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Abstract. In this paper, we investigate the performance of the exponential time differencing
(ETD) method applied to the rotating shallow water equations. Comparing with explicit time
stepping of the same order accuracy in time, the ETD algorithms could reduce the computa-
tional time in many cases by allowing the use of large time step sizes while still maintaining
numerical stability. To accelerate the ETD simulations, we propose a localized approach that
synthesizes the ETD method and overlapping domain decomposition. By dividing the orig-
inal problem into many subdomain problems of smaller sizes and solving them locally, the
proposed approach could speed up the calculation of matrix exponential vector products.
Several standard test cases for shallow water equations of one or multiple layers are consid-
ered. The results show great potential of the localized ETD method for high-performance
computing because each subdomain problem can be naturally solved in parallel at every
time step.

Key words: Exponential time differencing, domain decomposition, rotating shallow water equations,
finite volume discretization

1 Introduction

The exponential time differencing (ETD) method, as an exponential integrator-based method,
has been developed for solving evolutionary partial differential equations of semi-linear or
fully nonlinear types (see, for example, [1–8] and a thorough review [9]). Such a method is
constructed on the basis of exponential integrators and variation-of-constants formula, and is
known for its desirable numerical stability. Indeed, for stiff problems, a large time step size
can be used in ETD, while tiny time step sizes are often required by explicit time stepping. In
addition, differently from standard implicit time stepping, nonlinear solvers are not required
in ETD. Therefore, the ETD method usually leads to significant computational savings com-
paring with other time-stepping algorithms. The major computational efforts in ETD schemes
are spent in evaluating matrix exponential and vector products. Many algorithms have been
proposed in order to evaluate matrix exponentials [10–15]. Some of them are designed for large
sparse matrices, while the others only work for matrices of moderate size. We are interested
in the former as the discrete system we considered in this paper is of large dimensions. The
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first comprehensive package for evaluating large-scale matrix exponential vector products is
EXPOKIT, which was developed by Sidje in [12]. The backbone of its sparse routines is Krylov
subspace projection method such as the Arnoldi and Lanczos processes whose mathematical
foundation was established in [16–18]. By projecting large matrices to smaller ones via the
Krylov subspace approach, the corresponding matrix exponential becomes easier to compute.
The other main idea in EXPOKIT is to adapt the time step size of the ETD simulations based
on an error estimator developed in [17]. Combing the time stepping idea of EXPOKIT and the
adaptivity of the dimension of the Krylov subspace [1], the phipm function algorithm was de-
veloped in [13]. This algorithm achieves a balance between the time stepping error and Krylov
projection error by dynamically choosing the dimension of the Krylov subspace and the size
of time stepping. But it was pointed out in [19] that the Arnoldi procedure still takes too much
time, which made phipm less efficient than other semi-implicit predictor-corrector schemes for
geophysical fluid dynamics problems. Thus, the Krylov subspace with the incomplete orthog-
onalization procedure (phipm/IOM2) was recently introduced, which has been successfully
applied, in the context of exponential Rosenbrock integration methods, to the shallow water
equations on the sphere [15]. Another solver, KIOPS, was proposed in [14] for calculating
ϕ-functions in exponential integrators to allow efficient implementation of multi-stage expo-
nential integrators.

To accelerate the exponential time integration, a different research direction is to take ad-
vantage of parallel and high-performance computing. A straightforward way is to perform
the parallelization at the algebraic level. For instance, the parallel adaptive-Krylov exponen-
tial solver was proposed in [20], where the standard data-parallel approach is taken, that is,
each vector is split across all the processors and MPI communication is used for performing
the vector algebraic operations. However, since the matrix exponential is global and dense,
this approach usually requires a high communication volume. A different way is to divide the
problem into many subdomain problems of smaller size using domain decomposition (DD)
so that they can be solved using exponential integrators in parallel. Based on the overlapping
domain decomposition, a localized compact ETD algorithm was first introduced in [21] for
extreme-scale phase field simulations. In that approach, subdomain problems are solved lo-
cally in parallel at each time step, and the data in overlapping regions is shared by neighboring
subdomains; thus only a small volume of data needs to be transferred between the neighbor
subdomains for time stepping. Numerical experiments on three-dimensional coarsening dy-
namics demonstrated great computational efficiency and excellent parallel scalability of this
approach on supercomputers. The overlapping localized ETD was analyzed in [22] and in [23]
for the time-dependent diffusion and semi-linear parabolic equations respectively, in which
the convergence of the iterative solutions to fully discrete localized ETD solutions and to the
exact semi-discrete solution was rigorously proved. A non-overlapping localized ETD was
proposed and analyzed for diffusion problems in [24], where the convergence and exact mass
conservation were demonstrated.

In this paper, we consider the rotating shallow water equations in the context of MPAS-
Ocean [25], the ocean component of MPAS - Model for Prediction Across Scales. MPAS is
a set of open-source software utilities jointly developed by National Center for Atmospheric
Research and Los Alamos National Laboratory to model atmosphere, ocean and other earth-
system components with application to climate, regional climate and weather studies. To ob-
tain a global ocean model capable of resolving full physics and handling multiple resolutions
within a single simulation, MPAS-Ocean utilizes the TRiSK scheme [26, 27] - a C-grid stagger-
ing finite volume method - for spatial discretization on unstructured, multi-resolution meshes
of the sphere. Such meshes are constructed by Spherical Centroidal Voronoi Tessellations
(SCVTs) [28, 29] whose dual meshes are Delaunay triangulations. In fact (as explained further
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below), the TRiSK scheme is applicable to any conforming mesh composed of convex polygons
that are locally-orthogonal, including latitude-longitude grids, dipole and tripole displaced
pole grids, conformally mapped cubed sphere grids, Voronoi diagrams and Delaunay trian-
gulations. The scheme possesses desirable properties for modeling oceanic and atmospheric
flows, in particular, it supports steady-state nonlinear geostrophic balance, and allows for the
conservation of mass and total energy and a robust simulation of potential vorticity dynam-
ics. These properties are achieved mainly because of the construction of the flux interpolation
scheme which maps a flux field on the primal mesh to a new flux field on the dual mesh in such
a way that the divergence of the new flux on the dual mesh is an interpolation of the diver-
gences on the neighboring primal mesh cells. Equivalently, the constructed flux is geometry-
compatible, i.e. satisfying the “null-divergence” condition proposed and studied in [30–32] for
hyperbolic conservation laws on manifolds to ensure stationary geostrophic modes. It should
be noted that the flux reconstruction scheme in TRiSK is robust and works on any orthogonal
grids, particularly on multi-resolution meshes by SCVTs as demonstrated in [33]. Therefore,
the TRiSK scheme has been widely used for modeling both global ocean/atmosphere circula-
tions and flow motions in coastal regions. The analysis of the scheme was presented in [26]
and [27] for the linearized and nonlinear shallow water equations, respectively.

In this work, we focus on efficient time-stepping methods for the nonlinear shallow water
equations discretized in space by the TRiSK scheme; specificially, we propose a localized ETD
method that combines the ETD method with the overlapping domain decomposition. The ETD
methods have been increasingly used as the time integration scheme for the shallow water
equations on the sphere of earth [15, 19, 34, 37]. Among them, in [37], different ETD methods
have been proposed and analyzed for the multilayer rotating shallow water equations with
TRiSK discretization. These schemes are efficient in the sense that considerably larger time
steps over an explicit integrator can be taken while stability and sufficient accuracy are still
maintained; moreover, numerical results show that significant cost reductions are achieved
with the ETD method over an explicit time discretization scheme (RK4). The conservation
of mass of the ETD scheme in the framework of TRiSK discretization is also proved. Our
goal here is to construct localized ETD methods which maintain all the desirable properties of
the global ETD method while reducing the size of the problem with domain decomposition,
thus further speed up the overall computation. Extensive numerical experiments are carried
out to demonstrate the effectiveness of the localized ETD method, which achieves the desired
accuracy as the global ETD method and shows great potential in parallel computing due to its
natural scalability.

The rest of this paper is organized as follows. The mathematical model and spatial dis-
cretization for the shallow water equations are presented in Section 2. The ETD method is
briefly reviewed in Section 3, and the localized ETD method is then proposed and discussed
in Section 4. Various numerical experiments are presented in Section 5, followed by some
concluding remarks given in Section 6.

2 Rotating shallow water equations and spatial discretization

The rotating shallow water equations (SWEs) have been widely used for modeling the atmo-
spheric and oceanic flows, which can be seen as a simplification of the primitive equations
obtained under the assumption of a small ratio of the vertical length scale (fluid thickness) to
the horizontal one. The single-layer SWEs describe the motion of a thin layer of fluid with
a uniform density and a free surface, lying on a rigid bed. The multilayer model considers
the variance of density in the vertical direction and models the dynamics of several layers of
fluids stacked on top of each other, which provides a more accurate vertical profile than the
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single-layer model. Both models will be presented in the following. Furthermore, for geo-
physical flow problems, the Coriolis force is included in order to account for the rotating effect
of the Earth. To better address the multi-scales of the geophysical flows, meshes with mul-
tiple resolutions are often applied. To this end, we choose the TRiSK scheme for spatial dis-
cretization [25–27,35], as it can handle meshes with variable resolutions and possesses desired
properties of conservations.

2.1 Single-layer shallow water equations

Let Ω be the sphere of earth or a part of it. The single-layer rotating SWEs can be written in
the following vector-invariant form:

∂h
∂t

+∇·(hu)=0, in Ω×(0,T),

∂u
∂t

+( f +ω)k×u+∇
(
|u|2

2
+g(h+b)

)
=G(h,u), in Ω×(0,T),

(2.1)

where h is the fluid thickness, u is the fluid horizontal velocity field on the earth’s surface,
ω=k·(∇×u) is the relative vorticity with k the surface normal vector satisfying k·u=0, and
G is the additional stress or diffusion terms that must be determined on a case-to-case basis.
Three parameters involved are the gravity acceleration g, the bottom topography b, and the
Coriolis parameter f =2Ω0sinθ, where Ω0 is the angular velocity of rotation and θ the latitude.
The fluid absolute vorticity is f +ω. By introducing the potential vorticity (PV)

q=
f +ω

h
, (2.2)

the rotating SWEs can be recast in the following form:
∂h
∂t

+∇·(hu)=0,

∂u
∂t

+q(hu⊥)+∇
(
|u|2

2
+g(h+b)

)
=G(h,u),

(2.3)

where u⊥=k×u is the velocity rotated through a right angle, and q(hu⊥) is the thickness flux
of PV perpendicular to the velocity field u and is referred to as the nonlinear Coriolis force [27].

2.2 Multilayer shallow water equations

The multilayer shallow water model describes the motion of a stack of fluids with distinct
densities [36–38]. It is able to provide more accurate vertical profiles of the fluid velocity and
depth, compared with the single-layer model. Assuming that there are L layers of fluids, we
define ρl to be the density of the l-th layer that satisfies ρl−1<ρl , for 2≤ l≤L (i.e. the density is
increasing with water depth). Denote by hl and ul the fluid thickness and velocity of the l-th
layer, and by h and u the vectors containing all the layer variables. Set the layer coordinates ηl
as

ηl(h)=b+
L

∑
i=l

hi, for l=1,.. .,L, and ηL+1=b, (2.4)
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so that the layers are separated based on their densities (also known as isopycnal contours).
Then the governing equations for the fluid in layer l read:

∂hl

∂t
+∇·(hlul)=0,

∂ul

∂t
+q(hl ,ul)hlu⊥l +∇

(
|ul |2

2
+

gpl(h)
ρl

)
=Gl(h,u),

(2.5)

where Gl is the additional stress or diffusion that will be specified in numerical experiments,
and pl(h)=ρlηl(h)+∑l−1

i=1 ρihi is the dynamical pressure.

Remark 2.1. The rotating SWEs have been widely used for predicting tides and storm surge
levels of the ocean, in which the term G in equation (2.3) or Gl in equation (2.5) plays an
important role in making the prediction feasible. The choice of this term will be specified in
Section 5 for each test case.

2.3 Spatial discretization by the TRiSK scheme

The TRiSK scheme is a C-grid staggering, mimetic finite volume/finite difference scheme for
spatial discretization that preserves the desirable properties of the continuous equations, such
as the conservation of mass, total energy and PV. The TRiSK scheme has been used for the
horizontal discretization of the primitive equations in MPAS-Ocean. Here, we give a brief
introduction of the scheme. For details, the reader is referred to [26, 27, 39].

The TRiSK scheme uses the spherical centroidal Voronoi tessellation (SCVT) [40] and its
dual Delaunay triangulation as the primal mesh and dual mesh, respectively. As a C-grid
staggering scheme, for the discrete quantities of the rotating SWEs (2.3) and the multilayer
extension (2.5), the TRiSK scheme places the fluid thickness at the primal mesh cell centers,
stores the normal component of the velocity at the primal cell edges, and puts the PV at the
primal cell vertices (see Figure 1). Take the single-layer rotating SWEs for example, the semi-

Figure 1: The staggering of variables for the thickness h, the normal component of the velocity
u and the PV q in the TRiSK scheme [25].
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discrete system after the spatial discretization is:
∂hi

∂t
=−[∇·Fe]i,

∂ue

∂t
=−[∇(Ki+g(hi+bi))]e−F⊥e q̂e+G(h,u),

(2.6)

where hi=
∫

Pi
hdx/Ai is the cell average of fluid thickness h over the primal mesh cell Pi with Ai

being the area of cell Pi and h=(h1(t),. . .,hNc(t)) with Nc being the number of primal cells. For
the velocity, the unknowns are ue=u·ne representing the component of the horizontal velocity
field in the direction normal to the primal cell edge e and u= (u1(t),. . .,uNe(t)) with Ne the
number of primal edges. In addition, Fe = ĥeue is the fluid thickness flux per unit length in the
direction of ne with ĥe=[h]i→e denoting the average of h on primal edge e using its values hi on
neighboring primal cells; q̂e =[q]v→e an averaging of q on the primal edge e using its values qv
on primal vertices and F⊥e the thickness flux perpendicular to Fe. The specific form of F⊥e can
be obtained based on the flux reconstruction operator in [26, 27].

The semi-discrete system (2.6) can be rewritten in the following general form:

dW(t)
dt

=F(W), (2.7)

where W =(h1(t),. . .,hNc(t),u1(t),. . .,uNe(t))
T∈RNc+Ne and the right-hand side vector F(W) is

generally nonlinear. Next, we discretize (2.7) in time to obtain a fully discrete problem.

3 Exponential time differencing method for time discretization

For time integration, we make use of the exponential time differencing Runge-Kutta (ETD-RK)
method, which is known for better stability over the explicit stepping methods. In particular,
we illustrate the ETD-RK scheme of third order accuracy in detail as it will be used in our
subsequent numerical experiments. Note that in [37], an ETD-RK type scheme was proposed
using a static linearization constructed from the Hamiltonian formulation of the continuous
equations evaluated at a reference state with zero velocity. However, the applicability of such
a scheme is limited as the fixed linearization matrix is not reliable when the velocity field is
far away from the zero, which is a common situation in many cases, such as the shallow water
test case 5 (SWTC5) and test case 6 (SWTC6) in [41] (see Section 5). Therefore, the continuous
linearization via computing the Jacobian matrix of the right hand side of system (2.7) is used
in this paper.

3.1 Exponential time differencing Runge-Kutta

Consider a uniform partition of time interval [0,T]: 0 = t0 < t1 < . . . < tM = T with time step
∆t=T/M. Denote by Wn the approximation of W(tn) at the time tn and Jn the Jacobian matrix
of F(W) evaluated at Wn, Jn =

∂F
∂W (Wn). The system (2.7) is then equivalent to

dW(t)
dt

= JnW(t)+Rn (W(t)), (3.1)

where Rn(W(t)) is the associated nonlinear remainder: Rn(W) = F(W)− JnW . Multiplying
(3.1) by the integrating factor e−Jnt, and then integrating the system from t= tn to t= tn+1, we
obtain

W(tn+1)= e∆tJnW(tn)+e∆tJn

∫ ∆t

0
e−τJn Rn(W(tn+τ))dτ. (3.2)
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The essence of ETD methods is to approximate the nonlinear term Rn(W(tn+τ)) appearing in
the integrand of (3.2) for τ∈ [0,∆t] [2]. General three-stage, third-order ETD-RK schemes were
proposed in [42]. In our implementation, we use the following ETD-RK3 scheme:

wn,1=Wn+
1
2

∆tϕ1(
1
2

∆tJn)F(Wn),

wn,2=Wn+
2
3

∆tϕ1(
2
3

∆tJn)F(Wn)+
8
9

∆tϕ2(
2
3

∆tJn)
(

Rn(wn,1)−Rn(Wn)
)

,

Wn+1=Wn+∆tϕ1(∆tJn)F(Wn)+
3
2

∆tϕ2(∆tJn)
(

Rn(wn,2)−Rn(Wn)
)

,

(3.3)

where the two ϕ-functions are defined as

ϕ1(z)=
ez−1

z
, ϕ2(z)=

ϕ1(z)−1
z

=
ez−1−z

z2 .

It can be seen from (3.3) that the products of matrix exponential functions with vectors are
required. Since the Jacobian matrix appearing in many practical problems is typically large
and sparse, how to quickly evaluate the matrix exponential vector products is essential in
the simulations. The Krylov subspace algorithms provide an efficient way to perform these
calculations.

3.2 Krylov subspace algorithms

By projecting the matrix onto a subspace of small dimension, the Krylov subspace algorithms
are able to evaluate the matrix exponential function in a more efficient way than the original
problem. In addition, one doesn’t need to form the matrix explicitly in this approach, because
only the action of the matrix on single vectors is required.

The Krylov subspace of dimension m for a matrix A∈Rn×n and a vector b∈Rn is defined
as

Km(A,b)=span{b,Ab,. . .,Am−1b}, (3.4)

where m�n. Applying the Arnoldi process leads to the orthonormal basis {vi}m
i=1 of Km(A,b):

for j=1,2,.. .,m,

ṽj+1=Avj−
j

∑
i=1

hi,jvi, hi,j =(vi,Avj), for i=1,2,.. ., j,

vj+1=
1

hj+1,j
ṽj+1, hj+1,j =‖ṽj+1‖,

where v1 = b/‖b‖, (·,·) denotes the Euclidean inner product in Rn, and ‖·‖=
√
(·,·) is the

associated induced norm. Let Vm =[v1,. . .,vm] be the n×m matrix formed by the orthonormal
basis vectors {vi}m

i=1, and Hm the m×m upper Hessenberg matrix consisting of the coefficients
hi,j obtained from the Arnoldi process. We then have the following relation:

AVm =VmHm+hm+1,mvm+1eT
m, (3.5)

where em = (0,.. .,0,1)T ∈Rm is the m-th canonical basis vector of Rm. It follows from the
above relation that the Hessenberg matrix Hm=V T

m AVm, which means that Hm is the projection
of A onto the Krylov subspace with respect to the orthonormal basis {vi}m

i=1. Finally, the
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approximation of matrix exponential vector products, ϕs(∆tA)b for an integer s≥ 0, can be
given as in [13] by

ϕs(∆tA)b≈Vm ϕs(∆tV T
m AVm)V T

m b=‖b‖Vm ϕs(∆tHm)e1, (3.6)

where e1 is the first canonical basis vector of Rm. Because the size of Hm is small, the evaluation
ϕs(∆tHm)e1 is computationally cheap and can be computed using, for instance, a dense Padé
approximation, see [12] for the details.

However, it has been observed that the Arnoldi process has taken a big part of computa-
tional efforts in numerical simulations [19]. To further reduce computational cost, the incom-
plete orthogonalization method (IOM) has been used instead of the standard Arnoldi process.
The IOM was originally proposed in [43] to compute the eigenvalues of large unsymmetric
matrices, and was recently applied to perform an efficient exponential time integration for the
advection-diffusion equation [44] and for the shallow water equations on the sphere [15, 19].
We follow [15] and use the IOM with an orthogonalization of length 2 (IOM2): for j=1,2,.. .,m,

ṽj+1=Avj−
j

∑
i=max(1,j−2)

hi,jvi, hi,j =(vi,Avj), for i=max(1, j−2),. . ., j,

vj+1=
1

hj+1,j
ṽj+1, hj+1,j =‖ṽj+1‖.

It is worthwhile to note that {vi}m
i=1 are only orthonormal locally, i.e.,

(vi,vj)= δij, for |i− j|≤2.

where δij is the Kronecker delta. The phipm/IOM2 solver developed in [19] is based on this
idea and the adaptivity of Krylov subspaces.

4 Localized exponential time differencing method

In this section, we propose a localized ETD (LETD) method with natural scalability, that syn-
thesizes the overlapping spatial domain decomposition and the ETD time integration.

For a given domain Ω, we construct an overlapping decomposition of Ω by first partition-
ing it into K non-overlapping subdomains {Ω̃k}K

k=1, namely the control regions, as shown in
Figure 2 for the case of two subdomains (extension to the multiple subdomains is straightfor-
ward). In practice, mesh partitioning tools, such as METIS [45], can be used to generate such
a non-overlapping partition of Ω. Then the overlapping subdomains Ωk are obtained by ex-
tending Ω̃k to its neighbors by a fixed distance ∆k (or a certain number of layers of the mesh)
and we write Ωk = Ω̃k∪Bk, where Bk is called the associated “buffer zone”. In the following,
we present the proposed LETD algorithm for the single-layer SWEs. The method, however,
can be applied directly to the multilayer case, and will be tested numerically in Section 5.

The subdomain problems find the subdomain solutions h(k) and u(k) at tn+1 on Ωk, for
k=1,.. .,K, given the solution at tn and appropriate boundary conditions on ∂Ω, such that

∂h(k)
∂t

+∇·(h(k)u(k))=0, in Ωk×(tn,tn+1),

∂u(k)

∂t
+q(h(k)u

⊥
(k))+∇

(
|u(k)|2

2
+g(h(k)+b)

)
=G(h(k),u(k)), in Ωk×(tn,tn+1),

h(k)(x,tn)=h(x,tn),u(k)(x,tn)=u(x,tn), in Ωk,

(4.1)
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where h(x,t) and u(x,t) denote the global solution constructed from the subdomain solutions:

(h(x,t),u(x,t))=(h(k)(x,t),u(k)(x,t)), if x∈ Ω̃k. (4.2)

Since the information in a hyperbolic system is propagated along the characteristics, we as-
sume the following relation between the size of buffer zone ∆k and the time step size ∆t =
tn+1−tn:

Λmax,n∆t< min
k∈{1,...,K}

∆k, (4.3)

in order to make sure that the subdomain problems provide the same approximation as the
global scheme inside their control regions, where Λmax,n =Λmax(h(·,tn),u(·,tn)) is the largest
wave propagation speed of the system at tn. Under this condition, the solution at time level
tn+1 in the control domain Ω̃k can be completely determined by the solution at the time level
t = tn in its computational domain Ωk. See Figure 2 for an illustration for the case of two
subdomains using the wave propagation with a constant right-going speed. In such a situation,
it is obvious that the domain of dependence of the solution in Ω̃k at t = tn+1 is part of its
computational domain Ωk if condition (4.3) is satisfied.

Figure 2: A decomposition of two overlapping subdomains in one dimension.

The localized ETD method is to solve subdomain problems at each time step using the
TRiSK scheme for the spatial discretization and the ETD-RK schemes for time integration.
Following [37], we define the characteristics time step size ∆tC by ∆tC=1/λmax,n, where λmax,n
is the largest (in absolute magnitude) discrete wave propagation speed of the fully discrete
system at tn. Let ∆tCFL = c∆tc with the Courant number c<1. For numerical simulations, we
enforce the discrete version of the constraint (4.3):

∆t< min
k=1,...,K

∆k ·∆tCFL. (4.4)

Under this condition, the LETD algorithm reads as follows: for n=0,.. .,M−1,

(1) Given the numerical solution Wn of (3.1) at tn;

(2) Set W(k),n =Wn|Ωk , for k=1,.. .,K;

(3) Use the TRiSK scheme for the spatial discretization and evolve the semi-discrete system
with an ETD-RK scheme locally in each Ωk to t= tn+1 with the time step size ∆t satisfying
(4.4);

(4) Update Wn+1 by Wn+1|Ω̃k
=W(k),n+1|Ω̃k

, for k=1,.. .,K.

Remark 4.1. The solution to the semi-discrete system (2.6) satisfies conservation of total energy
by the construction of the TRiSK scheme (for more details, see [27]). Thus application of the
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ETD or LETD methods to (2.6) results in a numerical scheme in which the total energy is
conserved within time truncation errors. For the conservation of mass, it has been proved in
[37] that the ETD solution of the semi-discrete system (2.6) conserves mass exactly. In the case
of the LETD method with overlapping subdomains, because of the local matrix exponentials,
the LETD solutions in the overlapping region shared by different subdomains may not be
exactly the same. For instance, for the two subdomains Ω1 and Ω2 as in Figure 2, W(1),n+1|Ω1∩Ω2

may not exactly match W(2),n+1|Ω1∩Ω2 , though the difference is very small and in the order of
time truncation errors. Note that the same behavior has been observed for diffusion equations
in [22, 24]). However, as we shall numerically verify in Section 5, the LETD method has the
same accuracy as the global ETD method, and it inherits all desirable conservation properties
of the TRiSK scheme, namely, conservation of mass, total energy and PV for long time horizons.

5 Numerical experiments

The goal of this section is twofold: first, we investigate the numerical behavior of the ETD-
RK method (in particular, the ETD-RK3 scheme (3.3) is used) on single-layer and multilayer
SWEs, and compare its performance with the standard RK method; second, we test the LETD
method and demonstrate its efficiency over its global counterpart in the sequential setting.
Note that we do not investigate the corresponding performance of the LETD method in parallel
implementation in this paper and would like to leave it as future work. We shall consider three
test cases: the test case of simulating ocean mesoscale activity (SOMA) [46], the shallow water
test case 5 (SWTC5) and test case 6 (SWTC6) from the standard shallow-water test case suite in
Williamson et al. [41]. We use the phipm/IOM2 solver [19] as presented in Subsection 3.2 for
matrix exponential vector products, where we set the initial dimension of Krylov subspace to
be m=30, and the maximum Krylov subspace dimension mmax=100. We compute the relative
errors between the numerical solution and the reference solution as:

Eh =
maxj=1,...,Nc |hn(j)−hre f

n (j)|
maxj=1,...,Nc |h

re f
n (j)|

, Eu =
maxj=1,...,Ne |un(j)−ure f

n (j)|
maxj=1,...,Ne |u

re f
n (j)|

, (5.1)

where h
re f
n =

(
hre f

1,n ,. . .,hre f
Nc,n

)
, and u

re f
n =

(
ure f

1,n ,. . .,ure f
Ne,n

)
denote the reference solution at time tn

obtained by RK4 with a small time step size ∆tre f =0.001∆tC. The physical parameters used in
the test cases are the radius of earth R= 6.37122×106 m, the gravity acceleration g= 9.80616
m· s−2, and the angular velocity of earth Ω0 = 7.292×10−5 s−1. All tests are implemented on
Dell Precision 5530 with Intel (R) Xeon (R) E-2176M CPU @ 2.70 GHz and 32 Gb memory.

5.1 Single-layer rotating SWEs

Three test cases are considered for studying the proposed algorithms on the single-layer rotat-
ing SWEs: 1) a simplified version of the SOMA test case with a double-gyre circulation, where
the same geophysical domain and bathymetry are used, but neither wind stress nor bottom
friction is applied; 2) two test cases of flow on the sphere of earth - the SWTC5 of zonal flow
over an isolated mountain and the SWTC6 of Rossby-Haurwitz wave.

5.1.1 The SOMA test case

The same geometrical setting as in [37, 46] is considered: the spatial domain is a circular basin
centered at the point xc of latitude θc = 35◦ and longitude αc = 0◦ with radius 1250 km, lying
on the surface of earth. The fluid depth in the basin varies from 2500 m at the center to 100 m
on the coastal shelf. The initial fluid depth is denoted by h0 =−b+η0, where b< 0 represents

10



the bottom topography and η0 = η̄e−(x−xc)2/(2σ2) is a Gaussian-type function with η̄=2 m and
σ=200 km. The initial velocity is chosen as u0=

g
f (xc)

k×∇η0, where k is the local vertical unit
vector. With such a choice of initial conditions, it can be shown that geostrophic balance holds,
that is, initial velocity satisfies ∇·u0 =0 and the pressure gradient g∇η0 balances the Coriolis
force f k×u0. The velocity field and initial sea surface height η0 are shown in Figure 3.

Figure 3: Initial conditions for the SOMA test: the sea surface height measured in meters (left);
the velocity field measured in meters/second (right).

Remark 5.1. To evolve the semi-linear system (2.7) obtained by the TRiSK scheme, the normal
component of the initial velocity evaluated at the center of every primal edge e is required. In
this test case, the normal velocity at the center of edge e is u0, e = u0 ·ne =

g
f (xc)

(k×∇η0)·ne =

− g
f (xc)

(k×ne)·∇η0 =− g
f (xc)
∇η0 ·te, where te = k×ne is the unit tangential vector along edge

e, and the function η0 is evaluated at the center of edge e. Therefore, the term ∇η0 ·te is the
tangential derivative of η0 evaluated at the center of edge e, which can be simply approximated
by using the finite difference scheme. This technique is also used in other test cases in this
section.

The ETD-RK3 (3.3) is used for time integration. During the simulations, we only update
the Jacobian matrix once every 10 time steps in order to improve the efficiency. Three quasi-
uniform meshes of different resolutions are considered in our simulations:

1) 32 km resolution with 8,521 cells, 25,898 edges, and 17,378 vertices;

2) 16 km resolution with 30,217 cells, 91,285 edges and 61,069 vertices;

3) 8 km resolution with 120,953 cells, 364,124 edges and 243,172 vertices.

The numerical errors for ETD-RK3 on three meshes subject to different time step sizes are
listed in Table 1, and the corresponding simulation time is listed in Table 2. It is observed that
(i) as the time step size decreases successively, the ETD-RK3 converges at the optimal rate on
all the meshes; (ii) as the time step size increases, the total CPU time decreases as fewer steps
are needed for completing simulations. However, for large time step sizes, the CPU time per
step increases significantly since more inner steps are used in matrix exponential evaluation;
consequently, the total CPU time may not monotonically decrease.

To further analyze the performance of the ETD-RK3 scheme, we compare it with the stan-
dard RK3 scheme. In Figure 4, we plot the numerical errors in h versus the total simulation
time based on the data in Tables 1-2 together with the results obtained by RK3 simulations
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∆t
∆tCFL

32 km 16 km 8 km
Eh Eu Eh Eu Eh Eu

160 1.03e-07 - 8.50e-05 - 8.46e-08 - 4.25e-05 - 9.60e-09 - 7.19e-06 -
80 5.74e-08 [0.84] 4.90e-05 [0.80] 1.39e-08 [2.61] 9.12e-06 [2.22] 1.75e-09 [2.46] 1.20e-06 [2.59]
40 8.65e-09 [2.73] 8.13e-06 [2.59] 1.84e-09 [2.92] 1.59e-06 [2.52] 1.78e-10 [3.30] 1.53e-07 [2.96]
20 8.10e-10 [3.42] 6.61e-07 [3.62] 2.07e-10 [3.15] 1.88e-07 [3.08] 2.39e-11 [2.90] 1.66e-08 [3.21]
10 6.43e-11 [3.66] 6.71e-08 [3.30] 1.89e-11 [3.45] 2.04e-08 [3.20] 2.24e-12 [3.41] 1.44e-09 [3.53]
5 5.75e-12 [3.48] 5.93e-09 [3.50] 1.63e-12 [3.54] 1.45e-09 [3.81] 2.04e-13 [3.46] 1.27e-10 [3.50]

Table 1: (SOMA) The errors of fluid thickness and velocity obtained by ETD-RK3 with time
steps varying from ∆t=160∆tCFL to ∆t=5∆tCFL on meshes with different resolutions at Day 1.

∆t
∆tCFL

32 km 16 km 8 km
time/step total time time/step total time time/step total time

160 0.43 5.98 3.50 101.49 14.52 842.32
80 0.20 5.55 1.52 86.70 8.19 949.62
40 0.15 8.11 0.85 95.58 3.94 909.46
20 0.15 16.27 0.77 173.43 3.56 1642.59
10 0.15 31.94 0.77 347.59 3.70 3412.09
5 0.15 63.85 0.77 696.82 3.71 6849.96

Table 2: (SOMA) The average CPU time for each time stepping and total CPU time obtained
by ETD-RK3 with time steps varying from ∆t = 160∆tCFL to ∆t = 5∆tCFL during one day’s
simulation. The simulation time is measured in seconds.
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Figure 4: (SOMA) Errors in fluid thickness h versus total CPU time for the one-day simulations
on meshes with 32 km resolution (left), 16 km resolution (middle) and 8 km resolution (right).

over the same time interval. We see that for the mesh with 32 km resolution, the ETD-RK3 is
more efficient than RK3; for the mesh with 16 km resolution, when the error is larger than 10−8,
RK3 is more efficient than ETD-RK3, whereas for an error threshold less than 10−8, ETD-RK3
becomes more efficient; for the mesh with 8 km resolution, when the error threshold is less
than 8×10−10 or so, ETD-RK3 is more efficient than RK3. In addition, as the mesh becomes
finer, the computational time for ETD-RK3 increases quickly due to the evaluation of matrix
exponential vector products becomes more expensive.

This observation motivates the study of localized ETD-RK schemes. We first divide the
spatial domain using METIS. Figure 5 provides an illustration for partitioning the mesh with
a 32 km resolution into 2, 4 and 8 non-overlapping subdomains, which represent the control
regions of subdomains. We then add a buffer zone including 10 layers of neighboring cells
to each control region, which yields the computational domain in each subdomain problem.
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During one step of the simulations, all the subdomain problems are solved by ETD-RK3 indi-
vidually with time step ∆t=10∆tCFL, then information on the overlapping zone is exchanged,
and the global solution is advanced to next time level. We consider different numbers of sub-

Figure 5: The primal mesh of 8521 cells and subdomains decomposed by METIS. Top-left: the
computational domain; top-right: two subdomains; bottom-left: four subdomains; bottom-
right: eight subdomains.

domains, and compute the errors in fluid thickness and velocity on the three meshes after a
one-day simulation as shown in Table 3. The associated CPU time is displayed in Table 4. Ob-
viously, when the number of subdomains equals one, the LETD-RK3 coincides with the global
ETD-RK3 scheme. It can be seen from Table 3 that the numerical accuracy of LETD-RK3 is
identical to its global counterpart. This is expected as the size of buffer zone and time step size
satisfy the relation (4.4) in our computational setting. The benefit of LETD-RK schemes can
be deduced from Table 4. On the mesh of the 32 km resolution, the total CPU time consumed
by LETD-RK3 with 32 subdomains is about six times of that of global ETD-RK3 scheme, while
on the mesh of the 8 km resolution, the total CPU time of LETD-RK3 using 32 subdomains is
almost identical to that of global ETD-RK3 scheme. Note that these results are obtained with
sequential computing but the subdomain problems can be solved naturally in parallel, thus
we expect that the CPU time could be significantly reduced when the LETD-RK schemes are
combined with parallel computing, especially for meshes with fine resolutions.

Finally, we consider 15-day-long simulations. Here, we only present the results obtained on
the 16-km-resolution mesh because the behaviors of the schemes on other meshes are similar.
The numerical solutions at T=15 days obtained by ETD-RK3 are shown in Figure 6. The LETD-
RK3 with 8 subdomains achieves the same results. The evolution of the relative changes in total
energy and mass obtained both schemes is plotted in Figure 7, which shows that both schemes
have good conservation properties.

13



No. of 32 km 16 km 8 km
subdomains Eh Eu Eh Eu Eh Eu

1 6.4298e-11 6.7118e-08 1.8907e-11 2.0411e-08 2.2431e-12 1.4377e-09
2 6.4298e-11 6.7118e-08 1.8907e-11 2.0411e-08 2.2431e-12 1.4377e-09
4 6.4298e-11 6.7118e-08 1.8907e-11 2.0411e-08 2.2431e-12 1.4377e-09
8 6.4298e-11 6.7118e-08 1.8907e-11 2.0411e-08 2.2431e-12 1.4377e-09
16 6.4298e-11 6.7118e-08 1.8907e-11 2.0411e-08 2.2431e-12 1.4377e-09
32 6.4298e-11 6.7118e-08 1.8907e-11 2.0411e-08 2.2431e-12 1.4377e-09

Table 3: (SOMA) The errors of fluid thickness and velocity by the LETD-RK3 scheme on meshes
with different resolutions and different number of subdomains at Day 1.

No. of 32 km 16 km 8 km
subdomains time/step total time time/step total time time/step total time

1 0.15 31.94 0.77 347.59 3.70 3412.09
2 0.17 37.12 0.74 335.76 2.63 2429.60
4 0.21 46.55 0.80 362.21 2.84 2622.96
8 0.33 72.86 0.94 422.73 3.17 2924.95

16 0.48 106.08 1.15 519.51 3.69 3403.89
32 0.83 181.36 1.50 679.98 4.28 3954.93

Table 4: (SOMA) The CPU time for each time stepping and total CPU time of LETD-RK3 during
a one day’s simulation on meshes with different resolutions and different number of subdo-
mains. The simulation time is measured in seconds.

Figure 6: (SOMA) Snapshots of sea surface height with unit of m (left) and the velocity with
unit of m · s−1 (right) at T=15 days using ETD-RK3 with time step ∆t=10∆tCFL.

5.1.2 The SWTC5: Zonal flow over an isolated mountain

We now consider the SWTC5 in [27,41] on the single-layer configuration. The physical domain
is the whole sphere of earth, and the initial state consists of a zonal flow impinging on an
isolated mountain located around the longitude αc = 3π/2 and latitude θc =π/6. The height
of the mountain is given by

hs =hs0(1−r/a), (5.2)

where hs0 = 2000 m, a = π/9, r2 =min{a2,(α−αc)
2+(θ−θc)

2}, with α and θ being longitude
and latitude, respectively. The initial horizontal velocity in the longitudinal and latitudinal
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Figure 7: (SOMA) Evolution of the relative changes in total energy (left) and mass (right) for T
= 15 days by ETD-RK3 and LETD-RK3 using the time step size ∆t=10∆tCFL.

directions is (u,v)=(ũ0cosθ,0), where ũ0=20 m/s. Note that the initial horizontal velocity u0
can also be defined by the stream function, i.e., u0 =k×ψ, where ψ=−Rũ0sinθ is the stream
function, see [41]. The initial fluid thickness is

h=h0−hs0−
1
g
(

R Ω0ũ0+
ũ2

0
2
)

sin2 θ, (5.3)

where R= 6371.22 km is the radius of earth, and h0 = 5960 m. The bottom topography b and
the initial surface height dh=h+b are shown in Figure 8.

Figure 8: (SWTC5) The bottom topography b (left), and the initial surface height dh = h+b
(right).

Two resolutions are considered for the quasi-uniform mesh used in the simulations:

1) 60 km resolution with 163,842 cells, 491,520 edges and 327,680 vertices;

2) 30 km resolution with 655,362 cells, 1,966,080 edges and 1,310,720 vertices.

The numerical errors obtained by using the ETD-RK3 scheme on two different meshes at
T= 1 day are listed in Table 5, which shows that the ETD-RK3 scheme achieves the expected
accuracy in time. The associated CPU time is presented in Table 6. As for the SOMA test case,
we compare the performance of the ETD-RK3 and standard RK3 schemes. Figure 9 displays
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the errors in fluid thickness versus the total simulation time according to the data in Tables
5-6 together with the RK3 results for a one-day simulation. It is observed that for an error
threshold less than 10−5, the ETD-RK3 is more efficient than RK3.

∆t
∆tCFL

60 km 30 km
Eh Eu Eh Eu

160 4.45e-04 - 2.15e-03 - 1.80e-04 - 1.89e-03 -
80 1.82e-04 [1.29] 1.53e-03 [0.49] 1.19e-04 [0.59] 1.05e-03 [0.85]
40 6.31e-05 [1.53] 5.47e-04 [1.48] 3.64e-05 [1.71] 3.05e-04 [1.78]
20 1.05e-05 [2.59] 1.01e-04 [2.43] 4.72e-06 [2.95] 4.20e-05 [2.86]
10 8.69e-07 [3.59] 7.92e-06 [3.68] 3.49e-07 [3.76] 3.31e-06 [3.66]
5 6.19e-08 [3.81] 6.25e-07 [3.66] 2.56e-08 [3.77] 2.47e-07 [3.74]

Table 5: (SWTC5) The errors in fluid thickness and velocity obtained by ETD-RK3 with time
steps varying from ∆t= 160∆tCFL to ∆t= 5∆tCFL on meshes with two different resolutions at
Day 1.

∆t
∆tCFL

60 km 30 km
time/step total time time/step total time

160 15.79 236.84 80.23 2406.95
80 5.82 168.77 31.91 1882.59
40 3.39 193.24 19.00 2223.15
20 2.93 334.25 16.45 3850.44
10 3.00 680.90 16.60 7752.87
5 2.91 1317.53 16.44 15338.13

Table 6: (SWTC5) The average CPU times for each time stepping and total CPU time during
a one day’s simulation obtained by ETD-RK3 with time steps varying from ∆t= 160∆tCFL to
∆t=5∆tCFL. The simulation time is measured in seconds.
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Figure 9: (SWTC5) The error in fluid thickness vs. the total CPU time for one-day simulations
on meshes with 60 km resolution (left) and 30 km resolution (right).

Next we investigate the performance of the LETD-RK3 scheme when the time step ∆t =
10∆tCFL and the size of buffer zone is 10. The LETD-RK3 approximation errors in fluid thick-
ness and velocity on two different mesh resolutions at T = 1 day are listed in Table 7 where
different number of subdomains are used. The results indicate that the LETD-RK3 is able to
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provide the same accurate results as the global ETD-RK3. Moreover, the corresponding simu-
lation time presented in Table 8 supports the same observation as in the SOMA testcase, that is,
the simulation time could be significantly saved if the LETD-RK3 is implemented in parallel,
especially on high-resolution meshes.

No. of 60 km 30 km
subdomains Eh Eu Eh Eu

1 8.6921e-07 7.9254e-06 3.4875e-07 3.3109e-06
2 8.6921e-07 7.9254e-06 3.4875e-07 3.3109e-06
4 8.6921e-07 7.9254e-06 3.4875e-07 3.3109e-06
8 8.6921e-07 7.9254e-06 3.4875e-07 3.3109e-06

16 8.6921e-07 7.9254e-06 3.4875e-07 3.3109e-06
32 8.6921e-07 7.9254e-06 3.4875e-07 3.3109e-06

Table 7: (SWTC5) The errors of fluid thickness and velocity with the LETD-RK3 scheme on
meshes with different resolutions and different number of subdomains at Day 1.

No. of 60 km 30 km
subdomains time/step total time time/step total time

1 3.00 680.90 16.60 7752.87
2 2.88 654.82 15.77 7363.72
4 2.85 647.00 14.13 6600.15
8 3.21 729.03 13.40 6256.18
16 3.54 804.89 13.55 6329.23
32 4.10 931.67 15.27 7132.86

Table 8: (SWTC5) The average CPU time for each time stepping and total CPU time of LETD-
RK3 during a one day’s simulation on meshes with different resolutions and different number
of subdomains. The simulation time is measured in seconds.

Finally, we run 15-day-long simulations using the ETD-RK3 and the LETD-RK3 with 8
subdomains, respectively. For the mesh of 60 km resolution, the surface height snapshot at
day 15 is shown in Figure 10, together with the time evolution of relative changes in total
energy and mass. It is seen that both ETD-RK3 and LETD-RK3 schemes are able to conserve
the total energy and mass along the time.

5.1.3 The SWTC6: Rossby-Haurwitz wave

In this subsection, we are concerned with the numerical simulation of zonal wavenumber 4
Rossby-Haurwitz wave which admits the formation of Rossby wave. The physical domain is
the sphere of earth, and the two meshes presented in the SWTC5 test case are used. A detailed
description of this test case can be found in [41], and we refer to [47–49] for an exhaustive
discussion on the physical and numerical phenomena of Rossby-Haurwitz waves. The reader
is referred to [32] and the references therein for the use of a high-order upwind finite volume
scheme to simulate the equatorial Rossby waves on a planar domain.

The initial velocity field u0 is non-divergent and takes the form of u0=k×∇ψ [41,49], where
k is the local unit vertical vector, and ψ is the stream function defined by

ψ=ω0R2(cos4 θ cos4α−1)sinθ. (5.4)
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Figure 10: (SWTC5) Fluid height at day T = 15 on the mesh with the 60 km resolution (top);
time evolution of relative changes in total energy (bottom-left) and mass (bottom-right) in the
ETD-RK3 and LETD-RK3 simulations using time step size ∆t=10∆tCFL.

Furthermore, the initial fluid thickness is given by

h=h0+(R2/g )(A(θ)+B(θ) cos4α+C(θ)cos8α ), (5.5)

where

A(θ)=(ω0(ω0+2Ω0)/2 )cos2 θ+(ω2
0/4)cos6 θ (5cos4 θ+26cos2 θ−32 ),

B(θ)=(ω0(ω0+Ω0)/15 )(26−25cos2 θ)cos4 θ, C(θ)=(ω2
0/4)(5cos2 θ−6)cos8 θ,

with R being the radius of earth, Ω0 the angular velocity of earth, θ and α the latitude and
longitude, respectively. The other two parameters are ω0 = 7.848×10−6 s−1 and h0 = 8000 m.
In this test case, the bottom topography b is flat, and is set to be b=0 m. In Figure 11 (left), we
show the contour plot of the initial fluid thickness on mesh resolution of 60 km in the latitude-
longitude coordinate system. It can be seen from the figure that the initial thickness field is
a perfect four-wavelength zonal pattern. We also present the contour plot of fluid thickness
obtained from ETD-RK3 scheme with ∆t = 10∆tCFL on day 15 in Figure 11 (right). It can be
observed that the simulation is stable, and the wave propagates steadily eastwards and its
initial structure of the wave number four could be maintained with only minor vacillations
after a 15-day simulation.

The numerical errors obtained by using the ETD-RK3 scheme on two different meshes at
T= 1 day are listed in Table 9, which shows that the ETD-RK3 scheme achieves the expected
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Figure 11: (Rossby-Haurwitz) Contour plot of the initial fluid thickness (left), and its contour
plot on day 15 (right) obtained by ETD-RK3 scheme with ∆t=10∆tCFL.

accuracy in time. The associated CPU time is presented in Table 10. As for the two previous
test cases, we compare the performance of the ETD-RK3 and standard RK3 schemes. Figure 12
displays the errors in fluid thickness versus the total simulation time according to the data in
Tables 9-10 together with the RK3 results for a one-day simulation. It is observed that for the
60-km-resolution mesh with an error threshold less than 6×10−6, and for the 30-km-resolution
mesh with a threshold less than 1.0×10−4, the ETD-RK3 is more efficient than RK3.

∆t
∆tCFL

60 km 30 km
Eh Eu Eh Eu

160 1.80e-04 - 5.25e-04 - 2.78e-04 - 5.67e-04 -
80 1.16e-04 [0.64] 6.22e-04 [-] 1.92e-04 [0.53] 4.67e-04 [0.28]
40 1.09e-04 [0.09] 3.97e-04 [0.65] 1.09e-04 [0.82] 3.67e-04 [0.35]
20 4.31e-05 [1.33] 1.42e-04 [1.48] 4.06e-05 [1.42] 1.05e-04 [1.80]
10 3.76e-06 [3.52] 1.76e-05 [3.00] 4.80e-06 [3.08] 8.42e-06 [3.64]
5 2.61e-07 [3.85] 1.30e-06 [3.75] 3.65e-07 [3.72] 6.31e-07 [3.74]

Table 9: (Rossby-Haurwitz) The errors in fluid thickness and velocity obtained by ETD-RK3
with time steps varying from ∆t=160∆tCFL to ∆t=5∆tCFL on meshes with two different reso-
lutions at Day 1.

∆t
∆tCFL

60 km 30 km
time/step total time time/step total time

160 6.72 194.92 38.25 2256.75
80 4.20 239.18 22.13 2611.04
40 3.58 408.46 17.07 4011.69
20 3.20 729.45 16.81 7884.24
10 3.21 1460.47 16.86 15798.29
5 3.28 2983.39 17.09 32011.47

Table 10: (Rossby-Haurwitz) The average CPU times for each time stepping and total CPU
time during a one day’s simulation obtained by ETD-RK3 with time steps varying from ∆t=
160∆tCFL to ∆t=5∆tCFL. The simulation time is measured in seconds.

Next we investigate the performance of the LETD-RK3 scheme when the time step ∆t =
10∆tCFL and the size of buffer zone is 10. The LETD-RK3 approximation errors in fluid thick-
ness and velocity on two different mesh resolutions at T = 1 day are listed in Table 11 where

19



1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

 100  1000  10000

E
rr

o
r 

in
 f
lu

id
 t
h
ic

k
n
e
s
s
 h

Total CPU time (in seconds) 

RK3 - 60 km
ETDRK3 - 60 km

1e-07

1e-06

1e-05

1e-04

1e-03

 1000  10000  100000

E
rr

o
r 

in
 f
lu

id
 t
h
ic

k
n
e
s
s
 h

Total CPU time (in seconds) 

RK3 - 30 km
ETDRK3 - 30 km

Figure 12: (Rossby-Haurwitz) The error in fluid thickness vs. the total CPU time for one-day
simulations on meshes with 60 km resolution (left) and 30 km resolution (right).

different number of subdomains are used. The results indicate that the LETD-RK3 is able to
provide the same accurate results as the global ETD-RK3. Moreover, the corresponding sim-
ulation time presented in Table 12 supports the same observation as in the last two test cases,
that is, the simulation time could be significantly reduced if the LETD-RK3 is implemented in
parallel, especially when a high-resolution mesh is used.

No. of 60 km 30 km
subdomains Eh Eu Eh Eu

1 3.7584e-06 1.7605e-05 4.8029e-06 8.4171e-06
2 3.7584e-06 1.7605e-05 4.8029e-06 8.4171e-06
4 3.7584e-06 1.7605e-05 4.8029e-06 8.4171e-06
8 3.7584e-06 1.7605e-05 4.8029e-06 8.4171e-06

16 3.7584e-06 1.7605e-05 4.8029e-06 8.4171e-06
32 3.7584e-06 1.7605e-05 4.8029e-06 8.4171e-06

Table 11: (Rossby-Haurwitz) The errors of fluid thickness and velocity with the LETD-RK3
scheme on meshes with different resolutions and different number of subdomains at Day 1.

To verify that the ETD-RK3 and LETD-RK3 can conserve both the mass and total energy,
we run 15-day-long simulations using these two schemes with time step size ∆t = 10∆tCFL,
and with 8 subdomains for LETD-RK3. We show the time evolution of relative changes in total
energy and mass on the 60-km-resolution mesh in Figure 13. It is seen that both ETD-RK3 and
LETD-RK3 schemes are able to conserve the total energy and mass along the time.

5.2 Multilayer SWEs for the SOMA test case

Next, we investigate the numerical performance of the global and localized ETD-RK3 schemes
on a three-layer shallow water model for the SOMA test case. The same geometrical domain is
considered. The initial interfaces of the three-layer configuration locate at η0

1=0 km, η0
2=−25/3

km, and η0
3=−50/3 km, and the layer densities are set as ρ=(1025,1027,1028) kg/m3. In order to

make the model more realistic for the ocean modeling, the forcing and bi-harmonic smoothing
terms are introduced [37, 46]:

(1) Surface wind stress fw = τw
ρ1h1

, which is added to the top layer only;
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No. of 60 km 30 km
subdomains time/step total time time/step total time

1 3.21 1460.47 16.86 15798.29
2 3.11 1413.58 15.68 14689.70
4 3.10 1408.75 14.55 13629.56
8 3.55 1614.23 13.65 12792.73
16 4.31 1961.10 13.78 12915.68
32 5.18 2355.03 15.68 14690.31

Table 12: (Rossby-Haurwitz) The average CPU time for each time stepping and total CPU time
of LETD-RK3 during a one day’s simulation on meshes with different resolutions and different
number of subdomains. The simulation time is measured in seconds.
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Figure 13: (Rossby-Haurwitz) Time evolution of relative changes in total energy (left), and
mass (right) in the ETD-RK3 and LETD-RK3 simulations with ∆t=10∆tCFL.

(2) Bottom friction fb =−cb
|ub|ub

hb
represents the interaction between the flow and the bottom

topography, which appears in the bottom layer only. Here, ub is the velocity of bottom
layer and we choose cb =1.0×10−3 following [37, 46].

(3) Artificial diffusion fd =−ε∆2uk, which is introduced to every layer in order to overcome
the accumulation of turbulent energy in long term simulations.

The same grids are used in all the layers. Two resolutions, 32 km and 16 km, are considered
in the test. The total numbers of DOFs are triple of the corresponding single layer cases. As in
the single-layer case, we first test the (global) ETD-RK3 scheme, and only update the Jacobian
once every 10 time steps. The numerical errors on two meshes are listed in Table 13, and the
associated simulation times are recorded in Table 14. The numerical results show that the
ETD-RK3 scheme achieves the expected accuracy in time.

We further compare its performance with the standard RK3 scheme. In Figure 14, we plot
the error in fluid thickness versus the total simulation time according to Tables 13-14 and the
results obtained by RK3 for the one-day simulations. It is seen that for the same error threshold,
ETD-RK3 is more efficient than RK3; and the total simulation time of ETD-RK3 increases when
mesh becomes finer. Hence, we next investigate the performance of LETD-RK3 scheme with
the time step ∆t=10∆tCFL and the size of buffer zone to be 10.

The LETD-RK3 approximation errors in fluid thickness and velocity on these two different
meshes at T=1 day are listed in Table 15 in which the number of subdomains varies. It shows
that the number of subdomains does not affect the accuracy of the LETD-RK3. Based on the
simulation time listed in Table 16, we can deduce that the LETD-RK scheme would lead to
great efficiency if implemented in parallel.
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∆t/∆tCFL
32 km 16 km

Eh Eu Eh Eu

160 6.19e-09 - 3.95e-05 - 1.88e-09 - 9.38e-06 -
80 1.17e-09 [2.41] 1.56e-05 [1.34] 2.05e-10 [3.20] 2.46e-06 [1.93]
40 2.70e-10 [2.11] 2.40e-06 [2.70] 2.95e-11 [2.80] 3.07e-07 [3.01]
20 2.76e-11 [3.29] 2.92e-07 [3.04] 4.14e-12 [2.83] 4.08e-08 [2.91]
10 3.72e-12 [2.89] 3.81e-08 [2.94] 5.10e-13 [3.02] 5.19e-09 [2.98]

Table 13: (Three layers SOMA) The errors in fluid thickness and velocity obtained by ETD-
RK3 with time steps varying from ∆t=160∆tCFL to ∆t=10∆tCFL on two meshes with different
resolutions at Day 1.

∆t/∆tCFL
32 km 16 km

time/step total time time/step total time
160 1.64 19.72 9.02 270.46
80 0.97 22.36 4.70 277.13
40 0.67 30.75 3.06 360.51
20 0.68 62.87 2.98 701.41
10 0.67 122.38 2.93 1377.93

Table 14: (Three layers SOMA) The average CPU time for each time stepping and total CPU
time obtained by ETD-RK3 with time steps varying from ∆t=160∆tCFL to ∆t=10∆tCFL during
a one day’s simulation. The simulation time is measured in seconds.
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Figure 14: (Three layers SOMA) The errors in fluid thickness h as a function of total CPU time
for a variety of time step sizes at T=1 day. Left: 32 km resolution; right: 16 km resolution.

Finally, we consider 15-day-long simulations: the snapshots of sea surface height and the
velocity at T = 15 days in the top layer using the ETD-RK3 scheme on the 16-km-resolution
mesh with time step size ∆t= 10∆tCFL are shown in Figure 15 and the time evolution of the
relative change in mass during the 15-day simulations using the ETD-RK3 and the LETD-RK3
schemes with 8 subdomains is displayed in Figure 16. In this test case, the total energy is not
conserved any more due to the appearance of additional forcing terms. But the ETD-RK3 and
LETD-RK3 schemes are able to preserve the total mass.
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No. of 32 km 16 km
subdomains Eh Eu Eh Eu

1 3.7166e-12 3.8106e-08 5.0997e-13 5.1863e-09
2 3.7170e-12 3.8107e-08 5.1009e-13 5.1879e-09
4 3.7167e-12 3.8109e-08 5.0971e-13 5.1850e-09
8 3.7172e-12 3.8108e-08 5.1010e-13 5.1856e-09

16 3.7170e-12 3.8110e-08 5.0965e-13 5.1887e-09
32 3.7170e-12 3.8108e-08 5.1013e-13 5.1894e-09

Table 15: (Three layers SOMA) The errors of fluid thickness and velocity with the LETD-RK3
scheme on meshes with different resolutions and different number of subdomains at Day 1.

No. of 32 km 16 km
subdomains time/step total time time/step total time

1 0.67 122.34 2.93 1377.93
2 0.68 124.99 2.40 1130.12
4 0.87 159.48 2.66 1250.76
8 1.23 225.90 3.15 1479.82
16 1.64 300.90 3.79 1781.78
32 2.17 397.04 4.98 2342.92

Table 16: (Three layers SOMA) The average CPU time for each time stepping and total CPU
time of LETD-RK3 during a one day’s simulation on meshes with different resolutions and
different number of subdomains. The simulation time is measured in seconds.

Figure 15: (Three layers SOMA) Snapshots of sea surface height (left), and the velocity (right)
at T=15 days using ETD-RK3 with time step ∆t=10∆tCFL on the 16-km-resolution mesh.

6 Conclusions

The ETD-RK and LETD-RK methods have been investigated and compared in this paper for
simulating the rotating shallow water equations of one layer or multiple layers. Comparing
with the standard RK scheme of the same order, the ETD-RK scheme is more efficient when
error thresholds are small. To further speed up the ETD simulations, we have developed a
localized ETD method; different from the global ETD method, this approach first solves sub-
domain problems of smaller sizes using the ETD method for time integration, and then ex-
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Figure 16: (Three layers SOMA) Evolution of the relative changes in total mass using the ETD-
RK3 and LETD-RK3 schemes with time step ∆t=10∆tCFL on the 16-km-resolution mesh.

changes information in the overlapping areas. Numerical results show that the localized ETD
can achieve the same accuracy and efficiency as the global ETD, but has the great potential to
be efficiently implemented in parallel computing due to its natural scalability, which will be
the focus of our future study.
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