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Abstract
Purpose Despite the wide use of LCA for environmental profiling, the approach for determining the system boundary
within LCA models continues to be subjective and lacking in mathematical rigor. As a result, life cycle models are often
developed in an ad hoc manner, and are difficult to compare. Significant environmental impacts may be inadvertently left
out. Overcoming this shortcoming can help elicit greater confidence in life cycle models and their use for decision making.

Methods This paper describes a framework for hybrid life cycle model generation by selecting activities based on their
importance, parametric uncertainty, and contribution to network complexity. The importance of activities is determined
by structural path analysis—which then guides the construction of life cycle models based on uncertainty and complexity
indicators. Information about uncertainty is from the available life cycle inventory; complexity is quantified by cost or
granularity. The life cycle model is developed in a hierarchical manner by adding the most important activities until error
requirements are satisfied or network complexity exceeds user-specified constraints.

Results and Discussion The framework is applied to an illustrative example for building a hybrid LCA model. Since this
is a constructed example, the results can be compared with the actual impact, to validate the approach. This application
demonstrates how the algorithm sequentially develops a life cycle model of acceptable uncertainty and network complexity.
Challenges in applying this framework to practical problems are discussed.

Conclusion The presented algorithm designs system boundaries between scales of hybrid LCA models, includes or omits
activities from the system based on path analysis of environmental impact contribution at upstream network nodes, and
provides model quality indicators that permit comparison between different LCA models.

Keywords Life cycle analysis · Uncertainty · System boundary · Network analysis

1 Introduction

Life cycle assessment has seen tremendous development
over the last few decades. It is used for identifying environ-
mental impacts of a wide spectrum of products, manufacturing
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activities, and services. This method considers activities
from “cradle to grave” so that environmental impacts of a
larger system may be assessed, which includes not only the
primary activity itself but also upstream and downstream
activities that are connected to it. The life cycle impact
information should reduce the chance of shifting of impacts
to other parts of the life cycle. LCA has also been used
to incorporate elements of sustainability in engineering,
including design of manufacturing processes, supply chain
design (Ghosh and Bakshi 2019), and economic policy
analysis (Searchinger et al. 2008; Samaras and Meisterling
2008) and environmental policy decisions across the world.

Despite the popularity and extensive application of LCA
in different fields, drawbacks have plagued this method,
thus reducing confidence in its results (Reap et al. 2008;
Finnveden 2000). Any typical process incorporates multiple
inputs which in turn have many other inputs for their

/ Published online: 21 October 2020

The International Journal of Life Cycle Assessment (2020) 25:2290–2308

http://crossmark.crossref.org/dialog/?doi=10.1007/s11367-020-01826-5&domain=pdf
http://orcid.org/0000-0002-6604-8408
https://doi.org/10.1007/s11367-020-01826-5
mailto: bakshi.2@osu.edu


own production. Tracing these upstream activities until the
fundamental raw materials presents considerable difficulty
(Joshi 1999). System boundary selection is another major
prevalent problem in LCA (Reap et al. 2008). Since the
upstream life cycle of any product or manufacturing process
is essentially infinite, modeling it requires differentiating
between significant processes that are included within the
system boundary and insignificant or background processes
that are neglected. These decisions are subjective and
difficult since it is not known in advance if the information
is insignificant enough to be neglected (Finnveden et al.
2009). Selection of a highly truncated boundary can result
in omission of a large part of life cycle emissions (Lenzen
2000), incorrect reflection of reality, and lower confidence
in results.

1.1 Boundary selection problem

Even though ISO 14040 and ISO 14044 provide guidelines
for determining the boundary, they are still quite subjective
(Suh et al. 2004). Reap et al. (2008) explain that the cutoff
criterion is difficult to implement since it requires “perfect,
holistic knowledge of all the possible effects a decision
might have on the product system and consequently on the
impacts of interest.” The cutoff is expressed as a percentage
of the total life cycle emission to establish an acceptable
truncation error. However, if the complete life cycle data
has already been obtained, introducing a cutoff criterion
becomes redundant. Several approaches have been proposed
to solve the boundary selection problem in LCA, of which
economic input–output-based environmental analysis has
been popular (Hendrickson et al. 2006; Sharrard et al.
2008; Moriguchi et al. 1993). It involves using economic
models proposed by Leontief to perform environmental
analysis, known as economic input–output (EIO) models. It
considers the complete upstream life cycle within a nation’s
or region’s economy, thus providing a partial solution
to the boundary selection problem. While explaining
in detail the basic structure of input–output life cycle
assessment(IOLCA), Suh and Huppes (2005) discuss its
methodological limitations, especially errors arising due to
aggregation of industries and commodities. Also, due to
economic data generally being older than process LCA
data and due to lack of information, it is difficult to
study novel and developing technologies. Process-based and
EIO-based LCA models were combined in hybrid LCA
models that build on the strengths of both approaches
while addressing each other’s inadequacies (Haes et al.
2004; Joshi 1999). In hybrid analysis, the decision of
modeling activities in the process LCA or the EIO LCA
scale depends on several factors. Sometimes, foreground
processes are modeled using process LCA inventories while
the background processes are modeled using EIOLCA.

Data availability also affects such decisions as well as
practitioner’s choice of the importance of an activity.
This results in consideration of an expanded system
boundary compared with conventional process LCA while
incorporating more accurate information compared with just
IOLCA (Treloar et al. 2004; Stokes and Horvath 2006).

1.2 Boundary delineation problem in hybrid LCA
models

System boundaries are difficult to define for hybrid LCA
models as seen from the blurred edges of the model in
Fig. 1. Due to the presence of EIO models, the mathematical
functions for performing LCA through the Leontief inverse
equations make the system boundary “infinite.” However,
the downside is that data quality gets severely degraded
due to high aggregation. For the sake of this article, if we
temporarily consider that hybrid models do actually expand
the system boundary and enable inclusion of far upstream
processes, a different problem comes up. As pointed out
by Suh et al. (2004), hybrid approaches introduce a new
problem: the delineation of boundaries between the process
system and the input output system as seen from the blurred
edges of boundary between the process and economy scales
of the LCA model in Fig. 1. They conjecture that a
multiscale hybrid LCA model with few activities for the
process LCA scale will have significant differences from
another with many activities modeled in it. Along with that,
adding more activities to the process part results in higher
resolution of the hybrid model while increasing its data
requirements (Graedel and Graedel 1998). This leads to the
development of a model design problem with conflicting
objectives—increasing resolution while decreasing data
requirements. Looking into a wide range of hybrid LCA
studies (Treloar et al. 2001; Treloar et al. 2004; Stokes
and Horvath 2006; Wiedmann et al. 2011; Pairotti et al.
2015; Hou et al. 2014; Bilec et al. 2006; Rowley et al.
2009), it is seen that the decision of distributing life cycle
activities between the scales of hybrid LCA model is
subjective. While most studies decide the boundary based
on experience, data availability, cost, and time requirements,
Treloar et al. (2001) and Treloar et al. (2004) used structural
path analysis (SPA) to extract the hotspots of environmental
impacts in the life cycle of a product in terms of contribution
to the total emission. However, it is difficult to judge
based on the emission quantities if a certain activity is
significant enough to be modeled at a particular scale.
The path exchange method (Lenzen and Crawford 2009)
is another approach to combine process LCA data with
EIO level data. Even though this method claims lower data
requirements and labor costs, it misses out on providing a
quantitative measure of the “goodness” or correctness of
models generated. Hondo and Sakai (2002) use sensitivity
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Fig. 1 The system boundary selection problem and system boundary delineation problem in hybrid LCA model. The hazy part signifies that it is
difficult to determine the boundaries. The algorithm tries to solve the boundary delineation problem between scales

analysis to rank the economic flows in EIO analysis for
delineating the interface between scales. This work does not
explore the correctness of the models built. Suh et al. (2004)
propose a stochastic framework to determine the boundary
based on uncertainty analysis using the Monte Carlo
method. They conclude by mentioning a general idea that
replaces aggregated data in the EIO part by more accurate
process LCA data continuously, until a required level of
uncertainty is achieved. The data to be shifted between
the scales would be for the “most important lower order.”
However, the decision making procedure for shifting scales
and the uncertainty calculation process are not explained.
Neither this method nor its variation seem to have been
developed or presented in any form. Recently, Stephan et al.
(2018) published the path exchange method for building
hybrid life cycle models. It compares process LCA and EIO
models and combines them to create a hybrid system. The
searching and building processes are automated. However,
it does not extend to determination of “goodness” of these
hybrid models and how different models can be compared
with each other. This work does not address the boundary
delineation and selection problems.

From this literature review, it is quite evident that the
boundary selection as well as delineation of boundaries
between different scales in multi-scale LCA models has
an impact on the validity of the final results and there
is a compelling need to address this problem through a
mathematically rigorous method directed toward removing
subjectivity in these decisions.

1.3 Uncertainty in LCA

Lloyd and Ries (2007) provide a broad review of
LCA uncertainty studies by classifying them into three

categories—parameter, model, and scenario with parameter
uncertainty being the most studied (Heijungs and Huijbregts
2004). It includes data uncertainties in system inputs, tech-
nology coefficients, and environmental impact factors.
Among the popular uncertainty modeling approaches are
stochastic modeling, scenario modeling, fuzzy datasets
(Benetto et al. 2008), interval calculations (Chevalier and
Téno 1996), and analytical uncertainty propagation. While
many studies have used Monte Carlo techniques, they have
been deemed to be computationally intensive when compar-
ing multiple scenarios (Hong et al. 2010; Ross et al. 2002).
Analytical error propagation (Morgan et al. 1992) based on
Taylor series expansion is used to estimate the moments of
a distribution. The model output variance is described by a
function of variances of each uncertain input variable. This
method has been applied in the context of LCA (Ciroth
2002; Heijungs et al. 2005; Hong et al. 2010) and various
studies have compared it with the more prevalent Monte
Carlo sampling methods for uncertainty analysis (Groen
et al. 2014; Heijungs et al. 2005; Imbeault-Tétreault et al.
2013; Heijungs and Huijbregts 2004). The main advantages
of this method are (1) it requires less information as the
probability distribution of the input variables is not required
(Groen et al. 2014; Heijungs 2010); (2) it is less compu-
tationally demanding than Monte Carlo sampling methods
(Heijungs 2010; Heijungs and Lenzen 2014).

1.4 Contributions and vision

LCA practitioners face decisions such as how many
upstream activities should be included within the system
boundary. Evaluating the “best” model is yet another chal-
lenge that needs to be addressed by defining some quality
criterion. The life cycle of any process is immense due to
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interconnected flow linkages with other processes. Carving
out a smaller system for LCA studies from this huge
network requires information about the total model itself
which is difficult to obtain. Considering such a problem
for multi-scale frameworks, the difficulty is compounded
by the presence of two or more scales. There will be
certain combinations where a large number of activities
needs to be modeled at a detailed scale, thus tremen-
dously increasing the resolution, complexity, computational
tractability, and data requirements of the model. This
posits the need for an approach that can simultaneously
bypass these challenges and help in the search for the best
possible model. Solving such a problem is challenging due
to high computational and data requirements.

This paper develops a framework for life cycle model
construction that determines model quality based on uncer-
tainty analysis using analytical error propagation. This
approach addresses the boundary delineation problem as is
commonly encountered in the development of hybrid LCA
models as described in Section 1.2. As seen from Fig. 1,
the boundary between EIO scale and process-based LCA
scale in current hybrid LCA modeling is vague and deter-
mined arbitrarily. The goal of this article is to address
the problem such that after the application of this algo-
rithm, the boundary is determined using a mathematically
rigorous procedure. The overall system boundary selec-
tion problem as described in Section 1.1 is not addressed
in this study and is the subject of future work. Heijungs
and Lenzen (2014) used the error propagation method to
perform uncertainty analysis in IOLCA and process LCA
separately. This work extends the analytical error propaga-
tion approach to any LCAmodel for performing uncertainty
analysis for comparing between different life cycle mod-
els. Using this algorithm, the user can create a model of
a system which provides LCA results with quantitative
confidence bounds.

This paper has three major contributions. First, it devel-
ops an algorithm for designing the system boundary
between the scales of hybrid life cycle assessment mod-
els by using information about nodal environmental impact
from network analysis of activity upstream networks. Such
a method reduces the subjectivity in LCA model building.
Indicators are introduced to compare and choose between
models with different system boundaries. Second, charac-
terization indicators based on input data uncertainty and
error propagation theory are developed to determine the
variance of the model output result. Using such informa-
tion, the confidence in LCAmodel results can be quantified.
Third, to keep life cycle models within limits of compu-
tational and practical feasibility, a complexity indicator is
developed based on data cost of modeling and information

about the granularity of data sources. The indicator helps
limit the generated model from becoming too complex or
expensive. Only data or parameter uncertainty has been
included in the present study. A simple LCA model with
four activities and data at multiple scales is presented as a
case study.

The vision put forth in this work is that if life cycle
assessment is to make a lasting contribution to industrial
ecology and sustainable engineering, it needs to become a
more scientifically rigorous approach such that its results
will reflect the effect of decisions about boundary selec-
tion, boundary delineation, and type of data used. This
will allow direct comparison of results from various stud-
ies, and even combination of multiple studies to develop
better models. This is already happening, as described ear-
lier in this section. Such methods are already available in
many other disciplines such as weather forecasting, climate
change studies, image recognition, and process operation.
Consider the evolution of weather forecasting. In its early
days, weather prediction was highly subjective and uncer-
tain, and relied on looking at clouds, wind, and principles
drawn up by philosophers. As barometers, hygrometers, and
other instruments were invented, vast amounts of weather
data became available. In parallel, more sophisticated math-
ematical models of relevant systems were also developed.
Scientifically rigorous frameworks now enable combination
of data of various degrees of uncertainties and at multi-
ple levels of resolution with results of model simulations.
It is our view that LCA should also follow a similar path
as uncertainty information of all types, model, and param-
eter continue to become available at multiple scales of
equipment, processes, and economies.

The rest of the paper is organized as follows. The
Section 2 explains SPA and LCA uncertainty analysis in
brief. The general framework and algorithm for model
generation are explained in the Section 3. Application to
the LCA model is provided along with detailed description
of each step within Section 3 itself. Insights, shortcomings
of the algorithm, and future work are discussed in
Section 4.

2 Background

2.1 Structural path analysis

Structural path analysis is amathematical technique for explor-
ing networks based on infinite series expansion. It can
identify individual nodes for hotspot analysis and search for
major activity hubs. It has been applied to environmentally-
extended input-output (EEIO) models for identifying
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hotspots of environmental emissions in an economy. EEIO
analysis gives the total environmental impact as:

g = B(I − A)−1F (1)

where B is the vector of direct environmental interventions
from all economic sectors and F is vector of final demands
from the sectors. A is the direct requirements matrix that
contains information about contribution of different sectors
to the input flow of every other sector. I is an identity
matrix. Overbars on the vectors and matrices represent that
they belong to the economy scale. The equation derived
from the Taylor series expansion of the Leontief inverse (1)
is:

gi = bifi +
n�

j=1

bjajifi +
n�

j=1

n�

k=1

bkakj ajifi

+
n�

j=1

n�

k=1

n�

l=1

blalkakj ajifi + ...... (2)

where i, j, k, and l are sector indices, n is the total number
of sectors, and fi is the final demand from the ith sector.
In this hierarchical disintegration, each term of Eq. 2
corresponds to a path order level determined by the number
of linkages to the ith sector final demand. Thus, the term
n�

j=1
bjajifi contains n first-order paths as they are linked to

the final demand directly. The first term itself is of the zeroth

order. Similarly,
n�

j=1

n�
k=1

bkakj ajifi represents the sum of all

n2 second-order paths. Detailed equations and application
to a two-sector economy are provided in Section 1.1 of the
Supporting Information (SI).

2.2 Uncertainty propagation inmatrix-based LCA

Analytical uncertainty propagation (AUP) (Ku 1966) is used
to determine the variance of the output uncertainty based on
the variance of each uncertain input variable. The method
assumes first-order second-moment form of uncertainty
analysis which estimates the second moment (standard
deviation) of the result based on a first-order approximation
of any linear or non-linear function. As described by
Heijungs and Suh (2002), the technology matrix X is the
network of economic flows of all unit processes included in
the life cycle. The final demand vector F reflects society’s
requirement for the product. Environmental flows of all unit
processes are provided in the intervention matrix B. The
total environmental impact is calculated as:

g = BX−1F (3)

Using error propagation theory, Heijungs (2010) expressed
uncertainty of the output as variance of the LCA result
using:
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where s is BX−1 and λ is X−1f . Equation 4 combines the
variances of the different terms of Eq. 3 using the theory
of error propagation. The last three terms of the equation
represent the covariance between the different parameters.
Detailed information of uncertainty error propagation
methods in matrix-based LCA is provided in Section 1.2 in
the SI.

3Methodology: a framework for life cycle
model generation

The approach for designing LCA models that is proposed
in this work is summarized in Fig. 2. The entire algorithm
can be divided into two parts. The first part uses a
EIO model to perform SPA that provides hotspot and
relative activity importance information. This information
serves as guidance for building the life cycle models
in the second part of the algorithm. The final model
is a hybrid model. The initial linear part of this figure
initializes the network construction algorithm and relies on
SPA, while the circular loop denotes the sequential life
cycle model construction. In this algorithm, we use SPA
on EIO models to guide the life cycle model building
algorithm. Goal and scope definition and inventory analysis,
which include system boundary selection between the
scales, determining cutoffs, and building the actual LCA
model, are performed by this algorithm. For the goal and
scope definition step, information such as prior experience,
guidance from experts, or information about major activities
or upstream environmental hotspots are used to build the life
cycle model. SPA initializes with two major data sources:
information about the process under study and linkages of
this process with other activities. The detailed information
of the processes can be obtained from engineering models
with exact information about input and output flow rates
or average representations of these material flows from
standard life cycle inventory databases. EIO models provide
an “umbrella” model that contains a snapshot of actual
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Fig. 2 Overview of methodology involving structural path analysis for guiding life cycle model building algorithm. The algorithm presented in
this paper covers goal and scope analysis and inventory analysis steps of life cycle study

movement and consumption of materials and products in
the economy at a certain point of time, albeit in monetary
units. A network analysis of such information can help
identify real-world emission hotspots in the upstream of
any product or production technology. This information is
used as guidance for sequentially choosing process data for
inclusion in the LCA model, while monitoring the trade-
off between uncertainty in the results and complexity of the
model. The task of building the life cycle models occurs in
the circular part of the flowchart in Fig. 2.

3.1 Illustrative example

To effectively communicate how the algorithm works and
can be applied for the generation of life cycle models, it is
explained with an illustrative example depicted in Fig. 3.
The activities shown in this figure represent the hypothetical
real-world complete system without any boundary or cutoff
error. Normally, for a real life case study, this information
is unknown or very difficult to obtain, which ultimately
results in boundary selection issues. However, for this
illustrative problem, since we know the extent of the entire
system, we can compare the life cycle models generated
by this algorithm with the complete life cycle emissions
and evaluate the performance of the proposed algorithm.
PC is the product under study, for which we need to
perform LCA. Let PC be biodiesel which is produced

by the biorefinery process C. Process C, the biorefinery,
consumes the products of processes R and T , PR , and
PT 1, respectively. PR is soy oil: the product of soy oil
processing depicted as R. Similarly, PT 1 and PT 2 both are
electricity flows from the power production process T . R,
soy oil processing, also consumes electricity from power
production process T ; the flow is depicted as PT 2. The
total production of electricity T is thus the sum of PT 1 and
PT 2. R also consumes soybean from the farming activity D,
where the flow of soybeans is depicted as PD . The equations
governing this system are provided in Eqs. 27–34 in Section
3 of SI. The functional unit for process C, the biorefinery
that we are interested in doing a life cycle study for, has
an output of 49 kg of PC or biodiesel. The solution of the
sets of equations in the SI for this quantity of biodiesel
(PC) production as well as different quantities is provided
in Table 2 of the SI. These equations are used to generate
an LCI database for this case study to build the final LCA
model. Solving this system of equations will provide the
correct value of emissions from the entire system. In this
example, the final model generated by the algorithm should
be as close as possible to the “true” value calculated from
the equations. The process of building an LCI database,
relevant assumptions, and requirements are provided in
Section 3 of SI. The resulting averaged LCI database is
shown in Table 1. The Input and Output columns contain
the material flows to and from the processes. Environmental
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Power
production

Biorefinery

Soybean
Farming

Soy oil processing

Electricity

Biodiesel
Electricity

Soybean
Soy oil

Fig. 3 Illustrative system for demonstration of process-based LCA model generation using the proposed algorithm. R, C, T , and D are activities
while the production flow from x activity is denoted by Px

interventions are listed in the Emission column. In practice,
such information can be obtained from LCI such as GREET,
USLCI, and EcoInvent.

3.2 Guidingmodel delineation by SPA

Initially, an EIO model for the region in which the LCA
study is based on is required for the purposes of SPA calcu-
lations. Information required includes detailed input and
output flows from the primary process of concern from
either engineering models or process LCA database. The
EIO model for a real-life case study should be available to
the user from economic databases. These models are easily
obtained from open-source national government databases
(Bureau of Economic Analysis 2015). For this case study,
an illustrative EIO model of the case study is used to explain
the algorithm. EIO models are generally represented by
V and U, known as make and use matrices, respectively.
Overbars on symbols refer to components at the economy
scale. The make matrix contains total monetary production
from every economic sector included in the model. The use
matrix contains intersectoral flows. It maps the consumption
of economic flows by an economic sector from all other sec-
tors as well as from itself. For this illustrative example, the
economy scale make V and use U matrices are defined as:

V =

⎡

⎢⎢⎣

120 0 0 0
0 189 0 0
0 0 756 0
0 0 0 115.2

⎤

⎥⎥⎦ (5)

U =

⎡

⎢⎢⎣

0 0 72 0
36 0 54 0
0 0 0 0
96 0 0 0

⎤

⎥⎥⎦ (6)

3.2.1 Setting up the economic model for SPA

The first step that is observed from Fig. 4 involves
operations on an EIO model to make it suitable for applying
SPA. The primary process of concern needs to be a separate
economic sector in the economy model. This presents two
cases.

• Case 1 Primary process of concern is not present in
the original EIO model. Then, the primary process
information is transformed into an economic activity
using price information and the new data are included
in the make and use matrices of the EIO model by
expanding rows and columns. The addition of new
activity is depicted through the addition of a new row
and column to EIO model matrices in Fig. 4. This
situation often arises for novel technologies. Mostly,
EIO models are not available for the current year and
are often 4 to 7 years old. Thus, novel technologies that
have been introduced in recent times do not appear in
the economic data from previous years.

• Case 2 Primary process of concern is contained in
the original EIO model but is aggregated in a larger
economic sector. The primary process information is
transformed into an economic activity using price
information. However, before including it in the EIO
model matrices, the activity needs to be separated

Table 1 Life cycle inventory data for case study illustrative example

Processes Emissions Input Output

R 96 PD =3.43PT 2=1.71 PR = 8.57

T 27.84 PT 1=4.28, PT 2=1.71

C 183.48 PT 1=4.28;PR =8.57 PC = 30

D 15.36 PD = 3.43
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Fig. 4 Disaggregation of
economic sectors and SPA of
EIO model to obtain hotspot
information and sector
importance in upstream network
of processes. It includes
algorithm steps from start to
structural path analysis in Fig. 5

Engineering
information

Process LCA inventory

IO
ModelSPA

algorithm

SPA results

Environmental
interactions of 

Disaggregation performed (optional)

IO model

Engg/LCA information
converted to economic
units

economic sectors

out from its aggregated state from the original EIO
model to prevent double counting (Suh 2004). For
example, if the primary process whose life cycle model
is to be generated is a corn ethanol manufacturing
process, then the economic sector in the EIO model
that contains this process is the other basic organic
chemical manufacturing sector. The upstream linkages
for this sector as calculated by SPA will include all
pathways that are necessary to manufacture thousands
of chemicals manufactured by this sector. Hence, the
life cycle network obtained will be the aggregation
of thousands of networks. The linkage of only corn
ethanol manufacturing will be indiscernible within
this aggregated life cycle network. To rectify this
problem, the primary process is disaggregated from the
EIO model. This situation arises for most established
technologies, for example coal-based power generation,
crude oil refining, copper ore mining, etc.

This step is expressed as a question in the flowchart in
Fig. 5. Disaggregation of an economic sector, if needed, is
accomplished by using Eqs. 26–35 in Hanes and Bakshi
(2015) to obtain disaggregated make and use matrices.

For the illustrative example, the primary process of con-
cern C is contained in the original EIO model aggregated
with a larger economic sector, making this a case 2 situation
as explained. The inventory information for production of
30 kg of PC is transformed into an economic activity using
price information. However, before incorporating it in the
EIO model matrices, the activity needs to be disaggregated
from the original EIO model. This is done by using Eqs. 7
and 11. Permutation matrices PE

P and PE
F contain informa-

tion on the relationships between parent sectors and their
commodities, and constituent activities and processes and
their products. These matrices along with price data vec-
tors p̂r are used to “translate” flows in the various make and
use matrices from one scale to another. XE is known as the

cutoff matrix from economy scale to primary process PC . It
contains the monetary flow of materials from the economy
scale to PC . Detailed steps for calculation are provided in
Section 2 in the SI. As PC is being disaggregated out, these
flows also need to be removed.

V
∗ = V − p̂r(PE

P )T V(PE
F )T (7)

(PE
P )T =

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦ (8)

(PE
F )T = 


0 0 1 0
�

(9)

V
∗ =

⎡

⎢⎢⎣

120 0 0 0
0 189 0 0
0 0 576 0
0 0 0 115.2

⎤

⎥⎥⎦ (10)

U
∗ = U − XEPE

P (11)

XE =

⎡

⎢⎢⎣

17.2
12.9
0
0

⎤

⎥⎥⎦ (12)

U
∗ =

⎡

⎢⎢⎣

0 0 54.8 0
36 0 41.1 0
0 0 0 0
96 0 0 0

⎤

⎥⎥⎦ (13)

The primary process which was subtracted out from the
original EIO model is now included as a separate sector
to create the following augmented make and use matrices.
The augmented make and use matrices are constituted of the
old make and use matrices along with the primary process
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Fig. 5 Flowchart showing overall progression of model generation algorithm from initialization to obtaining final LCA model of reasonable
uncertainty and complexity

separately added in economic terms in the fourth column
and the row as shown in Eq. 17.

V
∗
n =

⎡

⎢⎢⎢⎢⎣

120 0 0 0 0
0 189 0 0 0
0 0 576 0 0
0 0 0 115.2 0
0 0 0 0 180

⎤

⎥⎥⎥⎥⎦
(14)

U
∗
n =

⎡

⎢⎢⎢⎢⎣

0 0 54.8 0 17.2
36 0 41.1 0 12.9
0 0 0 0 0
96 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎥⎥⎦
(15)

The new modified direct requirements matrix is calculated
using:

A
∗
n = U

∗
n((V

∗
n)

T )−1 (16)

(17)

The columns and rows of these matrices refer to the
economic sectors that include the activities in the system
in Fig. 3. The first column refers to the economic sector
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SR which includes the activity R. The second column
refers to the economic sector ST which includes the
activity T . Similarly, the third and fourth columns/rows
refer to economic sectors SC and SD that contain
respective activities. For example, if R is a bioethanol-
producing industry, then SR is the basic organic chemical
manufacturing economic sector. SCE is the economic sector
that has been created through disaggregation of SC . This can
be described as removing corn ethanol manufacturing from
the basic organic chemical manufacturing economic sector
SC and modelling it separately as one activity.

3.2.2 SPA applied to primary economic sector

Structural path analysis is performed as explained in
Section 2.1 on the separate sector built specifically from
the primary process as shown in Fig. 4. In Fig. 2, this
step relates to the determination of activity importance
and hotspots from SPA results. SPA is applied to this
augmented economy model with final demand for (SCE)
and paths extracted from the network and ranked based
on their percent contribution to total emissions. Performing
structural path analysis by application of Eq. 2, the upstream
life cycle network information is obtained. Table 2 shows
the first few results of many network linkages as computed
by SPA. The linkages are sorted and ranked according to
their percentage contribution to the environmental impact.
From that information, the model generator in Fig. 5
determines which sectors need to be sequentially considered
for inclusion in the life cycle model, the rule being activity
having the highest contribution to total environmental
impact should be included first.

3.3 Life cycle model generation

The life cycle model building algorithm constitutes the next
step as shown in Fig. 2. This algorithm uses data as guidance
from the SPA results and enables construction of the
LCA models. Measurement of model quality and ranking
of models are accomplished through the development
of characterization indicators based on uncertainty and

Table 2 SPA results obtained by applying (2) to EIO model for
illustrative example

Rank Path Order % Contribution

1 SCE Zero 65.1

2 SR → SCE First 24.3

3 ST → SCE First 5

4 SD → SR → SCE Second 3.2

5 ST → SR → SCE Second 2

complexity of LCAmodels. Using such indicators, different
LCA models can be compared against each other and
chosen based on user’s preferences. A second decision
maker as shown in Fig. 5 is employed to determine if the
built LCA model has satisfied the desired values of the
indicators. Improvements over the uncertainty indicator are
performed through the iteration loop (formed using the red
arrows in Fig. 5) by shifting command back to the LCA
model generation steps. If improvement is not possible any
more or user constraints fail, the algorithm stops and final
LCA model with acceptable uncertainty and complexity is
obtained.

3.3.1 Indicators for life cycle model

Two parameters are selected for determination of model
quality and serve as a basis for comparison between built
models. The quality of LCA models to give results with
low error probability was captured using an uncertainty
indicator while size of model that directly translates to
time and data requirements is captured using a complexity
indicator.

Uncertainty analysis The quality of the generated models as
guided by the SPA results is evaluated through uncertainty
analysis of the results. As mentioned in Section 1, only
parameter uncertainty has been considered. The main goal
of this analysis is to gather the uncertainty in the input data,
propagate it according to the model structure, and determine
uncertainty in the output from the model. For this study,
we employ analytical uncertainty propagation method due
to its simplicity, ease of use, and suitability to our model.
The uncertainty analysis operation is done simultaneously
within the model generation loop as shown in Fig. 5.

Using the analytical error propagation method explained
in Section 2, the variance information of input data for
building LCA models can be translated into variance
information for the final result from the LCA model. The
life cycle environmental impact g on any matrix-based LCA
procedure is calculated using Eq. 3. The uncertainty analysis
operation can be visualized as depicted in Fig. 6. Essentially,
the error propagation equation is combining uncertainty
data for the environmental intervention matrix B, and the
technology matrix X to calculate the uncertainty of the final
life cycle impact g.

This work expands the approach of Heijungs explained
in Section 2 so that uncertainty propagation can be achieved
for a multiscale life cycle model, such as hybrid LCA. The
life cycle environmental impact g on any matrix-based LCA
procedure is calculated using:

g = BX
−1

F (18)
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Fig. 6 Data uncertainty analysis
of life cycle models using error
propagation method Data uncertainty

in environmental
impact

Data uncertainty
in technology
matrix

Eq.
Analytical error
propagation

Data uncertainty
in LCA result

The double bars over the matrices and vectors are to
emphasize the fact that they can be single scale or multi-
scale/hybrid in nature. Heijungs used Eq. 4 to determine
propagation of uncertainty in single-scale LCA models.
Modifying Eq. 4 for encompassing multiple scales, propa-
gation of the error, expressed as variance in the input data,
to the output LCA result for any multiscale framework is
obtained through:

σ 2(g) =
�

j

(X
−1

f )2j υ +
�

i,j

{(BX
−1

)i(X
−1

f )j }2ψ

+2
�

i,j,l

(X
−1

f )j (BX
−1

)i(X
−1

f )lτ

+2
�

i,j,l,m

(X
−1

f )j (BX
−1

)i(X
−1

f )m(BX
−1

)lγ

+2
�

j,l

(X
−1

f )j (X
−1

f )lω (19)

where,

υ=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ 2
1 (bj ) if j ≤ n1

σ 2
2 (bj ) if j ≤ n1 + n2

...

σ 2
k (bj ) if j ≤ n1 + n2 + n3 + · · · + nk

ψ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ 2
1 (xij ) if j ≤ n1

σ 2
2 (xij ) if j ≤ n1 + n2

...

σ 2
k (xij ) if j ≤ n1 + n2 + n3 + · · · + nk

γ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cov1(xij xlm) if j ≤ n1

cov2(xij xlm) if j ≤ n1 + n2
...

covk(xij xlm) if j ≤ n1 + n2 + n3 + · · · + nk

τ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cov1(xij bl) if j ≤ n1

cov2(xij bl) if j ≤ n1 + n2
...

covk(xij bl) if j ≤ n1 + n2 + n3 + · · · + nk

ω =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cov1(bj bl) if j ≤ n1

cov2(bj bl) if j ≤ n1 + n2
...

covk(bj bl) if j ≤ n1 + n2 + n3 + · · · + nk

(20)

and,

g Total environmental impact from model

X Multiscale/single-scale technology matrix
F Multiscale/single-scale final demand matrix
x Individual values of the X matrix.
Bj Multiscale/single-scale environmental interventions

matrix
b Individual values of the B matrix.
1, 2, 3.........k Represents the different scales that are

included in the hybrid life cycle model
nk Number of activities in the kth scale

Equation 19 computes variance of output result σ 2(g) from
the uncertainty information of the input data of life cycle
matrices. The parameters υ, μ, ω, τ, γ, and ψ are used
to substitute variance and covariance information in the
equation. Thus, using Eq. 19, the uncertainty of the input
data in matrices X and B, considered as variance of the
parameters, is propagated to variance of the final LCA
result g. However, variance of the result alone does not
provide a good estimate of the quality. To incorporate
both the standard deviation and mean of LCA result, the
final parameter used as a measure of uncertainty from the
generated model is the relative standard deviation (Everitt
2006) expressed as:

RSD = σ(g)

g
(21)
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When comparing different models, the one with the lower
RSD is considered to be better in terms of quality as it has
lower uncertainty.

Obtaining uncertainty information Obtaining uncertainty
information for life cycle inventories and economic data
can prove to be difficult. The multi-regional EORA EIO
model (Lenzen et al. 2013) is one source of uncertainty data
for EIO models. The USEEIO model (Yang et al. 2017)
describes a formal method of data quality evaluation for
US economic model interventions. Uncertainty information
for US-based life cycle inventories can be sourced from
EcoInvent. If unavailable, they can be substituted with sim-
ilar information for the European subcontinent (Ecoinvent
Database 2015). If information is not available, the user
can run the algorithm by considering reasonable assump-
tions. It is expected that as activities are shifted from the
aggregated economy scale to a detailed process-based LCA
scale, uncertainty decreases due to the greater resolution
and more details of the models used. Thus, by fixing one
scale as a basis and setting the uncertainty values of other
scales based on that, the user can temporarily bypass the
challenge of missing uncertainty data as explained in the
case study. This approach currently deals with only data
or parameter uncertainty. Among other uncertainties arising
from temporal variations, spatial variations can be incor-
porated as they are just subsets of parameter uncertainty
values. However, different classes of uncertainties in LCA,
such as scenario uncertainty and model uncertainty, have not
been incorporated in this proposed approach. The proposed
approach is also capable of using pedigree matrix uncer-
tainty data to perform the error propagation calculations
and derive an uncertainty indicator based on quality values
from the pedigree matrices. As pedigree matrices (Ciroth
et al. 2016) for LCIs are becoming more widely available,
this approach will thus be useful to determine uncertainty
indicator for the algorithm.

Application to illustrative example For variance calcula-
tion, uncertainty information about the different scales are
required. For the purpose of the case study, at the econ-
omy scale, variance (bj ) and variance (xij ) are assigned
to be 0.1. Variance terms for value-chain scale, variance
(bj ), and variance (xij ) are assigned to be 0.01. The econ-
omy scale is expected to have the highest uncertainty due
to its high aggregation of data as well as extensive range
of sources from which EIO data are collected. The process
LCA scale is not as aggregated as EIO models and hence
is likely to have lower values of variance. Covariance terms
are assumed to be zero.

Model complexity analysis Complexity of a model is defined
as a measure of the size of a model, inter-connectedness

of the modules, or the computational demand of building
and solving a model. Trade-off between complexity and
accuracy is understood by studying a system governed
by a high-order equation but modeled with a lower order
one. The results obtained from the use of the lower order
function are bound to be less accurate. Complexity is
usually inversely related to the uncertainty of the model:
a model with low uncertainty tends to be more complex.
However, it is not always true. The complexity parameter
is represented as Mc, and various approaches may be
used to quantify it. As seen from Fig. 5, complexity
analysis is done simultaneously with uncertainty analysis.
The two parameters, uncertainty and complexity, are used to
determine the usefulness of the model.

Cost-based complexity The monetary costs of inventory
data and of building a model are convenient indicators of
model complexity, since usually a more complex model will
have a higher cost of generation. The cost will depend on
the number of units that are included in the model. For a
multiscale model, different scales will have different costs
of data and modeling. The economy-scale information is
available to be used directly in a matrix format. Its modeling
cost is lowest since such data are usually freely available
from government agencies. The complexity and costs of
process LCA data are higher than economy scale because
it has to be obtained from LCI inventories, requires more
time investment, and sometimes needs to be bought. The
total model price will depend on the relative size of the
scales within the model. Inclusion of sectors at scales that
cost more to build increases the total cost of the model
and vice versa. Thus, cost of modeling at different scales is
proportional to their complexity. The total model generation
cost is calculated as:

Mc =
�

i

nipi (22)

where ni is the number of units at the ith scale and pi is the
cost of modeling one unit at the ith scale. It is evident from
Eq. 22 that as ni with high generation cost increases, total
model generation cost rises. During the model generation
algorithm, model generation cost needs to be limited within
a certain maximum value, indicated by Mc,max to keep the
model complexity under check.

Information for this cost-based complexity may be obtained
in different ways. If quantitative data are not available, the
cost can be set based on the amount of effort that the user
spends in developing the model. The cost of modeling at a
certain scale is taken as the basis and if other scales require
more effort, their cost of modeling is adjusted accordingly.

Granularity-based complexity parameter The granularity-
based model complexity parameter depends on the number
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of information sources that have been aggregated to
determine data at a certain scale. For example, life cycle
process inventories of a product are obtained by aggregating
information from a number of individual activities that
produce the same product. Each of these individual
sources is considered to be a grain of information that is
agglomerated with other grains to get the final data. This
parameter is obtained as:

Mc =
ni�

k=1

z−1
i (23)

where zi represents the number of information sources that
have been aggregated to determine the data at the ith scale.
ni is the number of sectors in ith scale. From Eq. 23, it is
observed that a large increase in the number of units at a
scale with high aggregation causes equivalent increase of
Mc compared with a smaller increase in the number of units
at a scale with low aggregation or granularity. Generally,
as information is aggregated, it is expected that error in the
data increases, thus increasing the uncertainty. Hence, to
reduce data error in the model, it is necessary to include
more units at scales with low aggregation thus increasing
Mc. Complexity and uncertainty analysis shown in Fig. 5
forms the last step of the model builder loop.

Complexity data source For the illustrative example, the
granularity information needs to be assumed. As described
in the mock LCI database building exercise in Section 3
in SI, seven different systems were aggregated to generate
the LCI information. Thus, the granularity of every data
source for this case study is assumed to be 7. For the
economic IO model, each sector has a different granularity
value. It was assumed for purposes of this illustrative IO
model that sector R was aggregated from 10 sources, T

from 15, C from 6, and D from 4 data points. However,
for practical examples, such information may be found
from detailed information about the source of the LCI.
Detailed documentation of most LCI databases contains
this information. Data for granularity of EIO models can
be obtained by exploring the census database that contains
the number of facilities for every economic sector that
participated in providing information for economic surveys.
Using this parameter, a clear trade-off between uncertainty
and complexity can be established for the models being
generated. The maximum value of Mc, Mc,max may be
chosen by the algorithm user, and reflects the budgetary
allowance for building the model.

3.3.2 Life cycle model building algorithm steps

Life cycle model generator builds life cycle model matrices
by reading information from the SPA results and using

information from engineering processes, economic models,
process life cycle inventory databases, etc. Its functioning
is depicted in Fig. 5 as a life cycle model generator.
Mathematical representation of the algorithm is provided in
the SI in Algorithm 1. It operates in the following manner.

• Uncertainty and complexity analysis relies on calcula-
tions of RSD and Mc. Algorithmic iterations can be
expressed as:

RSDm = σ(BX
−1

F)m

BX
−1

Fm

(24)

Mc,m ≤ Mc,max (25)

| RSDm − RSDm−1 |≥ ξ (26)

RSDm − RSDm−1 ≤ 0 (27)

where RSDm is the RSD value of the model in the
current iteration m and RSDm−1 is that of the previous
iteration. The algorithm loop is shown in Fig. 5. The
life cycle generator is programmed in a way such that
it always tries to create models with the least possible
output uncertainty. As seen in Fig. 5, the first step in
this loop is the creation of an output model in the form
of a technology matrix by the generator. Then, using
the uncertainty and complexity data, the RSD and Mc

values are calculated and passed on to the parameter
checker where the constraints are checked. Increase in
model complexity is resisted by the constraint on Mc

which does not allow the model to increase beyond
a pre-decided complexity Mc,max . Another constraint
based on tolerance limits is also employed. For this
constraint, the output RSD of the life cycle model from
the previous iteration of the algorithm loop is compared
with the output RSD of the model of the current
iteration. If this value is lower than a certain tolerance
ξ , then the algorithm loop stops. A third constraint
monitors if the RSD of the current life cycle model
is lower than the RSD of the model from a previous
iteration. The entire algorithm is graphically described
in Fig. 5 using red arrows.

• For hybrid life cycle models, the generator starts with
modeling the simplest scale or the one with lowest
complexity as shown in Fig. 7. The EIO model, being
the simplest to apply, is chosen as the starting point
of the algorithm. The EIO model contains all linkages
shown in SPA results in Table 2. Subsequently, in the
generation algorithm, the activities are shifted from the
economy scale to the process-based LCA scale and
model parameters monitored for improvement.

• When activities are shifted across scales, they need to
be disaggregated from the source scale and added to
the destination scale. It is achieved by first modeling
the activity at the desired scale and then using
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Fig. 7 The initial Model 1
started with only the economy
scale with sectors R, C, T , and
R. To reduce RSD, life cycle
activities were removed from
the economy scale as depicted
by white blank spaces. Main
process C was removed from
economy scale sector C in
Model 2. In Model 3, processes
R and T are removed from their
respective economic sectors and
modeled in the process-based
LCA scale. In the final model,
R, T , C, and D are at the
process-based LCA scale
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R T
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disaggregation equations to subtract it from the source
scale. Equations 7–11 from this paper and equations
26–35 in Hanes and Bakshi (2015) are the relevant
equations for performing such operations.

• For every new model that is built by performing the
listed operations, the goal is to decrease uncertainty or
RSD. The generator uses an assumption that models
using the highest detail or resolution have the lowest
uncertainty. For example, if the same manufacturing
process is represented using a nonlinear engineering
model and a linear life cycle inventory model, mostly,
the engineering model will have a lower error in its
results which translates into lower uncertainty. Thus,
the inherent property of the generator is to always create
models with a lower uncertainty, hence the constraints
of Eqs. 26 and 27. However, this increases model
complexity. Therefore, model development involves a

trade-off between uncertainty and complexity as shown
in Fig. 8. Sector linkages which have high impact
contribution as shown by SPA are chosen to be shifted.
Moving such activities or linkages across scales causes
a larger change in overall model variance compared
with linkage with lower emission contribution. This is
because both σ 2(g) in Eq. 4 and impact contribution in
SPA calculations depend upon b and s.

• The algorithm loops back as shown in Fig. 5 to check if
modifications can be performed to reduce RSD of the
model. During this operation, the generator for hybrid
models removes the activity from the original scale and
remodels it at other scales, if available, to reduce RSD

and while satisfying (26) and (27). If remodeling is
not possible due to violation of constraints, the model
from the previous iteration with acceptable constraints
is chosen as the final one and the algorithm quits.
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Fig. 8 Life cycle environmental intervention results along with standard errors for generated models shown on the left. Pink line shows the true
emission at 627 kg. Progression of RSD and complexity parameter Mc along with model generation iterations shown on the right

3.3.3 Life cycle model generation for an illustrative example

The proposed model generation algorithm starts with
obtaining guidance information from the SPA results
present in Table 2. Detailed information for derivation of
the technology matrices are provided in Section 4 of the SI
for each iteration. Hybrid LCA model generation starts by
first modeling the scale with lowest complexity, or in other
words, the simplest one to model. The EIO model is all
encompassing. It contains all linkages shown in SPA results
in Table 2. At this step, the EIO model is equivalent to the
LCA model. The EIO model for this problem is described
in Section 3.2. Thus, reusing information from that model,
the X matrix is obtained as:

X1 = I − A =

⎡

⎢⎢⎣

1 0 −0.0952 0
−0.3 1 −0.714 0
0 0 1 0

−0.8 0 0 1

⎤

⎥⎥⎦ (28)

The A matrix is obtained from the initial V and U matrices
from Eqs. 5 and 6. As mentioned earlier, the entire analysis
is being done for 49 kg of PC ; a final demand of a similar
amount needs to be attached to this EIO model. The third
column and row of this matrix contain the sector SC . The
final demand vector is given as:

F 1 =

⎡

⎢⎢⎣

0
0
294
0

⎤

⎥⎥⎦ (29)

where the number 294 is the monetary value of 49 kg of
PC (6$/unit). The prices of individual products are provided
in Table 1 in the SI. Derivations of the V and U matrices
as well as the B1 interventions matrices are beyond the
scope of the paper and are not relevant because these are

information or data that are expected to be available to the
user for the particular region or case study. The interventions
vector in units of kilogram of emission per dollar is obtained
as:

B1 = [3, 0.83, 0.76, 0.60] (30)

g for this model during the first iteration is calculated as:

g1 = B1X
−1
1 F 1 = 346.12 (31)

Relative standard deviation (RSD) is calculated using:

RSD = σ(BX−1F)

(BX−1F)
(32)

σ(BX−1f ) is calculated using Eq. 4. A Matlab code is used
for performing this calculation which is provided with the
supplementary files. Thus, RSD for the model in the first
iteration is obtained as:

RSD1 = 391.86

346.12
= 1.13 (33)

The model can be visualized as model 1 in Fig. 7. From the
description and assumptions taken for building EIO model
of the illustrative example, the number of activities that
have been aggregated to create the make and use matrix
information is known. These derivation and data came
from assumptions for building the illustrative EIO model
and are beyond the scope of the paper. The number of
activities assumed to have been aggregated for obtaining the
economic sectors of SR , ST , SC , and SD are 10, 15 and 6
and 12 respectively. Thus, as all the economic sectors are
included in the EIO model used for this step, the model
complexity is calculated as:

Mc,1 = 1/10 + 1/15 + 1/6 + 1/12 = 0.42 (34)

In iteration 2, a new model is generated with lower RSD as
described. From the SPA results in Table 2, it is observed
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that economic sector SCE has the largest contribution to
environmental impact. SCE is the economic sector built
by converting process C to monetary input–output units
using price information. It is the disaggregated SC sector
representing only one process C. Thus, for model 2, PC

needs to be included at the process-based LCA scale using
information directly from the LCI database as shown in
Fig. 7. That is achieved easily by disaggregating the third
row and column in the previous X matrix. The information
for the activity C is obtained from the LCI database,
provided in Table 1. Model 2 now becomes a hybrid
multiscale model. Thus, matrix terms are represented using
both over- and underbars. It contains both the economy and
process LCA scales. The technology matrix is obtained as:

X2 =

⎡

⎢⎢⎢⎢⎣

1 0 −0.0951 0 −17.2
−0.3 1 −0.714 0 −12.9
0 0 1 0 0

−0.8 0 0 1 0
0 0 0 0 30

⎤

⎥⎥⎥⎥⎦
(35)

Detailed disaggregation calculations are shown under
iteration 2 in Section 4 of the SI. The number 30 in the
last cell of the matrix is directly taken from Table 1 for
the flow PC . From the same table, we see that the flows
of PR and PT 1 into C for production of 30 units of PC

are 8.6 and 4.3, respectively. However, these flows need
to be converted from physical to monetary units because
activities R and T are still in the economy scale. Thus,
multiplying with monetary information provided in Table 1
in the SI, the flows change to dollar amounts of 17.2
and 12.9 respectively. The final demand for this hybrid
multiscale model also changes. The main process C is now
in the process-based LCA scale and modeled with physical
units from the LCI database in Table 1. Thus, the final
demand for 49 kg of PC now becomes:

F 2 =

⎡

⎢⎢⎢⎢⎣

0
0
0
0
49

⎤

⎥⎥⎥⎥⎦
(36)

Direct physical values now show up in the final demand
matrix. The environmental interventions matrix also
expands to a multiscale vector.

B2 = 

3 0.8285 0.763 0.6 183.5

�
(37)

The last number 183.4 is again obtained from the LCI
database in Table 1 for the production of 30 units of PC . g

for this model during the second iteration is calculated as:

g2 = B2X
−1
2 F 2 = 421.89 (38)

RSD is calculated using Eq. 32. Thus, RSD for the model
is obtained as:

RSD2 = 140.71

421.89
= 0.33 (39)

The model can be visualized as model 2 in Fig. 7. The
white cutout denotes the disaggregation of C from the
economy scale. Activity C is obtained from the LCI
database. According to the description of building the LCI
database in the SI in Section 3, it has been mentioned
that 7 different systems are aggregated to derive the LCI
information in Table 1. Thus, the complexity of this new
model is calculated as:

Mc,2 = 0.42 + 1/7 = 0.56. (40)

For the next step, as seen from Fig. 5, we go back to the
SPA results in Table 2. We see that SR is the next most
important activity that needs to be modeled at the process-
based LCA scale. Thus, we need to disaggregate this activity
from the economy model sector SR and then include it
again using life cycle inventory data. In the next iteration,
similar operations are required for activity T . For brevity,
we combined these two steps and both activitiesR and T are
simultaneously modeled in the process LCA scale. However
the flow of material from T to R is still kept at the economy
scale. This is because using SPA results, we are modeling
each pathway as a new addition to the LCA model rather
than the complete activity. The flow from T to R is at the
bottom of Table 2, so we are not modeling it at this step. In
this iteration, we obtain:

X3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −0.095 0 0 0 0
−0.30 1 −0.07 0 0 −5.1 0

0 0 1 0 0 0 0
−0.80 0 0 1 0 −13.6 0

0 0 0 0 6 0 −4.3
0 0 0 0 0 8.57 −8.57
0 0 0 0 0 0 30

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)

All the data for the process LCA scale have been obtained
from the LCI database provided in Table 1. The flows of PR

and PT 1 are extracted out from economy scale and included
in the process LCA scale as seen from the numbers 8.57 and
4.3 in the last column. The sixth column which belongs to
the activity R is consuming 13.6 monetary units of PD and
5.1 monetary units of PT 2 from the respective sectors in the
economy scale; 13.6 is obtained by multiplying flow of 3.4
units of PD from Table 1 with the price (4$/unit), and 5.1
is obtained similarly by multiplying 1.7, PT 2 from Table 1
with price information (3$/unit). The interventions and final
demand vectors are also redefined as:

B3 = 

3 0.8285 0.763 0.6 27.84 96 183.48

�
(42)
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The final demand from this model is defined as:

F3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
49

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(43)

In the seventh row, 49 is present because the process
PC is modeled in the seventh row and column of the
technology matrix X3. Total environmental impact g3 for
this is calculated using Eq. 3 as 509.30. The model is
shown as model 3 in Fig. 7. R and T are modeled in the
process LCA scale in this model. Complexity of the model
is calculated using Eq. 23. RSD is calculated using Eq. 32.

RSD3 = 131.49

509.30
= 0.26 (44)

Mc is calculated as:

Mc,3 = 0.56 + 1/7 + 1/7 = 0.84 (45)

With the model complexity value of the LCA model from
the previous LCA step, we add the complexity of the two
new activities being added in this iteration. As explained in
the LCI building exercise in Section 3 in the SI, the LCI
database was created by aggregating 7 different systems.
Thus, for the two new activities, we add two terms to obtain
model complexity of this iteration.

Similarly, the last two pathways of Table 2 are added to
the LCA model. For the fourth pathway, D requires to be
disaggregated from the economy scale and modeled in the
process LCA scale using the LCI information in Table 1.
For the last pathway, the operation will be a little different.
T has already been modeled as a separate activity in the
third iteration. Thus, it is not required to be disaggregated
again. Thus, all that is required is to shift the specific flow
from T to R from the economy scale to within the process
LCA scale. These changes can be clearly seen in the final
multiscale technology matrix obtained as:

X4 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −0.095 0 0 0 0 0
−0.30 1 −0.071 0 0 0 0 0

0 0 1 0 0 0 0 0
−0.80 0 0 1 0 0 0 0

0 0 0 0 3.40 0 −3.40 0
0 0 0 0 0 6 −1.70 −4.30
0 0 0 0 0 0 8.57 −8.57
0 0 0 0 0 0 0 30

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

The first change in this new matrix from the previous model
X3 is the addition of the activity D in the fifth column and
row. The other major change is that the monetary flows of
5.1 and 13.6 from the economic sectors to the activity R

have been replaced with physical flows of 1.7 and 3.4 from
the process LCA activities of T and D. Thus, at this final
step, we have completed modeling all the steps as seen from
the SPA results in Table 2. For this iteration, environmental
impact is obtained as:

g4 = B4X
−1
4 F 4 = 527.04 (47)

RSD is calculated using Eq. 32.

RSD4 = 6.27

527.04
= 0.012 (48)

The model complexity is calculated in the same way as the
previous iterations. One new activity has been added in this
LCA model. Thus, we obtain the final model complexity as:

Mc,4 = 0.84 + 1/7 = 0.98 (49)

This is the best possible model as the upper limit on Mc

does not allow any other shifts. Along with that, all the
pathways as listed in Table 2 have been included at the best
possible data scale. The final model is shown in Fig. 7. The
white cutouts depict the disaggregation of processes from
their respective economic sectors. The following important
observations are obtained from Fig. 8 :

• As we already know the entire system, detailed
information of the activities, and solved the system
for numerous cases using the governing fundamental
equations as described in the SI, the true environmental
impact for 49 kg of PC can be calculated easily. On
calculation, this value is found to be 627 kg. However,
the final model determined by this algorithm provides
an environmental impact of 527 kg. This difference
is due to multiple factors. First, the LCI information
is built by averaging a nonlinear industrial process
as seen from the governing equations 27 to 32 in
the SI. Thus, on averaging, the values obtained for
production of 30 kg of PC and listed in Table 1
are actually incorrect. The solution to the governing
equations in the SI for the system for 30 kg of PC and
its corresponding environmental impact will be very
different from the values listed in Table 1. Secondly,
when the LCI information is used in the LCA model
and scaled to calculate the life cycle emissions for 49
kg of C, the results digress more from the true value.
This is because the scaling occurs linearly whereas the
system description in SI, particularly the environmental
impact equations, are nonlinear. However, this does not
mean that the algorithm fails. In fact, on the left plot
in Fig. 8, we see that the emissions slowly push toward
the “true” environmental impact of 627 kg line with
successive model iterations. The difference exists due
to the erroneous averaged data supplied by the life cycle
inventory.
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• As detailed and better information are added succes-
sively to the models, the RSD decreased progressively
as seen in Fig. 8 due to the use of better quality data and
the final life cycle model is generated. The algorithm
stops when parameter of uncertainty or complexity vio-
lates their constraints or all possible activities have been
included in the life cycle model.

The model design framework described in this work has
been written in Matlab and can be tailored easily to suit
the requirements of the user. Copy of the code, uncertainty
data, and support for using the model can be obtained by
contacting the author or from associated Mendeley dataset
by Ghosh and Bakshi (2020).

4 Conclusions

So far, building life cycle models has mostly been a case-
specific exercise based on ISO 14044 and 14044 guidelines.
The work described here provides a quantitative procedure
for building hybrid life cycle models based on their uncer-
tainty and complexity. Using this model, the LCA prac-
titioner does not have to make decisions for including
activities arbitrarily or based on subjective criteria. In fact,
with this algorithm, the effect of including or excluding
activities can be quantified and compared in terms of the
effect on parametric uncertainty and network complexity.
As observed from the illustrative example, the algorithm
can reduce the subjectiveness involved while building a life
cycle model. Moreover, with this method, the improvement
in uncertainty obtained while shifting activities between
scales can be quantified. This helps build greater confidence
in the results obtained from a life cycle model. While it is
currently challenging to obtain uncertainty data, complex-
ity data, and other required information for applying this
algorithm, it is hoped that this work will encourage further
development of such information.

However, this framework does have some inadequacies
that will be addressed in future work:

• The choice of complexity and cost parameters that
guide the algorithm is still subjective and based on user
preferences. Two identical studies could make different
choices on these criteria and build completely different
LCA models.

• The proposed approach includes only input data or
parameter uncertainty and translates those into errors in
the result. Model error and scenario uncertainties need
to be considered as well.

• Obtaining uncertainty data can be a challenge, espe-
cially for input–output and life cycle models and the
outcome of the algorithm depends on the availability of
such data.

• System boundary determination, specifically the outer
boundary in Fig. 1, is still a matter of great subjectivity
and not addressed by this paper. We hope to employ
model and scenario-based uncertainty parameters for
providing a solution to this problem.

• The presented algorithm initializes with the models
with the lowest complexity and highest uncertainty
and successively replaces the uncertain data with more
detailed data to improve the model. This operation also
increases the model complexity. For hybrid LCA mod-
els, this approach seems to be appropriate as we start
with the all-encompassing crude IO model and devel-
oping a multiscale model by including more accurate
data at finer scales for activities that represent emission
hotspots. Developing a similar approach for process-
based LCA is currently part of on-going research.
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