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ABSTRACT Estimating animal home ranges is a primary purpose of collecting tracking data. Many widely
used home range estimators, including conventional kernel density estimators, assume independently-sampled
data. In stark contrast, modern animal tracking datasets are almost always strongly autocorrelated. The
incongruence between estimator assumptions and empirical reality often leads to systematically under-
estimated home ranges. Autocorrelated kernel density estimation (AKDE) directly models the observed
autocorrelation structure of tracking data during home range estimation, and has been shown to perform
accurately across a broad range of tracking datasets. However, compared to conventional estimators, AKDE
requires additional modeling steps and has heretofore only been accessible via the command-line ctmm
R package. Here, we introduce ctmmweb, which provides a point-and-click graphical interface to ctmm and
streamlines AKDE, its prerequisite autocorrelation modeling steps, and a number of additional movement
analyses. We demonstrate ctmmweb’s capabilities, including AKDE home range estimation and subsequent
home range overlap analysis, on a dataset of four jaguars from the Brazilian Pantanal tracked between 2013
and 2015. We intend ctmmweb to open AKDE and related autocorrelation-explicit analyses to a wider
audience of wildlife and conservation professionals. © 2021 The Authors. Wildlife Society Bulletin published
by Wiley Periodicals LL.C on behalf of The Wildlife Society.
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Home range estimation ranks among the analyses most
routinely applied to animal tracking data. Though many
approaches to quantifying home ranges exist, kernel
density estimators (KDE; Worton 1989) represent the most
widely used class of home range estimation methods due
to their flexibility, ease of use, and statistical efficiency
(Laver and Kelly 2008). Historically, KDE have assumed
independently sampled data (Laver and Kelly 2008), but
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in stark contrast, modern global-positioning system (GPS)
tracking datasets are nearly always autocorrelated (Noonan
et al. 2019; Noonan et al. 2020). Regardless of the means of
locomotion (e.g., walking, hopping, flying, swimming, etc.),
animals trace continuous paths through the environment
(Turchin 1998). An unavoidable consequence of the con-
tinuity of animal movement paths is that finer sampling in
time leads to more strongly autocorrelated tracking data
(Swihart and Slade 1985). Global positioning system sam-
pling rates have increased in lock step with technological
advances, and it is becoming fairly common to speak of
sampling rates in terms of hertz (observations per second,
Kays et al. 2015, Noonan et al. 2015). Looking to the fu-
ture, the strength of autocorrelation in tracking data will
likely continue to increase as improvements in tracking
technology facilitate the ever-finer sampling of animal paths.

There has been a long-running and inconclusive debate about
how problematic autocorrelated data are for home range esti-
mators that assume independently and identically distributed
(IID) data (Swihart and Slade 1985, de Solla et al. 1999,
Blundell et al. 2001, Fieberg 2007). Recent work based on a
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large empirical dataset (369 individuals, 27 species, five con-
tinents) covering the full range of autocorrelation strengths has
provided strong evidence that, when applied to autocorrelated
data, IID home range estimators are negatively biased
(Noonan et al. 2019). Furthermore, the magnitude of the
bias increases in proportion to the strength of autocorrela-
tion in the data (Noonan et al. 2019). Specifically, con-
ventional KDE estimators that rely on the IID assumption
underestimated home range areas by factors ranging from
2 to 13, depending on the bandwidth optimizer, with a
similar degree of underestimation for geometric methods
such as minimum convex polygons and local convex hulls
(Noonan et al. 2019). One viable solution to the auto-
correlation problem in home range estimation is to appro-
priately model the autocorrelation in the data as part of the
home range analysis (Fleming et al. 2015). Doing so
amounts to nothing more than ensuring that the assump-
tions made by the home range estimator are at least broadly
similar to the major features in the data. Autocorrelated
kernel density estimation (AKDE) home range estimation
explicitly accounts for autocorrelation in the data by:
1) selecting the most appropriate autocorrelation model for
the data via information theoretic methods, and 2) opti-
mizing the smoothing bandwidth of the KDE based on the
selected autocorrelation model (Fleming et al. 2015,
Fleming and Calabrese 2017). In contrast to estimators that
make the IID assumption, the large-scale comparative
analysis of Noonan et al. (2019) showed, via block cross-
validation performance (Roberts et al. 2017), that AKDE is
consistently accurate across the full spectrum of sample sizes
and autocorrelation strengths represented in their dataset.

Although the benefit of explicitly modeling autocorrelation
in the data is improved accuracy (Fleming and Calabrese
2017, Winner et al. 2018, Noonan et al. 2019), the cost is
greater analytical complexity and extra modeling steps that
must be taken prior to home range estimation (Fleming
et al. 2015, Calabrese et al. 2016, Fleming and Calabrese
2017, Fleming et al. 2019). Specifically, an appropriate model
for the autocorrelation structure of the data must first be
identified, and then used as a basis for AKDE home range
estimation (Fleming et al. 2015). The R (R Core Team
2020) package ctmm implements these prerequisite modeling
steps, as well as AKDE estimation and a suite of related
analyses (Fleming and Calabrese 2015, Calabrese et al. 2016),
but requires R programming knowledge. To make AKDE
available to a broader audience, we introduce ctmmweb
(Dong et al. 2018), which is an R Shiny-based (Chang
et al. 2019) graphical user interface to the ctmm package, and
includes additional functionality for publication-quality
graphics, interactive maps, and reproducible research. We
demonstrate the capabilities of ctmmweb, and its workflow
for home range and overlap analysis, on an example featuring
jaguars (Panthera onca) in the Brazilian Pantanal during 2013
to 2015 (Morato et al. 2018).

METHODS

Although ctmmweb has a wide range of capabilities and can
perform many types of movement analyses, in the current

paper we detail only the steps necessary to reproduce the
home range and overlap analysis. The app consists of a
series of pages, with each page containing related func-
tionality. For example, the Import page supports several
different means of importing data into ctmmweb. Within
each page, boxes are used to further separate different
functions. Help buttons occur within boxes and provide
guidance on the functionality contained in the focal box.
The pages are indexed in ctmmweb’s sidebar on the left side
(Fig. 1), and a typical analysis proceeds by moving down the
sidebar sequentially from one page to the next. Below, we
discuss each page required to estimate the home ranges and
overlap of four jaguars in the Brazilian Pantanal.

Introduction

The introduction page allows the user to configure certain app
settings (e.g., whether or not to use multiple processor cores
for parallelization), and provides guidance on how to use
ctmmweb. To facilitate reproducible research, the Record
Actions checkbox, which is checked by default, ensures that
the app records all actions, datasets used, analyses, results, and
figures. An archive of the user’s ctmmweb session can be
downloaded at any time (and from any page) by pressing the
Save Progress button on the bottom of the sidebar. In addition
to containing the aforementioned elements, the archive also
provides a combined .html work report that can serve as a
detailed description of the ctmmweb session. The Analysis
Guide provides visual cues for the user to follow to accomplish
an analysis goal or goals. The guide is off by default and
requires the user to select a goal (or set of goals) from the listed
checkboxes. The required steps to achieve a chosen goal, for
example home range overlap analysis, are then shown with
boldface type and a green icon in the sidebar (Fig. 1). The user
then only needs to follow the highlighted steps sequentially
from the top to the bottom of the sidebar to achieve their
selected goal. Finally, a series of vignettes on ctmmweb and the
analyses it supports are provide to give more detailed guidance.

Import

The app assumes that data are in Movebank.org format
(Wikelski and Kays 2014), which is a tabular, .csv plain text
format with one observation per row and columns that
minimally include: individual.local.identifier (or tag.local.
identifier), timestamp, location.long and location.lat. One can
either manually create (e.g., in R or a spreadsheet program) an
appropriately formatted .csv by including and correctly
naming the above-listed elements, or use Movebank. For the
latter option, one can either download a .csv from Movebank
and manually import it into ctmmweb (via Upload Data), or
use ctmmweb’s Import from Movebank dialog to directly
import the data into the app without requiring the data be
stored locally. It is also possible to import a previously saved
ctmmweb session archive via the Restore Progress dialog, so
that the researcher can pick up where they left off, perform
additional analyses and/or modify existing ones, and save the
results in an updated archive. The jaguar data used in our
paper can be imported by selecting jaguar from the list of
built-in datasets and clicking load.
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Figure 1. The user interface of ctmmweb. The analysis workflow proceeds from page to page down the left-hand sidebar, though some pages may be
skipped depending on analysis goals. The Introduction page is currently displayed, showing the Analysis Guide feature, which in this case, highlights the

workflow steps necessary to complete home range overlap analysis.

Visualization

The imported individuals are listed in a table on the
Visualization page, which provides descriptive statistics and
a means for the user to select which individuals to include in
the analyses. The selected individuals are then used
throughout the rest of the app. A number of basic graphics
are available on the Visualization page. For example, a
scatterplot shows the raw (x, y) locations of all selected
individuals together in the same panel, color coded by in-
dividual. In contrast, facet plots show the (x, y) locations of
each individual in its own panel, with the same axis ranges
used across all panels to facilitate comparison. All of the
figures produced in the app will be saved to the session
archive upon clicking Save Progress at the resolution in-
dicated in the Plot DPI box immediately above the save
button.

Model Selection

Variogram analysis, which is available on the Model
Selection page, is the core visual diagnostic used to examine
the autocorrelation structure of a tracking dataset (Fleming
et al. 2014, Calabrese et al. 2016). Variograms depict the
averaged squared displacement between all pairs of points
separated by a given time lag (e.g., 1hour), plotted as a
function of time lag. Variograms allow one to visually as-
sess, among other features, the appropriateness of home
range analysis and the degree to which there is directional
persistence in the movement. In the former case, an
asymptote at larger time lags indicates evidence of range
residency in the data, which implies home range analysis is
appropriate. Conversely, the lack of a clear asymptote
would indicate no evidence for range residency and would

suggest that home range analysis is inappropriate for the
focal dataset. While analyses other than home range esti-
mation are still possible with non-range-resident data,
ctmmweb does not currently support the non-range-
resident movement models required in such cases; the user
would instead have to turn to ctmm. Second, upward cur-
vature on the short-lag end of the variogram is evidence of
correlated velocity in the data, and suggests that a correlated
velocity model would be appropriate (see model selection,
below). Recalling that velocity consists of both movement
speed and direction of travel, correlated velocity implies
directional persistence in the movement. The app features
rich functionality for variograms and by default produces a
multi-panel display featuring a variogram for each in-
dividual in the dataset (Fig. 2). Superimposed on each
variogram is an algorithmically-generated guess at initial
parameter values for fitting a movement model to the data.
If the visual correspondence between the empirical vario-
gram and the guess is poor, the underlying parameter values
can be manually adjusted for each individual via a dialog
box with parameter sliders.

After visual examination of the data, clicking the Modeled
tab on the Model Selection page performs automated model
fitting and selection, based on the initial parameter
value guess identified above. Model fitting is done via
perturbative Hybrid Residual Maximum Likelihood
(pHREML; Fleming et al. 2019) estimation, and model
selection is based on Akaike’s Information Criterion (AIC;
Burnham and Anderson 2002, Fleming et al. 2019). For
data with evidence of range residency, the set of candidate
models includes the IID process, the Ornstein-Uhlenbeck
(OU) process (Uhlenbeck and Ornstein 1930), and the
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Figure 2. Empirical variograms (black curves and gray confidence envelopes) and semi-variance function of the AIC-best model (blue
curves and blue confidence envelopes) for each individual jaguar. The green curves are the semi-variance functions implied by the intial
parameter guesses. By default, ctmmweb shows the first 50% of each variogram, in keeping with standard practice in geostatistics. All four jaguars
show strong evidence of range residency with each variogram having a clear asymptote, and the OUF-Anisotropic model was selected for all

individuals.

OU-Foraging process (OUF; Fleming et al. 2014). The 11D
process, which is the model assumed by conventional range
estimators such as KDE and MCP, has a home range but
both positions and velocities are uncorrelated. The OU
process features a home range, correlated positions, but
uncorrelated velocities (i.e., no directional persistence).
Finally, the OUF process is the most general model, and
includes a home range, correlated positions, and correlated
velocities. Each of these movement processes is considered
in both isotropic and anisotropic form. For isotropic models,
movement is the same in all directions (i.e., circular home
range), while movement may vary by direction for aniso-
tropic models (i.e., non-circular home range). After the fit-
ting and model selection algorithms have run, the selected
model is displayed graphically via the variogram for each
individual, and the details of the fit are output in a table
below the variograms. For each individual, the AIC-best
model is highlighted by default in the results table, and will
be used as the basis for the conditional analyses that follow.
If desired (i.e., for comparative purposes), the user can
choose to base downstream conditional analyses on any other
model in the results table by manually selecting it. As a rule,
however, optimal results will only be obtained by con-
ditioning on the AIC-best model for each individual.
The parameter estimates displayed in the table for each
model may also be of interest. For example, the parameter
T [position] gives the average time it takes the focal individual
to cross the linear extent of its home range. It is important to
realize that because ctmmweb is considering many different
autocorrelation models in the background (instead of

assuming the model a priori as in conventional movement
analyses), the model selection step is computationally in-
tensive and can take substantial time for large datasets.

Home Range
Autocorrelated kernel density estimation home range anal-
ysis can be based on any range-resident movement model
supported by ctmmweb. Importantly, AKDE based on the
IID model reduces exactly to conventional KDE with the
Gaussian reference function bandwidth optimizer (Fleming
et al. 2015). In other words, for a dataset with statistically
independent locations, ctmmweb will select the IID model
as AIC-best, and a conventional KDE estimate will be
produced. If instead the data are autocorrelated, the most
appropriate autocorrelated movement model (either OU or
OUF) will be selected and used as the basis for AKDE.
Assuming a one-size-fits-all model a priori, like conven-
tional home range estimators do via their IID assumption,
can result in home ranges that are underestimated in pro-
portion to the strength of autocorrelation in the data.
Autocorrelation driven underestimation of home range
areas can be avoided by letting the data inform the choice of
an appropriate autocorrelated movement model via model
selection. After all, it is not autocorrelation per se that
causes problems, but rather unmodeled autocorrelation and
the resulting violation of the IID assumption made by
conventional estimators.

After model fitting and selection has finished, selecting
the Home Range page from the navigation panel will au-
tomatically calculate and plot AKDE estimates for each
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individual. The app also provides a table of summary sta-
tistics about the AKDE estimates, including the area cor-
responding to the focal percentile of the range distribution
(95% by default, but user adjustable), as well as confidence
intervals for each estimate.

Overlap

As individuals, by definition, perform most of their move-
ments within their home ranges, one can expect home range
overlap to be proportional to encounter rates among in-
dividuals (Martinez-Garcia et al. 2020). Thus, overlap can
serve as a useful proxy for interaction potential. After home
range estimation, pairwise overlap among individuals can be
estimated via the Overlap page. In ctmmweb, overlap is
quantified by the widely-used Bhattacharyya coeflicient
(Fieberg and Kochanny 2005, Winner et al. 2018), which is
a symmetric index and ranges between 0 (no overlap) and
1 (complete overlap). When overlap analysis is the goal,
AKDE home ranges must be calculated on the same grid,
which is the default choice but may come at the expense of
longer run times.

Map

To help contextualize the results, ctmmweb allows both the
data and home range estimates to be plotted on an inter-
active map provided by the R interface to the Java Leaflet
library (Cheng et al. 2018). The user can select which in-
dividuals, and which elements for each individual (data
and/or home range estimates), to display. Furthermore, the
user can choose among a range of map options including
terrain, satellite, and topographic backgrounds.

STUDY AREA

To demonstrate the utility of ctmmweb, we used GPS data
from four jaguars (one male and three females) tracked in
the Brazilian Pantanal from 2013 to 2015 (Morato
et al. 2018). For convenience we will later refer to these
individuals by the names they have been given in the
dataset. The three females were named Esperanca2,
Teorema, and Troncha, while the male was named Brutus.
With an estimated area of 150,355 km?, the Pantanal was
the world’s largest tropical wetland, and was a biome in
which jaguars were considered to be vulnerable (Morato
et al. 2016). Jaguars are medium-sized (ca. 75 kg), range-
resident carnivores that cross their home ranges on hourly
timescales (IMorato et al. 2016). For these individuals, lo-
cations were collected at hourly intervals for 141 days on
average (range =76-274 days) via Lotek/Iridium GPS
collars, resulting in a mean of 2480 recorded locations per

animal (range = 1323-4860).
RESULTS

Using the jaguar data, we completed all steps of the work-
flow from import through conditional analyses including
AKDE home range estimation and home range overlap via
the Bhattacharyya coefficient. At the end of the analysis
session we saved our results using the Save Progress button
at the bottom of ctmmweb’s side bar (Fig. 1).

All four jaguars show clear range residency, as evidenced by
the pronounced asymptotes in their empirical variograms
(Fig. 2). For all four individuals the OUF-Anisotropic model
was unequivocally selected, with AIC differences in favor of
this model >8 in all cases, and >69 in two out of four cases
(see the model selection results table in the work report,
available online in Supporting Information Report S1).
The model features correlated positions, correlated velocities
(directional persistence), and a home range, and all of these
features were apparent in the empirical variograms of the
jaguars (Fig. 2). The anisotropic moniker on the selected
model name implies that each animal's movement was
spatially asymmetrical, i.e., greater in some directions than in
others.

We next computed AKDE home range estimates for all
four individuals, which ctmmweb displays individually on
the Home Range page (Fig. 3, top row). Notice the grid
superimposed on the background of the density estimates.
The size of the grid depicts the bandwidth size and repre-
sents the spatial resolution of the home range estimate.
Features apparent in the home range (e.g., holes) that are
smaller than the grid should be ignored because they are
below the spatial resolution of the estimate and thus could
be spurious. Said another way, the grid represents the finest
spatial scale that can be accurately resolved by the home
range estimate. The data and home range estimates from all
four animals were also overlaid on a topographical map,
using ctmmweb’s interactive Map page (Fig. 3). Viewing
the home range estimates together suggests significant
pairwise overlap among individuals, particularly for the lone
male jaguar, Brutus, with the three females.

To properly quantify overlap, we calculated the
Bhattacharyya coeflicient via ctmmweb’s Overlap page,
given the AKDE estimates previously calculated (Fig. 4).
All pairwise overlaps were statistically significant, with
lower confidence limits not including zero overlap (Fig. 4).
However, the average overlap of the lone male with
the females (0.52 [0.41, 0.63]; point estimate with 95%
confidence intervals) was significantly greater (P < 0.05)
than average pairwise overlap among females (0.33 [0.25,
0.40]). Additionally, the estimated difference between
M-F and F-F overlap was 0.20 [0.06, 0.33]. Additional
results from the jaguar analysis can be found in the
Supporting Information in the online version of this article.

DISCUSSION

Autocorrelation has become a critical issue in animal
tracking data that can no longer be ignored. Analyses based
on such data will either have to account for autocorrelation
or risk being systematically, and often grossly, biased. For-
tunately, substantial progress in accounting for autocorre-
lation in animal tracking analyses has been made in recent
years. The bulk of these advances, however, have heretofore
only been accessible in command-line analysis packages
such as ctmm (Fleming and Calabrese 2015, Calabrese
et al. 2016), crawl (Johnson et al. 2008), move (Kranstauber
and Smolla 2013), corrMove (Calabrese et al. 2018), and
marcher (Gurarie et al. 2017). Of these, ctmm covers a
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wider range of models and autocorrelation-explicit analyses,
and ctmmweb provides easy point-and-click access to the
vast majority of analyses supported by ctmm, including
AKDE home range estimation. An additional advantage of
ctmmweb, is that all of the statistical estimates it produces
are accompanied by confidence intervals. T'o our knowledge,
no other software packages besides ctmmweb and ctmm
provide confidence intervals on home range and overlap
estimates.

Focusing on data from four jaguars in Brazil, we have
demonstrated how ctmmweb can be used to visualize and
understand key features in tracking data, fit and select ap-
propriate movement models, and perform conditional anal-
yses such as AKDE home range estimation and home range
overlap estimation. Home range estimates were very similar
to those previously reported for these four jaguars by Morato
et al. (2016), with minor differences accounted for by
refinements made to the underlying ctmm package since
that previous study. In contrast, the overlap estimates re-
ported here for the jaguars are novel and demonstrate lower
pairwise overlap of home ranges among neighboring females
than among male-female pairs. These overlap results are

consistent with reports from the literature on both territor-
iality among females, and on male home ranges overlapping
with multiple females (Schaller and Crawshaw 1980,
Rabinowitz and Nottingham 1986). Furthermore, it is also
the spatial arrangement expected under the jaguars’ social
structure (Lukas and Clutton-Brock 2013).

In addition to the capabilities we demonstrated here,
ctmmweb inherits many of the under-the-hood features of
ctmm, including computational algorithms that are highly
efficient and scale well to large datasets. The app also has
considerably more analytical functionality, including: 1) the
ability to accommodate information on telemetry error in all
analysis steps, including model fitting/selection and sub-
sequent conditional analyses; 2) scale-free estimation of
speed and distance traveled using conditional simulation
(Noonan et al. 2019); 3) advanced options for detecting and
accounting for multiple sampling schedules in a tracking
data; 4) visual subsetting of individual datasets; 5) the ability
to detect multiple processor cores and appropriately dis-
tribute analyses over them to reduce run time; 6) the ability
to perform optimally weighted AKDE home range esti-
mation on irregularly sampled data (Fleming et al. 2018);
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and 7) occurrence distribution estimation via time-series
kriging (Fleming et al. 2016).

Ctmmweb is openly available in cloud-hosted form, which
requires no installation or configuration, and is also available
as a locally installable R package via GitHub (https://
github.com/ctmm-initiative/ctmmweb), including a wizard-
style installer for Windows operating systems. Links to all
versions, as well as to other ctmmweb-related resources can
be found in Supporting Information Report S2 in the online
version of this article. For first-time users and quick, ex-
ploratory analyses, we recommended the cloud-hosted ver-
sion, while for more thorough analysis or regular use, we
recommend installing ctmmweb locally. To help improve
the app going forward, bug reports, suggestions for im-
provement, or other feedback can be posted on GitHub.

We will continue to expand and refine ctmmweb’s capa-
bilities as the ctmm package, and the analytical platform it is
based on, continue to develop. Currently, ctmmweb is
the only point-and-click platform that supports AKDE

home range estimation, and it also facilitates many other

autocorrelation-explicit analyses. We intend ctmmweb to
make these sophisticated movement tools accessible to a
broader range of ecologists, wildlife professionals, and
conservation biologists, without requiring advanced knowl-

edge of R programming.
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