
Types and Abstract Interpretation for Authorization
Hook Advice

Christian Skalka
Computer Science

University of Vermont
ceskalka@uvm.edu

David Darais
Computer Science

University of Vermont
david.darais@uvm.edu

Trent Jaeger
Computer Science and Engineering

Penn State University
tjaeger@cse.psu.edu

Frank Capobianco
Computer Science and Engineering

Penn State University
frank@cse.psu.edu

Abstract—Authorization hooks are access control checks that
prevent unauthorized principals from interacting with some
protected resource, and are used extensively in critical software
such as operating systems, middleware, and server programs.
They are often intended to mediate information flow between
subjects (e.g., file owners), but typically in an ad-hoc manner.
In this paper we present a static type and effect system for
detecting whether authorization hooks in programs properly
defend against undesired information flow between subjects. A
significant novelty of our approach is an integrated abstract
interpretation-based tool that guides system clients through the
information flow consequences of access control policy decisions.

I. INTRODUCTION

This paper introduces a language-based approach to address
a practical security problem in the design of software systems.
Designers of software systems often wish to restrict information
flows which occur during execution, e.g., flows between differ-
ent users of the software, or flows between software components
separated by module or function boundaries. Although there
is extensive literature on enforcing these information flow
policies using dynamic information flow monitors, in practice
these flows are often restricted using access control checks,
also called authorization hooks. In these systems, there is
a disconnect between the placement of authorization hooks,
and their enforcement (or non-enforcement) of the intended
information flow policy. Our aim is to develop a tool for
predicting whether an access control policy, instrumented in
source code via authorization hooks, enforces an information
flow policy during execution. Our main technical contribution is
an approach that combines methods in type theory and abstract
interpretation to statically and automatically predict the effects
of authorization hooks on information flow in programs. Our
results include a compositional, higher order type-and-effect
system for approximating authorization hook events which
occur during execution, and the design and implementation of
an abstract interpreter which analyzes trace-effects synthesized
in types to predict violations of a given information flow policy.

Authorization hooks are used in various practical settings
such as X Server and the Linux Kernel, and have been
previously studied from a systems and languages perspective
in the research literature [10, 11, 40]. Authorization hooks

This research was supported by the National Science Foundation (NSF)
under Grant Numbers CNS-1408880 and CNS-1408801.

are access control checks; they ensure that a given subject is
authorized for specified privilege. The precise nature of subjects
and resources can vary between applications—subjects may be
Unix-style “users” controlling an I/O channel, or subjects may
be an IP address at the other end of a socket. A privilege is
typically an operation on a program object, e.g. read or write
access to a specific memory location or object field. In any
case, access rights are defined statically in an access control
policy, and program execution is terminated if an authorization
hook check fails at runtime.

Authorization hooks are typically reflective of an underlying
access control policy. However, the larger aim of hook
placements is typically to enforce an information flow policy,
with protected operations mediating communication between
subjects [17, 26, 38]. That is, resources should be protected by
hooks in such a way that communication between certain sub-
jects is disallowed. But because false positives are considered
intolerable in certain non-critical systems [26] and programmers
are often willing to sacrifice policy precision for simplicity,
information flow policies can be violated in programs. Fur-
thermore, no previous work exists on automated analysis of
information flow policy enforcement via authorization hooks, so
even state-of-the-art automated hook placement methods [26]
are ad hoc with respect to information flow policies. Therefore,
there is a practical opportunity for automated analyses to
identify points in programs where violations can occur to aid
programmers in mediating information flows purely through
hook placement.

A. Motivations
As mentioned, the true point of authorization hooks is to

enforce an information flow policy, even though hooks fail or
succeed based on an access control policy. In fact, as described
in previous work [17], access control policies (not hooks) are
understood to statically induce an information flow policy. For
example, suppose an access control policy allows a subject s1

to read/write from/to a file fil, and allows a subject s2 only
to read from the file fil. This implicitly allows information
to flow from s1 to s2, but not to any other subject, and does
not allow flow from any subject to s1.

Depending on concerns, taint analysis [1] or even stricter
noninterference may be the intended information flow seman-
tics. In any case, it is critical to observe that enforcing any

long sys_fcntl(unsigned int fd, unsigned int cmd,

unsigned long arg) {

struct file * filp;

filp = fget(fd);

err = security ops->file_ops->fcntl(filp, cmd,

arg);

err = do_fcntl(fd, cmd, arg, filp);

...

}

static long do_fcntl(unsigned int fd, unsigned int

cmd, unsigned long arg, struct file * filp) {

...

switch(cmd) {

...

case F_SETLK:

err = fcntl_setlk(fd, ...);

case F_SETOWN:

lock_kernel();

err = security ops->file_ops->setown(filp); ...

filp->f_owner.pid = arg; ...

case F_SETLEASE:

err = fcntl_setlease(fd, filp, arg);

break;

}

...

}

int fcntl_setlease(unsigned int fd, struct file

*filp, long arg) {

... filp->f_owner.pid = current->pid; ...

}

Fig. 1. Linux 2.4.9 Code with Security Vulnerability.

access control or information flow policy with authorization
hooks is not automatic, and must be accomplished by correct
instrumentation of code with authorization hooks. This is
because authorization hooks are manually placed in an ad-hoc
manner, and operations on objects are not necessarily mediated
even if they are specified in an access control policy. For
example, a write to file fil is not automatically checked, rather
a write authorization hook must be explicitly inserted in code
before it. This is basically due to efficiency and programmer
understanding of policies. For example, if n > 1 writes to
fil occur in sequence, it is more efficient to just insert a
single initial fil write privilege check, instead of n checks.
Indeed, significant previous work has focused on minimization
authorization hook placements, and programmers are often
willing to tolerate false negatives in lieu of false positives and
complexity of policies [26]. But this manual instrumentation
method is error-prone.

A common source of error is programmers simply overlook-
ing certain crucial placements. Listing 1 shows a vulnerability
in the original Linux Security Modules implementation [10],
for protecting access to files’ f owner.pid field when it is
updated via the fcntl system call. This field tells the kernel
which process to send signals to regarding I/O on that file,
creating a flow of sensitive information between the subjects
that can access the file and the specified file owner process
via the kernel. There is an authorization hook for the SETOWN

privilege under the F SETOWN case in do fcntl, but not in
the F SETLEASE case, where the f owner.pid field of filp
file is set to the current process id. This allows any process

that has an FCNTL privilege over a file to create an information
flow that should be protected by the stronger SETOWN privilege.
We provide a model of this example in our core language in
Section VI.

B. Technical Challenges and Strategies
More recent work [38] has considered examples such as

web server code, that illustrate several technical challenges our
system needs to address. Consider the following server loop
code represented in a typical functional style1. Here, socket is
a socket used to communicate with arbitrary external clients,
pwds is a filehandle to the passwords file, and fpage is a
filehandle to a public front page. In this code, a function
rpwds is defined, that protects a read of pwds with an
authorization hook checking whether the given credential auth
establishes password file read authorization. The server receives
authorization data cred over the socket, and if the client is
“authorized” will make a call to rpwds to retrieve the password
data, providing the credential ext hi for the encapsulated
hook. This data is then written to the socket. If the client is
not authorized, then harmless data from fpage is written to the
socket.

let socket = ... in // external connection
let pwds = ... in // passwords file
let fpage = ... in // harmless front page
let rpwds = �auth.(hook(auth, pwds.fname, r); pwds.data.read()) in
let loop = �zx.

let cred = socket .data.read() in
let html = if authorized(cred) then rpwds(ext hi) else fpage in
let data = html .data.read() in
socket .data.write(data); z x

in loop()

This example highlights several technical challenges for our
static analysis. The call to the authorization hook occurs before
the write to the socket, so analysis must be flow-sensitive to
detect that the hook can protect against unsafe information
flow. When analyzing the code, programmers may want to
explore possible execution paths depending on the outcome of
the authorization hook, thus path-sensitivity is also a desirable
feature of the analysis. Noting that information flows of interest
occur inside the non-terminating control loop, the analysis
must be able to compute a fixpoint of loop executions. And
while the check of the client-provided cred value and the
subsequent authorization hook presumable defends against
unsafe information flow, the socket must still be approximated
as an external channel in the static analysis and thus can show
up as a false positive.

To address these challenges, in this paper we develop an
analysis that combines a type theory with abstract interpretation.
The type system statically computes a conservative prediction
of program event traces as an effect, where events are either
direct information flows or authorization hook checks. The
abstract interpretation provides interactive tool support with
flow and path sensitivity, allowing programmers to explore
different execution paths based on different authorization
hook outcomes. The abstract interpretation also supports

1This syntax is consistent with the syntax formally defined in Section II.

fixpoint computation for event traces of recursive functions.
And while the abstract interpretation is able to highlight
potentially undesirable information flows, it does not reject
unsafe programs but instead directs programmers to potential
problems.

Both of these motivating examples (the server code above
and the Linux code in Figure 1) will be reconsidered in Section
VI, where we will reformulate them in our language model
and discuss actual analysis results.

C. Paper Overview and Contributions

A body of previous work exists on static enforcement of
information flow, including classic [16] and more recent [21]
flow-sensitive analyses. However, none of these consider the
interaction of information flow and authorization hooks, and as
discussed in Section I-A various technical nuances prevent a
simple retrofit of previous approaches to address the problem.
Our analysis also has other distinct benefits in this application
space, including the ability to identify specific problematic
information flows between subjects, and the ability to identify
conditions of an access control policy that may allow or
disallow insecure information flows between subjects in a
path-sensitive manner. Extended examples that highlight and
illustrate these points are discussed in Sections I-A and VI.
We also discuss related work in Section VIII.

In this paper we establish foundations for our analysis in a
core language model that captures essential problem features.
These foundations include a new higher-order language model
(Section II) that incorporates a notion of communication
channels between subjects as an abstraction of, e.g., socket or
file interactions. The language model also includes a formal
notion of access control policy and authorization hooks. We
define a static type analysis (Section III) that generates a
trace effect (Section III-A) approximating the effect of channel
communications and authorization hook checks- crucially, the
interpretation of trace effects is flow sensitive, so in particular
we can predict whether suspect communication events occur
before or after authorization checks. We formulate a logical
interpretation of trace effects that simulates program execution,
and allows the statement and proof of formal properties
(Section IV). We implement this interpretation as an abstract
interpretation (Section V).

Aside from the technical novelty of the synergy of type
theory and abstract interpretation, this approach has the
benefit of being (1) modular, (2) flexible in terms of the
expressiveness and precision of the abstract interpretation
including path-sensitive analysis of hook placement, and (4) an
immediately realizable implementation of a tool for auditing
hook placements by allowing programmers to explore the
consequences of hook placement/removal. This tool is provided
in an accompanying public GitHub repository 2 available as
open source.

Formal highlights include Theorem 4.5 in Section IV which
establishes that our (non-algorithmic) concrete interpretation

2https://github.com/uvm-plaid/hook-ai

n 2 Z, b 2 {true, false}, c 2 C, p 2 L
v ::= x | �zx.e | b | n · p | c | hsi | {f = v; . . . ; f = v} | ()
� ::= + | · · ·
e ::= v | e e | if e then e else e | letx = v in e | {f = e; . . . ; f = e}

e.f | n | e� e | e.read() | e.write(e) | e#p| hook(e, e, e)
E ::= [] | v E | E e | letx = E in e | E.f |

ifE then e else e | E � e | v � E | E #p|
hook(E, e, e) | hook(v,E, e) | hook(v, v, E) |
{f = E; . . . ; f = e} | · · · | {f = v; . . . ; f = E}

Fig. 2. ⇤hook source and runtime language syntax

of trace effects derived by typing soundly predicts information
flow violations. In Theorem 5.2 in Section V we establish that
our algorithmic abstract interpretation correctly approximates
the concrete one. The consequence of combining these results
is Theorem 5.4 which shows our abstract interpretation of
trace effects derived by typing soundly predicts all possible
violations of information flow.

In addition to soundness, we account for the algorithmic
complexity of our abstract interpretation algorithm, which is
polynomial in the size of the program and subjects additively
for the basic analysis, and exponential in the nesting depth of
access control checks (a low constant in practice) for a more
precise path sensitive instantiation of our analysis.

II. CORE LANGUAGE MODEL

In this Section we define a core language model called
⇤hook intended to capture critical elements of our intended
application space. A main problem we are concerned with is
detecting flows of information between subjects that violate
information flow policy, due to weaknesses in access control
policy. By subjects we mean external program actors such as
Linux users, who are able to communicate via I/O channels
such as I/O streams, sockets, etc. Subjects can potentially
communicate in programs via normal program data flow, but
this communication can be interrupted by failing authorization
hooks that block computation.

For the purposes of our metatheory, we define our core
language model, called ⇤hook , to include a dynamic direct
information flow analysis, aka a dynamic taint analysis. This
allows us to demonstrate a type safety result showing that our
static analysis safely predicts information flow violations at
runtime (Theorem 4.5). However, it is important to note that
because our analysis is static, the intended object language
need not include a taint analysis.

A. Access Control Policy

To model authorization hooks, access control policies must
also be included in our model. We follow the style of previous
formalizations [11], where access control policies define how
subjects can access objects—in particular, access control
policies are sets of 3-tuples (s,o, c) specifying which subjects
s can access which objects o via which operation c, and hooks
check a given access request for membership in the access

control policy. For example, if root should be granted read

access to the passwds file, then (root, passwds, read) 2 A.
In practice, subjects are often represented by UIDs, objects are
represented by fixed identifiers, and operations are represented
as e.g. enumerated types. Hooks themselves have a dynamic
flavor—for example in the fcntl authorization check in
sys fcntl in Listing 1, parameters filp, cmd, and arg refine
the fcntl privilege, and the owner of the current process is
the implicit subject parameter of the check.

B. Information Flow Policy
The language model must also include an information flow

policy. Subjects are assumed to be allowed a certain level of
knowledge, in the style of recent approaches to characterizing
information flow semantics [28]. We posit a security lattice L
with points aka levels p, an ordering 4, and meet ^ and join
_ operations. The lattice can be interpreted as a confidentiality
lattice or dually as an integrity lattice in the usual manner,
though in this presentation we generally assume that the
concern is confidentiality.

Subjects s are associated with levels in L depending on
what they “know”—to capture this formally we let K, called
subject knowledge, range over mappings from subjects to L. An
assumed subject information flow policy Kpol posits “intended”
security levels for subjects—that is, the level of information
that is allowable to communicate to each subject.

As discussed informally in Section I-A, in practice this
is typically induced by the access control policy. Formally,
following previous work [17], we could formalize this as
follows. Under the assumption that operations include just
read r and write w, and introducing a mapping g from objects
to L just for the purposes of the definition, we can define Kpol

and g to be the least mappings satisfying the following rules:

(s,o,w) 2 A
Kpol(s) 4 g(o)

(s,o, r) 2 A
g(o) 4 Kpol(s)

However, for generality we will not assume that Kpol must be
derived from A in this way, nor that mediated operations only
include read and write.

Depending on information flows during computation, a
subject’s knowledge may evolve beyond Kpol . Thus, we need to
consider a semantics of “knowledge evolution” during runtime,
similar to e.g. attacker knowledge [1, 28]. To formally represent
extensions of knowledge, we write K[s 7! p] to denote the
mapping that agrees with K on all points except it maps s to
p. Intuitively, a program has an information flow violation iff a
subject s1 communicates information to another subject s2 at
a lower security level. More specifically, an information flow
between s1 and s2 is disallowed by the policy Kpol when
Kpol(s1) 64 Kpol(s2). As the program executes, information
flows occur between subjects, and we write K as the final (or
intermediate) mapping from subjects to the information level
which flows to them (i.e., the highest level of any information
they have “learned”). An information flow violation is detected
for some K when K(s) 64 Kpol(s) for some s i.e., a subject
learned more information than the policy allows.

K, (�zx.e)v ! K, e[v/x][�zx.e/z] (�)

K, n ! K, n ·? (ConstTaint)
K, (n1 · p1) + (n2 · p2) ! K, (n1 + n2) · p1 _ p2 (PlusProp)
K, if true then e1 else e2 ! K, e1 (IfT)
K, if false then e1 else e2 ! K, e2 (IfF)

K, letx = v in e ! K, e[v/x] (Let)
K, {. . . , f = v, . . .}.f ! K, v (Select)

K, hsi.read() ! K, n · K(s) (ReadChan)
K, hsi.write(n · p) ! K[s 7! (K(s) _ p)], () (WriteChan)

K, n · p#p0 ! K, n · p ^ p
0 (Downgrade)

K, hook(cs, co, cc) ! K, () if (cs, co, cc) 2 A (Hook)
K, E[e] ! K0

, E[e0] if K, e ! K0
, e

0 (Context)

Fig. 3. ⇤hook operational semantics

C. Source Language Syntax

The language ⇤hook , defined syntactically in Figure 2, in-
cludes a normal �-calculus with first class functions �zx.e with
“self” variable z for recursion, and let-expressions to support
Hindley-Milner polymorphism with the value restriction. We
additionally define �x.e as syntactic sugar for �zx.e with
z not free in e, sequencing e1; e2 as syntactic sugar for
(�x.e2)e1 with x not free in e2, and let-expressions of the
form letx = e1 in e2 (where e1 is not a value) as syntactic
sugar for (�x.e2)e1 when e1 is not a value.

The language also includes an abstract notion of channels,
that may be read as e.read, and written to as e1.write(e2)
where e1 is the channel being written to and e2 is the
information being written. For simplicity in this presentation
we assume that only integral values are read from and written to
channels but this could be generalized. Channels are identified
by subjects s that are determined statically, though channels
are first class values. We imagine that channels are associated
e.g. with files or sockets, and subjects identify their owners.
Also included is declassification e#p, that allows downgrading
of the security level of information in the valuation of e.
We note that this is purely an operational effect—typically
declassification would be invoked upon termination of a robust
and trusted sanitizer.

To model authorization hooks, the syntax of ⇤hook includes
first-class constant values c that are provided as arguments
to authorization hooks during computation. Authorization
hooks themselves are represented by the expression form
hook(e, e, e).

D. Operational Semantics

We define a dynamic taint analysis ⇤hook in a standard
manner [29]. For clarity in this presentation we only track taint
on numeric values, and therefore include tainted numbers n · p
that are labeled with their security level p in the language
of values. Computational continuations are represented as
evaluation contexts E defined also in Figure 2.

An operational semantics for ⇤hook is defined in Figure
3. The semantics are defined in a small-step style, with
! a reduction relation on configurations K, e where K

represents the current state of subject knowledge. Some of the
reduction rules are standard, but several bear discussion. In rule
CONSTTAINT, we specify to assign ? to lexical constants in
programs—this could be generalized, so that different constants
get different security levels, but in this presentation we aim
to focus on the effects of channel interactions. In the rule
PLUSPROP, we specify taint propagation in the usual manner,
by joining the security levels of the operands to the security
level of the result. In rule READCHAN, the result of reading
from a channel is an arbitrary integer n that is tainted with
the security level associated with the subject s’s current state
of knowledge K(s). In rule WRITECHAN, writing a value
n at security level p has the effect of extending s’s current
knowledge, as K[s 7! K(s) _ p]. Note that if p 64 Kpol(s),
this has the effect of raising s’s level of knowledge beyond
acceptable bounds. This is the main safety property we are
concerned with, defined formally as follows:

Definition 2.1: A program e has an information flow violation
iff Kpol , e !⇤ K, e0 where there exists s such that K(s) 64
Kpol(s).
However, observe that interceding hooks can prevent unsafe
information flows from occurring—for any program execution,
we assume that A is defined, and any authorization hook
check hook(cs, co, cc) will block unless (cs, co, cc) 2 A, as
specified by the operational semantics rule Hook defined in
Figure 3.

E. An Example

Here is an example illustrating how authorization hooks
prevent information flow violations, and how ⇤hook can model
the application setting. The following code snippet creates a
socket object and a filehandle fh object. The former includes
a public communication channel and includes a port field.
The latter includes the filename passwds and the owner root
of the file. We will assume that (http, passwds, read) 62 A,
i.e. the password file should not be readable by a public http

channel. Also we assume that Kpol(public) = ?, i.e. the
public principal is allowed to only have the lowest level of
knowledge, whereas Kpol(root) = >.

let socket = {data = hpublici; port = http} in
let fh = {data = hrooti; fname = passwds} in
let data = fh.data.read() in socket .data.write(data)

This code has an information flow violation since, letting e be
the above snippet, computation will lead to the point where a
value n read from the passwds file, which is a channel to/from
root and hence tainted with Kpol(root) = >, and provided
as a value to the public socket write:

Kpol , e !⇤ Kpol , {data = hpublici; port = http}.data.write(n · Kpol (root))

And thus the full terminating computation of this example is
Kpol , e !⇤ K, () where K(public) = >, which violates the
information flow policy. However, by inserting the appropriate
authorization hook before the file read of data that would be

↵ 2 VPC, � 2 VSubj, t 2 VType, h 2 VEff type variables
� 2 VPC [VSubj [VType [VEff scheme variables
& ::= s | � subjects in types
 ::= � | c̄ constants in types
ev ::= ` & | & ↵ | check(,,) events in types
` ::= ↵ | p | ` t ` | `up program labels
H ::= ✏ | h | ev | H;H | H|H | µh.H trace effects
⌧ ::= t |  | {f : �; . . . ; f : �} | int | bool | unit | � ! �, H types
� ::= ⌧

` labeled types
� ::= 8�̄.⌧ type schemes
� ::= ? | �;x : � type environments

Fig. 4. ⇤hook type syntax

destined for writing to the public channel, we can block
offending computation:

let socket = {data = hpublici; port = http} in
let fh = {data = hrooti; fname = passwds} in
(hook(socket .port , fh.fname, read);
let data = fh.data.read() in socket .data.write(data))

Note that in this case, letting e0 be the above snippet, the full
terminating computation of e0 is:

Kpol , e
0 !⇤ Kpol , E[hook(http, passwds, read)]]

where E is the continuation of computation containing the
socket write. Computation terminates here because the au-
thorization hook check fails, so subject knowledge does not
change during execution of this instrumented expression, and
the information flow policy is not violated.

III. TYPING

The type theory we present here is based on the type system
in [32], where a sound and complete inference algorithm is
presented. Since core elements of inference have already been
studied, in the current presentation we focus on a logical typing
specification for simplicity.

In the ⇤hook type system, types reflect security levels in
programs and type judgements reflect the consequences of
channel interactions. We define a type system with information
flow features reminiscent of standard systems, where types
⌧ are endowed with labels ` that reflect the security level at
various program points, and may be either lattice elements p or
abstract ↵. In addition, our type system generates a trace effect
H as an artifact of any typing, that predicts channel interaction
events in a temporal manner. As we show in Section IV, this
prediction of events can be used to predict possible evolution
of knowledge during program execution. The metatheory for
our type theory combined with this interpretation is presented
in Section IV-B.

For example, returning to the code introduced in II-E, our
static analysis generates the following trace of events for the
first code snippet: root ↵;↵ public. This sequence
says that knowledge from root flows into the program point ↵
(associated with the variable data), and then knowledge from

point ↵ flows to public. The analysis generates the following
trace of events for the second, instrumented code sequence:
root ↵; check(http, passwds, read);↵ public. In
our interpretation of events (Section IV), the hook event will
block subsequent events (simulating the operational semantics).
Thus, in the first case our system will predict an information
flow violation, whereas the second case is correctly verified as
safe.

A. Trace Effects

Our approach to static analysis of information flow in pro-
grams is to treat communication with subjects and authorization
hooks as events, to approximate the sequence of events that
a program can produce via a labeled transition system (LTS),
called trace effects, and subsequently define an interpretation
of these events that simulates their effects at run-time. We will
use a type system to reconstruct trace effects, which constitute
the approximation.

In essence, trace effects H conservatively approximate traces
✓ that may develop during execution, by representing a set of
traces containing at least ✓. Trace effects are generated by the
grammar defined in Figure 4. A trace effect may be the empty
effect ✏, an effect variable h, an event ev (the definition of which
we specialize for ⇤hook as discussed below), a sequencing
of trace effects H1;H2, a nondeterministic choice of trace
effects H1|H2, or a recursively bound trace effect µh.H that
finitely represents the set of possibly infinite traces that may
be generated by recursive functions. Noting that the syntax of
traces ✓ is the same as sequenced, variable-free trace effects,
we abuse syntax and let ✓ also range over sequenced, variable-
free trace effects, interpreting traces ✓ as the identical trace
effect.

Trace effects denote sets of traces. More precisely, we define
an LTS interpretation of trace effects as sets of strings over
the alphabet of events plus a # symbol to denote termination;
abusing terminology, we also call these strings traces. Traces
may be infinite, because programs may not terminate.

Definition 3.1: We write # to denote possibly # terminated
strings over the alphabet of events:

✓ ::= ev | ✏ | ✓ ✓ # ::= ✓ | ✓#

We endow strings with an equational theory to interpret ✏ as
the empty string and string concatenation as usual:

✓ ✏ = ✓ ✏ ✓ = ✓ (✓1✓2)✓3 = ✓1(✓2✓3)

The symbol ⇥ is defined to range over prefix-closed sets of
traces.
Trace effects generate traces by viewing effects as programs
in a simple nondeterministic transition system.

Definition 3.2: The trace effect transition relation on closed
traces effects is defined as follows:

ev
ev�! ✏ H1|H2

✏�! H1 H1|H2
✏�! H2

µh.H
✏�! H[µh.H/h] ✏;H

✏�! H

H1;H2
✓�! H 0

1;H2 if H1
✓�! H 0

1

We formally determine the sets of traces ⇥ associated with a
closed trace effect in terms of the transition relation:

Definition 3.3: The interpretation of trace effects is defined
as follows:

JHK = {✓1 · · · ✓n | H ✓1��! · · · ✓n��! H
0}[{✓1 · · · ✓n # | H ✓1��! · · · ✓n��! ✏}

Any trace effect interpretation is clearly prefix-closed. In this
interpretation, an infinite trace is viewed as the set of its finite
prefixes.
Note that prefix closure does not cause any loss of information,
since the postpending of # to terminating traces allows them to
be distinguished from their prefixes. In particular, this means
that (H1;H2) 6= H1 for arbitrary closed H1 and H2 6= ✏.

Equivalence of trace effects is defined via their interpretation,
i.e. H1 = H2 iff JH1K = JH2K. This relation is in fact
undecidable: traces are equivalent to Basic Process Algebras
(BPAs), as demonstrated in [32], and equivalence of BPAs is
known to be undecidable [3]. However it has been shown in
previous work [32] that a decidable fragment is sufficient for
type reconstruction of core elements of the system we present
here. In the remainder of the paper we write H v H 0 iff
JHK ✓ JH 0K, and consider trace effects as equivalent up to
equivalence of their interpretations.

B. Type Syntax

For simplicity we assign the label ? to all program constants
in the type system, so that data communicated over channels
is the only way to affect security levels of program values.
Labels can also be joins (represented syntactically) of security
levels `1 t `2 e.g. to support propagation of information from
both operands in operations such as +, as well as the meet
of a label ` and a concrete security level p at declassification
(represented syntactically). In order to generalize over the
security level of values that can be passed to channels, and to
establish placeholders for program points where information
from subject can flow into programs, we also allow labels to
be variables ↵. We let � range over labeled types.

Types include function types of the form (�1 ! �2, H) that
include a trace effect H that approximates the events that can
occur upon invocation. Events include the forms ` s and
s `, which in the former case indicate a communication of
information at level ` to the subject s, and in the latter case
indicate a communication of information from subject s to
the program point `. Record types are lists of labeled types
indexed by fields. The types of channels are record types with
read and write fields– the type of field read reflects flow of
information to the relevant subject, and that of write reflects
flow to the program from the subject. In types, the subject s
can be a variable �, allowing generalization and instantiation.
Accordingly,a basic channel type abbreviation can be defined
as follows:

chan[&, `1, `2, `3] , {read : (unit? ! int
`1 , & `1)?,

write : (int`2 ! unit?, `2 &)?}`3

Note also in these types that `1, `2, and `3 can be generalized
as variables ↵ allowing channel reads/writes of the same first-

VAR
�(x) = �

� ` x : � · ✏

UNIT

� ` () : unit? · ✏
BOOL
� ` b : bool? · ✏

INT

� ` n : int? · ✏
TAINTINT

� ` n · p : intp · ✏

CHAN

� ` hsi : chan[s,↵1,↵2,?] · ✏

IF
� ` e1 : bool`1 ·H1 � ` e2 : ⌧ `2 ·H2 � ` e3 : ⌧ `2 ·H3

� ` if e1 then e2 else e3 : ⌧ `2 ·H1; (H2|H3)
FIELD
� ` e : {f̄ : ⌧̄ `}` ·H fi 2 f̄

� ` e.fi : ⌧
`i
i ·H

PROP
� ` e1 : int` ·H1 � ` e2 : int` ·H2

� ` e1 + e2 : int` ·H1;H2

FIX
�;x : �1; z : (�1 ! �2, h)

? ` e : �2 ·H
� ` �zx.e : (�1 ! �2, µh.H)? · ✏

APP
� ` e1 : (� ! ⌧ `1 , H)`0 ·H1 � ` e2 : � ·H2

� ` e1e2 : ⌧ `1 ·H1;H2;H

DECLASSIFY
� ` e : ⌧ ` ·H

� ` e#p: ⌧ `up ·H

CONST

� ` c : c? · ✏

HOOK

� ` e1 : `1
1 ·H1 � ` e2 : `2

2 ·H2 � ` e3 : `3
3 ·H3

� ` hook(e1, e2, e3) : unit? ·H1;H2;H3; check(1,2,3)
RECORD

� ` e1 : �1 ·H1 · · · � ` en : �n ·Hn

� ` {f1 = e1; . . . ; fn = en} : {f1 : �1; . . . ; fn : �n}? ·H1; . . . ;Hn

LET
� ` v : � · ✏ �;x : � ` e : � ·H

� ` letx = v in e : � ·H
SUB
� ` e : �0 ·H �0  �1

� ` e : �1 ·H

8-INTRO
�, C `? v : � · ✏ �̄#fv(�)

�, C `? v : 8�̄.� · ✏

8-ELIM
�, C `? v : 8�̄.� · ✏
�, C `? v : �[�̄/�̄] · ✏

�  �
�0  �1 �1  �2

�0  �2
⌧ `1  ⌧ `1t`2 c̄`  c̄c` ⌧ `2  ⌧ `1t`2

�̄1  �̄2

{f̄ : �̄1}`  {f̄ : �̄2}`

�0
0  �0 �1  �0

1 H v H 0

(�0 ! �1, H)`  (�0
0 ! �0

1, H
0)`

Fig. 5. Type Derivation (top) and Subtyping (bottom) Rules

class channel value to be “spliced in” to various program points
via type instantiation.

C. Constants and Authorization Hook Types

To accurately type constants c, we define constants in
types  which are either abstract � or lists of constants– this
accommodates either parametric or subtyping polymorphism.
For example, we can assign the type c1 to the value c1, and
the type c2 to the value c2, and the type c1c2 to either of these
values and hence expressions of the form if e then c1 else c2.
Based on this constant type form, we include an event form
check(,,) to record authorization hooks in trace effects.

D. Type Judgements

Type judgements are of the form � ` e : � ·H , where � is
a type environment mapping free expression variables in e to
types, � is a type scheme, and H is the top-level trace effect
approximation the events that can occur during computation
of e. We include monomorphic � in type judgements when �
is a monomorphic (non-generalized) type scheme. The type
derivation rules are given in Figure 5.

A main point to note is that rule APP for function application
will shift the trace effect annotation on the applied function

to the top-level trace effect. For ⇤hook -specific constructs, we
observe that due to the definition of channel types chan[·] noted
above, the effects of read-ing and write-ing will be reflected
via the normal typing machinery given the FIELD rule which
is defined generally for record types with field names f , so
these operations do not need their own rules. The TAINTINT
rule allows us to reflect the security levels of tainted values in
integers, and the DECLASSIFY rule where we record the meet
of the declassified expression and the given concrete security
level p in the result type label.

a) Parametric and Subtyping Polymorphism: To support
parametric let-polymorphism, we include 8-INTRO and 8-ELIM
rules, and allow generalization over any sort of variables–
including type variables t, label variables ↵, subject variables
�, and trace effect variables h. In type instantiation we require
consistent substitution of type forms for variable sorts.

We also support subtyping via a subsumption rule and a
subtyping relation  defined in Figure 5. Subtyping allows
weakening of trace effects on function types, depth subtyping of
records, subtyping of constants, and allows us to weaken labels
on types by joining with other labels. This latter ability of
subtyping allows us to merge the labels of conditional branches,

for example we could have:

? ` (if true then 0 · p1 else 1 · p2) : intp1tp2 · ✏

The rules for record and constant subtyping, as well as 8-INTRO
and 8-ELIM and other notation later in this paper, uses vector
notation defined as follows.

Definition 3.4: Vectors, denoted x̄, range over sequences
of distinct elements x1 · · ·xn, with the empty vector denoted
? and singleton vector denoted x. (In this definition we use
x to denote arbitrary elements, not just expression variables.)
Vectors are equivalent up to reordering and we assume their
elements are unique, hence, we may treat vectors x1 · · ·xn as
analogous to sets {x1, . . . , xn}, in particular adapting notation
x 2 x̄, x̄1[x̄2, x̄1\ x̄2, and x̄1⇥ x̄2 with the obvious meaning.
We write x̄1#x̄2 iff x̄1 \ x̄2 = ?. We write x̄1x̄2 to denote
the vector x̄1 [x̄2 where x̄1#x̄2.

E. An Example

As a more complex example illustrating many of our type
system features, consider the term �x.�c.(c.write(x)), which
has type:

8↵1,↵2,↵3, �, h.
(int↵2 ! (chan[↵1,↵2,↵3, �] ! unit?,↵2 �)?, ✏)?

and thus the following typing can be assigned to a program
that results in writing a value n tainted at level p to a channel
that communicates with subject s:

? ` (�x.�c.(c.write(x))) (n · p) hsi : unit? · p s

Note in particular that the top-level trace effect p s in this
case represents the flow of information that will occur upon
execution to the concrete subject s (not an abstract �). In
general, because top-level types are closed, these events will
always be concrete in traces.

IV. INTERPRETATION OF TRACES AND METATHEORY

In this section we define an interpretation of the traces that
approximate possible program executions. This interpretation is
logical, not algorithmic, since trace effects as defined in Section
III-A may be nonterminating and generate an infinite number
of possible traces. However this interpretation is adequate
to formulate the main formal properties of our analysis, in
particular Theorem 4.5. In Section V, we will show how this
interpretation can be implemented via abstract interpretation.

Consider the following program, assuming a simple security
lattice with just top and bottom elements hi and lo, and
Kpol(s1) = lo, Kpol(s2) = lo, and Kpol(s3) = hi:

let c1 = hs1i in
let c2 = hs2i in
let c3 = hs3i in
c1.write(c2.read()); c2.write(c3.read())

The level of knowledge K after execution of the above program
has K(s2) = hi but K(s1) = lo, since communication from
s2 to s1 happens before communication from s3 to s2. The

temporality of these events is reflected in the following top-level
trace effect of the above program:

s2 ↵1;↵1 s1;s3 ↵2;↵2 s2

For precision we need to define an interpretation of these
events that preserves temporality. If the analysis is not flow-
sensitive, then it would predict K(s1) = hi for the above
program, which introduces false positives. Not only that, but
it would not be possible to detect when an authorization hook
placement prevents unsafe information flows by blocking them,
which is the main goal of our analysis. Our approach will
essentially be to treat event traces as simulations of run-time
events, that accrue changes to knowledge in an ordered manner
via a transition relation.

A. Traces as Knowledge Transition Machines

To interpret traces generated by trace effects, we give a
more refined definition of events and traces, where the latter
are really just lists of events and events have concrete subjects
in them– this is guaranteed by the type system:

ev ::= ` s | s ↵ | check(c1, c2, c3) ✓ ::= ✏ | ev ✓

We introduce the following shorthand for instances in which
the types of constants are approximated as vectors of singleton
types with the following abbreviation:

check(c̄1, c̄2, c̄3) , check(x1) | · · · | check(xn)

where x1, · · ·xn = c̄1 ⇥ c̄2 ⇥ c̄3.
We view traces themselves as a state transition machine,

where events simulate the effect of events upon subject
knowledge at run time, as well as the blocking effect of failing
authorization hooks. To keep track of the level of label variables
↵, we extend K to be a mapping from label variables ↵ to
lattice elements p, and write K(p) to mean p and K(`1 t `2)
and K(`up) to mean inductively K(`1)_K(`2) and K(`)^ p.
The state transition relation ! is defined as the least binary
relation on pairs (K, ✓) satisfying the following rules:

K, (p s)✓ ! K[s 7! K(s) _K(p)], ✓
K, (s ↵)✓ ! K[↵ 7! K(s) _K(↵)], ✓

K, ((check(cs, co, cc))✓) ! (K, ✓) if (cs, co, cc) 2 A
K, ((check(cs, co, cc))✓) ! (K, ✏) if (cs, co, cc) 62 A

Notation !⇤ is the Kleene closure of !. Now we can specify
what we mean when we say that a trace effect predicts
knowledge:

Definition 4.1: We write K1, ✓ ` K2 iff K1, ✓ !⇤ K2, ✏. We
write K1, H ` K2 iff there exists ✓ 2 JHK with K1, ✓ ` K2

B. Properties of the Analysis

The following theorems formally characterize the most
important properties of our system. We take a standard strategy
of proving a subject reduction result. The following definition
captures the preserved invariant in subject reduction, which
intuitively says that as a term reduces, its type stays the same,
and its trace effect and label can only become more refined in

FJ K 2 e↵ ! (Ve↵ * }(trace)) ! }(trace)

FJ✏K(⇢) , {✏} FJevK(⇢) , {ev} FJhK(⇢) , ⇢(h)

FJH1 | H2K(⇢) , FJH1K(⇢) [FJH2K(⇢)
FJH1 ; H2K(⇢) , FJH1K(⇢) [{✓1✓2 | ✓1# 2 FJH1K(⇢),

✓2 2 FJH2K(⇢)}
FJµh.HK(⇢) , µX. FJHK(⇢[h 7! X])

Fig. 6. Compositional Concrete Semantics of Trace Effects

their approximation of future events and the security level of
the term.

Definition 4.2: We write K2 4 K1 iff for all ` 2 dom(K2),
K2(`) 4 K1(`). We write K2, H2, `2  K1, H1, `1 iff for all
✓2 2 JH2K there exists ✓1 2 JH1K such that:

8K.K2, ✓2 ` K)
9K0.(K1, ✓1 ` K0) ^K 4 K0 ^K(`2) 4 K0(`1)

Due to similarities in the type system, we are able to leverage
several key results in [32] to prove subject reduction. These
include normalization of type derivations which is necessary
in light of the non-syntax directed typing rules, and treatment
of CONTEXT reduction.

Theorem 4.3 (Subject Reduction): If ? ` e : ⌧ ` · H and
K, e ! K0, e0 then ? ` e0 : ⌧ `

0 ·H 0 for some H 0 and `0 where
K0, H 0, `0  K, H, `.
Proof. By induction on the normalized derivation of ? ` e :
⌧ `1 ·H and case analysis on e. On the basis of the subject
reduction invariant, we can now show that changes in knowl-
edge are predicted in a sound manner by our interpretation of
trace effects.

Theorem 4.4 (Prediction of Knowledge): If ? ` e : ⌧ ` ·H
and Kpol , e !⇤ K, e0, then there exists K0 where Kpol , H ` K0

and K 4 K0.
Proof. By Theorem 4.3, Definition 4.2, and induction on the
length of the reduction, if ? ` e : ⌧ ` ·H and Kpol , e !⇤ K, e0,
then there exists H 0 such that for all ✓1 2 JH 0K with K, ✓1 ` K1

there exists ✓2 2 JHK such that Kpol , ✓2 ` K2 where K1 4 K2.
In case ✓1 = ✏, K1 is K and the result follows. ut
A main result, that our analysis allows us to safely approximate
information flow violations, is stated as follows.

Theorem 4.5 (Prediction of Flow Violations): If e has an
information flow violation and ? ` e : ⌧ ` ·H then Kpol , H ` K
with K(s) 64 Kpol(s) for some s.

V. ABSTRACT INTERPRETATION OF TRACE EFFECTS

As mentioned in Section III, a key component of our
metatheory is that information flow violations do not occur if
(1) the program is well typed with trace effect H , and (2) the
trace effect H does not predict any invalid information flows. If
an invalid information flow could occur, it will be the case that
Kpol, H ` K and K(s) /4 Kpol(s) for policy Kpol, possible
resulting knowledge after running the program K, and subject
who learned more than allowed s. In this section we describe

a static analysis of trace effects which computes an over-
approximation of all K which could result from Kpol, H ` K,
and hence an over-approximation of resulting knowledge K(s)
for any subject s. The combination of type checking from
Section III and static analysis from this section provide a
guarantee that undesirable information flows cannot occur in
any execution of the program. The formal guarantee we give
is established at the end of this section as Theorem 5.4. Our
algorithm is efficient, and has the added appeal of supporting
helpful user interactions as discussed in Section VI-A.

Our approach to static analysis of trace effects is grounded
in the tradition of abstract interpretation [5, 6, 7] which
considers a “concrete semantics” for which computing the
desired property is either inefficient or uncomputable, and
proceeds through design of an “abstract semantics” for which
the property is efficiently computable. To connect the abstract
semantics and property to the concrete, a mapping between
the domains is formed, called a Galois connection.

Following this recipe, we first present the concrete semantics
of trace effects in the form of a compositional denotation
function FJ K and prove it equivalent to the simpler labeled
transition system H

✓�! H which is derived from prior
work [31, 32] and described in Section III. This re-structuring
is done to aid the design and proof of soundness of the abstract
interpreter, which follows an analogous structure. Next, we
design a finite abstract domain for traces trace] which forms a
Galois connection h↵̇, �̇i with sets of concrete traces }(trace),
and an abstract semantics for trace effects F]J K which is sound
w.r.t. the compositional concrete semantics FJ K.

A. Concrete Semantics
We give a big-step account of trace effect semantics (w.r.t.

the “ground truth” small-step system described in Section III)
as a map from trace effects H directly into prefix-closed sets
of (possibly terminating) traces, notated FJ K and shown in
Figure 6. This definition uses an environment ⇢ 2 Ve↵ *
}(trace) which maps trace effect variables h to result sets, an
important feature even for closed terms to interpret fixpoint
expression µh.H .

B. Abstract Domain
The co-domain of the concrete semantics is unbounded and

therefore uncomputable in general. However, we are not just
interested in possible traces ✓, but in the observable effects
these traces have on knowledge K. We therefore base our
abstract domain on flows between subjects, defined as ✓] in
Figure 7, which are directly interpretable in terms of their
effects on knowledge. An abstract trace is a mapping from
source-sink pairs (indicating a flow from the source to the sink)
to a declassification label which is associated with the flow.
Note that because an abstract trace is a partial map, a single
abstract trace ✓] may contain multiple flows between distinct
sources and sinks.

Abstract traces are understood formally via their abstraction
mapping from concrete traces, shown as E]J K also in Figure 7.
In its definition, flow events between atomic entities `o and `i

`
o 2 source ::= s | ↵ | p `

i 2 sink ::= s | ↵
✓
] 2 trace] , source⇥ sink * security

E]J K 2 event ! trace] n 2 trace] ⇥ trace] ! trace]

⌘̇ 2 trace!trace] ↵̇ 2 }(trace)!trace] �̇ 2 trace]!}(trace)

E]J`o `
iK , {h`o, `ii 7! >}

E]J`1 t `2 `
iK , E]J`1 `

iK t E]J`2 `
iK

E]J` up `
iK , {h`o, `i0i 7! p

0up | {h`o, `i0i 7! p
0} 2 E]J` `

iK}

⌘̇(✏) , ? ⌘̇(ev) , E]JevK ⌘̇(✓1✓2) , ⌘̇(✓1) n ⌘̇(✓2)

↵̇(⇥) , F
✓2⇥

⌘̇(✓) �̇(✓]) , {✓ | ⌘̇(✓) v ✓
]}

f1 n f2 , f1 t f2 t
F

{h`1,`2i7!p1}2f1
{h`2,`3i7!p2}2f2

h`1, `3i 7! p1 u p2

Fig. 7. Abstract Domain for Trace Effects

are abstracted as a singleton map from h`o, `ii to >, indicating
declassification to the top of the security lattice (that is, no
declassification because p u > = p for all p). Compound flow
events `1 t `2 `i are interpreted as the (pointwise) join of
decomposed events `1 `i and `2 `i, and ` up `i as an
extension of the interpretation of ` `i with the meet of p
and any recursively appearing declassification labels p0.

Abstract traces represent sets of concrete traces, and we
show mappings in each direction h↵̇, �̇i in Figure 7. The
mapping functions are adjoint ↵̇(⇥) v ✓] () ⇥ ✓ �̇(✓])
and therefore form a Galois connection—these mappings are
used in the statement of soundness for the abstract interpreter.
Definitions of ↵̇ and �̇ rely on an elementwise-abstraction
⌘̇ which abstracts a single concrete trace to its most precise
abstract trace. The empty trace is abstracted by the empty set of
flows, a single event is abstracted by E]J K, and the sequencing
of two traces is abstracted using an abstract sequencing operator
n—we choose an asymmetric symbol to remind that the
operator is not commutative. The abstract sequencing ✓]1 n ✓]2
includes flows from ✓]1 and ✓]2 independently, as well as
transitive flows h`1, `3i if h`1, `2i 2 ✓]1 and h`2, `3i 2 ✓]2
(modulo declassification).

C. Abstract Interpreter
In Figure 8 we define the abstract interpreter for computing

an over-approximation of all prefix-closed concrete traces which
occur in the operational semantics of a trace effect. The struc-
ture of the abstract interpreter mirrors that of the compositional
concrete semantics effects in Figure 6, which simplifies the
proof of soundness. The least fixed-point computation in the
case of µh.H trace effects is efficiently computable through
Kleene fixed-point iteration.

In our abstract interpreter, we add precision to the lattice
of abstract traces trace] by introducing a powerset of abstract
traces }(trace]). This necessitates another Galois connection
sets of concrete and sets of abstract traces, which we construct

F]J K 2 e↵ ! (Ve↵ * }(trace])) ! }(trace])

F]J✏K(⇢]) , {✏} F]JevK(⇢]) , {E]JevK} F]JhK(⇢]) , ⇢
](h)

F]JH1 | H2K(⇢]) , F]JH1K(⇢]) [F]JH2K(⇢])
F]JH1 ; H2K(⇢]) , F]JH1K(⇢]){✓]1n✓

]
2 | ✓]12F]JH1K(⇢]),

✓
]
22F]JH2K(⇢])}

F]Jµh.HK(⇢]) , µX
]
. F]JHK(⇢][h 7! X

]])

Fig. 8. Compositional Abstract Semantics for Trace Effects

as a standard (downward-closed) powerset “lifting” of the Ga-
lois connection between sets of concrete traces and individual
abstract traces:

↵̃(⇥) , {↵̇({✓}) | ✓ 2 ⇥} �̃(⇥]) , S

✓]2⇥]

�̇(✓])

To establish soundness of the abstract interpreter w.r.t. the
concrete semantics, it suffices to show that (1) E]J K is a
sound abstraction of the trace-interpretation of individual events,
and (2) abstract sequencing (n) is a sound abstraction of
concrete sequencing of traces. (1) is immediate by definition
of abstraction ↵̇, and (2) is justified in the following lemma.

Lemma 5.1 (Abstract Sequencing Soundness): For concrete
sets of traces the abstraction of sequenced traces is approxi-
mated by the abstract sequencing of abstraction of traces, that
is, ↵̇({✓1✓2 | ✓1 2 ⇥1, ✓2 2 ⇥2}) v ↵̇(⇥1)n ↵̇(⇥2)
Proof. ↵̇ is homomorphic, so it suffices to demonstrate the
property on singletons ↵̇({✓1✓2}) v ↵̇({✓1})n ↵̇({✓2}) which
is immediate by definition of ↵̇ and ⌘̇.
We now prove soundness of the abstract interpreter:

Theorem 5.2 (Abstract Interpreter Soundness): The abstract
interpreter is an over-approximation of the concrete semantics,
that is, for any trace effect H and concrete environment ⇢:
↵̃(FJHK(⇢)) v F]JHK(↵̃ � ⇢).
Proof. By induction on H and Lemma 5.1.

To bridge the soundness of the abstract interpreter to sound
information flow prediction, we prove that a singleton abstract
flow is a sound under-approximation of any program which
semantically includes a flow between subjects:

Lemma 5.3 (Subject Flow Under-approximation): If an even
trace results in increased knowledge for a subject, then the
abstraction of that trace predicts a flow from some other subject,
that is, if Kpol, ✓ !⇤ K and K(s) /4 Kpol(s) then there
exists s0 and p w K(s) s.t. Kpol(s0) = K(s) and hs0, si 7!
p 2 ⌘(✓).
Proof. By induction on ✓ and monotonicity of K in knowledge
semantics.

Finally, we conclude sound prediction of information flow
violations as a consequence of abstract interpreter soundness,
and type soundness from Section III.

Theorem 5.4 (Sound Information Flow Prediction): If an
information flow violation occurs during the execution of a well-
typed program, then the abstract interpretation of the trace effect
will predict it, that is, if e has an information flow violation

from s to s0 w.r.t. policy Kpol and ? ` e : ⌧ `·H then there
exists p w K(s) and ✓] 2 F]JHK(?) s.t. ✓](s0, s) = p and
Kpol(s0) = K(s).

Proof. By Theorem 4.5, definition of Kpol, H ` K, and
Lemmas 5.2 and 5.3.

To verify a program, it therefore suffices to compute
F]JHK(?) and check that the resulting set of abstract traces
does not contain undesirable flows.

We have implemented our analysis in Haskell and will make
it available as open source via a public GitHub repository 3.
We provide a number of examples in the repository, on all of
which the analysis terminates in fractions of a second.

D. Algorithmic Complexity
The presented abstract interpreter executes in O(S6) time

where S is the number of source and sink effect variables in the
trace effect, which is in turn proportional size of the program
from which the trace effect was generated plus the number of
subjects. This bound is derived as follows: The join operator is a
pointwise join computation over dictionaries linear in the size of
the S, and is therefore O(S). The abstract sequencing operator
n effectively computes the Cartesian product of its arguments
using a nested loop, and is therefore O(S2). The abstract
interpreter F] computes a least fixpoint which introduces a
cubic factor around its inner loop, which consists of (linear) set
unions and (quadratic) abstract sequencing which is ultimately
O(S2). The entire fixpoint is therefore O(S23) = O(S6). We
also implement a path-sensitive variant of this analysis using
BDDs in the representation of abstract effects which introduces
a worst-case exponential factor O(2C) where C is the set of
access control triples (cs, co, cc). However, in practice this is
bounded by the nesting depth of access control checks in the
program, which is a low constant for realistic programs.

VI. APPLICATIONS IN PRACTICE

Here we consider analysis of the motivating examples
introduced in Section I-A, and how our system discovers
vulnerabilities in them and allows the programmer to explore
possible executions based on authorization hook outcomes.

A. Missing Placements
In Figure 9, we recreate in ⇤hook the offending code

presented in Listing 1 in Section I-A to demonstrate how our
analysis applies to real application settings. In this example we
posit constants UID and ROOT that identify the current user and
root user ids. The records cpid and rpid are associated with
the current process and root, and maintain a channel to those
principles as well as identifying information. The passwds

file is associated with the root subject, and has a sigout field
that maintains a signal output channel, initially set to rpid .

Each of the functions setlease, dofcntl , and sysfcntl

are ⇤hook avatars of the fcnt setlease, do fcntl, and
sys fcntl functions defined in Listing 1, and allow resetting
of the signal output channel for a file via the function
setpid . The authorization hooks inserted in this code are

3https://github.com/uvm-plaid/hook-ai

let uid = UID in
let cpid = {data = husri; uname = uid} in
let rpid = {data = hrooti; uname = ROOT} in
let passwds =

{data = hrooti; fname = passwds; sigout = rpid} in
let setpid =

�f.�c. {data = f .data; fname = f .fname; sigout = c} in
let setlease = (�f.setpid f cpid) in
let dofcntl = �f.�cmd .

if (cmd = 0) then (setlease f) else
(hook(uid , f.fname, setown); setpid f cpid) in

let sysfcntl = �f.�cmd .
(hook(uid , f.fname, fcntl); dofcntl f cmd) in

let passwds = (sysfcntl passwds 0) in
passwds.sigout .data.write(passwds.data.read())

Fig. 9. ⇤hook Model of Listing 1 Code

faithful to the fcntl and setown hook implementations in
the Linux security modules, which implicitly refer to the
current user (via the user’s UID available in the current process
information) as the subject. In the last line, we read from the
passwds file and output the result to the process channel
in sigout , to “force the issue” of the potentially insecure
information flow from the file to the signal output channel.
As in Section I-A, we note that this program does have an
information flow violation if (usr, passwds, fcntl) 2 A, even
if (usr, passwds, setown) 62 A.

The following trace effect is assigned to this program by
our analysis:

check(UID, passwds, fcntl); root ↵;
((↵ usr) | (check(UID, passwds, setown);↵ usr))

We again assume a security lattice with top and bottom elements
hi and lo, and assume Kpol(root) = hi and Kpol(usr) = lo.
Whether or not this trace effect predicts an information flow
violation depends on whether (usr, passwds, fcntl) 2 A—if
so, a violation is predicted. Our tool reports the following flows
indicated by the trace effect, in decision-tree format.

check(UID, passwds, fcntl) : root usr

¬check(UID, passwds, fcntl) : <none>

Note that the tool isolates the scenario which could lead to
the undesirable flow—when check(UID, passwds, fcntl) suc-
ceeds. As mentioned previously, this tool has been implemented
in Haskell and will be made available in a public GitHub
repository4.

B. Control Loops and Fixpoints
The web server example discussed in Section I-B is fully

realized in our model in Figure 10. The socket and front page
file fpage encapsulate external channels, while the password
file pwds encapsulates a root channel.

The following trace effect is assigned to this program by
our analysis:

µh. ((check(ext hi, passwds, r); root ↵) | external ↵);
↵ external;h

4https://github.com/uvm-plaid/hook-ai

let socket = {data = hexternali; port = 80} in
let pwds = {data = hrooti; fname = passwds} in
let rpwds = �auth.(hook(auth, passwds, r); pwds.data.read()) in
let fp = {data = hexternali; fname = frontpage} in
let loop = �zx.

let cred = socket .data.read() in
let html = if authorized(cred) then rpwds(ext hi) else fp in
let data = html .data.read() in
socket .data.write(data); z x

in loop()

Fig. 10. ⇤hook Model of Section I-B Web Server Example

This trace effect has no finite traces in its interpretation,
reflecting the non-terminating behavior of the control loop.
Our abstract interpreter tool reports the following to the user:

check(ext_hi, passwds, r) : root external

¬check(ext_hi, passwds, r) : <none>

This example illustrates important technical features as dis-
cussed in Section I-B. It demonstrates how our abstract
interpretation computes a fixpoint interpretation of the given
trace effect. It illustrates flow-sensitivity, by recognizing that
the authorization hook occur before the external socket write,
and path-sensitivity since outcomes for both the successful and
failing hook conditions are reported, depending on whether
(ext_hi, passwds, r) is in the local access control list A or
not. Also, while the flow from root to external in the former
case is identified and reported by the analysis, the program is
not rejected, allowing the programmer to determine that this
is a false positive since that flow occurs only in the context
where the authorization hook check succeeds.

VII. RELATED WORK

a) Authorization Hooks.: A variety of analysis tools for
authorization hook placements have been studied in previous
work. In [11, 22] authorization hook placements are generated
from specifications of known security-sensitive operations to
mediate control flows to those operations. In [12, 13, 25, 34],
heuristics for identifying “sensitive operations” are identified,
which drives authorization hook placement choices. In [26] a
method is developed for sound minimization of authorization
hook placements, without introducing false positives. However,
these techniques are all concerned strictly with mediating
control flows to enforce an access control policy, not enforcing
the information flows implied by the policy via authorization
hooks. In [10, 33, 36] both a static and runtime analysis are
considered for checking the consistency of authorization hook
placements in enforcing access control policies—but again,
information flow is not considered in this work.

Information flow integrity enforcement given access control
policies is considered in [17] relative to a trusted computing
base inferred from SELinux policies. This approach was the
first to leverage the closure of access control policies relative
to information flow, but did not consider program internals or
authorization hook placements to enforce such policies.

b) Information Flow and Taint Analysis.: Information
flow control—and the distinction between explicit and implicit
flows—was first proposed by [9]. Static approaches to informa-
tion flow security have been incorporated into usable language
models by [18, 27, 39] (among many others). The metaproperty
of information flow (noninterference) has been shown to be a
hyperproperty by [4]. Static information flow is combined with
dynamic labels in [41], which bears some resemblance to our
setting, except our model is focused on access control policies
and authorization hooks, and not dynamic security labels per
se. In this paper, we show that a direct flow analysis is sound
with respect to a dynamic taint analysis [29] augmented with
access control checks. Like information flow, the metaproperty
of taint analysis is a hyperproperty [28], but different than
noninterference.

Flow sensitivity in information flow has also been considered
in previous systems [16, 21]. However, these systems do not
treat the main problem we are concerned with, which is to
predict how enforcement of an access control policy will
interact with and affect direct information flow between external
subjects during computation. Also, none of these systems
combine technical features such as compositionality, fixpoint
computation for recursive higher-order languages, and path
sensitivity in same way as our combination of typing and
abstract interpretation. Our approach is also modular in the
sense that precision of the abstract interpretation can be “dialed
in” as appropriate for the application.

c) Trace Effects and Type-and-effect Systems.: Poly-
morphic effect systems were first proposed by [23] and
extended to type-and-effect systems by [35]. A generic type and
effect systems was proposed by [24], and a general syntactic
framework for flow-sensitive effects was recently proposed
by [15] based (in part) on the semantic foundations of [37] and
[19]. Our work is based on trace effects [30, 31, 32]—a specific
formulation of type-and-effect systems which characterizes
program traces. It is unknown whether or not trace effects can
be encoded using the more-recently developed generic effect
theories. In particular, trace effects are modeled by basic process
algebras, whereas the aforementioned approaches to effects are
modeled by directed generalizations of join-semilattices (e.g.,
effectoids, monoids or quantales). Efficient type reconstruction
for trace effects is an essential aspect of our approach (due to
[32]), and analogous results have yet to be demonstrated for
these more general effect frameworks.

d) Abstract Interpretation.: Abstract interpretation [5, 6,
7] has been applied to both type systems [8] and information
flow [2, 14, 20] directly. Our use of abstract interpretation
differs in that the first phase of our analysis is based on
trace effects imbued with information flow events—which we
do not justify using abstract interpretation—and our second
phase is an abstract interpretation of these type-level trace
effects. We therefore require significantly less exotic modeling
techniques in our abstract interpreter because the concrete
model upon which we abstract (the trace effect) is already
itself an abstraction of concrete execution.

VIII. CONCLUDING REMARKS

In this paper we presented a static analysis for predicting
whether an access control policy, instrumented in source code
via authorization hooks, enforces an information flow policy
during execution. The analysis combines a type theory and
abstract interpretation to statically and automatically predict
the effects of authorization hooks on information flow in
programs. Formal results establish soundness of our analysis
for a core language model, while extended examples illustrate
the applicability of our system to problems in practical settings.
Our technique supports flow-sensitivity, allows exploration of
computation paths depending on access control policy, and is
applicable to higher-order languages with general recursion.

REFERENCES

[1] Sepehr Amir-Mohammadian and Christian Skalka. In-
depth enforcement of dynamic integrity taint analysis. In
PLAS, 2016.

[2] Mounir Assaf, David A. Naumann, Julien Signoles, Éric
Totel, and Frédéric Tronel. Hypercollecting semantics
and its application to static analysis of information flow.
In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017,
pages 874–887, New York, NY, USA, 2017. ACM.

[3] O. Burkart, D. Caucal, F. Moller, , and B. Steffen.
Verification on infinite structures. In S. Smolka J. Bergstra,
A. Pons, editor, Handbook on Process Algebra. North-
Holland, 2001.

[4] Michael R. Clarkson and Fred B. Schneider. Hyperprop-
erties. Journal of Computer Security, 18(6):1157–1210,
2010.

[5] P. Cousot. The calculational design of a generic abstract
interpreter. In M. Broy and R. Steinbrüggen, editors,
Calculational System Design. NATO ASI Series F. IOS
Press, Amsterdam, 1999.

[6] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, NY.

[7] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In Conference Record of the Sixth
Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 269–282, San Antonio,
Texas, 1979. ACM Press, New York, NY.

[8] Patrick Cousot. Types as abstract interpretations. In Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’97,
pages 316–331, New York, NY, USA, 1997. ACM.

[9] D. Denning and P. Denning. Certification of programs for
secure information flow. Communications of the ACM,
20(7):504–513, 1977.

[10] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. Run-
time verification of authorization hook placement for the

linux security modules framework. In Proceedings of the
9th ACM Conference on Computer and Communications
Security, pages 225–234. ACM, 2002.

[11] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. Au-
tomatic placement of authorization hooks in the linux
security modules framework. In Proceedings of the
12th ACM Conference on Computer and Communications
Security, CCS ’05, pages 330–339, New York, NY, USA,
2005. ACM.

[12] Vinod Ganapathy, Trent Jaeger, and Somesh Jha.
Retrofitting legacy code for authorization policy enforce-
ment. In Proceedings of the 2006 IEEE Symposium on
Security and Privacy, pages 214–229, May 2006.

[13] Vinod Ganapathy, David King, Trent Jaeger, and Somesh
Jha. Mining security-sensitive operations in legacy code
using concept analysis. In Proceedings of the 29th
International Conference on Software Engineering (ICSE),
May 2007.

[14] Roberto Giacobazzi and Isabella Mastroeni. Abstract non-
interference: Parameterizing non-interference by abstract
interpretation. In Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’04, pages 186–197, New York, NY, USA,
2004. ACM.

[15] Colin S. Gordon. A Generic Approach to Flow-Sensitive
Polymorphic Effects. In Peter Müller, editor, 31st
European Conference on Object-Oriented Programming
(ECOOP 2017), volume 74 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 13:1–13:31,
Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[16] Sebastian Hunt and David Sands. On flow-sensitive
security types. In Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’06, pages 79–90, New
York, NY, USA, 2006. ACM.

[17] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. Analyzing
integrity protection in the SELinux example policy. In
Proceedings of the 11th USENIX Security Symposium,
pages 59–74, August 2003.

[18] Andrew Johnson, Lucas Waye, Scott Moore, and Stephen
Chong. Exploring and enforcing security guarantees via
program dependence graphs. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 291–302, New York,
NY, USA, June 2015. ACM Press.

[19] Shin-ya Katsumata. Parametric effect monads and
semantics of effect systems. In Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, pages 633–645, New
York, NY, USA, 2014. ACM.

[20] Máté Kovács, Helmut Seidl, and Bernd Finkbeiner. Re-
lational abstract interpretation for the verification of 2-
hypersafety properties. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications
Security, CCS ’13, pages 211–222, New York, NY, USA,

2013. ACM.
[21] Peixuan Li and Danfeng Zhang. Towards a flow- and

path-sensitive information flow analysis. 2017 IEEE 30th
Computer Security Foundations Symposium (CSF), pages
53–67, 2017.

[22] Benjamin Livshits and Jaeyeon Jung. Automatic media-
tion of privacy-sensitive resource access in smartphone
applications. In Proceedings of the 22th USENIX Security
Symposium, pages 113–130, 2013.

[23] J. M. Lucassen and D. K. Gifford. Polymorphic effect
systems. In Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’88, pages 47–57, New York, NY, USA,
1988. ACM.

[24] Daniel Marino and Todd Millstein. A generic type-and-
effect system. In Proceedings of the 4th International
Workshop on Types in Language Design and Implementa-
tion, TLDI ’09, pages 39–50, New York, NY, USA, 2009.
ACM.

[25] Divya Muthukumaran, Trent Jaeger, and Vinod Ganapathy.
Leveraging “Choice” to automate authorization hook
placement. In Proceedings of the 19th ACM Conference
on Computer and Communications Security, pages 145–
156, October 2012.

[26] Divya Muthukumaran, Nirupama Talele, Trent Jaeger, and
Gang Tan. Producing hook placements to enforce expected
access control policies. In International Symposium on
Engineering Secure Software and Systems, pages 178–195.
Springer, 2015.

[27] A. C. Myers and B. Liskov. A decentralized model
for information flow control. In Proceedings of the 16th
ACM Symposium on Operating System Principles, October
1997.

[28] Daniel Schoepe, Musard Balliu, Benjamin C. Pierce, and
Andrei Sabelfeld. Explicit secrecy: A policy for taint
tracking. In IEEE EuroS&P, pages 15–30, 2016.

[29] Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In IEEE S&P, pages 317–331,
2010.

[30] Christian Skalka. Trace effects and object orientation.
In PPDP ’05: Proceedings of the 7th ACM SIGPLAN
international conference on Principles and practice of
declarative programming, pages 139–150, New York, NY,
USA, 2005. ACM Press.

[31] Christian Skalka. Types and trace effects for object
orientation. Journal of Higher Order and Symbolic
Computation, 21(3):239–282, 2008.

[32] Christian Skalka, Scott Smith, and David Van Horn. Types
and trace effects of higher order programs. Journal of
Functional Programming, 18(2):179–249, 2008.

[33] Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov.
RoleCast: Finding missing security checks when you do
not know what checks are. In Proceedings of the 26th
Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications,
OOPSLA, pages 1069–1084, 2011.

[34] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov.
Fix Me Up: Repairing Access-Control Bugs in Web
Applications. In ISOC Network and Distributed System
Security Symposium (NDSS), 2013.

[35] Jean-Pierre Talpin and Pierre Jouvelot. The type and
effect discipline. In Seventh Annual IEEE Symposium
on Logic in Computer Science, Santa Cruz, California,
pages 162–173, Los Alamitos, California, 1992. IEEE
Computer Society Press.

[36] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and
Yuanyuan Zhou. Autoises: Automatically inferring secu-
rity specification and detecting violations. In Proceedings
of the 17th USENIX Security Symposium, pages 379–394,
2008.

[37] Ross Tate. The sequential semantics of producer effect
systems. In Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’13, pages 15–26, New York, NY,
USA, 2013. ACM.

[38] Hayawardh Vijayakumar, Xinyang Ge, Mathias Payer,
and Trent Jaeger. Jigsaw: Protecting resource access by
inferring programmer expectations. In USENIX Security
Symposium, pages 973–988, Berkeley, CA, USA, 2014.
USENIX Association.

[39] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A
sound type system for secure flow analysis. Journal of
Computer Security, 4(3):167–187, 1996.

[40] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. Using
cqual for static analysis of authorization hook placement.
In USENIX Security Symposium, pages 33–48, 2002.

[41] Lantian Zheng and Andrew C. Myers. Dynamic security
labels and static information flow control. Int. J. Inf.
Secur., 6(2–3):67–84, March 2007.

