
A Study of Methods for the Generation of
Domain-Aware Word Embeddings

Dominic Seyler
dseyler2@illinois.edu

University of Illinois at Urbana-Champaign
Department of Computer Science

Urbana, IL, USA

ChengXiang Zhai
czhai@illinois.edu

University of Illinois at Urbana-Champaign
Department of Computer Science

Urbana, IL, USA

ABSTRACT

Word embeddings are essential components for many text data

applications. In most work, “out-of-the-box” embeddings trained

on general text corpora are used, but they can be less effective when

applied to domain-specific settings. Thus, how to create “domain-

aware” word embeddings is an interesting open research question.

In this paper, we study three methods for creating domain-aware

word embeddings based on both general and domain-specific text

corpora, including concatenation of embedding vectors, weighted

fusion of text data, and interpolation of aligned embedding vectors.

Even though the investigated strategies are tailored for domain-

specific tasks, they are general enough to be applied to any domain

and are not specific to a single task. Experimental results show

that all three methods can work well, however, the interpolation

method consistently works best.
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1 INTRODUCTION

Text representation is at the foundation of a wide range of text

data applications (e.g., retrieval, clustering, categorization, summa-

rization, and predictive modeling). When text representations are

optimized for the task at hand, it naturally follows that they improve

the downstream performance. “Out-of-the-box” word embeddings

are disadvantaged by the fact that they are trained on general text

corpora and are thus non-optimal when applied in domain-specific

settings. Therefore, it is crucial to create word embeddings in a

“domain-aware” manner, which is challenging due to the resource

poorness of many specialized domains.
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Since specialized domains usually do not have the amount of

data required to train high-quality word embeddings, it is crucial

to leverage the publicly-available, large-scale general data sources.

This is due to the fact that even though a domain dataset might have

good coverage of domain-specific terms, it will lack the breath of

coverage that the general-purpose embeddings have. The general-

purpose embeddings will have more robust vector representations

of common words, since their word count is much higher and

therefore words have been trained in more contexts. However, they

are unable to capture the domain-specific semantic associations.

How to best combine domain and general text data in this setting

is a question we investigate in this work. We present and study

three representative strategies for creating domain-aware word

embeddings based on both general and domain-specific text corpora,

including weighted fusion of text data, concatenation of embedding

vectors, and interpolation of aligned embedding vectors.

The weighted fusion method combines the general and domain

text data before training of the word embeddings to emphasise

words and contexts that are only common in the domain dataset

through repetition (the amount of repetition is controlled via a

hyperparameter). The concatenation method combines the vec-

tors of general and domain embeddings post-training, allowing the

model to learn which dimensions are better suited for the task at

hand. The embedding interpolation method is a novel technique

inspired by Jelinek-Mercer smoothing [7] that interpolates trained

general-purpose and domain embeddings using a weighting (i.e.,

smoothing) parameter. However, a direct application of the smooth-

ing idea does not work because the two embedding vector spaces

are not “compatible" with each other, i.e., the dimensions are not

aligned. We address this challenge by learning a transformation

matrix to transform the vectors in one space to those in the other

so as to make them compatible and then interpolate them, allowing

the combined vector reflecting the semantic associations in both

datasets. All the three methods are general and can be applied to

any task in any domain.

We systematically evaluate the proposed three methods using a

common text application task, i.e., text classification, on a cyber-

security domain dataset. Experimental results show that all three

methods are effective and domain-aware embeddings consistently

outperforms generic embeddings, confirming that the common

practice of direct use of generic embeddings is non-optimal. We

find the interpolation method to be the most robust and effective

among all three methods.



2 METHODOLOGY

As part of our goal to create domain-aware word embeddings, we

want to leverage general (e.g., Wikipedia) and domain-specific un-

structured textual data and study how to best combine them. This

can be done at the corpus level (i.e., pre-training), model level (i.e.,

intra-training) and vector level (i.e., post-training). In the following

we study one corpus level and two vector level methods.

2.1 Interpolation of Aligned Embeddings

Let 𝐸𝑑𝑜𝑚𝑎𝑖𝑛 and 𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑙 be domain and general word vector spaces.

We define the smoothed embedding space 𝐸𝑠𝑚𝑜𝑜𝑡ℎ as in Equation 1.

Here, we introduce a smoothing parameter 𝜆, that weighs the in-
fluence of the general and domain word embeddings. We make 𝜆 a

parameter of our model, which we evaluate in our experiments.

𝐸𝑠𝑚𝑜𝑜𝑡ℎ = (1 − 𝜆)𝐸𝑑𝑜𝑚𝑎𝑖𝑛 + 𝜆𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑙 (1)

Since 𝐸𝑑𝑜𝑚𝑎𝑖𝑛 and 𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑙 are trained on different corpora, the

underlying vector spaces need to be aligned before they can be

added. Therefore, we learn a transformation matrix𝑊 that esti-

mates the transformational property described in Equation 2.

𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑊 = 𝐸𝑑𝑜𝑚𝑎𝑖𝑛 (2)

We learn𝑊 by solving the optimization problem in Equation 3

using stochastic gradient decent, by aligning identical words from

the different embedding spaces, indexed by 𝑖 .

min
𝑊

∑

𝑖

| |𝑊𝐸
𝑔𝑒𝑛𝑒𝑟𝑎𝑙
𝑖 − 𝐸𝑑𝑜𝑚𝑎𝑖𝑛

𝑖 | |2 (3)

Incorporating𝑊 in Equation 1, we arrive at our final embedding

function in Equation 4. Using𝑊 we can transform the general

vectors into the domain-specific space1. By adding them together,

the model can enrich the domain embeddings with signals from

the general embeddings that might not be captured in the domain

training data. We argue that due to the small size of the domain

corpus, the resulting word embeddings are “over-fit” and can benefit

from generalization, introduced by our smoothing method.

𝐸𝑠𝑚𝑜𝑜𝑡ℎ = (1 − 𝜆)𝐸𝑑𝑜𝑚𝑎𝑖𝑛 + 𝜆𝑊𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑙 (4)

2.2 Concatenation of Embeddings

General and domain embeddings can also be combined through

concatenation. Here, the intuition is that the model will learn to

prioritize certain embedding dimensions using the training data. For

the domain and general word embeddings 𝐸𝑑𝑜𝑚𝑎𝑖𝑛 and 𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑙 ,
the resulting word embedding 𝐸𝑐𝑜𝑛𝑐𝑎𝑡 is described in Equation 5,

where | | is the concatenation operation. Concatenation is done only

for words that appear in both embedding spaces.

𝐸𝑐𝑜𝑛𝑐𝑎𝑡 = 𝐸𝑑𝑜𝑚𝑎𝑖𝑛 | |𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑙 (5)

2.3 Weighted Fusion of Training Data

When general and domain textual data are available, it is possible

to combine both before training of the word embeddings. To in-

crease the prominence of the (small) domain in the (much-larger)

general dataset, we choose to duplicate the domain data during

1We found that transforming the domain-specific vectors into the general embedding
space was less effective.

training. For this we introduce a parameter N, which reflects the

number of repeats of the domain data during training. N has the

following properties: if 𝑁 = 0, the resulting word embeddings are

trained using no domain data, if 𝑁 → ∞, then the resulting word

embeddings are trained on domain data.

3 EXPERIMENTAL SETUP

Dataset: MalwareTextDB [10] contains information about malware

and vulnerabilities from articles that are published on the web. We

focus on the task of classifying relevant sentences for inferring mal-

ware actions and capabilities (binary sentence classification). We

employ the second version of the dataset, that was released as part

of the 2018 International Workshop on Semantic Evaluation [14].

However, in our experiments we found large discrepancies between

the performances of the development and test datasets, which lead

us to conclude that these were constructed in a biased way. There-

fore, we randomly re-sample the entire dataset into training (80%,

10,334 sentences), development (10%, 1,292 sentences) and testing

(10%, 1,292 sentences). In our experiments we report 𝐹1 score in
accordance with the evaluation metrics of the workshop.

Word embeddings: We use the word2vec algorithm [11] to train

our all word embeddings. Our domain embeddings are trained on a

corpus of cybersecurity related documents, which we crawl from

the web. Our crawler is restricted to 500 domains of cybersecurity

companies [1] and keeps documents that are have a high similarity

with the documents in the training corpus. After removing dupli-

cates, the final collection contains 220,088 unique documents, with

over 160 million words. For our general embeddings, we make use

of a Wikipedia dump with over 2.5 billion words.

Classifier: Since our goal is to compare different word embedding

models (optimizing task performance is not our main goal), we

decided to make use of a simple neural classification method. We

implement the standard Convolutional Neural Network model from

Kim [8]. All models are trained on the training set, tuned on the

development set and evaluated on the test set. We report the results

of the model that performed best on the development set.

Hyperparameters: Besides the parameters required by our classi-

fication frameworks, we investigate the effect of hyperparameters

introduced by our models. Lambda (𝜆): This parameter regulates

the interpolation between domain and general embeddings. In our

experiments we explore different settings for 𝜆 within the interval

[0,1], in 0.1 increments. Domain duplication factor (N): Relates to

our weighted fusion of training data strategy. We explore differ-

ent settings ranging from no domain data (𝑁 = 0) to a dataset

dominated by domain data (𝑁 = 100). Embedding dimension (𝑑𝑖𝑚):

There is no general way of determining the optimal dimension of

the vector space of word embeddings. Thus, we explore different

settings for 𝑑𝑖𝑚 ∈ {100, 200, 300}.
Baselines: We compare our models to two embedding baselines

to examine our main hypothesis that some combination of both is

better than each of them individually. GENERAL is the widely-used

case of standard embeddings that are trained on a large general-

purpose corpus. In our case, these are embeddings trained on a

large Wikipedia corpus. DOMAIN are embeddings trained on a

small domain corpus. We train cybersecurity embeddings from our

webcrawl, mentioned above.



dim Dev Test Model

300 0.5693 0.5209 DOMAIN

0.5411 0.4773 GENERAL

0.5952 0.5331 CONCAT

0.6087 0.5429 FUSION (N=15)

0.6498 0.5778 INTERPOL (𝜆 = 0.5)

200 0.6340 0.6013 DOMAIN

0.5411 0.5168 GENERAL

0.5912 0.5164 CONCAT

0.6131 0.6069 FUSION (N=50)

0.6655 0.6053 INTERPOL (𝜆 = 0.2)

100 0.5934 0.5685 DOMAIN

0.5271 0.5090 GENERAL

0.5688 0.5220 CONCAT

0.6156 0.5607 FUSION (N=100)

0.6446 0.6239 INTERPOL (𝜆 = 0.4)

Table 1: 𝐹1 score for different embedding dimensions.

4 EVALUATION

4.1 Comparison of Models

We compare the baselines DOMAIN and GENERAL to the three

proposed methods CONCAT, INTERPOL and FUSION. We present

the results in Table 1. Results are shown for different embedding

dimensions along with the performance on development (Dev) and

test (Test) sets and the model name. For the INTERPOL and FUSION

we only show the best performing model on the development set,

with its lambda parameter (𝜆) and domain duplication factor (N),

respectively. The best performance for each dimension is marked in

bold, and the best performing model on the dataset is underlined.

We find that the INTERPOL method consistently outperforms all

baselines and othermodels on the development set. It is only slightly

outperformed on the test set for dim=200 by FUSION. Based on the

test performance it seems that 100 dimensions works best. Con-

catenation does not always work well, as it is often outperformed

by the DOMAIN baseline. Considering the baselines, it seems that

DOMAIN performs better than GENERAL in the majority of the

cases, as can be observed for all dimensions. Overall, we conclude

that combining domain and general data is generally beneficial.

As concatenation is not always able to outperform the baselines,

interpolation should be the preferred method due to it’s flexibility

introduced by the 𝜆 parameter, which we investigate next.

4.2 Lambda Parameter

Our previous evaluation has shown that performance can be sen-

sitive to the 𝜆 parameter. Therefore, we further study the lambda

parameter’s sensitivity on the development set. In Figure 1 we plot

𝐹1 performance for different settings of 𝜆 against the other models.

It is noticeable that adding even small amounts of general informa-

tion can push the performance past all other models (see 𝜆 = 0.1).
Values higher than 0.5 seem to hurt performance, which can also

be observed in Table 1 for other dimensions. Here, we would like

to point out that even though 𝜆 = 0.0 is equal to the DOMAIN

model, 𝜆 = 1.0 is not equal to the GENERAL model. This is because

general embeddings are transformed using the alignment matrix
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Figure 1: Influence of Lambda Parameter (dim=300).

𝑊 , as described in Equation 4. Interestingly, we find that just trans-

forming the general embeddings with the alignment matrix helps

boosting the performance (see 𝜆 = 1.0), which can be interpreted

as evidence that the learned transformation is effective.

4.3 Domain Duplication Factor

To further understand how to best combine general and domain

data, we experiment with a third method: weighted fusion of train-

ing data. The domain duplication factor (N) weights the amount of

domain data that is used during training. We show the results for

different settings of N in Table 2. The row “% domain” shows the

percentage of domain data in comparison to the general data. The

best model for each dimension is in boldface. We find that the N

parameter is very sensitive and no clear overall trend is observable.

Based on the results from Tables 1 and 2, we conclude that the

fusion of training data can outperform the other baselines under

certain conditions and beat the INTERPOL model in one setting:

dim=200, on the test dataset. Furthermore, tuning N is costly, as it

requires re-training of the embeddings for each setting.

4.4 Qualitative Evaluation

Following our quantitative evaluation, we further perform a qual-

itative analysis where we inspect the properties of the resulting

embedding spaces. Table 3 shows the top ten closest neighbors to

the word “bug” in different embedding spaces (DOMAIN, GEN-

ERAL, INTERPOL 𝜆 = 0.5) within the cybersecurity domain. We

purposefully choose the word “bug” because of its ambiguity in

different domains, which is nicely reflected in the table. GENERAL

captures mostly the biological meaning of bug and lists other in-

sects (e.g., worm), properties (e.g., flappy) or syntactic variations

(e.g., bugs). Surprisingly, the word “stagefright”, which is the name

of a well-known bug in the Android operating system, is ranked

in one of the top positions. In contrast, DOMAIN lists more cy-

bersecurity related terms, where bugs are synonyms for errors in

programs. The INTERPOL method is able to introduce “stagefright”

to the most similar words and more general terms are ranked higher

(vulnerability, loophole). This seems to indicate that INTERPOL is

able to promote more general concepts and prevent the domain

embeddings from being "overly specific" (i.e., overfit) to the domain.



N 0 1 3 5 10 15 20 25 50 100

% domain 0 6.27 18.82 31.37 62.73 94.10 125.46 156.83 313.66 627.31

dim=300 0.5411 0.5685 0.5455 0.5843 0.5777 0.6087 0.5859 0.5483 0.5909 0.5886

dim=200 0.5411 0.5554 0.5685 0.5657 0.5411 0.5954 0.5664 0.5473 0.6131 0.5973

dim=100 0.5271 0.5779 0.5972 0.5936 0.5419 0.5674 0.5546 0.5734 0.5990 0.6156

Table 2: Influence of domain duplication factor N.

DOMAIN GENERAL INTERPOL

flaw .795 bugs .817 flaw .758
glitch .732 worm .711 vulnerability .690
vulnerability .719 stagefright .702 issue .681
issue .686 mouse .679 bugs .660
bugs .644 flappy .670 glitch .629
defect .624 beetle .654 problem .596
loophole .611 blob .651 defect .550
problem .610 gizmo .641 flaws .535
weakness .571 stink .637 stagefright .524
flaws .568 critter .633 loophole .519

Table 3: Neighbors of “bug” in Different Embedding Spaces.

5 RELATEDWORK

Domain-agnostic are the general case of word embeddings with

no domain information. The earliest work to encode the context

of a word in a neural language model is Bengio et al. [2]. Mikolov

et al. [11] introduces word2vec, where a target word’s vector rep-

resentation is used to predict its context window (Skip-gram) and

vice versa (CBOW). Pennington et al. [12] proposes to incorporate

word contexts using factorization of a word co-occurence matrix.

Levy and Goldberg [9] alters the context selection while training,

conditioning a word’s context on the word dependencies within

a sentence. The drawbacks of domain-agnostic methods are: (1)

word representations are general and not tailored for specialized

domains; (2) the evaluation does not consider specific tasks.

Domain-specific methods have some form of domain knowledge

integrated during training [6, 15] or as a post-processing step. For

instance, Faruqui et al. [4] proposes to “retrofit” word embeddings

by incorporating semantic lexicons (e.g., WordNet). These methods

require (semi-) structured data sources, which can be thought of as

distant supervision during or post-training and require significant

human effort. In contrast, our method is entirely unsupervised and

requires no expert knowledge.

Combination of Embeddingsmethods have been studied inGhan-

nay et al. [5]. The authors compare vector concatenation, dimen-

sionality reduction and an antoencoder model. The study focuses

on different embedding algorithms, rather than domain-specificity.

Context-sensitivemodels, such as BERT [3] and ELMo [13], make

the word vector dependent on the word sequence that the word

occurs in. While our approaches and the context-sensitive models

deviate from the generic embedding representation in that the

generated representation better reflects the needed representation

for a particular domain and task, the improvement is from different

angles. As the methods we study are independent of the model

that was used to train the word vectors, it is generally possible to

incorporate context sensitive representations as word vectors into

our methods.

6 CONCLUSION

We investigated three general methods for creating domain-aware

word embeddings based on both general and domain-specific text

corpora. Overall, interpolation performs best in almost all settings,

whereas concatenation is not always able to outperform the base-

lines. The fusion model can achieve good performance when tuned

correctly, but tuning is a very costly process. The general embed-

dings are the least effective in almost all settings, thus we conclude

that it is beneficial to create domain-aware word embeddings and

the interpolation method can be recommended as a robust way

to generate domain-aware embeddings. As the approach is gen-

eral, it can be potentially used in many downstream applications

to improve task performance, such as compromised account detec-

tion [16], stock trend prediction [17], etc.
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