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Atmospheric warming threatens to accelerate the retreat of the Antarctic Ice Sheet by
increasing surface melting and facilitating ‘hydrofracturing™”’, where meltwater flows
into and enlarges fractures, potentially triggering ice-shelf collapse®>>%°, The collapse
of ice shelves that buttress' ™ the ice sheet accelerates ice flow and sea-level rise™* ¢,
However, we do not know if and how much of the buttressing regions of Antarctica’s ice
shelves are vulnerable to hydrofracture ifinundated with water. Here we provide two
lines of evidence suggesting that many buttressing regions are vulnerable. First, we
trained a deep convolutional neural network (DCNN) to map the surface expressions of
fracturesin satelliteimagery across all Antarcticice shelves. Second, we developed a
stability diagram of fractures based on linear elastic fracture mechanics to predict
where basal and dry surface fractures form under current stress conditions. We find
close agreement between the theoretical prediction and the DCNN-mapped fractures,
despite limitations associated with detecting fractures in satellite imagery. Finally, we
used linear elastic fracture mechanics theory to predict where surface fractures would
become unstableif filled with water. Many regions regularly inundated with meltwater

today are resilient to hydrofracture—stresses are low enough that all water-filled
fractures are stable. Conversely, 60 + 10 per cent of ice shelves (by area) both buttress
upstreamice and are vulnerable to hydrofracture ifinundated with water. The DCNN
map confirms the presence of fractures in these buttressing regions. Increased surface
melting” could trigger hydrofracturing if it leads to water inundating the widespread
vulnerable regions we identify. These regions are where atmospheric warming may
have the largestimpact onice-sheet mass balance.

Whereice shelves—the floating extensions ofice sheets—are laterally con-
fined, they generate resistive stress and transmit this upstream to slow
theflow of iceinto the ocean. Thisis called buttressing. Areas with larger
tensile resistive stresses®'® provide less buttressing™°. When buttressing
ice shelves collapse, upstreamglaciers accelerate* . Observations and
models have linked ice-shelf collapse to surface melting*>#'°* through
hydrofracturing; where meltwater flows into surface fractures, imposing
additional loading and driving unstable fracture growth'* Repeated
hydrofracturing close to an ice-shelf edge has been hypothesized as a
potential mechanism driving collapse®. Flexural stresses generated by
thefillingand draining of lakes onice shelves may also facilitate hydrof-
racturingand trigger collapse®?*2, Although hydrofracturing has so far
only beenincluded inice-sheet models with simple parameterizations®°,
simulations predict that it could accelerate the retreat of the Antarctic
Ice Sheet in response to atmospheric warming®°.

Antarctica’s response to surface melting
Hydrofracturing requires sufficient surface meltwater and tensile stress
within the ice shelves. However, not all parts of ice shelves provide

substantial buttressing and thus, to predict theimpact of atmospheric
warming on Antarctic ice loss, we must predict (1) the distribution of
meltwater on ice shelves””?%; (2) the regions of ice shelves provid-
ing buttressing'?; and (3) the regions of ice shelves that willundergo
hydrofracturing if meltwater accumulates (Fig. 1; ref. ?®). Progress has
beenmadein constraining where meltwater accumulates today and will
inthe future (the upper circle in Fig.1). Stokes et al.”> comprehensively
mapped lakes in East Antarctica using satellite imagery from January
2017. Trusel et al.” predicted that melt rates seen in areas that have
undergone catastrophic collapse in the past will become widespread
this century. Alley et al.” assessed the state of firn onice shelves, which is
linked to the ability of anice shelf to retain surface water”, using micro-
wave backscatter observations. They found some locations alreadyina
state that would allow lake formation and potentially hydrofracturing™”
However, alocation will only undergo hydrofracturing iflocal stresses
allow, with higher tensile stress promoting hydrofracturing. For clar-
ity, here we will refer to the tendency of a location to hydrofracture if
inundated with water as its vulnerability to hydrofracture. Crucially,
areas of higher tensile stress provide less buttressing™>'®, yet are most
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Fig.1| Conceptualizing the regions of Antarcticice shelves that will control
theicesheet’sresponse toatmospheric warming. Circlesrepresentice-shelf
regions (top) where meltwater accumulates, (bottom left) that are vulnerable
to hydrofractureif covered in meltwater, and (bottom right) where substantial
buttressingis generated.Images show: Amery Ice Shelf with water
accumulatedinlarge melt ponds, 21February1989, Landsat 4, NASA (top); the
collapse of Larsen B Ice Shelf, 7 March2002, MODIS, NASA (bottom left);
modelled estimate of buttressing on Larsen C Ice Shelf** (bottom right;
reproduced from figure 3 of ref.* (Springer Nature)). Regions downstream of
thered contour (blue) arerelatively unimportant for buttressing.

vulnerableto hydrofracture. Therefore, animportant open questionis:
are any of the regions generating substantial buttressing also vulner-
ableto hydrofracture under present-day conditions? Do the two lower
circlesin Fig.1overlap? This is the focus of this article.

Fracture detection with a neural network

Fracture-like features are visible in satellite imagery (for example,
the 125-m-resolution MODIS mosaic of Antarctica, MOA 2009%), but
comprehensive manual mapping is impractical (ice shelves cover 1.5
million pixelsin MOA). We therefore used adeep convolutional neural
network (DCNN), the U-Net?, toidentify the fracture-like features in the
relatively low-resolution, but continent-wide, MOA imagery. We trained
the DCNN withasubset of MOA imagery in which fracture features were
manually labelled (Extended DataFig.1c). The output of the DCNNisa
map of thelikelihood (ranging from 0 to 1) that a pixel contains part of
afracture. Thetrained DCNN performs well when evaluated against an
unseensubset ofimagery (Extended DataFig. 2). We applied the trained
DCNN to map fracture-like features across all of Antarctica’sice shelves
(Fig. 2). Examples of the imagery and the fracture features identified
by the DCNN are shown in Fig. 3a, b, respectively. Because there are
morphological similarities between surface fractures, full-thickness
rifts and surface expressions of basal fractures®, itis likely that they
all make up a proportion of the fractures mapped by the DCNN. We
refer to them throughout as fractures, but consider this limitation
when comparingthe DCNNresults to the theoretical predictions below.

Fracture stability diagram
Next, we developed a new theoretical framework to predict the loca-
tion of dry surface fractures. There are two widely adopted models

for ice fracturing: the zero-stress approximation® and linear elastic
fracture mechanics (LEFM)***. The zero-stress approximation only
applies where fractures are densely spaced (fracture spacing is much
smaller than fracture depth)*. Because the spacing between dry frac-
tures (-1km) is often larger than the fracture depth, we applied LEFM.
Although dry-fracture depths predicted by LEFM are simply a factor
of /2 larger than those predicted by the zero-stress approximation'
(Extended DataFig.5b), LEFM provides an estimate of the critical ten-
sile resistive stress required to form dry fractures, which s crucial for
this study.

To quantify how ice-shelf stress affects fracture stability, we con-
structed a fracture stability diagram (Fig. 3¢c). Vertical propagation of
astable fracture stops when it is too energetically costly to break the
ice further. By contrast, unstable fractures propagate through the
entireice thickness. Fractures may formonboth the surface and base
ofice shelves; their stability depends on the tensile resistive stress R,
(refs.>**) perpendicular to the fracture, ice thickness H, fracture tough-
ness K,. (a measurable material property)*® and ice density p,. The sta-
bility of both surface and basal fractures depends on two fundamental
parameters (Supplementary Section 3), the dimensionless tensile
resistive stress (R,,) and dimensionless fracture toughness (K;.):
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We analytically derived a power law (Supplementary Section 3) for the
critical tensile resistive stress R}, that allows the formation of stable
surface fractures (red curve in Fig. 3c),
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where F=1.122, f=1.068 and a is a dimensionless pre-factor (Supple-
mentary Section 3). This analytical expression (equation (2)) closely
matches the corresponding numerical solution (black solid curve in
Fig.3c; Supplementary Section 3). When R, < R%,, no surface fractures
can exist according to LEFM (white areain Fig. 3c). When R, exceeds a
threshold (black dashed line in Fig. 3c), surface fractures are unstable.
The transition boundaries (between no fracture, stable fracture and
unstable fracture) for basal fractures with the inclusion of the effects of
vertically varying temperature (Supplementary Section 7) are shown by
light blue curves in Fig. 3c. In the absence of meltwater, LEFM predicts
thatabasal fracture will destabilize atasmaller R, thanasurface fracture.

To assess where the DCNN-identified fracture features lie in this
space, we computed R, and K. for every fracture location (at1km
resolution) using observed H (ref. ), K,.=150 kPam"? (from laboratory
measurements)®, strain rates derived from a data-constrained flow
model®and ice viscosity calculated using ice surface temperature from
aregional climate model® (Extended Data Fig. 6¢). Fig. 3c plots them
onthe parameter space as a density map. Most fracture features (89%
of31,962locationsidentified as fractures by the DCNN shown in Fig. 3c)
lie in the parameter region where the theory predicts stable surface
fractures (grey areainFig.3c). We also note that 56% of the 31,962 iden-
tified fracture features lie in the parameter regime of stable basal frac-
tures. Given the simplicity of the theory and the limitations of the DCNN
mapping, this agreement is encouraging and suggests that the theory
predictsboth stable surface and basal fractures across realistic ranges
of R, and K. Note that no parameters were tuned to determine the
locations of data on Fig. 3c.

Vulnerability to unstable hydrofracture

To estimate vulnerability to hydrofracture across all ice shelves, we
next examined the extreme case when water inundates all ice shelves.
Inthis way, we estimated the geographic extent of the lower-left circle
inFig. 1. When surface fractures are filled with meltwater, the weight
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Fig.2|Continent-wide fracture map. Locations of fracture features classified
by the DCNN are marked inwhite. The model with the optimal performance on
the validation set was chosen to generate the fracture map. The areaunder the
receiver operating characteristics curve of the U-Net onan unseen testing set is
0.97 (Methods).

of water can destabilize the fractures, leading to unstoppable fracture
propagation. However, when the ice stresses are sufficiently compres-
sive, pre-existing water-filled fractures remain stable (Supplementary
Section5). Here we assume that surface water flows rapidly into surface
fracturesand does not refreeze fast enough to affect fracture propaga-
tion. Slow inflow and refreezing could stabilize surface fractures. A frac-
ture model coupled to a hydrological model could account for this®.

Inregions where R, > R%, (red in Fig. 4a), surface fractures will be
unstable if filled with water—these locations are vulnerable to hydro-
fracture. Where R, < R%,., water-filled fractures will be stable, unless
the original dry fracture is deeper than d; (Fig. 4a). The pre-existing
surfacefracture depthd;required to destabilize hydrofractureincreases
as R, decreases, as plotted in Extended Data Fig. 5c, d. Given that

Fig.3|Model-observation comparison of fracturelocations.a,b,125-m-
resolution MOA showing part of the Ross Ice Shelf (location shown by the star
intheinset map) (a) and the fracture features (marked in white) identified by
the DCNN (b). ¢, Stability diagram for dry surface fractures and basal fractures;
R, against k.. The boundary between the no-fracture and stable-fracture
regions was obtained numerically (black and blue curves for surface and basal
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pre-existing fracturesin regions of low R, are unlikely to be 50-150 m
deep, we consider the ice-shelf regions marked yellow and green in
Fig. 3 to be resilient to meltwater-driven fracturing. Finally, some
regions have sufficiently compressive stresses that water-filled frac-
tures cannot grow, regardless of their size (black regions in Fig. 4a).

Vulnerable and buttressing regions

Our key questionis whether regions vulnerable to hydrofracture coin-
cidewithbuttressing regions (Fig.1). Both the DCNN-mapped fractures
and LEFM theory suggest that they do coincide. Blue areas in Fig. 4a
were identified by Fiirst et al.” as regions of ‘passive ice’ that provide
little buttressing. Red regions in Fig. 4 are where the ice shelfis vulner-
ableto hydrofractureaccordingto our LEFM analysis and also provides
substantial buttressing®; that is, they lie outside the passive regions
recognized by Fiirst etal. These regions cover 60 +10% of the total area
of Antarctica’s ice shelves. The details of the extent of these regions
depend onthe buttressing computation'® and the method used to com-
pute stresses, but the finding that buttressing and vulnerable regions
substantially overlap does not (Extended Data Fig. 8). The DCNN map
confirms widespread surface fractures in these regions (Fig. 2).

It does notimpact our key conclusions, but we neglected theimpact
ofthe low-density, low-viscosity, near-surface firn layer and ice soften-
ing due to damage (Methods). The net effect of the firn is to slightly
increase surface fracture depths (Supplementary Section 2 and
Extended Data Fig. 3¢c) and therefore slightly increase the extent of
the vulnerableregions. Conversely, damaged ice would generate lower
tensile resistive stress and decrease the extent of vulnerable regions
slightly (see Methods and Extended Data Fig. 8b).

Hydrofracturing can only occur if the ice-shelf surfaceisinundated
with meltwater. Large meltwater ponds have persisted in numerous
locations for decades. Many of these, for example on the George VI
(Fig. 4c), Amery (Fig. 4e) and Roi Baudoinice shelves®*°, liein regions
that, due to low tensile (and in places compressive) resistive stresses,
are resilient to hydrofracture (Fig. 4b, d). Moreover, using a recent
survey of East Antarctic supraglacial lakes”, we estimated an upper
bound of only 0.6% of East Antarctic ice shelves (by area) currently
provide buttressing, experience meltwater ponding and are vulnerable
to hydrofracture (see Methods section ‘Lake locations’ and Extended
DataFig.10).Increased meltwater pondinginresilient locations will not
lead to widespread hydrofracturing according to our analysis. However,
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fractures, respectively) and analytically (red curve for surface fractures,
equation (2)). Dashed lines denote the boundary between stable and unstable
fractures. I?xxand I?,C (equation (1)) were computed for every fracture location
detected by the DCNN and displayed as a density plot (31,962 data points); the
colourbar denotes the number of fracture locations that have the same
dimensionless values (Methods).
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Fig.4 |Map ofiice-shelf vulnerability to hydrofracture. a, Water-filled
fractures areunstableinvulnerableareas (red and blue) and stable in resilient
regions (yellow and green) unless pre-existing surface fractures of depth d,
exist. Where stresses are sufficiently compressive, water-filled fractures
cannotopen (black). c, e, Present-day meltwater on the George VI (c; 4 February

predictions of future melt”* suggest that melt rates seen in locations
that experience meltwater ponding today could become widespread by
2100 under high-emissions scenarios. This, coupled with present-day
widespread low-porosity firn” and large-scale surface-meltwater drain-
age that can transport water long distances from melt zones?, strongly
indicates that meltwater ponding could spread to many of the buttress-
ing and vulnerable regions under future warming scenarios.

Summary

We have used fracture mechanics, machine learning and continent-wide
datasets to estimate the vulnerability of Antarctica’s ice shelves to
hydrofracture. Although hydrofracturing and buttressing are favoured
by different stress conditions, a large proportion of Antarcticice shelves
arebothvulnerableto hydrofracture, ifinundated with meltwater, and
provide substantial buttressing. We used aneural network to produce a
continent-wide map of fracture features (Fig. 2). Our analysis yielded a
fracture stability diagram based on LEFM that shows promising agree-
ment with the fracture locations, but could be extended to include
viscous® and thermal effects®. This theory could be implemented into
anice-sheet model to improve sea-level predictions and the machine
learning approach to mapping fractures can easily be applied to
higher-resolutionimagery. If warming allows meltwater to enter the vul-
nerable buttressing regions we have identified, hydrofracture-driven
ice-shelf collapse is possible, which could have major consequences
for Antarctic mass loss and global sea-level rise.
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Methods

Machine learning development and evaluation

To develop amachine learning model to detectice-shelffractures, we
firsttrained several models onatraining set tolearn the relationships
betweeninputimages and corresponding fractures labelled manually
by visual inspection. Next, we assessed the performance of the trained
models on a validation dataset with a range of hyperparameters. The
best-performing model on the validation data was selected for evalu-
ationon an unseen test dataset.

Training, validation and testing datasets. A1,000 km x 1,000 km
(8,000 pixels x 8000 pixels, at 125 m resolution) region covering the
Larsen C and George Vlice shelves in the MODIS MOA®*? was used as
the training and validation sets (Extended Data Fig. 1a). This subset
of MOA contains fracture features near shear margins, calving fronts
and grounding lines, covering the range of typical fracture patterns
observed on Antarctic ice shelves. We first cropped the 8,000 pixel
x 8,000 pixel image into smaller tiles (1,000 pixels x 1,000 pixels),
of which 32 tiles contained ice-shelves (non-black areas in Extend-
ed Data Fig. 1a). We randomly divided the 32 tiles into a training set
(26 image tiles) and a validation set (6 image tiles). To evaluate the
developed machine learning model on an unseen dataset, we pre-
pared anindependent testing set consisting of 6 image tiles of size
1,000 pixels x 1,000 pixels randomly selected from the remaining
continent-wide MODIS image.

Using a Matlab script, we manually labelled the datasets (38 tiles
in total) by visually identifying fractures on the basis of their linear
morphology and alignment perpendicular to flow (fractured areas are
filledin white as shownin Extended Data Fig. 1c). The marked fractures
wererasterized asbinarylabels. Asample training tileand its labels are
shownin Extended Data Fig. 1b and c, respectively.

Model selection. For model selection, we compared the predictive
performance of a wide range of machine learning models. We explored
four sets of models, including (1) several single-layer convolutional neu-
ral networks (CNNs) with different filter sizes, 1x1,28 x 28 and 56 x 56,
(2) U-Net® using different numbers of first-layer feature maps (1, 2, 4,
16,32, 64), (3) feature pyramid networks (FPNs)* with a ResNet-18 back-
bone, and (4) an edge detector** (using OpenCV’s cv.Canny implementa-
tion with minimal threshold = 0 and maximum threshold =255). There
aremany other advanced segmentation models such as DeepLabv3*,
SegNet*®, PSPNet*, and others. Doing a detailed comparison for awide
range of advanced segmentation models to detect fractures on satellite
imagery is left for future work.

We used the area under the receiver operating characteristics
curve (AUC) as the evaluation metric for model selection. The AUC of
the trained models on the validation set is plotted in Extended Data
Fig.2a(i) asafunction of the total number of parametersin each model.
Allmodels were trained with a batch size of 1. The single-layer CNN
and FPN models were trained using the stochastic gradient descent
optimizer to minimize the cross-entropy loss. The U-Net was trained
with the momentum optimizer to minimize the cross-entropy loss.

As shown in Extended Data Fig. 2a, the performance of U-Net
increases greatly when the initial number of feature maps (d) increases
from1to4, reachingamaximum of AUC=0.99 whend =32, thenslightly
decreases when d increases beyond 32. Single-layer CNNs with filter
sizesof 1x1,28 x 28, and 56 x 56 perform well but do not exceed the
performance of the U-Net when the number of parametersisincreased.
This is probably due to an insufficient number of layers to recognize
complex fracture patterns. Lastly, the FPNis a state-of-the-art method
for recognizing objects on the COCO dataset*®, however, it has an AUC
of 0.82for the fracture detection task in this study, whichis lower than
that of the U-Net. This is probably a result of overparameterization for
this comparatively simple task. On the basis of these observations,

we selected the U-Net with 32 initial feature maps for making predic-
tions onthe continent-wide map. Asample validation label and image
are displayed in Extended Data Fig. 2¢c, d, respectively.

U-Net architecture. To detect fractures we employed the U-Net®, a
DCNN that has been successfully applied to image segmentation. In
additionto a contracting path, whichis typical for convolutional neural
networks, the U-Net also contains an expansive path, which gives rise to
its U-shaped architecture (Extended Data Fig.1d). The expansive path
recovers thelocation of the classified patternand enables efficient use
of training examples.

In our U-Net setup, there are 2 classes (fracture and non-fracture)
inthe output predictions, one channel in the input image (1,000 pix-
elsx1,000 pixels), 32 feature mapsin the first layer and 13 convolutional
layers (ten 3 x 3 convolutional layers, two 2 x 2 transposed convolutional
layers, and one final 1 x 1 convolutional layer) in the entire architecture
(Extended Data Fig. 1d). For each block in the contracting path, the
imageis convolved twice with 3 x 3filters, each followed by aReLU acti-
vation function, and down-sampled with a2 x 2 max pooling (stride 2)
filter. For eachblockin the expansive path, theimage size isincreased
by a2 x2upsampling (transposed convolutional) filter, followed by a
concatenation with the cropped feature maps from the corresponding
contracting layer, two 3 x 3 convolution filters and a ReLU activation
function. The number of filtersis halved and doubled in the downsam-
plingand upsampling steps, respectively. Finally,alx1convolutionis
applied togenerate the output prediction (960 pixels x 960 pixels). We
trained our model using the momentum optimizer with the hyperpa-
rameters (learning rate =1.4, momentum=0.2, decay rate = 0.95) that
optimize the AUC on the validation set. A sample prediction of the
fractureis shown in the right panel of Extended Data Fig. 1d.

Threshold selection. Next, a classification threshold was applied to
the predictions (continuous output between 0 and 1, Extended Data
Fig. 2e) so that every pixel was classified as either a fracture (white in
Extended DataFig. 2f) or non-fracture (black in Extended Data Fig. 2f).
Every threshold corresponds to a point on the receiver operating
characteristics (ROC) curve. Lower thresholds yield higher sensitiv-
ity (percentage of pixels with fractures that are classified as fractures)
but lower specificity (percentage of pixels without fractures that are
classified as non-fractures). We applied arange of thresholds (0-1) on
the validation-set predictions and measure the F1scores. The threshold
(0.2) with the highest F1score on the validation set was selected for
generating the continent-wide fracture map shown in Fig. 2.

Evaluation using the testing set. Finally, we evaluated the model
performance using the testing set not seen by the model. The model
showedan AUC of 0.97 (95% CI: 0.93-0.99) on the testing set, as shownin
Extended DataFig. 2b. The Cl of the model performance was calculated
using bootstrapping with1,000 samples. We further performed a data
titration experiment to understand the impact of the training set size
with respect to the performance. Increasing the number of training
tiles from 6 to 26 only increases the AUC from 0.95 to 0.97, indicat-
ing that increasing the training dataset size further will probably not
substantially improve performance. The classification performance
on the testing set, after applying the classification threshold (0.2) to
the predictions, showed a specificity of 0.99 and sensitivity of 0.64.

Continent-wide fracture map. We applied the final U-Net with the
selected threshold to the continent-wide MOA imagery to identify
fracture features across all ice shelves (marked in white in Fig. 2).
Note that the resolution of the fracture map is 125 m, but the resolu-
tion of the strain rate data (Extended Data Fig. 6a) is 1 km (ref. ). We
downsampled the fracture map to1kmresolution to construct Fig. 3c
using the fracture locations and strain rate data on the same grid.
The downsampling algorithm used nearest-neighbour interpolation.
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Theimages before and after downsampling are shown in Extended Data
Fig.2f, g, respectively. Some detailed fracture patterns are lostin the
1-km-resolution fracture map (Extended Data Fig. 2g) but the overall
fracture distributionis retained. For future work, the proposed method
can be extended to a finer grid where higher-resolution imagery (for
example, Landsat) and strain rates are available*.

Limitations on fracture identification. Most (89%) of the fractures
mapped using 125-m-resolution MOA imagery liein the region of the sta-
bility diagram (dimensionless tensile resistive stress and dimensionless
fracture toughness) where our theory predicts that the tensile resistive
stress exceeds the critical value required for dry surface fracturing.
Theremainingfracture locations fallin the region of parameter space
where the theory predicts that no dry surface fractures should form.
There are several possible explanations; for example, unresolved lo-
cally high strain rates, existing fractures advecting into lower-stress
regions, incorrectly identified fractures, or fracturing resulting from
more complex fracture modes than our theory describes.

The theory also predicts that dry surface fractures exist in many
locations where the DCNN does not detect them. Several explanations
for this are possible. First, the satelliteimagery we used relieson a part
of the electromagnetic spectrum where energy does not penetrate
through snow andice. It therefore fails to detect surface fractures bur-
ied by snow unless thereis sufficient surface expression. For example,
the presence of buried surface fractures can sometimes be inferred
fromthe presence of elongated depressionsin the snow surface, which
may be observablein MOA. However, it is possible that many subsurface
fractures were not detected by the DCNN because they had little or no
surface expression. Satellite-based radar (for example, RADARSAT,
SENTINEL-1) can detect sub-surface structures because radio waves
penetrate up to ~10 m into the subsurface®**', Applying the DCNN to
these data may allow us to test whether buried surface fractures are
widespread in these regions, as predicted by the theory. Second, it is
possible that the limitations of the DCNN are causing us to fail to detect
surface fracturesin these locations. Although the performance of the
DCNN output prediction (a continuous variable ranging from 0 to 1)
evaluated against testing set is excellent (AUC=0.97), the binary clas-
sification of fracture features (abinary variable, either O or 1) identified
via application of a classification threshold yielded a sensitivity of
0.64, indicating that 37% of all fracture features manually labelled on
the test data were not detected by the DCNN. The performance of the
U-Net is expected to improve if higher resolutionimagery are used. It
isalso possible that the relatively low-resolutionimagery is incapable
of detecting crevasses smaller than afew hundred metresinlength or
width, and we therefore failed to detect many smaller crevassesin the
locations where the theory predicts that they should form. Future work
could apply the DCNN within a high-performance computer framework
to higher-resolution imagery.

Theory of ice-shelffractures

We have developed amodel ofice-shelf fracturing based onlinear elastic
fracture mechanics (LEFM). A complete theoretical descriptionis avail-
ableinthe Supplementary Information, which draws on refs, 1218337365257
The Supplementary Information describes LEFM for surface crevasses
(Supplementary Section 1) and basal crevasses (Supplementary Sec-
tion 6), the determination of dimensionless parameters (equation (1)) for
thefracturestability diagram (Fig. 3c), the derivation of the critical stress
required for surface crevasse formation (equation (2); Supplementary
Section 3), firn effects on surface crevasses (Supplementary Section2),
surface crevasse depth from LEFM versus Nye’s zero-stress approxima-
tion (Supplementary Section 4), water-filled crevasse stability and initial
flaws (Supplementary Section 5) and the effects of vertical englacial
temperature gradients on surface and basal fractures (Supplementary
Section 7). Using theoretical results derived in the Supplementary Infor-
mation, we discuss the stability of surface and basal fractures below.

Physical regimes of surface and basal fractures. The stability dia-
gram for surface and basal fractures isshown in Extended Data Fig. 4d.
We labelled physical regimes I-V on the stability diagram, marked
theice-shelflocations corresponding to each regime (Extended Data
Fig. 4e-h) and quantitatively shown the percentage of ice shelves
corresponding to each physical regime. The four panels (Extended
Data Fig. 4e—h) show the variability in the location of each regime
when differentice-shelf stress datasets were used (their correspond-
ing stability diagrams are shown in Fig. 3c and Extended Data Fig. 8).
Locations where basal fractures are stable (blue; regime IlI) cover
41-62% of ice shelves and are theoretically dominant on ice shelves.
Locations where surface fractures could theoretically form are wide-
spread and overlap with that of stable and unstable basal fractures. The
locations of unstable basal fractures (red; regime IV) cover only 2-4%
of the total ice-shelf area. These red areas largely overlap with areas
of high extensional stress downstream of pinning points where ice is
damaged or near existing rifts, as shown in Extended Data Fig. 4e-h,
with close-up examples shown in the second row. Note that the red
areais purely an output from a given dimensionless stress input, and
isindependent of the neural network-mapped fracture-feature loca-
tions (white locations).

Within this 2-4% area (regimeIV; red in Extended Data Fig. 4e-h) the
effective viscosity could be overestimated inlocations with highly dam-
agedice.Somered areas that coincide with fracture features disappear
when thestress field from Fiirst et al.® is used directly (Extended Data
Fig. 4g, h), as this product inherently includes the damage-induced
softening of the ice. On the other hand, LEFM may be unable to
accurately describe basal fracture stability. For example, ice may be
more ductile*® at the base and thus require more energy to break than
predicted by LEFM, thus stabilizing basal crevasses that would be unsta-
ble according to LEFM and reducing the red areas in Extended Data
Fig.4e-h.

Data used for the fracture stability diagram

Data sources. The parameters required to plot ice-shelflocations on
the stability diagram of dimensionless tensile resistive stress and di-
mensionless fracture toughness are tensile resistive stress R, ice thick-
ness H, fracture toughness K. and ice density p;. The stress was calcu-
lated using the strain rate€,,, and the effective viscosity, which was
calculated using the viscosity factor B, according to Glen’s flow law
R, =2Bé,"'". We used the along-flow strain rate ¢, (Extended Data
Fig. 6a) determined from a model assimilation of satellite-derived ve-
locity data™*°. The assimilated velocity field effectively smoothed the
observed velocity field®°, which can otherwise be problematic when
differentiating to compute strain-rate fields®. Analternative approach
is to use the first principal strain rate. In the next section we demon-
strate that using the first principal stressinstead of the along-flow stress
does not impact our main conclusions. Ice-shelf thickness was from
Bedmap2?¥ (Extended Data Fig. 6b). The viscosity factor B (Extended
Data Fig. 6¢) was calculated using an empirical function, which is de-
pendentonice temperature (equation (6) inref.>). Most surface frac-
tures are 1-50 m deep (less than 25% of the typical ice thickness), and
the ice temperature within this range is approximately constant (fig. 1b
inref.®?). Thus, we calculated B using the surface temperature T, (Ex-
tended Data Fig. 6d), obtained from a time average of the regional
climate model RACMO2.3p2. The negligible effect of vertical temper-
ature gradient on the surface fracture stability is addressed in Sup-
plementary Section 7 and Extended Data Fig. 9. The fracture toughness
isinsensitive to temperature in the range 100-273.15 K according to
laboratory measurements (figure 3 in ref. *), and thus was assumed
constantK,. =150 kPa m*2 (ref. >) across ice shelves in our study. Note
that an alternative approach is to use the stresses computed directly
by the model assimilation ref. ™. This has the advantage that the effects
ofice damage (for example, due to crevassing) are accounted forin the



ice viscosity, but this does notimpact our main conclusions (Extended
DataFig.8).

Stability diagram for all ice shelves and 2D histogram. The axes of
the fracture stability diagram (Fig. 3¢) are dimensionless fracture tough-
ness K, and tensile resistive stress R, (equation (1)), which control
whether fractures occur (equation (2)) and their stability. K. and R,,,
were calculatedonalkm x1kmgrid using the datasetsidentifiedinthe
previous section. These values are plotted as red dots in Extended Data
Fig.7 (n=1,258,908 points), showing the range of parameter values across
allice shelves. The subset of locations where fractures were identified
by the deep convolutional neural network (DCNN) are marked in yellow
(n=31,962) in Extended Data Fig. 7. These points almost exclusively lie
within the stable-fracture phase.

To visualize the density of points in Extended Data Fig. 7, we plot
the two-dimensional histogram for the fracture locations (yellow dots)
in Fig. 3c in the main text. The data points were sorted into bins with
logarithmically varying widths for both axes (that is, datain the range
of10* -10°*%°! was sorted into the same bin). The total number of
data points within each bin is denoted by the colour (Fig. 3¢). This
shows a dense population of fracture features within the parameter
regime where we predict stable surface and basal fractures and
demonstrates a remarkable agreement with our analytical result
(red line, equation (2)) for the transition boundary between the
no-surface-fracture and stable-surface-fracture regions of the stabil-
ity diagram.

Uncertainties associated with our choices of stress and strain-rate
fields. The tensile resistive stresses R,, used in the stability diagram
and vulnerability map in Fig. 3c and Fig. 4 were calculated from the
surface-temperature-dependent viscosity factor B(T) and the along-
flow strain rate ¢,,, computed by Fiirst et al.”. In Fig. 4 the areas that
both generate substantial buttressing and are vulnerable to hydrof-
racturearemarkedinred and cover 60% of total ice-shelf area. To check
the sensitivity of our results to the strain rates, we repeated our analy-
sis using along-flow strain rates supplied by ref. ®' (Extended Data
Fig.8a). These strainrates were derived by applying Gaussian smooth-
ing to the MEaSUREs V2 Antarctic velocity product®®¢3, We found
fewer points within the no-surface-fracture regime and anincrease in
the extent of the vulnerable regions (69% in Extended Data Fig. 8a com-
pared with 60% in Fig. 4a).

The impact of ice damage onice viscosity®* is not considered in the
main text butincluded in Extended Data Fig. 8b, c. More damaged ice
is less viscous and therefore experiences less stress for a given strain
rate. Thestresses calculated by ref. B incorporated an inverted viscos-
ity parameter, which was calculated so that model velocities matched
observations®. The effects of damage were therefore embedded in
the computed stresses. Extended Data Fig. 8b, c show the stability
diagramand vulnerability maps computed using the along-flow stress
and first principal stress (that is, maximal tensile resistive or minimal
compressive stress) determined by ref. 2, The difference between the
distributions of data within the stability diagrams is small.

The conclusions drawn from our analysis of the stability diagram and
vulnerability map are unaffected by these choices regarding strain rates
andstresses. First, most fracture features fallin the predicted physical
regime (below the red theoretical curve). Second, large portions of
the area vulnerable to hydrofracture (red regions in the lower panel
in Extended Data Fig. 8) provide substantial buttressing (outside the
passive ice-shelf areas; blue).

Advection of fractures and stress history. Although we evaluated the
physical conditions (dimensionless stress and toughness; equation (1))
atthe present-day locations of the observed fractures, brittle fractures
likely had initially formed upstream of these locations and had been
advected downstream. During this time they probably deformed

viscously, causing the fracture to widen such that it can be seenin the
125-m-resolution satelliteimage. We tracked the stress upstream along
streamlines (assuming steady flow) for all fracture features and identi-
fied the maximum dimensionless stress R, that the fracture had
experienced since crossing the groundingline. For each fracture loca-
tion detected by the DCNN, we then plotted R,,,.,,, and the correspond-
ing dimensionless toughness at the location where maximum dimen-
sionless stress occurs, as shown in Extended Data Fig. 9b. Compared
with R, and K, evaluated at the locations of the fracture features, Ex-
tended Data Fig. 9a, the points evaluated at the locations of the maxi-
mum dimensionless stresses are shifted to the right, so are stillin the
physical regime where the theory predicts stable surface fractures. This
shows that although brittle fractures can form upstream at higher
stresses compared to their currentlocations, most of them (89%) remain
in the physical regime where LEFM predicts stable surface fractures,
after they are advected downstream to their current locations. Note
that, fromthe MOA images we do not know exactly where or when each
fractureinitially forms, but we do know that the majority of the surface
fractures experience physical conditions that allow brittle surface frac-
ture both at their maximum stress in the past (Extended Data Fig. 9b)
and their current stress state (Extended Data Fig. 9a). We thus used
equation (2) (the analytical solution for the boundary between the
no-surface-fracture/stable-surface-fracture regimes based on LEFM;
red line in Extended Data Fig. 9) to estimate the areas where physical
conditions allow the formation of dry, stable and brittle surface fractures
beforethey canlater deform viscously and advect downstream. These
areas are vulnerable to hydrofracture (red area in Fig. 4a) because
water-filled fractures are unstable (from both LEFM and zero-stress
approximation).

The surface expression of basal crevasses. As described in the main
text, asubset of the fracture features identified by the DCNN could be
surface expressions of basal crevasses®*2. Although the DCNN was
not trained to distinguish surface expressions of basal crevasses®
from surface fractures, we note that the two features are not mutu-
ally exclusive and very often coexist® (to comprehensively distinguish
these two features continent-wide radar profiles showing basal crevasse
would be required). As noted by Bassis and Ma*®, a sufficiently wide
basal crevasse can induce tensile stress near the surface large enough
to create surface fractures. Most importantly, we showed that most
DCNN-identified fracture features (related to basal crevasses or not)
occur where dimensionless stresses are sufficient to form stable dry
surface fracture (Fig. 3c).

Lake locations

Stokes’ supraglacial lake locations compared with vulnerability
map. Stokes et al.” mapped supraglacial lakes in Landsat imagery
fromJanuary 2017 across all East Antarctic ice shelves (defined using
BedMap2’s” ice-shelf mask). Plotting their lake locations on our map
of vulnerability to hydrofracture (Extended Data Fig. 10), we see that
most lakes lie in the resilient regions (yellow-green areas).

To obtain an upper estimate of the proportion of East Antarctic
ice shelves that experience meltwater ponding and are vulnerable
to hydrofracture, we summed the areas of the 1 km x 1 km grid boxes
that contain lakes and lie in the vulnerable regions, then divided by
the total area of East Antarctic ice shelves, to give ~0.63%. The pro-
portion of East Antarctic ice shelves that lie at the intersection of all
threecirclesin Fig.1(thatis, have meltwater ponds, are vulnerable to
hydrofracture and provide substantial buttressing) is approximately
the same (~0.6%) because Stokes’ lakes mostly lie in places providing
substantial buttressing (as identified by Fiirst et al.®). Note that areas of
most individual lakes are -0.001-0.01 km? (see figure 3ainref.>)—much
smaller than the spatial resolution (1km?) of our vulnerability map. Thus
thetrue overlaps between these regions may be two to three orders of
magnitude smaller than estimated here.



Article

Data availability

The training, validation, and testing datasets are available at https://
github.com/chingyaolai/Antarctic-fracture-detection and https://
doi.org/10.5281/zen0do.3949427. The neural-network mapped frac-
ture locations on the MOA 2009 (125 m resolution) imagery (Fig. 2)
and the data required to construct the vulnerability map (Fig. 4) are
available at https://doi.org/10.15784/601335. MOA (2009) imagery
(https://doi.org/10.7265/N5KP8037) is available at the National Snow
and Ice Data Center (NSIDC). Strain-rate fields are calculated from
the dataset SUMER Antarctic Ice-shelf Buttressing, Version 1 (https://
doi.org/10.5067/FWHORAYVZCE?) available via the NSIDC. Ice-shelf
thickness data are from Bedmap2 (https://www.bas.ac.uk/project/
bedmap-2/). The surface temperature data from the RACMO2.3p2
regional climate model are available from J.M.v.W. (j.m.vanwessem@
uu.nl).

Code availability

The code for our experiment is available at https://github.com/
chingyaolai/Antarctic-fracture-detection (https://doi.org/10.5281/
zen0do0.3949427). The U-Net implementation® is available at https://
github.com/jakeret/tf_unet. The FPN implementation is available at
https://github.com/qubvel/segmentation_models. The deep learning
framework, TensorFlow, is available at https://www.tensorflow.org/.
Scriptsfor calculating the fracture stability diagram (Fig. 3c) are avail-
able from the corresponding author upon request.
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a. Training and validation data b. Sample training tile c. Sample labels on a training tile
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d. Generating predictions with U-Net
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Extended DataFig.1|Datapreparationand the neural network training tile. c, The corresponding labels with white pixels indicating fractures.
architecture. a, The training and validation data were taken froma 8,000 d, The U-Net architecture. The contracting and expansive paths give the
pixel 8,000 pixel subset (covering the Larsenand George Vlice shelves) of U-Net?its U-shaped architecture. Arrows illustrate operations within the
the125-m-resolution MODIS imagery, which produced 32 tiles of 1,000 network and ateach stage the datadimensionisnoted. Theinputimage (left) is
pixel x1,000 pixel images containingice shelves. The tiles were randomly 1,000 pixels x1,000 pixels with one channel and the output prediction (right)

separatedintotraining (26 tiles) and validation (6 tiles) sets. b, Example of a ofthe U-Net contains two classes (fracture and non-fracture).
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Extended DataFig.2|Performance ofthe DCNN and fracture classification.
a, (i), Comparisons of AUC for the validation data over number of parameters
(N) for an edge detector**, single-layer CNN with different filter sizes (1x 1,
28x28,56 x56; denoted by k), U-Net with different depths of first-layer feature
maps(1,2,4,16,32, 64; denoted by d) and FPN* using a ResNet-18 backbone.
(ii), The AUCs and N values of each model evaluated against the validation data
aresummarizedinthetable.b, The performance of the U-Net (with d=32)
evaluated againstan unseen testing setis shown by the ROC curves.

c,d, Examples of validation labelimages (c) and original MOA images (d).

e, Output of the model, continuous values between 0 and 1. f, Binarized
classification of fractures that used a threshold (0.2), maximizing the F1score
onthevalidation set. Fracture features with predictions exceeding the
threshold are marked in white. g, The resolution of the fracture map was
reduced tolkm, theresolution of the strainrate data, before weincorporated
the DCNNresult with other datain Extended DataFig. 6.
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Extended DataFig.3|Stressesactingonasurface fracture and fracture d, e, Theadditionalimpactsof afirnlayerare due toreduced density (d) and
stability. a, b, The effects of tensile resistive stress, hydrostatic stress of water reduced viscosity (e). Reduced overburden stress due to lower density firn

and overburdenstress of ice on opening or closing of asurface fractureindry (@)  comparedwithiceactstodeepensurfacefractures(blackdotongreencurveinc).
and water-filled fractures (b). ¢, The stress intensity factor (K,) as a function of In contrast, the reduced tensile resistive stress due to the reduced firn viscosity

surface fracture depth (d,) (Supplementary equation (5)) computed with reduces surface fracture depth. The net effects of firn, shown by the red curve
R..=[0.5,11MPa, H=300 m, surface firn density p,=400kgm>and C=0.02m™ inc,aresecondary compared with the effects fromtensile resistive and
(see Supplementary equation (6); ref.?). (The solution derived in this work is overburdenstresses of ice. We therefore did not include the effect of firnin the

shown withasolid curves and that of Van der Veen (ref.?) by dashed curves.) mainanalysis.
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f. Wearing’s strain rate and B(T)

g. Furst’s along-flow stress h. Furst’s 1% principal stress
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Extended DataFig. 4 |Physical regimes of surface and basal fractures.

a,b, The schematics ofasurface (a) and basal crevasse (b) with depth varying
resistive stress R,(z) dueto the vertical temperature gradient (assumed to be
linear).c, The fracture stability diagram for surface and basal crevasses with
and without temperature effects (assuming the surface and the base of ice shelf
are-30and 0 °C, respectively). Dashed and solid lines represent the transition
boundaries of stable-to-unstable and no fracture-to-stable fracture regions,
respectively. Warmerice at the base reduces theice viscosity (and thus stress),
whichimpactsthelocations of the stability boundaries of basal crevasse.

d, Thefive physical regimes (I-V) defined by the transition boundaries for
surface crevasse (black curvesinc) and basal crevasse with temperature effects
(lightblue curvesinc).e-h, Thelocations corresponding toregimesI-Vonice
shelves are determined by different estimates of stress. The percentage values

denote the portion of ice-shelf area containing the physical conditionin each
regime. The green, pink, blue, red, yellow and white areas correspond to
regimes1, I, 111, IV, Vand the U-Net-detected fracture locations, respectively.

e, f, Thestress field determined by the temperature dependent viscosity factor
B(T) (equation (6) inref.%”) combined with along-flow strain rates obtained by
Fiirstetal.”® (e) and Wearing® (). g, h, The stress fieldsin the along-flow (g) and
1st principal (h) stress directions calculated by ref. ®include the effects of
damage-inducedicesoftening through the dataassimilation and model
inversion process. Thesecond row of e-histhe close-up view of the white box
inthefirst row. Note that the spatial areas of regimes I-V were calculated solely
onthe basis of the dimensionless stress and toughness, and are independent of
the U-Netresult. The spatial resolutionis 1km, the same as the stress field
resolution usedinref.”.
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Extended DataFig.5| Comparisonbetween dry and water-filled fractures
inLEFM. a, The stress intensity factor (Supplementary equation (5))asa
function of surface fracture depth was calculated for hydrofractures (blue
curves) and dry surface fractures (black curves) for H=1,000 m. The number
alongside each curveisthe correspondingR,,. Above the critical stress

R%, = 60 kPa (calculated using equation (2) and K,. =150 kPam"?) dry-surface-
fracture depths are stable (black dot). Hydrofractures canbecome unstable
whena pre-existing flaw filled with water reaches adepth denoted by the white
dots. Water-filled initial flaws smaller than d; will remain closed. When stress is

Stable dry fracture
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sufficiently compressive, water-filled fractures will not grow (for example, the
blue curve has negative slopes for any surface fracture depth below the red
line). b, Comparison of d;with previous theories. Our numerical solution
approaches Weertman’s solution at large ice thickness. ¢, d, The required d; to
destabilize ahydrofracture as afunction of stress isshown by blue curves. The
pre-existing flaw depths required toinitialize stable dry surface fractures are
plottedasared curveinc,and reachamaximumof-3.8 mat thecritical stress
R, (dashedline). Note thatatR’, therequired initial flaw depthis the sameas
fracture depth, thatis,d;= d,=d’;~ 3.8 m (half-white half-black dot in a).
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Extended DataFig. 6 | Antarctic-wide dataused to predict vulnerability to
hydrofracture.a-d, The dimensionless toughness and dimensionless stress
were evaluated using strainrates (a), ice-shelf thickness (b), surface
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temperature (c) and viscosity factor B (d, calculated from surface temperature)
and plotted on the fracture stability diagram (Fig. 3¢c).
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Extended DataFig.7|Surface fracturestability diagram. The two allfracture features detected by the DCNN marked as yellow dots (n=31,962).

parameters determining fracture stability, K. and R, were computed at every The frequency distribution of the yellow pointsis showninFig.3c.
1kmx1kmlocationonallice shelves markedasred (n=1,258,908 points) and
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b. Furst’s along-flow stress

c. Furst’s 1%t principal stress
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Extended DataFig. 8| Alternative stress computations. Sensitivity of
surface fracture stability diagram (top) and the vulnerability map (bottom)
to choices of stress and strain rate data. a-c, Results computed using strain
rates calculated by ref. ! (a) and ref. * along-flow stress (b) and first principal
stress (c), whichincludes damage-induced ice softening. The colour scale for
thebottomrowis the same as Fig. 4. The percentage values in the bottom row

denotethe percentage of the totalice-shelfareathatisintheredregimeinthe
second row (thatis, bothbuttressed and vulnerable to hydrofracture). Our
main conclusions—thatice-shelf stresses closely agree with the fracture
criteria, and thatlarge buttressed areas are vulnerable to hydrofracture—are
not affected by the use of these alternative stress fields.



a. Fracture local stress (same as Fig. 3c) b. Maximum stress along the streamline
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Extended DataFig.9|Advection of fracture and stress history. We tracked comparison.b, For eachlocationidentified asafracture by the DCNN,
theresistive stress upstream along streamlines (assuming steady-state) and we evaluated R, ..., and the corresponding K. at the location where R,y

identified the maximum dimensionless stress R,,m., €ach fracture feature had occurred. R .y calculated for most fractures features exceeds the threshold
experiencedin the past.a, The dimensionless parameters R, and K. evaluated forsurface fracture formation (red line; equation (2)).
directly atthe locations of fracture features are shown (same as Fig. 3c) for
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Extended DataFig.10 | East Antarctic lakelocations compared with
vulnerability map. Stokes et al.> have mapped lakes across much of East
Antarctica for one meltseason (2017), enabling us to compare these locations
withour vulnerability map (Fig.4). a-e, The lakes mapped by Stokes et al. are
marked inlight blue with expanded views showninb-e. We find that only a tiny

proportion of theice-shelfareain East Antarcticaaccumulates meltwater,
providesbuttressing and is vulnerable to hydrofracture. An upper estimate of
theoverlap between lake-covered area (top circle of Fig.1) and stress
state-related vulnerable area (bottom left circle of Fig.1) is only ~0.63% of the
EastAntarcticice-shelfarea.
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