physical-world adversarial attacks. We formulate
the problem with a safety-critical attack goal, and a novel
and domain-specific attack vector, dirty road patches.

• To systematically generate attack patches, we adopt an
optimization-based approach with 2 major novel and do-
main specific designs: motion model based input genera-
tion, and lane-bending objective function. We also have
domain-specific designs for improving the attack robust-
ness, stealthiness, and physical-world realizability.

• We perform evaluation on a production ALC using 80
attack scenarios from real-world driving traces. The re-
sults show that our attack is highly effective with ≥97.5%
success rates and ≤0.903 sec average success time, which
is substantially lower than the average driver reaction time.
This attack is also found (1) robust to various real-world
factors, (2) general to different lane detection model de-
signs, and (3) stealthy from the driver’s view.

• To understand the safety impacts, we conduct experiments
using (1) software-in-the-loop simulation, and (2) attack
trace injection in a real vehicle. The results show that
our attack can cause a 100% collision rate in different
scenarios, including when tested with safety features such
as AEB. We also evaluate and discuss possible defenses.

Code and data release. Our code and data for the attack
and evaluations are available at our project website [10].

2 Background
2.1 Overview of DNN-based ALC Systems
Fig. 1 shows an overview of a typical ALC system design [8,
11, 12], which operates in 3 steps:

Lane Detection (LD). Lane detection (LD) is the most
critical step in an ALC system, since the driving decisions
later are mainly made based on its output. Today, produc-
tion ALC systems predominately use front cameras for this
step [3, 13]. On the camera frames, an LD model is used to
detect lane lines. Recently, DNN-based LD models achieve
the state-of-the-art accuracy [14–16] and thus are adopted
in the most performant production ALC systems today such
as Tesla Autopilot [3]. Since lane line shapes do not change
much across consecutive frames, recurrent DNN structure
(e.g., RNN) is widely adopted in LD models to achieve more
stable prediction [8, 17, 18]. LD models typically first predict
the lane line points, and then post-process them to lane line
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Figure 1: Overview of the typical ALC system design.

curves using curve fitting algorithms [14, 15, 19, 20].
Before the LD model is applied, a Region of Interest (ROI)

filtering is usually performed to the raw camera frame to crop
the most important area out of it (i.e., the road surface with
lane lines) as the model input. Such ROI area is typically
around the center and much smaller than the original frame,
to improve the model performance and accuracy [21].

Lateral control. This step calculates steering angle deci-
sions to keep the vehicle driving at the center of the detected
lane. It first computes a desired driving path, typically at the
center of the detected left and right lane lines [22]. Next, a con-
trol loop mechanism, e.g., Proportional-Integral-Derivative
(PID) [23] or Model Predictive Control (MPC) [24], is applied
to calculate the optimal steering angle decisions that can fol-
low the desired driving path as much as possible considering
the vehicle state and physical constraints.

Vehicle actuation. This step interprets the steering angle
decision into actuation commands in the form of steering an-
gle changes. Here, such actuated changes are limited by a max-
imum value due to the physical constraints of the mechanical
control units and also for driving stability and safety [22]. For
example, in our experiments with a production ALC with 100
Hz control frequency, such limit is 0.25◦ per control step (ev-
ery 10 ms) for vehicle models [25]. As detailed later in §3.3,
such a steering limit prevents ALC systems from being af-
fected too much from successful attack in one single LD
frame, which introduces a unique challenge to our design.

2.2 Physical-World Adversarial Attacks
Recent works find that DNN models are generally vulnerable
to adversarial examples, or adversarial attacks [26, 27]. Some
works further explored such attacks in the physical world [4,5,
28–31]. While these prior works concentrate on DNN models
for image classification and object detection tasks, we are
the first to systematically study such attacks on production
DNN-based ALC systems, which requires to address several
new and unique design challenges as detailed later in §3.3.

3 Attack Formulation and Challenge
3.1 Attack Goal and Incentives
In this paper, we consider an attack goal that directly breaks
the design goal of ALC systems: causing the victim vehicle
a lateral deviation (i.e., deviating to the left or right) large
enough to drive out of the current lane boundaries. Mean-
while, since ALC systems assume a fully-attentive human
driver who is prepared to take over at any moment [1,7], such
deviation needs to be achieved fast enough so that the human
driver cannot react in time to take over and steer back. Table 1

Table 1: Required deviations and success time for successful
attacks on ALC systems on highway and local roads. Detailed
calculations and explanations are in Appendix A.

Road Type Required Lateral Deviation Required Success Time

Highway 0.735 meters <2.5 seconds (average driver
reaction time to road hazard)Local road 0.285 meters

shows concrete values of these two requirements for success-
ful attacks on highway and local roads respectively, which
will be used as evaluation metrics later in §5. In the table,
the required deviations are calculated based on representative
vehicle and lane widths in the U.S., and the required success
time is determined using commonly-used average driver reac-
tion time to road hazards, which is detailed in Appendix A.

Targeted scenario: Free-flow driving. Our study targets
the most common driving scenario for using ALC systems:
free-flow driving scenarios [32], in which a vehicle has at least
5–9 seconds clear headway [33] and thus can drive freely
without considering the front vehicle [32].

Safety implications. The attack goal above can directly
cause various safety hazards in the real world: (1) Driving
off road, which is a direct violation of traffic rules [34] and
can cause various safety hazards such as hitting road curbs
or falling down the highway cliff. (2) Vehicle collisions, e.g.,
with vehicles parked on the road side, or driving in adjacent
or opposite traffic lanes on a local road or a two-lane undi-
vided highway. Even with obstacle or collision avoidance,
these collisions are still possible for two reasons. First, to-
day’s obstacle and collision avoidance systems are not perfect.
For example, a recent study shows that the AEB (Automatic
Emergency Braking) systems in popular vehicle models today
fail to avoid crashes 60% of the time [35]. Second, even if
they can successfully perform emergency stop, they cannot
prevent the victim from being hit by other vehicles that fail to
yield on time. Later in §7, we evaluate the safety impacts of
our attack with a simulator and a real vehicle.

3.2 Threat Model
We assume that the attacker can obtain the same ALC system
as the one used by the victim to get a full knowledge of its
implementation details. This can be done through purchasing
or renting the victim vehicle model and reverse engineering
it, which has already been demonstrated possible on Tesla
Autopilot [6]. Moreover, there exist production ALC systems
that are open sourced [8]. We also assume that the attacker
can obtain a motion model [36] of the victim vehicle, which
will be used in our attack generation process (§4.2). This
is a realistic assumption since the most widely-used motion
model (used by us in §4.2) only needs vehicle parameters such
as steering ratio and wheelbase as input [36], which can be
directly found from vehicle model specifications. We assume
the victim drives at the speed limit of the target road, which
is the most common case for free-flow driving. In the attack
preparation time, we assume that the attacker can collect the
ALC inputs (e.g., camera frames) of the target road by driving



the victim vehicle model there with the ALC system on.

3.3 Design Challenges
Compared to prior works on physical-world adversarial at-
tacks on DNNs, we face 3 unique design challenges:

C1. Lack of legitimately-deployable attack vector in
the physical world. To affect the camera input of an ALC
system, it is ideal if the malicious perturbations can appear
legitimately around traffic lane regions in the physical world.
To achieve high legitimacy, such perturbations also must not
change the original human-perceived lane information. Prior
works use small stickers or graffiti in physical-world adversar-
ial attacks [4–6]. However, directly performing such activities
to traffic lanes in public is illegal [37]. In our problem setting,
the attacker needs to operate in the middle of the road when
deploying the attack on traffic lanes. Thus, if the attack vector
cannot be disguised as legitimate activities, it becomes highly
difficult to deploy the attack in practice.

C2. Camera frame inter-dependency due to attack-
influenced vehicle actuation. In real-world ALC systems,
a successful attack on one single frame can barely cause any
meaningful lateral deviations due to the steering angle change
limit at the vehicle actuation step (§2.1). For example, for the
vehicle models with 0.25◦ angle change limit per control loop
(§2.1), even if a successful attack on a single frame causes a
very large steering angle decision at MPC output (e.g., 90◦), it
can only cause at most 1.25◦ actuated steering angle changes
before the next frame comes, which can only cause up to
0.3-millimeter lateral deviations at 45 mph (∼72 km/h). More
detailed explanations are in our extended version [38].

Thus, to achieve our attack goal in §3.1, the attack must be
continuously effective on sequential camera frames to increas-
ingly reach larger actuated steering angles and thus larger
lateral deviations per frame. In this process, due to the dy-
namic vehicle actuation applied by the ALC system, the attack
effectiveness for later frames are directly dependent on that
for earlier frames. For example, if the attack successfully devi-
ates the detected lane to the right in a frame, the ALC system
will steer the vehicle to the right accordingly. This causes the
following frames to capture road areas more to the right, and
thus directly affect their attack generation. There are prior
works considering attack robustness across sequential frames,
e.g., using EoT [29, 30] and universal perturbation [39], but
none of them consider frame inter-dependencies due to attack-
influenced vehicle actuation in our problem setting.

C3. Lack of differentiable objective function design
for LD models. To systematically generate adversarial in-
puts, prior works predominately adopt optimization-based
approaches, which have shown both high efficiency and effec-
tiveness [4, 26]. However, the objective function designs in
these prior works are mainly for image classification [4,30] or
object detection [4, 5] models, which thus aim at decreasing
class or bounding box probabilities. However, as introduced
in §2.1, LD models output detected lane line curves, and thus
to achieve our attack goal the objective function needs to aim

at changing the shape of such curves. This is substantially
different from decreasing probability values, and thus none
of these existing designs can directly apply.

Closer to our problem, prior works that attack end-to-end
autonomous driving models [40–43] directly design their ob-
jective function to change the final steering angle decisions.
However, as described in §2.1, state-of-the-art LD models
do not directly output steering angle decisions. Instead, they
output lane line curves and rely on the lateral control step to
compute the final steering angle decisions. However, many
steps in the lateral control module, e.g., the desired driving
patch calculation and the MPC framework, are generally not
differentiable to the LD model input (i.e., camera frames),
which makes it difficult to effectively optimize.

4 Dirty Road Patch Attack Design
In this paper, we are the first to systematically address the
design challenges above by designing a novel physical-world
attack method on ALC, called Dirty Road Patch (DRP) attack.

4.1 Design Overview
To address the 3 design challenges in §3.3, our DRP attack
method has the following novel design components:

Dirty road patch: Domain-specific & stealthy physical-
world attack vector. To address challenge C1, we are the first
to identify dirty road patch as an attack vector in physical-
world adversarial attacks. This design has 2 unique advan-
tages. First, road patches can appear to be legitimately de-
ployed on traffic lanes in the physical world, e.g., for fixing
road cracks. Today, deploying them is made easy with adhe-
sive designs [44] as shown in Fig. 2. The attacker can thus
take time to prepare the attack in house by carefully printing
the malicious input perturbations on top of such adhesive
road patches, and then pretend to be road workers like those
in Fig. 2 to quickly deploy it when the target road is the most
vacant, e.g., in late night, to avoid drawing too much attention.

Second, since it is common for real-world roads to have dirt
or white stains such as those in Fig. 2, using similar dirty pat-
terns as the input perturbations can allow the malicious road
patch to appear more normal and thus stealthier. To mimic
the normal dirty patterns, our design only allows color per-
turbations on the gray scale, i.e., black-and-white. To avoid
changing the lane information as discussed in §3.3, in our
design we (1) require the original lane lines to appear ex-
actly the same way on the malicious patch, if covered by the
patch, and (2) restrict the brightness of the perturbations to
be strictly lower than that of the original lane lines. To further
improve stealthiness, we also design parameters to adjust the
perturbation size and pattern, which are detailed in §4.3.3.

So far, none of the popular production ALC systems today
such as Tesla, GM, etc. [7, 45] identify roads with such dirty
road patches as driving scenarios that they do not handle,
which can thus further benefit the attack stealthiness.

Motion model based input generation. To address the
strong inter-dependencies among the camera frames (C2),
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Figure 2: Illustration of our novel and domain-specific attack
vector: Dirty Road Patch (DRP).
we need to dynamically update the content of later camera
frames according to the vehicle actuation decisions applied at
earlier ones in the attack generation process. Since adversarial
attack generation typically takes thousands of optimization
iterations [46, 47], it is practically highly difficult, if not im-
possible, to drive real vehicles on the target road to obtain
such dynamic frame update in every optimization iteration.
Another idea is to use vehicle simulators [48, 49], but it re-
quires the attacker to first create a high-definition 3D scene of
the target road in the real world, which requires a significant
amount of hardware resource and engineering efforts. Also,
launching a vehicle simulator in each optimization iteration
can greatly harm the attack generation speed.

To efficiently and effectively address this challenge, we
combine vehicle motion model [36] and perspective transfor-
mation [50] to dynamically synthesize camera frame updates
according to a driving trajectory simulated in a lightweight
way. This method is inspired by Google Street View that syn-
thesizes 360◦ views from a limited number of photos utilizing
perspective transformation. Our method only requires one
trace of the ALC system inputs (i.e., camera frames) from the
target road without attack, which can be easily obtained by
the attacker (§3.2).

Optimization-based DRP generation. To systemati-
cally generate effective malicious patches, we adopt an
optimization-based approach similar to prior works [4, 26].
To address challenge C3, we design a novel lane-bending
objective function as a differentiable surrogate that aims at
changing the derivatives of the desired driving path before
the lateral control module, which is equivalent to change the
steering angle decisions at the lateral control design level. Be-
sides this, we also have other domain-specific designs in the
optimization problem formulation, e.g., for a differentiable
construction of the curve fitting process, malicious road patch
robustness, stealthiness, and physical-world realizability.

Fig. 3 shows an overview of the malicious road patch gen-
eration process, which is detailed in the following sections.

4.2 Motion Model based Input Generation
In Fig. 3, step 1©– 7© belong to the motion model based input
generation component. As described earlier in §4.1, the input
to this component is a trace of ALC system inputs such as
camera frames from driving on the target road without attack.
In 1©, we apply perspective transformation, a widely-used
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Figure 3: Overview of our DRP (Dirty Road Patch) attack
method. ROI: Region of Interest; BEV: Bird’s Eye View.

computer vision technique that can project an image view
from a 3D coordinate system to a 2D plane [50, 51]. Specif-
ically, we apply it to the original camera frames from the
driver’s view to obtain their Bird’s Eye View (BEV) images.
This transformation is highly beneficial since it makes our
later patch placement and attack-influenced camera frame
updates much more natural and thus convenient. We denote
this as Vt := BEV(It), where It and Vt are the original camera
input and its BEV view respectively at frame t. This process
is inversible, i.e., we can also obtain It with BEV−1(Vt).

Next, in 2©, we obtain the generated malicious road patch
image P from the optimization-based DRP generation step
(§4.3) and place it on Vt to obtain the BEV image with the
patch, denoted as V̂t := Λ(Vt ,P). To achieve consistent patch
placements in the world coordinate across frames, we calcu-
late the pixel-meter relationship, i.e., the number of pixels per
meter, in BEV images based on the driving trace of the target
road. With this, we can place the patch in each frame precisely
based on the driving trajectory changes across frames.

Next, we compute the vehicle moving trajectory changes
caused by the placed malicious road patch, and reflect such
changes in the camera frames. We represent the vehicle
moving trajectory as a sequence of vehicle states St :=
[xt ,yt ,βt ,vt ],(t = 1, ...,T ), where xt ,yt ,βt ,vt are the vehicle’s
2D position, heading angle, and speed at frame t, and T is the
total number of frames in the driving trace. Thus, the trajec-
tory change at frame t is δt := Sa

t −So
t , where Sa

t and So
t are

vehicle states with and without attack respectively.
To calculate δt caused by the attack effect at the frame t−1,

we need to know the attack-influenced vehicle state Sa
t . To

achieve that, we use a vehicle motion model to simulate the
vehicle state Sa

t by feeding the steering angle decision τt−1
from the lateral control step in the ALC system (§2.1) given
the attacked frame at t−1 and the previous vehicle state Sa

t−1,
denoted as Sa

t := MM(Sa
t−1,τt−1). A vehicle motion model is

a set of parameterized mathematical equations representing
the vehicle dynamics and can be used to simulate its driving
trajectory given the speed and actuation commands. In this



process, we set the vehicle speed as the speed limit of the
target road as described in our threat model (§3.2). In our
design, we adopt the kinematic bicycle model [52], which is
the most widely-used motion model for vehicles [52, 53].

With δt , in 4© we then apply affine transformations on the
BEV image V̂t to obtain the attack-influenced one V̂ a

t , denoted
as V̂ a

t := T (V̂t ,δt). Fig. 4 shows an example of the shifting
and rotation T (·) in the BEV, which synthesizes a camera
frame with the vehicle position shifted by 1 meter and rotated
by 10◦ to the right. Although it causes some distortion and
missing areas on the edge, the ROI area (red rectangle), i.e.,
the LD model input, is still complete and thus sufficient for
our purpose. Since the ROI area is typically focused on the
center and much smaller than the raw camera frame (§2.1),
our method can successfully synthesize multiple complete
LD model inputs from only 1 ALC system input trace.

Next, in 5©, we obtain the attack-influenced camera frame
at the driver’s view Îa

t , i.e., the direct input to ALC, by pro-
jecting V̂ a

t back using Îa
t := BEV−1(V̂ a

t ). Next, in 6©, the ROI
filtering is used to extract the model input Xa

t := ROI(Îa
t ). Xa

t
and vehicle state Sa

t are then fed to ALC system in 7© to obtain
the steering angle decision τt , denoted as τt := ALC(Xa

t ,S
a
t ).

Step 3©– 7© are then iteratively applied to obtain Îa
t+1, Î

a
t+2, ...

one after one until all the original frames are updated to reflect
the moving trajectory changes caused by P. These updated
attack-influenced inputs are then fed to the optimization-based
DRP generation component, which is detailed next.

4.3 Optimization-Based DRP Generation
In Fig. 3, step 8© belongs to the optimization-based road
path generation component. In this step, we design a domain-
specific optimization process on the target ALC system to
systematically generate the malicious dirty road patch P.

DRP attack optimization problem formulation. We for-
mulate the attack as the following optimization problem:

min L (1)
s.t. Xa

t = ROI(BEV−1(T (Λ(Vt ,P),Sa
t −So

t ))) (t = 1, ...,T ) (2)
τ

a
t = ALC(Xa

t ,S
a
t ) (t = 1, ...,T ) (3)

Sa
t+1 = MM(Sa

t ,τ
a
t )+ εt (t = 1, ...,T −1) (4)

Sa
1 = So

1 (5)
P = BLUR(FILL(B)+∆) (6)
∆ ∈P (7)

where the L in Eq. 1 is an objective function that aims at
deviating the victim out of the current lane boundaries as fast
as possible (detailed in §4.3.2). Eq. 2–5 have been described
in §4.2. In Eq. 6, the patch image P ∈ RH×W×C consists of a
base color B ∈ RC and the perturbation ∆ ∈ RH×W×C, where
W,H, and C are the patch image width, height, and the number
of color channels respectively. We select an asphalt-like color
as the base color B since the image is designed to mimic
a road patch. Function FILL: RC → RH×W×C fills B to the
entire patch image. Since we aim at generating perturbations
that mimic the normal dirty patterns on roads, we restrict ∆ to
be within a stealthy road pattern space P , which is detailed
in §4.3.3. We also include a noise term εt in Eq. 4 and an

image blurring function BLUR(·) in Eq. 6 to improve the
patch robustness to vehicle motion model inaccuracies and
camera image blurring, which are detailed in §4.3.4.

4.3.1 Optimization Process Overview
Fig. 5 shows an overview of our iterative optimization process
design. Given an initial patch image P, we obtain the model
input Xa

1 , ...,X
a
T from the motion model based input gener-

ation process. In step (i), we calculate the gradients of the
objective function with respect to Xa

1 , ...,X
a
T , and only keep

the gradients corresponding to the patch areas. In step (ii),
these gradients are projected into the BEV space. In step (iii),
we calculate the average BEV-space gradients weighted by
their corresponding patch area sizes in the model inputs. This
step involves an approximation of the gradient of BEV−1(·),
which are detailed in our extended version [38]. Next, in step
(iv), we update the current patch with Adam [54] using the
averaged gradient as the gradient of the patch image. In step
(v), we then project the updated patch into the stealthy road
pattern space P . This updated patch image is then fed back to
the motion model based input generation module, where we
also add robustness improvement such as motion noises and
image blurring. We terminate this process when the attack-
introduced lateral deviations obtained from the motion model
are large enough.

4.3.2 Lane-Bending Objective Function Design
As discussed in §4.1, directly using steering angle decisions
as L makes the objective function non-differentiable to
Xa

1 , ...,X
a
T . To address this, we design a novel lane-bending

objective function f (·) as a differentiable surrogate function.
In this design, our key insight is that at the design level, the
lateral control step aims at making steering angle decisions
that follows a desired driving path in the middle of the de-
tected left and right lane line curves from the lane detection
step (§2.1). Thus, changing the steering angle decisions is
equivalent to changing the derivatives of (or “bending”) such
desired driving path curve. This allows us to design f (·) as:

f (Xa
1 , ...,X

a
T ) =

T

∑
t=1

∑
d∈Dt

∇ρt(d;{Xa
j | j ≤ t},θ)+λ||Ωt(Xa

t )||p (8)

where ρt(d) is a parametric curve whose parameters are
decided by (1) both the current and previous model inputs
{Xa

j | j ≤ t} due to frame inter-dependencies (§3.3), and (2)
the LD DNN parameters θ. Dt is a set of curve point index
d = 0,1,2, ... for the desired driving path curve at frame t.
λ is the weight of the p-norm regularization term, designed
for stealthiness (§4.3.3). We then can define L in Eq. 1 as
f (·) and − f (·) when attacking to the left and right. Fig. 6
illustrates this surrogate function when attacking to the left.
As shown, by maximizing ∇ρt(d) at each curve point in Eq. 8,
we can achieve a “lane bending” effect to the desired driv-
ing path curve. Since the direct LD output is lane line points
(§2.1) but ρt(·) require lane line curves, we further perform a
differentiable construction of curve fitting process (detailed
in our extended version [38]).
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4.3.3 Designs for Dirty Patch Stealthiness
To mimic real-world dirty patterns like in Fig. 2, we have 4
stealthiness designs in stealthy road pattern space P in Eq. 7:

Grayscale perturbation. Real-world dirty patterns on the
road are usually created by dust or white stains (Fig. 2), and
thus most commonly just appear white. Thus, we cannot allow
perturbations with arbitrary colors like prior works [5]. Thus,
our design restricts our perturbation ∆ in the grayscale (i.e.,
black-and-white) by only allowing increase the Y channel in
the YCbCr color space [55], denoted as ∆Y ≥ 0.

Preserving original lane line information. We preserve
the original lane line information by drawing the same lane
lines as the original ones on the patch (if covered by the
patch). Note that without this our attack can be easier to
succeed, but as discussed in §3.3, it is much more preferred
to preserve such information so that the attack deployment
can more easily appear as legitimate road work activities and
the deployed patch is less likely to be legitimately removed.

Brightness limits. While the dirty patterns are restricted
to grayscale, they are still the darker, the stealthier. Also, to
best preserve the original lane information, the brightness
of the dirty patterns should not be more than the original
lane lines. Thus, we (1) add the p-norm regularization term in
Eq. 8 to suppress the amount of ∆Y , and (2) restrict BY +∆Y <
LaneLineY , where BY and LaneLineY are Y channel values
for the base color and original lane line color respectively.

Perturbation area restriction. Besides brightness, also
the fewer patch areas are perturbed, the stealthier. Thus, we
define Perturbable Area Ratio (PAR) as the percentage of
pixels on P that can be perturbed. Thus, when PAR=30%,
70% pixels on P will only have the base color B.

4.3.4 Designs for Improving Attack Robustness, De-
ployability, and Physical-World Realizability

We also have domain-specific designs for improving (1) at-
tack robustness, which addresses the driving trajectory/angle
deviations and camera sensing inaccuracies in real-world
attacks; (2) attack deployability, which designs an op-
tional multi-piece patch attack mode that allows deploying
DRP attack with multiple small and quickly-deployable road
patch pieces; and (3) physical-world realizability, which ad-

dresses the color and pattern distortions due to physical-world
factors such as lighting condition, printer color accuracy, and
camera color sensing capability. More details are in our ex-
tended version [38].

5 Attack Methodology Evaluation
In this section, we evaluate the effectiveness, robustness, gen-
erality, and realizability of our DRP attack methodology.

Targeted ALC system. In our evaluation, we perform ex-
periments on the production ALC system in OpenPilot [8],
which follows the state-of-the-art DNN-based ALC system
design (§2.1). OpenPilot is an open-source production Level-
2 driving automation system that can be easily installed in
over 80 popular vehicle models (e.g., Toyota, Cadillac, etc.)
by mounting a dashcam. We select OpenPilot due to its (1)
representativeness, since it is reported to have close perfor-
mance to Tesla Autopilot and GM Super Cruise and better
than many others [9], (2) practicality, from the large quantity
and diversity of vehicle models it can support [8], and (3)
ease to experiment with, since it is the only production ALC
system that is open sourced. In this paper, we mainly evaluate
on the lane detection model in OpenPilot v0.7.0, which is
released in Dec. 2019. More details of the OpenPilot ALC
system are in Appendix C.

Evaluation dataset. We perform experiments using the
comma2k19 dataset [56], which contains over 33 hours driv-
ing traces between California’s San Jose and San Francisco in
a Toyota RAV4 2017 driven by human drivers. These traces
are collected using the official OpenPilot dashcam device,
called EON. From this dataset, we manually look for short
free-flow driving periods to make road patch placement con-
venient. In total, we obtain 40 eligible short driving clips,
10 seconds each, with half of them on the highway, and half
on local roads. For each driving clip, we consider two attack
scenarios: attack to the left, and to the right. Thus, in total we
evaluate 80 different attack scenarios.

5.1 Attack Effectiveness
Evaluation methodology and metrics. We evaluate the at-
tack effectiveness using the evaluation dataset described
above. For each attack scenario, we generate an attack road
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Figure 7: Driver’s view at 2.5 sec (average driver reaction time to road hazards [57]) before our attack
succeeds under different stealthiness levels in local road scenarios. Inset figures are the zoomed-in
views of the malicious road patches. Larger images are in our extended version [38].

Figure 8: Real-world dirty
road patterns.

Figure 9: Stop sign hiding
and appearing attacks [5].

patch, and use the motion model based input generation
method in §4.2 to simulate the vehicle driving trajectory in-
fluenced by the malicious road patch. To judge the attack
success, we use the attack goal defined in §3.1 and concrete
metrics listed in Table 1, i.e., achieving over 0.735m and
0.285m lateral deviations on highway and local road scenar-
ios respectively within the average driver reaction, 2.5 sec.
We measure the achieved deviation by calculating the lateral
distances at each time point between the vehicle trajectories
with and without the attack, and use the earliest time point to
reach the required deviation to calculate the success time.

Since ALC systems assume a human driver who is prepared
to take over, it is better if the malicious road patch can also
look stealthy enough at 2.5 sec (driver reaction time) before
the attack succeeds so that the driver will not be alerted by
its looking and decide to take over. Thus, in this section,
we also study the stealthiness of the generated road patches.
Specifically, we quantify their perturbation degrees using the
average pixel value changes from the original road surface in
L1,L2 and Linf distances [58, 59] and also a user study.

Experimental setup. For each scenario in the evaluation
dataset, we manually mark the road patch placement area in
the BEV view of each camera frame based on the lane width
and shape. To achieve consistent road patch placements in
the world coordinate across a sequence of frames, we calcu-
late the number of pixels per meter in the BEV images and
adjust the patch position in each frame precisely based on
the driving trajectory changes across consecutive frames. The
road patch sizes we use are 5.4 m wide, and 24–36 m long
to ensure at least a few seconds of visible time at high speed.
The patches are placed 7 m far from the victim at the starting
frame. For stealthiness levels, we evaluate the L2 regularisa-
tion coefficient λ = 10−2,10−3, and 10−4, with PAR set to
50%. According to Eq. 8, larger λ value means more sup-
pression of the perturbation, and thus should lead to a higher
stealthiness level. For the motion model, we directly use the
vehicle parameters (e.g., wheelbase) of Toyota RAV4 2017,
the vehicle model that collects the traces in our dataset.

Results. As shown in Table 2, our attack has high effective-
ness (≥97.5%) under all the 3 stealthiness levels. Fig. 7 shows
the malicious road patch appearances at different stealthiness
levels from the driver’s view at 2.5 seconds before our at-

Table 2: Attack success rate and time under different stealthi-
ness levels. Larger λ means stealthier. Average success time
is calculated only among the successful cases. Pixel L1, L2,
and Lin f are the average pixel value changes from the original
road surface in the RGB space and normalized to [0,1].

Stealth.
Level λ

Succ.
Rate

Succ.
Time (s)

Pixel
L1

Pixel
L2

Pixel
Lin f

10−2 97.5% 0.903 0.018 0.045 0.201
10−3 100% 0.887 0.033 0.066 0.200
10−4 100% 0.886 0.071 0.109 0.200

tack succeeds. As shown, even for the lowest stealthiness
level (λ = 10−4) in our experiment, the perturbations are still
smaller than some real-world dirty patterns such as the left
one in Fig. 8. In addition, the perturbations for all these 3
stealthiness levels are a lot less intrusive than those in previ-
ous physical-world adversarial attacks in the image space [5],
e.g., in Fig. 9. Among the successful cases, the average suc-
cess time is all under 0.91 sec, which is substantially lower
than 2.5 sec, the required success time. This means that even
for a fully attentive human driver who is always able to take
over as soon as the attack starts to take effect, the average
reaction time is still far from enough to prevent the damage. A
more detailed result discussion is in our extended version [38].

Stealthiness user study. To more rigorously evaluate the
attack stealthiness, we conduct a user study with 100 partici-
pants, and find that (1) even for the lowest stealthiness level
at λ = 10−4, only less than 25% of the participants decide
to take over the driving before the attack starts to take effect.
This suggests that the majority of human drivers today do not
treat dirty road patches as road conditions where ALC sys-
tems cannot handle; and (2) at 2.5 seconds before the attack
succeeds, the attack patches with λ = 10−2 and 10−3 appear
to be as innocent as normal clean road patches to human
drivers, with only less than 15% participants deciding to take
over. More detailed results and discussion are in Appendix B.

From these results, the stealthiness level with λ = 10−3

strikes an ideal balance between attack effectiveness and
stealthiness: it does not increase driver suspicion compared
to even a benign clean road patch at 2.5 seconds before our
attack succeeds, while having no sacrifice of attack effec-
tiveness as shown in Table 2. We thus use it as the default
stealthiness configuration in our following experiments.



5.2 Comparison with Baseline Attacks
Evaluation methodology. To understand the benefits of our
current design choices over possible alternatives, we evalu-
ate against 2 baseline attack methods: (1) single-frame EoT
attack, which still uses our lane-bending objective function
but optimizes for the EoT (Expectation over Transformation)
of the patch view (e.g., different positions/angles) in a sin-
gle camera frame, and (2) drawing-lane-line attack, which
directly draws straight solid white lane line instead of placing
dirty road patches. EoT is a popular design in prior works to
improve attack robustness across sequential frames [29, 30].
Thus, comparing with such a baseline attack can evaluate the
benefit of our motion model based input generation design
(§4.2) in addressing the challenge of frame inter-dependencies
due to attack-influenced vehicle actuation (C2 in §3.3).

The drawing-lane-line attack is designed to evaluate the
type of ALC attack vector identified in the prior work by
Tencent [6], which uses straightly-aligned white stickers to
fool Tesla Autopilot on road regions without lane lines. In our
case, we perform evaluations in road regions with lane lines,
and use a more powerful form of it (directly drawing solid
lane lines) to understand the upper-bound attack capability of
this style of perturbation for ALC systems.

Experimental setup. For single-frame EoT attack, we ap-
ply random transformations of the patch in BEV via (1) lateral
and longitudinal position shifting. We apply up to ±0.735m
and ±0.285m for highway and local respectively, which are
their maximum in-lane lateral shifting from the lane center;
and (2) viewing angle changes. we apply up to±5.8◦ changes,
the largest average angle deviations under possible real-world
trajectory variations based on our experiments (detailed in
our extended version [38]). For each scenario, we repeat the
experiments for each frame with a complete patch view (usu-
ally the first 4 frames), and take the most successful one to
obtain the upper-bound effectiveness. Other settings are the
same as the DRP attack, e.g., λ = 10−3.

For the drawing-lane-line attack, we use the same perturba-
tion area (i.e., the patch area) as the others for a fair compari-
son. Specifically, we sample points every 20cm at the top and
bottom patch edges respectively, and form possible attacking
lane lines by connecting a point at the top with one at the
bottom. We exhaustively try all possible top and bottom point
combinations and take the most successful one. The attacking
lane lines are 10cm wide (a typical lane marking width [60])
with the same white color as the original lane lines.

Results. Table 3 shows the results under different patch
area lengths. As shown, the DRP attack always has the highest
attack success rate than these two baselines (with a ≥46%
margin). When the patch area length is shorter and thus the
perturbation capability is more limited, such advantage be-
comes larger; when the length is 12m, the success rates of
single-frame EoT attack and the drawing-lane-line attack
drops to 0% and 2.5%, while that for DRP is still 66%. This
shows that our motion model based input generation can in-

Table 3: Attack success rates of the DRP attack and 2 baseline
attacks under different patch area lengths.

Patch Area Length
Attack 12m 18m 24m 36m
DRP 66.25% 82.50% 90.75% 100%

Single-frame EoT 0.00% 8.75% 21.25% 50.00%
Drawing-lane-line 2.50% 13.75% 31.25% 53.75%

deed benefit attack effectiveness, as it can more accurately syn-
thesize subsequent frame content based on attack-influenced
vehicle actuation, instead of the blind synthesis in EoT. Also
note that the single-frame EoT attack still uses our domain-
specific lane-bending objective function design. The drawing-
lane-line attack only has 2.5% success rate when the length
is 12m; the length used in the Tencent work is actually even
shorter (<5m) [6]. This shows that in the road regions with
lane lines, simply adding lane-line-style perturbations, espe-
cially a short one, can barely affect production ALC systems.
Instead, an attack vector with larger perturbation area, e.g., in
DRP attack, may be necessary.

5.3 Attack Robustness, Generality, and De-
ployability Evaluations

Robustness to run-time driving trajectory and angle de-
viations. As described in §4.3.4, the run-time victim driv-
ing trajectories and angles will be different from the motion
model predicted ones in attack generation time due to run-
time driving dynamics. To evaluate attack robustness against
such deviations, we use (1) 4 levels of vehicle position shift-
ing at each vehicle control step in attack evaluation time, and
(2) 27 vehicle starting positions to create a wide range of
approaching angles and distances to the patch, e.g., from (al-
most) the leftmost to the rightmost position in the lane. Our
attack is shown to maintains a high effectiveness (≥ 95%
success rate) even when the vehicle positions at the attack
evaluation time has 1m shifting on average from those at the
attack generation time at each control step. Details are in our
extended version [38].

Attack generality evaluation. To evaluate the generality
of our attack against LD models of different designs, ideally
we hope to evaluate on LD models from other production
ALC besides OpenPilot, e.g., from Tesla Autopilot. However,
OpenPilot is the only one that is currently open sourced. For-
tunately, we find that the LD models in some older versions of
OpenPilot actually have different DNN designs, which thus
can also serve for our purpose. We evaluate on 3 versions of
LD models with large DNN architecture differences, and find
that our attack is able to achieve ≥90% success rates against
all 3 LD models, with an average attack transferability of 63%.
More details are in our extended version [38].

Attack deployability evaluation. We evaluate the attack
deployability by estimating the required efforts to deploy the
attack road patch. We perform experiments using our multi-
piece patch attack mode design (§4.3.4), and find that the
attack success rate can be 93.8% with only 8 pieces of quickly-



deployable road patches, each requiring only 5-10 sec for 2
people to deploy based on videos of adhesive patch deploy-
ment [61]. More details are in our extended version [38].

5.4 Physical-World Realizability Evaluation
While we have shown high attack effectiveness, robustness,
and generality on real-world driving traces, the experiments
are performed by synthesizing the patch appearances digitally,
which is thus still different from the patch appearances in the
physical world. As discussed in §4.3.4, there are 3 main prac-
tical factors that can affect the attack effectiveness in physical
world: (1) the lighting condition, (2) printer color accuracy,
and (3) camera sensing capability. Thus, in this section we
perform experiments to understand the physical-world attack
realizability against these 3 main practical factors.

Evaluation methodology: miniature-scale experiments.
To perform the DRP attack, a real-world attacker can pre-
tend to be road workers and place the malicious road patch
on public roads. However, due to the access limit to private
testing facilities, we cannot do so ethically and legally on
public roads with a real vehicle. Thus, we try our best to
perform such evaluation by designing a miniature-scale ex-
periment, where the road and the malicious road patch are
first physically printed out on papers and placed according to
the physical-world attack settings but in miniature scale. Then
the real ALC system camera device is used to get camera in-
puts from such a miniature-scale physical-world setting. Such
miniature-scale evaluation methodology can capture all the 3
main practical factors in the physical-world attack setting, and
thus can sufficiently serve for the purpose of this evaluation.

Experimental setup. As shown in Fig. 10, we create a
miniature-scale road by printing a real-world high-resolution
BEV road texture on multiple ledger-size papers and con-
catenating them together to form a long straight road. In
the attack evaluation time, we create the miniature-scale ma-
licious road patch using the same method, and place it on
top of the miniature-scale road following our DRP attack de-
sign. The patch is printed with a commodity printer: RICOH
MP C6004ex Color Laser Printer. We mount EON, the offi-
cial OpenPilot dashcam device, on a tripod and face it to the
miniature-scale road. The road size, road patch size, and the
EON mounting position are carefully calculated to represent
OpenPilot installed on a Toyota RAV4 driving on a standard
3.6-meter wide highway road at 1:12 scale. We also create
different lighting conditions with two studio lights. The patch
size is set to represent a 4.8me wide and 12m long one in the
real world scale. The other settings are the same as in §5.3.

Evaluation metric. Since the camera is mounted in a static
position, we evaluate the attack effectiveness directly using
the steering angle decision at the frame level instead of the
lateral deviation used in previous sections. This is equiva-
lent from the attack effectiveness point of view since the
large lateral deviation is essentially created by a sequence
of large steering angle decisions at the frame level. Specifi-

cally, we first find the camera frame that has the same relative
position between the camera and the patch as that in the
miniature-scale experimental setup. Then we compare its de-
signed steering angle at the attack generation time and its
observed steering angle that the ALC system in OpenPilot
intends to apply to the vehicle in the miniature-scale exper-
iment. Thus, the more similar these two steering angles are,
the higher realizability our attack has in the physical world.

Results. Fig. 11 shows a visualization of the lane detection
results of the benign and attacked scenarios in the miniature-
scale experiment using the OpenPilot’s official visualization
tool. As shown, in the benign scenario, both detected lane
lines align accurately with the actual lane lines, and the de-
sired driving path is straight as expected. However, when the
malicious road patch is placed, it bends the detected lane lines
significantly to the left and causes the desired driving path
to be curving to the left, which is exactly the designed attack
effect of our lane-bending objective function (§4.3.2). In this
case, the designed steering angle is 23.4◦ to the left at the
digital attack generation time, and the observed one in the
physical miniature-scale experiment is 24.5◦ to the left, which
only differs by 4.7%. In contrast, in the benign scenario the
observed steering angle for the same frame is 0.9◦ to the right.

Robustness under different lighting conditions. We re-
peat this experiment under 12 lighting conditions ranging
from 15 lux (corresponding to sunset/sunrise) to 1210 lux
(corresponding to midday of overcast days). The results show
that the same attack patch above is able to maintain a desired
steering angle of 20-24◦ to the left under all 12 lighting con-
ditions, which are all significantly different from the benign
case (0.9◦ to right). Details are in our extended version [38].

Robustness to different viewing angles. We evaluate the
robustness from 45 different viewing angles created by differ-
ent distances to the patch and lateral offsets to the lane center.
Our results show that our attack always achieves over 23.4◦

to the left from all viewing angles. We record videos in which
we dynamically change viewing angles in a wide range while
showing real-time lane detection results under attack, avail-
able at https://sites.google.com/view/cav-sec/drp-attack/.

6 Software-in-the-Loop Simulation
To understand the safety impact, we perform software-in-the-
loop evaluation on LGSVL, a production-grade autonomous
driving simulator [48]. We overcame several engineering chal-
lenges in enabling this setup, which are detailed in our ex-
tended version [38] and open-sourced via our website [10].

Evaluation scenarios. We construct 2 attack scenarios for
highway and local road settings respectively, as shown in
Fig. 12. For the former, we place a concrete barrier on the
left, and for the latter, we place a truck driving on an opposite
direction lane. The attack goals are to hit the concrete barrier
or the truck. Detailed setup are in Table 4.

Experimental setup and evaluation metrics. We per-
form evaluation on OpenPilot v0.6.6 with the Toyota RAV4

https://sites.google.com/view/cav-sec/drp-attack/
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Figure 12: Software-in-the-loop simulation
scenarios and driver’s view 2.5 sec before
attack succeeds. Larger images are in [38]
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Figure 13: Victim driving trajectories in the software-in-the-
loop evaluation from 18 different starting positions for high-
way and local road scenarios. Lateral offset values are percent-
ages of the maximum in-lane lateral shifting from lane center;
negative and positive signs mean left and right shifting.

parameters. We follow the methodology in §4.3.4 to obtain
and apply the color mapping in our simulation environment.
The patch size is 5.4m wide and 70m long, and we place it
in the simulation environment by importing the generated
patch image into Unity. The other parameters are the same
as §5.3. To evaluate the attack effectiveness from different
victim approaching angles, for each scenario we evaluate the
same patch from 18 different starting positions, created from
the combinations of 2 longitudinal distances to the patch (50
and 100 m) and 9 lateral offsets (from -95% to 95%) as shown
in Fig. 13. The patch is visible at all these starting positions.
We repeat 10 times for each starting position in each scenario.

Results and video demos. Our attack achieves 100% suc-
cess rates from all 18 starting positions in both highway and
local road scenarios as shown in Table 4. Fig. 13 shows
the averaged vehicle trajectories from each starting posi-
tions. As shown, the vehicle always first drives toward the
lane center since the ALC system tries to correct the ini-
tial lateral deviations. After that, the patch starts to take
effect, and causes the vehicle to deviate to the left signifi-
cantly and hit the barrier or truck. We record demo videos at
https://sites.google.com/view/cav-sec/drp-attack/. In the
highway scenario, after the victim hits the concrete barrier, it
bounces away quickly due to the abrupt collision. For local
road, the victim crashes to the front of the truck, causing both
the victim and truck to stop. This suggests that the safety
impacts of our attack can be severe.

Table 4: Simulation scenario configurations and evaluation
results. Lane widths and vehicle speeds are based on stan-
dard/common ones in the U.S. [62]. Simulation results with-
out attack are confirmed to have 0% success rates with≤0.018
m (std: ≤9e-4) average maximum deviations.

Sim.
Scenario

Lane
Width

Veh.
Speed Attack Goal Ave. Max

Dev. (std)
Succ.
Rate

Succ.
Time

Highway 3.6 m 65 mph
(29 m/s)

Hit barrier
on the left

0.76 m
(5e-3)

100%
(100/100) 0.97 s

Local 2.7 m 45 mph
(20 m/s)

Hit truck in the
opposite lane

0.55 m
(7e-2)

100%
(100/100) 1.36 s

7 Safety Impact on Real Vehicle
While the simulation-based evaluation above has shown se-
vere safety impacts, it does not simulate other driver assistance
features that are commonly used with ALC at the same time
in real-world driving, for example Lane Departure Warning
(LDW), Adaptive Cruise Control (ACC), Forward Collision
Warning (FCW), and Automatic Emergency Braking (AEB).
This makes it unclear whether the safety damages shown in §6
are still possible when these features are used, especially the
safety-protection ones such as AEB. In this section, we thus
use a real vehicle to more directly understand this.

Evaluation methodology. We install OpenPilot on a Toy-
ota 2019 Camry, in which case OpenPilot provides ALC,
LDW, and ACC, and the Camry’s stock features provide AEB
and FCW [8]. We then use this real-world driving setup to
perform experiments on a rarely-used dead-end road, which
has a double-yellow line in the middle and can only be used
for U-turn. The driver’s view of this road is shown on the left
of Fig. 14. In our miniature-scale experiment in §5.4, the at-
tack realizability from the physically-printed patch to the LD
model output has already been validated under 12 different
lighting conditions. Thus, in this experiment we evaluate the
safety impact by directly injecting an attack trace at the LD
model output level (detailed in Appendix C). This can also
avoid blocking the road for sticking patches to the ground and
cleaning them up, which may affect other vehicles.

To create safety-critical driving scenarios, we place card-
board boxes adjacent to but outside of the current lane as
shown in Fig. 14, which can mimic road barriers and obsta-
cles in opposite direction as in §6 while not causing damages

https://sites.google.com/view/cav-sec/drp-attack/
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Figure 14: Safety impact evaluation for our attack on a Toyota
2019 Camry with OpenPilot engaged. Even with other driver
assistance features such as Automatic Emergency Braking
(AEB), our attack still causes collisions in all the 10 trials.

to the vehicle and driver safety. Similar setup is also used in
today’s vehicle crash tests [63–66]. To ensure that we do not
affect other vehicles, we place the cardboard boxes only when
the entry point of this dead-end road has no other driving vehi-
cles in sight, and quickly remove them right after our vehicle
passes them as required by the road code of conduct [67].

Experiment setup. We perform experiments in day time
with and without attack, each 10 times. The driving speed is
kept at ∼28 mph (∼45 km/h), the min speed for engaging
OpenPilot on our Camry. The injected attack trace is from our
simulation environment (§6) at the same driving speed.

Results. Our experiment results show that our attack causes
the vehicle to hit the cardboard boxes in all the 10 attack trials
(100% collision rate), including 5 front and 5 side collisions.
The collision variations are caused by randomness in the dy-
namic vehicle control and the timing differences in OpenPilot
engaging and attack launching. In contrast, in the trials with-
out attack, OpenPilot can always drive correctly and does not
hit or even touch the objects in any of the 10 trials.

These results thus show that driver assistance features such
as LDW, ACC, FCW, and AEB are not able to effectively
prevent the safety damages caused by our attack on ALC.
We examine the attack process and find that LDW is not
triggered since it relies on the same lane detection module
as ALC and thus are affected simultaneously by our attack.
ACC does not take any action since it does not detect a front
vehicle to follow and adjust speed in these experiments. FCW
is triggered 5 times out of the 10 collisions, but it is only
a warning and thus cannot prevent the collision by itself.
Moreover, in our experiments FCW is triggered only 0.46
sec before the collision on average, which is far too short
to allow human drivers to react considering the 2.5-second
average driver reaction time to road hazard (§3).

In our Camry model, FCW and AEB are turned on to-
gether as a bundled safety feature [68]. However, while we
have observed some triggering of FCW, we were not able to
observe any triggering of AEB among the 10 attack trials,
leading to a 100% false negative rate. We check the vehi-
cle manual [68] and find that this may be because the AEB
feature (called pre-collision braking for Toyota) is used very
conservatively: it is triggered only when the possibility of
a collision is extremely high. This observation is also con-
sistent with the previously-reported high failure rate (60%)

for AEB features on popular car models today [35]. Such
conservative use of AEB can reduce false alarms and thus
avoid mistaken sudden emergency brakes in normal driv-
ing, but also makes it difficult to effectively preventing the
safety damages caused by our attack — in our experiments,
it was not able to prevent any of the 10 collisions. The video
recordings for these real-vehicle experiments are available at
https://sites.google.com/view/cav-sec/drp-attack/.

8 Limitations and Defense Discussion
8.1 Limitations of Our Study

Attack deployability. As evaluated in §5.3, our attack can
achieve a high success rate (93.8%) with only 8 pieces of
quickly-deployable road patches, each requiring only 5-10
sec to deploy for 2 people. To further increase stealthiness,
the attacker can pretend to be road workers like in Fig. 2 to
avoid suspicion, and pick a deployment time when the target
road is the most vacant, e.g., at late night. Nevertheless, lower
deployment efforts is always more preferred for attackers to
reduce risks. One potential direction to further improve this is
to explore other common road surface patterns besides dirty
patterns, which we leave as future work.

Generality evaluation. Although we have shown high at-
tack generality against LD models with different designs
(§5.3), all our evaluations are performed on only one pro-
duction ALC in OpenPilot. Thus, it is still unclear whether
other popular ALC, e.g., Tesla Autopilot and GM Cruise, are
vulnerable to our attack. Unfortunately, to the best of our
knowledge, the OpenPilot ALC is the only production one
that is open sourced. Due to the same reason, we are also un-
able to evaluate the transfer attacks from OpenPilot to these
other popular ALC systems. Nevertheless, since the Open-
Pilot ALC is representative at both design and implementation
levels (§5), we think our current discovery and results can still
generally benefit the understanding of the security of produc-
tion ALC today. Also, since DNNs are generally vulnerable to
adversarial attacks [4,5,26,27,29–31,46], if these other ALC
systems also adopt the state-of-the-art DNN-based design, at
least at design level they are also vulnerable to our attack.

End-to-end evaluation in real world. In this work, we
evaluate our attack against various possible real-world factors
such as lighting conditions, patch viewing angles, victim ap-
proaching angles/distances, printer color accuracy, and camera
sensing capability (§5.3 and §5.4), and also evaluate the safety
impact using software-in-the-loop simulation (§6) and attack
trace injection in a real vehicle (§7). However, these setups
still have a gap to real-world attacks as we did not perform
direct end-to-end attack evaluation with real vehicles in the
physical world. Such a limitation is caused by safety issues
(vehicle-enforced minimum OpenPilot engagement speed at
28 mph, or 45 km/h) and access limits to private testing facili-
ties (for patch placement). In the future, we hope to overcome
this by finding ways to lower the minimum engagement speed
and obtain access to private testing facilities.

https://sites.google.com/view/cav-sec/drp-attack/


8.2 Defense Discussion
8.2.1 Machine Learning Model Level Defenses
In the recent arms race between adversarial machine learn-
ing attacks and defenses, numerous defense/mitigation tech-
niques have been proposed [69–72]. However, so far none
of them studied LD models. As a best effort to understand
the effectiveness of existing defenses on our attack, we per-
form evaluation on 5 popular defense methods that only re-
quire model input transformation without re-training: JPEG
compression [73], bit-depth reduction [71], adding Gaussian
noise [74], median blurring [71], and autoencoder reforma-
tion [75], since they are directly applicable to LD models.
Descriptions and our configurations of these methods are in
our extended version [38]. Our experiments use the same
dataset and success metrics as in §5. Meanwhile, we also
evaluate a benign-case success rate, defined as the percentage
of scenarios where the ALC can behave correctly (i.e., not
driving out of lane) when the defense method is applied.

Fig. 15 shows the evaluation results. As shown, for each
defense method we also vary the parameters to explore the
trade-off between attack success rate and benign-case success
rate. As shown, while all methods can effectively decrease
the attack success rate with certain parameter configurations,
the benign-case success rates are also decreased at the same
time. In particular, when the benign-case success rates are
still kept at 100%, the attack success rates are still 99 to 100%
for all methods. This shows that none of these methods can
effectively defend against our attack without harming ALC
performance in normal driving scenarios. This might be be-
cause these defenses are mainly for disrupting digital-space
human-imperceptible perturbations, and thus are less effective
for physical-world realizable attacks with human-perceptible
(but seemingly-benign) perturbations.

These results show that directly-applicable defense meth-
ods cannot easily defeat our attack. Thus, it is necessary to
explore (1) novel adaptions of more advanced defenses such
as adversarial training to LD, or (2) new defenses specific to
LD and our problem setting, which we leave as future work.

8.2.2 Sensor/Data Fusion Based Defenses
Besides securing LD models, another direction is to fuse
camera-based lane detection with other independent sen-
sor/data sources such as LiDAR and High Definition (HD)
map [76]. For example, LiDAR can capture the tiny laser re-
flection differences for lane line markings, and thus is possible
to perform lane detection [77]. However, while LiDARs are
commonly used in high-level (e.g., Level-4) AD systems such
as Google Waymo [78] that provide self-driving taxi/truck,
so far they are not generally used in production low-level
(e.g., Level-2) AD such as ALC, e.g., Tesla, GM Cadillac,
Toyota RAV4, etc. [3, 45, 79]. This is mainly because LiDAR
is quite costly for vehicle models sold to individuals (typically
≥$4,000 each for AD [80]). For example, Elon Musk, the co-
founder of Tesla, claims that LiDARs are “expensive sensors

that are unnecessary (for autonomous vehicles)” [81].
Another possible fusion source is lane information from a

pre-built HD map of the targeted road, which can be used to
cross-check with the run-time detected lane lines to detect our
attack. However, this requires ALC providers to collect and
maintain accurate lane line information for each road, which
can be time consuming, costly, and also hard to scale. To the
best of our knowledge, ALC systems in production Level-2
AD systems today do not use HD maps in general. For in-
stance, Tesla explicitly claims that it does not use HD map for
Autopilot driving since it is a “non-scalable approach” [82].

Nevertheless, considering that Level-4 AD systems today
are able to build and heavily utilize HD maps [83, 84], we
think leveraging HD maps is still a more feasible solution
than requiring production Level-2 vehicle models to install
LiDARs. If such a map can be available, a follow-up research
question is how to effectively detect our attack without raising
too many false alarms, since mismatched lane information
can also occur in benign cases due to (1) vehicle position and
heading angle inaccuracies when localized on the HD map,
e.g., due to sensor noises in GPS and IMU, and (2) normal-
case LD model inaccuracies.

9 Related Work
Autonomous Driving (AD) system security. For AD sys-
tems, there are mainly two types of security research: sensor
security and autonomy software security. For sensor security,
prior works studied spoofing/jamming on camera [85–87], Li-
DAR [31,85,88], RADAR [86], ultrasonic [86], and IMU [89].
For autonomy software security, prior works have studied the
security of object detection [4, 5, 88], tracking [90], local-
ization [91], traffic light detection [92], and end-to-end AD
models [41,43]. Our work studies autonomy software security
in production ALC. The only prior effort is from Tencent [6],
but it neither attacks the designed operational domain for
ALC (i.e., roads with lane lines), nor generates perturbations
systematically by addressing the design challenges in §3.3.

Physical-world adversarial attacks. Multiple prior works
have explored image-space adversarial attacks in the physical
world [4, 5, 28–30]. In particular, various techniques have
been designed to improve the physical-world robustness, e.g.,
non-printability score [4, 93–95], low-saturation colors [5],
and EoT [4,5,29,30]. In comparison, prior efforts concentrate
on image classification and object detection, while we are
the first to systematically design physical-world adversarial
attacks on ALC, which require to address various new and
unique design challenges (§3.3).

10 Conclusion
In this work, we are the first to systematically study the secu-
rity of DNN-based ALC in its designed operational domains
under physical-world adversarial attacks. With a novel attack
vector, dirty road patch, we perform optimization-based attack
generation with novel input generation and objective function
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Figure 15: Evaluation results for 5 directly-applicable DNN model level defense methods. Attack: Attack success rate. Benign:
Percentage of scenarios where the ALC can still behave correctly (i.e., not driving out of current lane) with defense applied.

designs. Evaluation on a production ALC using real-world
traces shows that our attack has over 95% success rates with
success time substantially lower than average driver reaction
time, and also has high robustness, generality, physical-world
realizability, and stealthiness. We further conduct experiments
using both simulation and a real vehicle, and find that our at-
tack can cause a 100% collision rate in different scenarios. We
also evaluate and discuss possible defenses. Considering the
popularity of ALC and the safety impacts shown in this paper,
we hope that our findings and insights can bring community
attention and inspire follow-up research.
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A Required Deviations and Success Time
Required deviations. The required deviations for the high-
way and local roads are calculated based on Toyota RAV4
width (including mirrors) and standard lane widths in the
U.S. [62] as shown in Fig. 16. We use Toyota RAV4 since it
is the reference vehicle used by the OpenPilot team when col-
lecting the comma2k19 data set [56]. For the lane widths, we
refer to the design guidelines [62] published by the U.S. De-
partment of Transportation Federal Highway Administration.

The required deviations to touch the lane line are calculated
using L−C

2 = 0.735m (highway) and 0.285m (local), where L
is the lane width and C is the vehicle width.

Required success time. Since ALC systems assume a fully
attentive human driver who is prepared to take over at any mo-
ment [1,7], the required deviation above needs to be achieved
fast enough so that the human driver cannot react in time to
take over and steer back. Thus, when we define the attack goal,
we require not only the required deviation above, but also an
attack success time that is smaller than the average driver
reaction time to road hazards. We select the average driver
reaction time based on different government-issued transporta-
tion policy guidelines [57, 96]. In particular, in the California
Department of Motor Vehicles Commercial Driver Handbook
Section 2.6.1 [57], it describes (1) a 1.75 seconds average per-
ception time, i.e., the time from the time the driver’s eyes see a
hazard until the driver’s brain recognizes it, and (2) a 0.75 to 1
seconds average reaction time, i.e., the time from the driver’s
brain recognizing the hazard to physically take actions. Thus,
in total it’s 2.5 to 2.75 seconds from the driver’s eyes seeing
a hazard to physically take actions. The UK “Highway Code
Book” and “Code of Practice for Operational Use of Road
Policing Enforcement Technology” use 3 seconds for driver
reaction time [97, 98]. National Safety Council also adopts
a 3-second driver reaction time to calculate the minimum
spacing between vehicles [96]. Among them, we select the
smallest one, i.e., 2.5 seconds from the California Depart-
ment of Motor Vehicles [57], as the required success time
in this paper to avoid possible overestimation of the attack
effectiveness in our evaluation.

Note that the driver reaction time above is commonly refer-
ring to the reaction time to apply the brake, instead of steering.
In our paper, we use such reaction time to apply the brake
as the reaction time to take over the steering wheel when the
ALC systems are in control of the steering wheel. This is be-
cause in traditional driving, the driver is actively steering the
vehicle but passively applying the brake. However, when the
ALC system is controlling the steering, the human driver is
passively steering the vehicle, i.e., her hands are not actively
controlling the steering wheel. Thus, the reaction time to take
over the steering wheel during passive steering is analogous
to that to apply the brake during passive braking.

In fact, the actual average driver reaction time when the
ALC system is taking control is likely to be much higher
than the 2.5 seconds measured in traditional driving, due to
the reliance of human drivers on such convenient driving
automation technology today. A recent study performed a
simulation-based user study on Tesla Autopilot, and found that
40% drivers fail to react in time to avoid a crash happening
6.2 seconds after the Autopilot fails to operate [99]. In the real
world, it is found multiple times that Tesla drivers fall asleep
with Autopilot controlling the vehicle in high speed [100].
Thus, the required success time of 2.5 seconds used in this
paper is a relatively conservative estimation, and thus the
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Vehicle width: C = 2.13 m

Local road lane width: L = 2.7 m

Highway lane width: L = 3.6 m

Figure 16: Vehicle and lane widths used in this paper.

attack effectiveness reported in our evaluations is likely only
a lower bound of the actual effectiveness of our attack in the
real world.

B Attack Stealthiness User Study
In this section, we conduct a user study to more directly evalu-
ate the stealthiness of the DRP attack. We have gone through
the IRB process and our study is determined as in the IRB
Exempt category since it does not involve the collection of
any Personally Identifiable Information (PII) or target any
sensitive population.

Evaluation methodology. We use the generated attacks on
real-world driving traces in §5.1 to perform the user study. For
an attack scenario, we ask the participants to imagine that they
are driving with the ALC system taking control, and then show
a sequence of image frames with the malicious road patch
from the driver’s view at 3, 2.5, 2, 1.5, and 1 second(s) before
the attack succeeds. Here, 1 second before the attack succeeds
is right before the attack starts to take effect. For each image
frame, we ask whether they will decide to take over the driving
to avoid danger or potential safety risks. These questions are
also asked for the image frames with a benign road patch that
only has the base color without the malicious dirty patterns
as a control group.

Since our attack is designed for drivers who are in favor of
using ALC system in normal cases, the same set of questions
are asked at the beginning for the original image frames with-
out attack, and we only accept a participant if she does not
choose to take over the driving for these cases. This process
also helps filter out ill-behaved participants who just provide
random answers. Since DRP is a new form of attack vectors
on the road, we do not tell the participants that the study is
related to security attacks. Instead, we only tell them that our
focus is on surveying driver’s decisions under ALC systems
for different road surface patterns such as road patches and
scratches. At the beginning of the study, we also provide an
introduction of ALC systems with demo videos to ensure that
the participants fully understand what driving technology we
are surveying about. To understand the distribution of the
participant background, we also ask demographic informa-
tion and background information related to driving and ALC
usage. None of the questions in our study involve PII or target

any sensitive population; our study is thus determined as in
the IRB Exempt category.

Evaluation setup. We use Amazon Mechanical Turk [101]
to perform this study, and in total collected 100 participants.
All of them have driving experience, which is confirmed by
asking them the age when first licensed and the weekly driving
mileage. A local-road driving trace is used in this study, and
for the scenarios with attack, we evaluate 3 stealthiness levels
as in §5.1 (i.e., λ = 10−2,10−3,10−4). The survey is avail-
able at [102]. Among the 100 participants, 56% are male and
44% are female. The average age is 32.3 years old. 79% have
experienced at least one ALC system, among which Tesla
Autopilot has the largest share (28%). Statistics of ALC ex-
periment and demographic information are shown in Fig. 18.

Results. Fig. 17 shows the study results. As shown, the
closer it is to the attack success time, the more partici-
pants choose to take over the driving in the attacked sce-
narios since the dirty patterns become increasingly larger and
clearer. Among the 3 stealthiness levels, the driver decisions
are consistent with our design: the lowest stealthiness level
(λ = 10−4) has the highest take-over rate, while the highest
level (λ= 10−2) has the lowest. In particular, we find that even
for the lowest stealthiness level (λ = 10−4), only less than
25% of the participants decide to take over before the attack
starts to take effect. As shown in Fig. 7, at this stealthiness
level the white dirty patterns are quite dense and prominent.
Thus, these results suggest that the majority of human drivers
today do not treat dirty road patches as road conditions where
ALC systems cannot handle.

As introduced in §3.1, 2.5 seconds is commonly used as
the average driver reaction time to road hazards. Thus, at
2.5 seconds or more before the attack succeeds, the human
driver still has a chance to take over the driving to prevent
the damage in common cases, as long as she can realize that
it is a road hazard. However, our results show that only less
than 20% of the participants decide to take over at 2.5 and
3 seconds before our attack succeeds even for the lowest
stealthiness level. In particular, when the stealthiness levels
are λ = 10−2 and λ = 10−3, the take-over rates at these 2 time
points are similar to the rates for the benign road patch with
only the base color. This suggests that at the time when there
is still a chance to prevent the damage in common cases, our
attack patches at λ = 10−2 and 10−3 appear to be as innocent
as normal clean road patches to human drivers. In these cases,
the take-over rates are only less than 15%, which are from
participants who will take over even for normal clean road
patches. Note that the take-over rates in practice are likely to
be lower than this since (1) this study is performed for a local
road scenario, while the road patches in highway scenarios
are much farther and thus much less noticeable as shown in
Fig. 7, and (2) the road patches in this study are digitally
synthesized into the image frames, which may appear less
natural and thus may more easily alert the participants.

Stealthiness from pedestrian view. In local road scenar-
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Figure 17: Results of the attack stealthiness user study. Driv-
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to take over the driving at a particular time point before the
attack succeeds.
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Figure 18: Statistics of the ALC system experience and de-
mographic information in the attack stealthiness user study.

ios, the stealthiness from the pedestrian’s view is also an
aspect worth considering, as pedestrians may report anoma-
lies if our attack patch looks too suspicious. Our user study
includes the driver’s view at 1 second before the attack suc-
ceeds, which is 7 meters to the driver’s eyes so similar to the
distance from the pedestrian on local roads. However, only
<25% of the participants choose to take over driving, meaning
that >75% do not think our attack patch at this distance looks
suspicious enough to affect driving. This may be because the
general public today does not know that dirty road patches
can be a road hazard. We hope that our paper can expose this
and thus help raise such awareness.

C Details of OpenPilot ALC system
In this section, we describe the implementation details of the
OpenPilot ALC system, which follows the typical modular
ALC system design introduced in §1:

Lane Detection (LD). The LD model used in OpenPilot

uses recurrent DNN structures (e.g., RNN and GRU), which
are more detailed in our extended version [38] for 3 specific
versions of it. In each frame, the recurrent model receives a
front-camera input of 512 pixels wide by 256 pixels high and
512-dimensional recurrent features from the previous frame.
The recurrent features are the output of a middle layer. The
final output for ALC consists of information of 3 lines (left
and right lines and driving path). Each line has coordinates of
192 points (1 m interval from the vehicle to driving direction),
uncertainty scores of each coordinate, and a confidence score
of its lane. Thus, there are (192×2+1)×3 = 1,155 output
values in total. The desired driving path is calculated by the
weighted average of the driving path and the center line of the
left and right lines weighted by the uncertainty and confidence
scores. See OpenPilot code [8] for more details.

Such recurrent structure is stateful: it allows leveraging
the previous detection results to enhance the current frame
detection since lane line shapes are typically not changed
largely across consecutive frame. OpenPilot LD models out-
put the detected lane line points of the left line, right line,
and predicted driving path. Each line is fitted to the 3-degree
polynomial, and the desired driving path is then calculated as
the weighted average of the three lines with their confidence
levels. OpenPilot LD operates at 20 Hz (every 50 ms). In §7,
we inject the attack traces at the end of this step by modify-
ing the ALC source code to replace the real-time LD model
outputs with a sequence of attacked ones obtained from the
software-in-the-loop simulation at the same driving speed
(simulation environment described in §6).

Lateral control. OpenPilot adopts Model Predictive Con-
trol (MPC) [24] to decide the desired steering angle, which
will then be sent to the vehicle actuation step. The input of the
MPC is the desired driving path, the current speed, and the
current steering angle. This step works at the same frequency
as LD, i.e., the desired steering angle is decided every 50 ms.
The MPC is stateful: it reuses the solution of the previous
frame as the initial solution for the current frame.

Vehicle actuation. Based on the obtained desired steering
angle from MPC, OpenPilot vehicle actuation decides the
steering angle change to actuate in the control step and sends
actuation messages through CAN (Controller Area Network)
bus. This thus makes the absolute value of the actuated steer-
ing angle stateful: the new actuated steering angle is built
upon the previous one, by applying the angle change actua-
tions. OpenPilot actuation works at 100 Hz control frequency.
The actuated steering angle change is up to 0.25◦ per con-
trol step (every 10 ms). As described in §2.1, such limit is
typically imposed in production ALC systems due to the phys-
ical constraints of the mechanical control units and also for
driving stability and safety [22]. OpenPilot is integrated to a
vehicle by overriding the stock cruise control system. It thus
is engaged to control the steering and throttle when the driver
turns on the cruise control mode, and can work with stock
safety features such as AEB and FCW [8].
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