A Study of Methods for the Generation of
Domain-Aware Word Embeddings

Dominic Seyler
dseyler2@illinois.edu
University of Illinois at Urbana-Champaign
Department of Computer Science
Urbana, IL, USA

ABSTRACT

Word embeddings are essential components for many text data
applications. In most work, “out-of-the-box” embeddings trained
on general text corpora are used, but they can be less effective when
applied to domain-specific settings. Thus, how to create “domain-
aware” word embeddings is an interesting open research question.
In this paper, we study three methods for creating domain-aware
word embeddings based on both general and domain-specific text
corpora, including concatenation of embedding vectors, weighted
fusion of text data, and interpolation of aligned embedding vectors.
Even though the investigated strategies are tailored for domain-
specific tasks, they are general enough to be applied to any domain
and are not specific to a single task. Experimental results show
that all three methods can work well, however, the interpolation
method consistently works best.

KEYWORDS

domain adaptation, text representation, empirical study

ACM Reference Format:

Dominic Seyler and ChengXiang Zhai. 2020. A Study of Methods for the
Generation of Domain-Aware Word Embeddings. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR °20), July 25-30, 2020, Virtual Event, China. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3397271.3401287

1 INTRODUCTION

Text representation is at the foundation of a wide range of text
data applications (e.g., retrieval, clustering, categorization, summa-
rization, and predictive modeling). When text representations are
optimized for the task at hand, it naturally follows that they improve
the downstream performance. “Out-of-the-box” word embeddings
are disadvantaged by the fact that they are trained on general text
corpora and are thus non-optimal when applied in domain-specific
settings. Therefore, it is crucial to create word embeddings in a
“domain-aware” manner, which is challenging due to the resource
poorness of many specialized domains.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR 20, July 25-30, 2020, Virtual Event, China

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8016-4/20/07...$15.00
https://doi.org/10.1145/3397271.3401287

ChengXiang Zhai
czhai@illinois.edu
University of Illinois at Urbana-Champaign
Department of Computer Science
Urbana, IL, USA

Since specialized domains usually do not have the amount of
data required to train high-quality word embeddings, it is crucial
to leverage the publicly-available, large-scale general data sources.
This is due to the fact that even though a domain dataset might have
good coverage of domain-specific terms, it will lack the breath of
coverage that the general-purpose embeddings have. The general-
purpose embeddings will have more robust vector representations
of common words, since their word count is much higher and
therefore words have been trained in more contexts. However, they
are unable to capture the domain-specific semantic associations.
How to best combine domain and general text data in this setting
is a question we investigate in this work. We present and study
three representative strategies for creating domain-aware word
embeddings based on both general and domain-specific text corpora,
including weighted fusion of text data, concatenation of embedding
vectors, and interpolation of aligned embedding vectors.

The weighted fusion method combines the general and domain
text data before training of the word embeddings to emphasise
words and contexts that are only common in the domain dataset
through repetition (the amount of repetition is controlled via a
hyperparameter). The concatenation method combines the vec-
tors of general and domain embeddings post-training, allowing the
model to learn which dimensions are better suited for the task at
hand. The embedding interpolation method is a novel technique
inspired by Jelinek-Mercer smoothing [7] that interpolates trained
general-purpose and domain embeddings using a weighting (i.e.,
smoothing) parameter. However, a direct application of the smooth-
ing idea does not work because the two embedding vector spaces
are not “compatible” with each other, i.e., the dimensions are not
aligned. We address this challenge by learning a transformation
matrix to transform the vectors in one space to those in the other
so as to make them compatible and then interpolate them, allowing
the combined vector reflecting the semantic associations in both
datasets. All the three methods are general and can be applied to
any task in any domain.

We systematically evaluate the proposed three methods using a
common text application task, i.e., text classification, on a cyber-
security domain dataset. Experimental results show that all three
methods are effective and domain-aware embeddings consistently
outperforms generic embeddings, confirming that the common
practice of direct use of generic embeddings is non-optimal. We
find the interpolation method to be the most robust and effective
among all three methods.

2 METHODOLOGY

As part of our goal to create domain-aware word embeddings, we
want to leverage general (e.g., Wikipedia) and domain-specific un-
structured textual data and study how to best combine them. This
can be done at the corpus level (i.e., pre-training), model level (i.e.,
intra-training) and vector level (i.e., post-training). In the following
we study one corpus level and two vector level methods.

2.1 Interpolation of Aligned Embeddings

Let E4omain and ggeneral he domain and general word vector spaces.
We define the smoothed embedding space ES™0°!" a5 in Equation 1.
Here, we introduce a smoothing parameter A, that weighs the in-
fluence of the general and domain word embeddings. We make A a
parameter of our model, which we evaluate in our experiments.

Esmoath =(1- A)Edamain + AEgeneral (1)

Since E4omain and ggeneral are trained on different corpora, the
underlying vector spaces need to be aligned before they can be
added. Therefore, we learn a transformation matrix W that esti-
mates the transformational property described in Equation 2.

Egeneralw _ Edomain ()

We learn W by solving the optimization problem in Equation 3
using stochastic gradient decent, by aligning identical words from
the different embedding spaces, indexed by i.

: general domain|2
m&nZiZIIWEi — pfomain)| (3)

Incorporating W in Equation 1, we arrive at our final embedding
function in Equation 4. Using W we can transform the general
vectors into the domain-specific space!. By adding them together,
the model can enrich the domain embeddings with signals from
the general embeddings that might not be captured in the domain
training data. We argue that due to the small size of the domain
corpus, the resulting word embeddings are “over-fit” and can benefit
from generalization, introduced by our smoothing method.

Esmooth =(1- A)Edomain + AWEgeneral (4)

2.2 Concatenation of Embeddings

General and domain embeddings can also be combined through
concatenation. Here, the intuition is that the model will learn to
prioritize certain embedding dimensions using the training data. For
the domain and general word embeddings EZ0™ain and ggeneral
the resulting word embedding E°"°@ is described in Equation 5,
where || is the concatenation operation. Concatenation is done only
for words that appear in both embedding spaces.

[eoncat _ Edomain | IEgeneral (5)

2.3 Weighted Fusion of Training Data

When general and domain textual data are available, it is possible
to combine both before training of the word embeddings. To in-
crease the prominence of the (small) domain in the (much-larger)
general dataset, we choose to duplicate the domain data during

!We found that transforming the domain-specific vectors into the general embedding
space was less effective.

training. For this we introduce a parameter N, which reflects the
number of repeats of the domain data during training. N has the
following properties: if N = 0, the resulting word embeddings are
trained using no domain data, if N — oo, then the resulting word
embeddings are trained on domain data.

3 EXPERIMENTAL SETUP

Dataset: MalwareTextDB [10] contains information about malware
and vulnerabilities from articles that are published on the web. We
focus on the task of classifying relevant sentences for inferring mal-
ware actions and capabilities (binary sentence classification). We
employ the second version of the dataset, that was released as part
of the 2018 International Workshop on Semantic Evaluation [14].
However, in our experiments we found large discrepancies between
the performances of the development and test datasets, which lead
us to conclude that these were constructed in a biased way. There-
fore, we randomly re-sample the entire dataset into training (80%,
10,334 sentences), development (10%, 1,292 sentences) and testing
(10%, 1,292 sentences). In our experiments we report F; score in
accordance with the evaluation metrics of the workshop.

Word embeddings: We use the word2vec algorithm [11] to train
our all word embeddings. Our domain embeddings are trained on a
corpus of cybersecurity related documents, which we crawl from
the web. Our crawler is restricted to 500 domains of cybersecurity
companies [1] and keeps documents that are have a high similarity
with the documents in the training corpus. After removing dupli-
cates, the final collection contains 220,088 unique documents, with
over 160 million words. For our general embeddings, we make use
of a Wikipedia dump with over 2.5 billion words.

Classifier: Since our goal is to compare different word embedding
models (optimizing task performance is not our main goal), we
decided to make use of a simple neural classification method. We
implement the standard Convolutional Neural Network model from
Kim [8]. All models are trained on the training set, tuned on the
development set and evaluated on the test set. We report the results
of the model that performed best on the development set.
Hyperparameters: Besides the parameters required by our classi-
fication frameworks, we investigate the effect of hyperparameters
introduced by our models. Lambda (1): This parameter regulates
the interpolation between domain and general embeddings. In our
experiments we explore different settings for A within the interval
[0,1], in 0.1 increments. Domain duplication factor (N): Relates to
our weighted fusion of training data strategy. We explore differ-
ent settings ranging from no domain data (N = 0) to a dataset
dominated by domain data (N = 100). Embedding dimension (dim):
There is no general way of determining the optimal dimension of
the vector space of word embeddings. Thus, we explore different
settings for dim € {100, 200,300}.

Baselines: We compare our models to two embedding baselines
to examine our main hypothesis that some combination of both is
better than each of them individually. GENERAL is the widely-used
case of standard embeddings that are trained on a large general-
purpose corpus. In our case, these are embeddings trained on a
large Wikipedia corpus. DOMAIN are embeddings trained on a
small domain corpus. We train cybersecurity embeddings from our
webcrawl, mentioned above.

dim[Dev Test Model

300 0.5693 | 0.5209 DOMAIN
0.5411 | 0.4773 GENERAL
0.5952 | 0.5331 CONCAT

0.6087 | 0.5429 | FUSION (N=15)
0.6498 | 0.5778 | INTERPOL (A = 0.5)

200 | 0.6340 | 0.6013 DOMAIN
0.5411 | 0.5168 GENERAL
0.5912 | 0.5164 CONCAT

0.6131 | 0.6069
0.6655 | 0.6053

FUSION (N=50)
INTERPOL (1 = 0.2)

100 | 0.5934 | 0.5685 DOMAIN
0.5271 | 0.5090 GENERAL
0.5688 | 0.5220 CONCAT

0.6156 | 0.5607 FUSION (N=100)
0.6446 | 0.6239 | INTERPOL (A = 0.4)
Table 1: F; score for different embedding dimensions.

4 EVALUATION

4.1 Comparison of Models

We compare the baselines DOMAIN and GENERAL to the three
proposed methods CONCAT, INTERPOL and FUSION. We present
the results in Table 1. Results are shown for different embedding
dimensions along with the performance on development (Dev) and
test (Test) sets and the model name. For the INTERPOL and FUSION
we only show the best performing model on the development set,
with its lambda parameter (1) and domain duplication factor (N),
respectively. The best performance for each dimension is marked in
bold, and the best performing model on the dataset is underlined.
We find that the INTERPOL method consistently outperforms all
baselines and other models on the development set. It is only slightly
outperformed on the test set for dim=200 by FUSION. Based on the
test performance it seems that 100 dimensions works best. Con-
catenation does not always work well, as it is often outperformed
by the DOMAIN baseline. Considering the baselines, it seems that
DOMAIN performs better than GENERAL in the majority of the
cases, as can be observed for all dimensions. Overall, we conclude
that combining domain and general data is generally beneficial.
As concatenation is not always able to outperform the baselines,
interpolation should be the preferred method due to it’s flexibility
introduced by the A parameter, which we investigate next.

4.2 Lambda Parameter

Our previous evaluation has shown that performance can be sen-
sitive to the A parameter. Therefore, we further study the lambda
parameter’s sensitivity on the development set. In Figure 1 we plot
F; performance for different settings of A against the other models.
It is noticeable that adding even small amounts of general informa-
tion can push the performance past all other models (see A = 0.1).
Values higher than 0.5 seem to hurt performance, which can also
be observed in Table 1 for other dimensions. Here, we would like
to point out that even though A = 0.0 is equal to the DOMAIN
model, A = 1.0 is not equal to the GENERAL model. This is because
general embeddings are transformed using the alignment matrix

DOMAIN ONLY ——
GENERAL ONLY —&—
CONCAT —+—
0.7 ¢ INTERPOL —>—
FUSION
0.65
(o)
s //\‘/‘* \/\
o %
0.6 // b i
0.55

0.5

00 0.1 02 03 04 05 06 07 08 09 10
A
Figure 1: Influence of Lambda Parameter (dim=300).

W, as described in Equation 4. Interestingly, we find that just trans-
forming the general embeddings with the alignment matrix helps
boosting the performance (see A = 1.0), which can be interpreted
as evidence that the learned transformation is effective.

4.3 Domain Duplication Factor

To further understand how to best combine general and domain
data, we experiment with a third method: weighted fusion of train-
ing data. The domain duplication factor (N) weights the amount of
domain data that is used during training. We show the results for
different settings of N in Table 2. The row “% domain” shows the
percentage of domain data in comparison to the general data. The
best model for each dimension is in boldface. We find that the N
parameter is very sensitive and no clear overall trend is observable.
Based on the results from Tables 1 and 2, we conclude that the
fusion of training data can outperform the other baselines under
certain conditions and beat the INTERPOL model in one setting:
dim=200, on the test dataset. Furthermore, tuning N is costly, as it
requires re-training of the embeddings for each setting.

4.4 Qualitative Evaluation

Following our quantitative evaluation, we further perform a qual-
itative analysis where we inspect the properties of the resulting
embedding spaces. Table 3 shows the top ten closest neighbors to
the word “bug” in different embedding spaces (DOMAIN, GEN-
ERAL, INTERPOL A = 0.5) within the cybersecurity domain. We
purposefully choose the word “bug” because of its ambiguity in
different domains, which is nicely reflected in the table. GENERAL
captures mostly the biological meaning of bug and lists other in-
sects (e.g., worm), properties (e.g., flappy) or syntactic variations
(e.g., bugs). Surprisingly, the word “stagefright”, which is the name
of a well-known bug in the Android operating system, is ranked
in one of the top positions. In contrast, DOMAIN lists more cy-
bersecurity related terms, where bugs are synonyms for errors in
programs. The INTERPOL method is able to introduce “stagefright”
to the most similar words and more general terms are ranked higher
(vulnerability, loophole). This seems to indicate that INTERPOL is
able to promote more general concepts and prevent the domain
embeddings from being "overly specific" (i.e., overfit) to the domain.

N 0 1 3 5 10 15 20 25 50 100
% domain 0 6.27 18.82 31.37 62.73 94.10 125.46 | 156.83 | 313.66 | 627.31
dim=300 0.5411 | 0.5685 | 0.5455 | 0.5843 | 0.5777 | 0.6087 | 0.5859 | 0.5483 | 0.5909 | 0.5886
dim=200 0.5411 | 0.5554 | 0.5685 | 0.5657 | 0.5411 | 0.5954 | 0.5664 | 0.5473 | 0.6131 | 0.5973
dim=100 0.5271 | 0.5779 | 0.5972 | 0.5936 | 0.5419 | 0.5674 | 0.5546 | 0.5734 | 0.5990 | 0.6156

Table 2: Influence of domain duplication factor N.

DOMAIN [GENERAL [INTERPOL
flaw 795 || bugs 817 || flaw .758
glitch 732 || worm 711 || vulnerability | .690
vulnerability | .719 || stagefright | .702 || issue .681
issue .686 || mouse .679 || bugs .660
bugs .644 || flappy .670 || glitch .629
defect .624 || beetle .654 || problem .596
loophole .611 || blob .651 || defect .550
problem .610 || gizmo 641 || flaws .535
weakness 571 stink .637 || stagefright 524
flaws 568 || critter .633 || loophole 519

Table 3: Neighbors of “bug” in Different Embedding Spaces.
5 RELATED WORK

Domain-agnostic are the general case of word embeddings with
no domain information. The earliest work to encode the context
of a word in a neural language model is Bengio et al. [2]. Mikolov
et al. [11] introduces word2vec, where a target word’s vector rep-
resentation is used to predict its context window (Skip-gram) and
vice versa (CBOW). Pennington et al. [12] proposes to incorporate
word contexts using factorization of a word co-occurence matrix.
Levy and Goldberg [9] alters the context selection while training,
conditioning a word’s context on the word dependencies within
a sentence. The drawbacks of domain-agnostic methods are: (1)
word representations are general and not tailored for specialized
domains; (2) the evaluation does not consider specific tasks.
Domain-specific methods have some form of domain knowledge
integrated during training [6, 15] or as a post-processing step. For
instance, Faruqui et al. [4] proposes to “retrofit” word embeddings
by incorporating semantic lexicons (e.g., WordNet). These methods
require (semi-) structured data sources, which can be thought of as
distant supervision during or post-training and require significant
human effort. In contrast, our method is entirely unsupervised and
requires no expert knowledge.

Combination of Embeddings methods have been studied in Ghan-
nay et al. [5]. The authors compare vector concatenation, dimen-
sionality reduction and an antoencoder model. The study focuses
on different embedding algorithms, rather than domain-specificity.
Context-sensitive models, such as BERT [3] and ELMo [13], make
the word vector dependent on the word sequence that the word
occurs in. While our approaches and the context-sensitive models
deviate from the generic embedding representation in that the
generated representation better reflects the needed representation
for a particular domain and task, the improvement is from different
angles. As the methods we study are independent of the model
that was used to train the word vectors, it is generally possible to
incorporate context sensitive representations as word vectors into
our methods.

6 CONCLUSION

We investigated three general methods for creating domain-aware
word embeddings based on both general and domain-specific text

corpora. Overall, interpolation performs best in almost all settings,
whereas concatenation is not always able to outperform the base-
lines. The fusion model can achieve good performance when tuned
correctly, but tuning is a very costly process. The general embed-
dings are the least effective in almost all settings, thus we conclude
that it is beneficial to create domain-aware word embeddings and
the interpolation method can be recommended as a robust way
to generate domain-aware embeddings. As the approach is gen-
eral, it can be potentially used in many downstream applications
to improve task performance, such as compromised account detec-
tion [16], stock trend prediction [17], etc.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1801652.

REFERENCES

[1] [n.d.]. Cybersecurity 500. https://cybersecurityventures.com/cybersecurity-500/

[2] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A
neural probabilistic language model. J MACH LEARN RES 3, Feb (2003).

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL.

[4] Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris Dyer, Eduard H. Hovy,
and Noah A. Smith. 2015. Retrofitting Word Vectors to Semantic Lexicons. In
HLT-NAACL.

[5] Sahar Ghannay, Benoit Favre, Yannick Estéve, and Nathalie Camelin. 2016. Word
Embedding Evaluation and Combination. In LREC.

[6] Saurav Ghosh, Prithwish Chakraborty, Emily Cohn, John S Brownstein, and Naren
Ramakrishnan. 2016. Designing domain specific word embeddings: Applications
to disease surveillance. arXiv preprint arXiv:1603.00106 (2016).

[7] Frederick Jelinek and Robert L. Mercer. 1980. Interpolated Estimation of Markov
Source Parameters from Sparse Data Pattern Recognition in Practice. ES Gelsema
and LN Kanal (1980).

[8] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In
EMNLP.

[9] Omer Levy and Yoav Goldberg. 2014. Dependency-based word embeddings. In
ACL.

[10] Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu, and Chen Hui Ong. 2017. Malware-
textdb: A database for annotated malware articles. In ACL.

[11] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NeurIPS.

[12] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In EMNLP.

[13] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. In NAACL-HLT.

[14] Peter Phandi, Amila Silva, and Wei Lu. 2018. Semeval-2018 Task 8: Semantic
Extraction from CybersecUrity REports using Natural Language Processing
(SecureNLP). In SemEval.

[15] Arpita Roy, Youngja Park, and SHimei Pan. 2017. Learning domain-specific word
embeddings from sparse cybersecurity texts. arXiv preprint arXiv:1709.07470
(2017).

[16] Dominic Seyler, Lunan Li, and ChengXiang Zhai. 2018. Identifying compro-
mised accounts on social media using statistical text analysis. arXiv preprint
arXiv:1804.07247 (2018).

[17] Yiren Wang, Dominic Seyler, Shubhra Kanti Karmaker Santu, and ChengXiang
Zhai. 2017. A Study of Feature Construction for Text-based Forecasting of Time
Series Variables. In CIKM.

