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Vulnerability of Antarctica’s ice shelves to 
meltwater-driven fracture

Ching-Yao Lai1 ✉, Jonathan Kingslake1,2, Martin G. Wearing3, Po-Hsuan Cameron Chen4,  
Pierre Gentine5, Harold Li6, Julian J. Spergel1,2 & J. Melchior van Wessem7

Atmospheric warming threatens to accelerate the retreat of the Antarctic Ice Sheet by 
increasing surface melting and facilitating ‘hydrofracturing’1–7, where meltwater flows 
into and enlarges fractures, potentially triggering ice-shelf collapse3–5,8–10. The collapse 
of ice shelves that buttress11–13 the ice sheet accelerates ice flow and sea-level rise14–16. 
However, we do not know if and how much of the buttressing regions of Antarctica’s ice 
shelves are vulnerable to hydrofracture if inundated with water. Here we provide two 
lines of evidence suggesting that many buttressing regions are vulnerable. First, we 
trained a deep convolutional neural network (DCNN) to map the surface expressions of 
fractures in satellite imagery across all Antarctic ice shelves. Second, we developed a 
stability diagram of fractures based on linear elastic fracture mechanics to predict 
where basal and dry surface fractures form under current stress conditions. We find 
close agreement between the theoretical prediction and the DCNN-mapped fractures, 
despite limitations associated with detecting fractures in satellite imagery. Finally, we 
used linear elastic fracture mechanics theory to predict where surface fractures would 
become unstable if filled with water. Many regions regularly inundated with meltwater 
today are resilient to hydrofracture—stresses are low enough that all water-filled 
fractures are stable. Conversely, 60 ± 10 per cent of ice shelves (by area) both buttress 
upstream ice and are vulnerable to hydrofracture if inundated with water. The DCNN 
map confirms the presence of fractures in these buttressing regions. Increased surface 
melting17 could trigger hydrofracturing if it leads to water inundating the widespread 
vulnerable regions we identify. These regions are where atmospheric warming may 
have the largest impact on ice-sheet mass balance.

Where ice shelves—the floating extensions of ice sheets—are laterally con-
fined, they generate resistive stress and transmit this upstream to slow 
the flow of ice into the ocean. This is called buttressing. Areas with larger 
tensile resistive stresses2,18 provide less buttressing13,19. When buttressing 
ice shelves collapse, upstream glaciers accelerate14–16. Observations and 
models have linked ice-shelf collapse to surface melting4,5,8,10,20 through 
hydrofracturing; where meltwater flows into surface fractures, imposing 
additional loading and driving unstable fracture growth1,2. Repeated 
hydrofracturing close to an ice-shelf edge has been hypothesized as a 
potential mechanism driving collapse4. Flexural stresses generated by 
the filling and draining of lakes on ice shelves may also facilitate hydrof-
racturing and trigger collapse5,21,22. Although hydrofracturing has so far 
only been included in ice-sheet models with simple parameterizations9,10, 
simulations predict that it could accelerate the retreat of the Antarctic 
Ice Sheet in response to atmospheric warming9,10.

Antarctica’s response to surface melting
Hydrofracturing requires sufficient surface meltwater and tensile stress 
within the ice shelves. However, not all parts of ice shelves provide 

substantial buttressing and thus, to predict the impact of atmospheric 
warming on Antarctic ice loss, we must predict (1) the distribution of 
meltwater on ice shelves7,17,23–25; (2) the regions of ice shelves provid-
ing buttressing13,19; and (3) the regions of ice shelves that will undergo 
hydrofracturing if meltwater accumulates (Fig. 1; ref. 26). Progress has 
been made in constraining where meltwater accumulates today and will 
in the future (the upper circle in Fig. 1). Stokes et al.25 comprehensively 
mapped lakes in East Antarctica using satellite imagery from January 
2017. Trusel et al.17 predicted that melt rates seen in areas that have 
undergone catastrophic collapse in the past will become widespread 
this century. Alley et al.7 assessed the state of firn on ice shelves, which is 
linked to the ability of an ice shelf to retain surface water27, using micro-
wave backscatter observations. They found some locations already in a 
state that would allow lake formation and potentially hydrofracturing7,27

. 
However, a location will only undergo hydrofracturing if local stresses 
allow, with higher tensile stress promoting hydrofracturing. For clar-
ity, here we will refer to the tendency of a location to hydrofracture if 
inundated with water as its vulnerability to hydrofracture. Crucially, 
areas of higher tensile stress2 provide less buttressing13,19, yet are most 
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vulnerable to hydrofracture. Therefore, an important open question is: 
are any of the regions generating substantial buttressing also vulner-
able to hydrofracture under present-day conditions? Do the two lower 
circles in Fig. 1 overlap? This is the focus of this article.

Fracture detection with a neural network
Fracture-like features are visible in satellite imagery (for example, 
the 125-m-resolution MODIS mosaic of Antarctica, MOA 200928), but 
comprehensive manual mapping is impractical (ice shelves cover 1.5 
million pixels in MOA). We therefore used a deep convolutional neural 
network (DCNN), the U-Net29, to identify the fracture-like features in the 
relatively low-resolution, but continent-wide, MOA imagery. We trained 
the DCNN with a subset of MOA imagery in which fracture features were 
manually labelled (Extended Data Fig. 1c). The output of the DCNN is a 
map of the likelihood (ranging from 0 to 1) that a pixel contains part of 
a fracture. The trained DCNN performs well when evaluated against an 
unseen subset of imagery (Extended Data Fig. 2). We applied the trained 
DCNN to map fracture-like features across all of Antarctica’s ice shelves 
(Fig. 2). Examples of the imagery and the fracture features identified 
by the DCNN are shown in Fig. 3a, b, respectively. Because there are 
morphological similarities between surface fractures, full-thickness 
rifts and surface expressions of basal fractures30–32, it is likely that they 
all make up a proportion of the fractures mapped by the DCNN. We 
refer to them throughout as fractures, but consider this limitation 
when comparing the DCNN results to the theoretical predictions below.

Fracture stability diagram
Next, we developed a new theoretical framework to predict the loca-
tion of dry surface fractures. There are two widely adopted models 

for ice fracturing: the zero-stress approximation33 and linear elastic 
fracture mechanics (LEFM)2,34. The zero-stress approximation only 
applies where fractures are densely spaced (fracture spacing is much 
smaller than fracture depth)35. Because the spacing between dry frac-
tures (~1 km) is often larger than the fracture depth, we applied LEFM. 
Although dry-fracture depths predicted by LEFM are simply a factor 
of π/2 larger than those predicted by the zero-stress approximation1 
(Extended Data Fig. 5b), LEFM provides an estimate of the critical ten-
sile resistive stress required to form dry fractures, which is crucial for 
this study.

To quantify how ice-shelf stress affects fracture stability, we con-
structed a fracture stability diagram (Fig. 3c). Vertical propagation of 
a stable fracture stops when it is too energetically costly to break the 
ice further. By contrast, unstable fractures propagate through the 
entire ice thickness. Fractures may form on both the surface and base 
of ice shelves; their stability depends on the tensile resistive stress Rxx 
(refs. 2,34) perpendicular to the fracture, ice thickness H, fracture tough-
ness KIc (a measurable material property)36 and ice density ρi. The sta-
bility of both surface and basal fractures depends on two fundamental 
parameters (Supplementary Section 3), the dimensionless tensile 
resistive stress (R̃xx) and dimensionless fracture toughness (K̃Ic):
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We analytically derived a power law (Supplementary Section 3) for the 
critical tensile resistive stress R*xx  that allows the formation of stable 
surface fractures (red curve in Fig. 3c),
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where F ≈ 1.122,  f ≈ 1.068 and α is a dimensionless pre-factor (Supple-
mentary Section 3). This analytical expression (equation (2)) closely 
matches the corresponding numerical solution (black solid curve in 
Fig. 3c; Supplementary Section 3). When Rxx < R*xx, no surface fractures 
can exist according to LEFM (white area in Fig. 3c). When R̃xx exceeds a 
threshold (black dashed line in Fig. 3c), surface fractures are unstable. 
The transition boundaries (between no fracture, stable fracture and 
unstable fracture) for basal fractures with the inclusion of the effects of 
vertically varying temperature (Supplementary Section 7) are shown by 
light blue curves in Fig. 3c. In the absence of meltwater, LEFM predicts 
that a basal fracture will destabilize at a smaller R̃xx than a surface fracture.

To assess where the DCNN-identified fracture features lie in this 
space, we computed R̃xx  and K̃Ic for every fracture location (at 1 km 
resolution) using observed H (ref. 37), KIc = 150 kPa m1/2 (from laboratory 
measurements)36, strain rates derived from a data-constrained flow 
model13 and ice viscosity calculated using ice surface temperature from 
a regional climate model38 (Extended Data Fig. 6c). Fig. 3c plots them 
on the parameter space as a density map. Most fracture features (89% 
of 31,962 locations identified as fractures by the DCNN shown in Fig. 3c) 
lie in the parameter region where the theory predicts stable surface 
fractures (grey area in Fig. 3c). We also note that 56% of the 31,962 iden-
tified fracture features lie in the parameter regime of stable basal frac-
tures. Given the simplicity of the theory and the limitations of the DCNN 
mapping, this agreement is encouraging and suggests that the theory 
predicts both stable surface and basal fractures across realistic ranges 
of R̃xx  and K̃Ic. Note that no parameters were tuned to determine the 
locations of data on Fig. 3c.

Vulnerability to unstable hydrofracture
To estimate vulnerability to hydrofracture across all ice shelves, we 
next examined the extreme case when water inundates all ice shelves. 
In this way, we estimated the geographic extent of the lower-left circle 
in Fig. 1. When surface fractures are filled with meltwater, the weight 
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Fig. 1 | Conceptualizing the regions of Antarctic ice shelves that will control 
the ice sheet’s response to atmospheric warming. Circles represent ice-shelf 
regions (top) where meltwater accumulates, (bottom left) that are vulnerable 
to hydrofracture if covered in meltwater, and (bottom right) where substantial 
buttressing is generated. Images show: Amery Ice Shelf with water 
accumulated in large melt ponds, 21 February 1989, Landsat 4, NASA (top); the 
collapse of Larsen B Ice Shelf, 7 March 2002, MODIS, NASA (bottom left); 
modelled estimate of buttressing on Larsen C Ice Shelf13 (bottom right; 
reproduced from figure 3 of ref. 13 (Springer Nature)). Regions downstream of 
the red contour (blue) are relatively unimportant for buttressing.
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of water can destabilize the fractures, leading to unstoppable fracture 
propagation. However, when the ice stresses are sufficiently compres-
sive, pre-existing water-filled fractures remain stable (Supplementary 
Section 5). Here we assume that surface water flows rapidly into surface 
fractures and does not refreeze fast enough to affect fracture propaga-
tion. Slow inflow and refreezing could stabilize surface fractures. A frac-
ture model coupled to a hydrological model could account for this39.

In regions where Rxx > R*xx  (red in Fig. 4a), surface fractures will be 
unstable if filled with water—these locations are vulnerable to hydro-
fracture. Where Rxx < R*xx, water-filled fractures will be stable, unless 
the original dry fracture is deeper than di (Fig. 4a). The pre-existing 
surface fracture depth di required to destabilize hydrofracture increases 
as Rxx decreases, as plotted in Extended Data Fig. 5c, d. Given that 

pre-existing fractures in regions of low Rxx are unlikely to be 50–150 m 
deep, we consider the ice-shelf regions marked yellow and green in 
Fig. 3 to be resilient to meltwater-driven fracturing. Finally, some 
regions have sufficiently compressive stresses that water-filled frac-
tures cannot grow, regardless of their size (black regions in Fig. 4a).

Vulnerable and buttressing regions
Our key question is whether regions vulnerable to hydrofracture coin-
cide with buttressing regions (Fig. 1). Both the DCNN-mapped fractures 
and LEFM theory suggest that they do coincide. Blue areas in Fig. 4a 
were identified by Fürst et al.13 as regions of ‘passive ice’ that provide 
little buttressing. Red regions in Fig. 4 are where the ice shelf is vulner-
able to hydrofracture according to our LEFM analysis and also provides 
substantial buttressing13; that is, they lie outside the passive regions 
recognized by Fürst et al. These regions cover 60 ± 10% of the total area 
of Antarctica’s ice shelves. The details of the extent of these regions 
depend on the buttressing computation13 and the method used to com-
pute stresses, but the finding that buttressing and vulnerable regions 
substantially overlap does not (Extended Data Fig. 8). The DCNN map 
confirms widespread surface fractures in these regions (Fig. 2).

It does not impact our key conclusions, but we neglected the impact 
of the low-density, low-viscosity, near-surface firn layer and ice soften-
ing due to damage (Methods). The net effect of the firn is to slightly 
increase surface fracture depths (Supplementary Section 2 and 
Extended Data Fig. 3c) and therefore slightly increase the extent of 
the vulnerable regions. Conversely, damaged ice would generate lower 
tensile resistive stress and decrease the extent of vulnerable regions 
slightly (see Methods and Extended Data Fig. 8b).

Hydrofracturing can only occur if the ice-shelf surface is inundated 
with meltwater. Large meltwater ponds have persisted in numerous 
locations for decades. Many of these, for example on the George VI 
(Fig. 4c), Amery (Fig. 4e) and Roi Baudoin ice shelves23,40, lie in regions 
that, due to low tensile (and in places compressive) resistive stresses, 
are resilient to hydrofracture (Fig. 4b, d). Moreover, using a recent 
survey of East Antarctic supraglacial lakes25, we estimated an upper 
bound of only 0.6% of East Antarctic ice shelves (by area) currently 
provide buttressing, experience meltwater ponding and are vulnerable 
to hydrofracture (see Methods section ‘Lake locations’ and Extended 
Data Fig. 10). Increased meltwater ponding in resilient locations will not 
lead to widespread hydrofracturing according to our analysis. However, 
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Fig. 3 | Model–observation comparison of fracture locations. a, b, 125-m- 
resolution MOA showing part of the Ross Ice Shelf (location shown by the star 
in the inset map) (a) and the fracture features (marked in white) identified by 
the DCNN (b). c, Stability diagram for dry surface fractures and basal fractures; 
R̃xx against K̃Ic. The boundary between the no-fracture and stable-fracture 
regions was obtained numerically (black and blue curves for surface and basal 

fractures, respectively) and analytically (red curve for surface fractures, 
equation (2)). Dashed lines denote the boundary between stable and unstable 
fractures. R̃xx and K̃Ic (equation (1)) were computed for every fracture location 
detected by the DCNN and displayed as a density plot (31,962 data points); the 
colour bar denotes the number of fracture locations that have the same 
dimensionless values (Methods).

500 km

Fig. 2 | Continent-wide fracture map. Locations of fracture features classified 
by the DCNN are marked in white. The model with the optimal performance on 
the validation set was chosen to generate the fracture map. The area under the 
receiver operating characteristics curve of the U-Net on an unseen testing set is 
0.97 (Methods).
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predictions of future melt17,41 suggest that melt rates seen in locations 
that experience meltwater ponding today could become widespread by 
2100 under high-emissions scenarios. This, coupled with present-day 
widespread low-porosity firn7 and large-scale surface-meltwater drain-
age that can transport water long distances from melt zones26, strongly 
indicates that meltwater ponding could spread to many of the buttress-
ing and vulnerable regions under future warming scenarios.

Summary
We have used fracture mechanics, machine learning and continent-wide 
datasets to estimate the vulnerability of Antarctica’s ice shelves to 
hydrofracture. Although hydrofracturing and buttressing are favoured 
by different stress conditions, a large proportion of Antarctic ice shelves 
are both vulnerable to hydrofracture, if inundated with meltwater, and 
provide substantial buttressing. We used a neural network to produce a 
continent-wide map of fracture features (Fig. 2). Our analysis yielded a 
fracture stability diagram based on LEFM that shows promising agree-
ment with the fracture locations, but could be extended to include 
viscous35 and thermal effects39. This theory could be implemented into 
an ice-sheet model to improve sea-level predictions and the machine 
learning approach to mapping fractures can easily be applied to 
higher-resolution imagery. If warming allows meltwater to enter the vul-
nerable buttressing regions we have identified, hydrofracture-driven 
ice-shelf collapse is possible, which could have major consequences 
for Antarctic mass loss and global sea-level rise.
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Methods

Machine learning development and evaluation
To develop a machine learning model to detect ice-shelf fractures, we 
first trained several models on a training set to learn the relationships 
between input images and corresponding fractures labelled manually 
by visual inspection. Next, we assessed the performance of the trained 
models on a validation dataset with a range of hyperparameters. The 
best-performing model on the validation data was selected for evalu-
ation on an unseen test dataset.

Training, validation and testing datasets. A 1,000 km × 1,000 km 
(8,000 pixels × 8000 pixels, at 125 m resolution) region covering the 
Larsen C and George VI ice shelves in the MODIS MOA28,42 was used as 
the training and validation sets (Extended Data Fig. 1a). This subset 
of MOA contains fracture features near shear margins, calving fronts 
and grounding lines, covering the range of typical fracture patterns 
observed on Antarctic ice shelves. We first cropped the 8,000 pixel  
× 8,000 pixel image into smaller tiles (1,000 pixels × 1,000 pixels),  
of which 32 tiles contained ice-shelves (non-black areas in Extend-
ed Data Fig. 1a). We randomly divided the 32 tiles into a training set  
(26 image tiles) and a validation set (6 image tiles). To evaluate the 
developed machine learning model on an unseen dataset, we pre-
pared an independent testing set consisting of 6 image tiles of size  
1,000 pixels × 1,000 pixels randomly selected from the remaining 
continent-wide MODIS image.

Using a Matlab script, we manually labelled the datasets (38 tiles 
in total) by visually identifying fractures on the basis of their linear 
morphology and alignment perpendicular to flow (fractured areas are 
filled in white as shown in Extended Data Fig. 1c). The marked fractures 
were rasterized as binary labels. A sample training tile and its labels are 
shown in Extended Data Fig. 1b and c, respectively.

Model selection. For model selection, we compared the predictive 
performance of a wide range of machine learning models. We explored 
four sets of models, including (1) several single-layer convolutional neu-
ral networks (CNNs) with different filter sizes, 1 × 1, 28 × 28 and 56 × 56,  
(2) U-Net29 using different numbers of first-layer feature maps (1, 2, 4, 
16, 32, 64), (3) feature pyramid networks (FPNs)43 with a ResNet-18 back-
bone, and (4) an edge detector44 (using OpenCV’s cv.Canny implementa-
tion with minimal threshold = 0 and maximum threshold = 255). There 
are many other advanced segmentation models such as DeepLabv345,  
SegNet46, PSPNet47, and others. Doing a detailed comparison for a wide 
range of advanced segmentation models to detect fractures on satellite 
imagery is left for future work.

We used the area under the receiver operating characteristics 
curve (AUC) as the evaluation metric for model selection. The AUC of 
the trained models on the validation set is plotted in Extended Data 
Fig. 2a(i) as a function of the total number of parameters in each model. 
All models were trained with a batch size of 1. The single-layer CNN 
and FPN models were trained using the stochastic gradient descent 
optimizer to minimize the cross-entropy loss. The U-Net was trained 
with the momentum optimizer to minimize the cross-entropy loss.

As shown in Extended Data Fig. 2a, the performance of U-Net 
increases greatly when the initial number of feature maps (d) increases 
from 1 to 4, reaching a maximum of AUC = 0.99 when d = 32, then slightly 
decreases when d increases beyond 32. Single-layer CNNs with filter 
sizes of 1 × 1, 28 × 28, and 56 × 56 perform well but do not exceed the 
performance of the U-Net when the number of parameters is increased. 
This is probably due to an insufficient number of layers to recognize 
complex fracture patterns. Lastly, the FPN is a state-of-the-art method 
for recognizing objects on the COCO dataset48, however, it has an AUC 
of 0.82 for the fracture detection task in this study, which is lower than 
that of the U-Net. This is probably a result of overparameterization for 
this comparatively simple task. On the basis of these observations,  

we selected the U-Net with 32 initial feature maps for making predic-
tions on the continent-wide map. A sample validation label and image 
are displayed in Extended Data Fig. 2c, d, respectively.

U-Net architecture. To detect fractures we employed the U-Net29, a 
DCNN that has been successfully applied to image segmentation. In 
addition to a contracting path, which is typical for convolutional neural 
networks, the U-Net also contains an expansive path, which gives rise to 
its U-shaped architecture (Extended Data Fig. 1d). The expansive path 
recovers the location of the classified pattern and enables efficient use 
of training examples.

In our U-Net setup, there are 2 classes (fracture and non-fracture) 
in the output predictions, one channel in the input image (1,000 pix-
els × 1,000 pixels), 32 feature maps in the first layer and 13 convolutional 
layers (ten 3 × 3 convolutional layers, two 2 × 2 transposed convolutional 
layers, and one final 1 × 1 convolutional layer) in the entire architecture 
(Extended Data Fig. 1d). For each block in the contracting path, the 
image is convolved twice with 3 × 3 filters, each followed by a ReLU acti-
vation function, and down-sampled with a 2 × 2 max pooling (stride 2)  
filter. For each block in the expansive path, the image size is increased 
by a 2 × 2 upsampling (transposed convolutional) filter, followed by a 
concatenation with the cropped feature maps from the corresponding 
contracting layer, two 3 × 3 convolution filters and a ReLU activation 
function. The number of filters is halved and doubled in the downsam-
pling and upsampling steps, respectively. Finally, a 1 × 1 convolution is 
applied to generate the output prediction (960 pixels × 960 pixels). We 
trained our model using the momentum optimizer with the hyperpa-
rameters (learning rate = 1.4, momentum = 0.2, decay rate = 0.95) that 
optimize the AUC on the validation set. A sample prediction of the 
fracture is shown in the right panel of Extended Data Fig. 1d.

Threshold selection. Next, a classification threshold was applied to 
the predictions (continuous output between 0 and 1, Extended Data 
Fig. 2e) so that every pixel was classified as either a fracture (white in 
Extended Data Fig. 2f) or non-fracture (black in Extended Data Fig. 2f). 
Every threshold corresponds to a point on the receiver operating 
characteristics (ROC) curve. Lower thresholds yield higher sensitiv-
ity (percentage of pixels with fractures that are classified as fractures) 
but lower specificity (percentage of pixels without fractures that are 
classified as non-fractures). We applied a range of thresholds (0–1) on 
the validation-set predictions and measure the F1 scores. The threshold 
(0.2) with the highest F1 score on the validation set was selected for 
generating the continent-wide fracture map shown in Fig. 2.

Evaluation using the testing set. Finally, we evaluated the model 
performance using the testing set not seen by the model. The model 
showed an AUC of 0.97 (95% CI: 0.93–0.99) on the testing set, as shown in 
Extended Data Fig. 2b. The CI of the model performance was calculated 
using bootstrapping with 1,000 samples. We further performed a data 
titration experiment to understand the impact of the training set size 
with respect to the performance. Increasing the number of training 
tiles from 6 to 26 only increases the AUC from 0.95 to 0.97, indicat-
ing that increasing the training dataset size further will probably not 
substantially improve performance. The classification performance 
on the testing set, after applying the classification threshold (0.2) to 
the predictions, showed a specificity of 0.99 and sensitivity of 0.64.

Continent-wide fracture map. We applied the final U-Net with the 
selected threshold to the continent-wide MOA imagery to identify 
fracture features across all ice shelves (marked in white in Fig. 2). 
Note that the resolution of the fracture map is 125 m, but the resolu-
tion of the strain rate data (Extended Data Fig. 6a) is 1 km (ref. 13). We 
downsampled the fracture map to 1 km resolution to construct Fig. 3c  
using the fracture locations and strain rate data on the same grid.  
The downsampling algorithm used nearest-neighbour interpolation. 
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The images before and after downsampling are shown in Extended Data 
Fig. 2f,  g, respectively. Some detailed fracture patterns are lost in the 
1-km-resolution fracture map (Extended Data Fig. 2g) but the overall 
fracture distribution is retained. For future work, the proposed method 
can be extended to a finer grid where higher-resolution imagery (for 
example, Landsat) and strain rates are available49.

Limitations on fracture identification. Most (89%) of the fractures 
mapped using 125-m-resolution MOA imagery lie in the region of the sta-
bility diagram (dimensionless tensile resistive stress and dimensionless 
fracture toughness) where our theory predicts that the tensile resistive 
stress exceeds the critical value required for dry surface fracturing. 
The remaining fracture locations fall in the region of parameter space 
where the theory predicts that no dry surface fractures should form. 
There are several possible explanations; for example, unresolved lo-
cally high strain rates, existing fractures advecting into lower-stress 
regions, incorrectly identified fractures, or fracturing resulting from 
more complex fracture modes than our theory describes.

The theory also predicts that dry surface fractures exist in many 
locations where the DCNN does not detect them. Several explanations 
for this are possible. First, the satellite imagery we used relies on a part 
of the electromagnetic spectrum where energy does not penetrate 
through snow and ice. It therefore fails to detect surface fractures bur-
ied by snow unless there is sufficient surface expression. For example, 
the presence of buried surface fractures can sometimes be inferred 
from the presence of elongated depressions in the snow surface, which 
may be observable in MOA. However, it is possible that many subsurface 
fractures were not detected by the DCNN because they had little or no 
surface expression. Satellite-based radar (for example, RADARSAT, 
SENTINEL-1) can detect sub-surface structures because radio waves 
penetrate up to ~10 m into the subsurface50,51. Applying the DCNN to 
these data may allow us to test whether buried surface fractures are 
widespread in these regions, as predicted by the theory. Second, it is 
possible that the limitations of the DCNN are causing us to fail to detect 
surface fractures in these locations. Although the performance of the 
DCNN output prediction (a continuous variable ranging from 0 to 1) 
evaluated against testing set is excellent (AUC = 0.97), the binary clas-
sification of fracture features (a binary variable, either 0 or 1) identified 
via application of a classification threshold yielded a sensitivity of 
0.64, indicating that 37% of all fracture features manually labelled on 
the test data were not detected by the DCNN. The performance of the 
U-Net is expected to improve if higher resolution imagery are used. It 
is also possible that the relatively low-resolution imagery is incapable 
of detecting crevasses smaller than a few hundred metres in length or 
width, and we therefore failed to detect many smaller crevasses in the 
locations where the theory predicts that they should form. Future work 
could apply the DCNN within a high-performance computer framework 
to higher-resolution imagery.

Theory of ice-shelf fractures
We have developed a model of ice-shelf fracturing based on linear elastic 
fracture mechanics (LEFM). A complete theoretical description is avail-
able in the Supplementary Information, which draws on refs. 1,2,18,33–36,52–57. 
The Supplementary Information describes LEFM for surface crevasses 
(Supplementary Section 1) and basal crevasses (Supplementary Sec-
tion 6), the determination of dimensionless parameters (equation (1)) for 
the fracture stability diagram (Fig. 3c), the derivation of the critical stress 
required for surface crevasse formation (equation (2); Supplementary 
Section 3), firn effects on surface crevasses (Supplementary Section 2), 
surface crevasse depth from LEFM versus Nye’s zero-stress approxima-
tion (Supplementary Section 4), water-filled crevasse stability and initial 
flaws (Supplementary Section 5) and the effects of vertical englacial 
temperature gradients on surface and basal fractures (Supplementary 
Section 7). Using theoretical results derived in the Supplementary Infor-
mation, we discuss the stability of surface and basal fractures below.

Physical regimes of surface and basal fractures. The stability dia-
gram for surface and basal fractures is shown in Extended Data Fig. 4d. 
We labelled physical regimes I–V on the stability diagram, marked 
the ice-shelf locations corresponding to each regime (Extended Data 
Fig. 4e–h) and quantitatively shown the percentage of ice shelves 
corresponding to each physical regime. The four panels (Extended 
Data Fig. 4e–h) show the variability in the location of each regime 
when different ice-shelf stress datasets were used (their correspond-
ing stability diagrams are shown in Fig. 3c and Extended Data Fig. 8). 
Locations where basal fractures are stable (blue; regime III) cover 
41–62% of ice shelves and are theoretically dominant on ice shelves. 
Locations where surface fractures could theoretically form are wide-
spread and overlap with that of stable and unstable basal fractures. The 
locations of unstable basal fractures (red; regime IV) cover only 2–4% 
of the total ice-shelf area. These red areas largely overlap with areas 
of high extensional stress downstream of pinning points where ice is 
damaged or near existing rifts, as shown in Extended Data Fig. 4e–h, 
with close-up examples shown in the second row. Note that the red 
area is purely an output from a given dimensionless stress input, and 
is independent of the neural network-mapped fracture-feature loca-
tions (white locations).

Within this 2–4% area (regime IV; red in Extended Data Fig. 4e–h) the 
effective viscosity could be overestimated in locations with highly dam-
aged ice. Some red areas that coincide with fracture features disappear 
when the stress field from Fürst et al.13 is used directly (Extended Data 
Fig. 4g, h), as this product inherently includes the damage-induced 
softening of the ice. On the other hand, LEFM may be unable to  
accurately describe basal fracture stability. For example, ice may be 
more ductile58 at the base and thus require more energy to break than 
predicted by LEFM, thus stabilizing basal crevasses that would be unsta-
ble according to LEFM and reducing the red areas in Extended Data  
Fig. 4e–h.

Data used for the fracture stability diagram
Data sources. The parameters required to plot ice-shelf locations on 
the stability diagram of dimensionless tensile resistive stress and di-
mensionless fracture toughness are tensile resistive stress Rxx, ice thick-
ness H, fracture toughness KIc and ice density ρi. The stress was calcu-
lated using the strain rate ̇ϵxx  and the effective viscosity, which was 
calculated using the viscosity factor B, according to Glen’s flow law 
R Bϵ= 2xx xx

n1/̇ . We used the along-flow strain rate ̇ϵxx  (Extended Data 
Fig. 6a) determined from a model assimilation of satellite-derived ve-
locity data13,59. The assimilated velocity field effectively smoothed the 
observed velocity field60, which can otherwise be problematic when 
differentiating to compute strain-rate fields61. An alternative approach 
is to use the first principal strain rate. In the next section we demon-
strate that using the first principal stress instead of the along-flow stress 
does not impact our main conclusions. Ice-shelf thickness was from 
Bedmap237 (Extended Data Fig. 6b). The viscosity factor B (Extended 
Data Fig. 6c) was calculated using an empirical function, which is de-
pendent on ice temperature (equation (6) in ref. 57). Most surface frac-
tures are 1–50 m deep (less than 25% of the typical ice thickness), and 
the ice temperature within this range is approximately constant (fig. 1b 
in ref. 62). Thus, we calculated B using the surface temperature Ts (Ex-
tended Data Fig. 6d), obtained from a time average of the regional 
climate model RACMO2.3p2. The negligible effect of vertical temper-
ature gradient on the surface fracture stability is addressed in Sup-
plementary Section 7 and Extended Data Fig. 9. The fracture toughness 
is insensitive to temperature in the range 100–273.15 K according to 
laboratory measurements (figure 3 in ref. 36), and thus was assumed 
constant KIc = 150 kPa m1/2 (ref. 36) across ice shelves in our study. Note 
that an alternative approach is to use the stresses computed directly 
by the model assimilation ref. 13. This has the advantage that the effects 
of ice damage (for example, due to crevassing) are accounted for in the 



ice viscosity, but this does not impact our main conclusions (Extended 
Data Fig. 8).

Stability diagram for all ice shelves and 2D histogram. The axes of 
the fracture stability diagram (Fig. 3c) are dimensionless fracture tough-
ness K̃Ic and tensile resistive stress R̃xx  (equation (1)), which control 
whether fractures occur (equation (2)) and their stability. K̃Ic and R̃xx 
were calculated on a 1 km × 1 km grid using the datasets identified in the 
previous section. These values are plotted as red dots in Extended Data 
Fig. 7 (n = 1,258,908 points), showing the range of parameter values across 
all ice shelves. The subset of locations where fractures were identified 
by the deep convolutional neural network (DCNN) are marked in yellow 
(n =31,962) in Extended Data Fig. 7. These points almost exclusively lie 
within the stable-fracture phase.

To visualize the density of points in Extended Data Fig. 7, we plot 
the two-dimensional histogram for the fracture locations (yellow dots) 
in Fig. 3c in the main text. The data points were sorted into bins with 
logarithmically varying widths for both axes (that is, data in the range 
of 10 − 10x x+0.01  was sorted into the same bin). The total number of  
data points within each bin is denoted by the colour (Fig. 3c). This 
shows a dense population of fracture features within the parameter 
regime where we predict stable surface and basal fractures and  
demonstrates a remarkable agreement with our analytical result  
(red line, equation (2)) for the transition boundary between the 
no-surface-fracture and stable-surface-fracture regions of the stabil-
ity diagram.

Uncertainties associated with our choices of stress and strain-rate 
fields. The tensile resistive stresses Rxx used in the stability diagram 
and vulnerability map in Fig. 3c and Fig. 4 were calculated from the 
surface-temperature-dependent viscosity factor B(T) and the along- 
flow strain rate ̇ϵxx  computed by Fürst et al.13. In Fig. 4 the areas that 
both generate substantial buttressing and are vulnerable to hydrof-
racture are marked in red and cover 60% of total ice-shelf area. To check 
the sensitivity of our results to the strain rates, we repeated our analy-
sis using along-flow strain rates supplied by ref. 61 (Extended Data 
Fig. 8a). These strain rates were derived by applying Gaussian smooth-
ing to the MEaSUREs V2 Antarctic velocity product60,63. We found 
fewer points within the no-surface-fracture regime and an increase in 
the extent of the vulnerable regions (69% in Extended Data Fig. 8a com-
pared with 60% in Fig. 4a).

The impact of ice damage on ice viscosity64 is not considered in the 
main text but included in Extended Data Fig. 8b, c. More damaged ice 
is less viscous and therefore experiences less stress for a given strain 
rate. The stresses calculated by ref. 13 incorporated an inverted viscos-
ity parameter, which was calculated so that model velocities matched 
observations60. The effects of damage were therefore embedded in 
the computed stresses. Extended Data Fig. 8b, c show the stability 
diagram and vulnerability maps computed using the along-flow stress 
and first principal stress (that is, maximal tensile resistive or minimal 
compressive stress) determined by ref. 13. The difference between the 
distributions of data within the stability diagrams is small.

The conclusions drawn from our analysis of the stability diagram and 
vulnerability map are unaffected by these choices regarding strain rates 
and stresses. First, most fracture features fall in the predicted physical 
regime (below the red theoretical curve). Second, large portions of 
the area vulnerable to hydrofracture (red regions in the lower panel 
in Extended Data Fig. 8) provide substantial buttressing (outside the 
passive ice-shelf areas; blue).

Advection of fractures and stress history. Although we evaluated the 
physical conditions (dimensionless stress and toughness; equation (1)) 
at the present-day locations of the observed fractures, brittle fractures 
likely had initially formed upstream of these locations and had been 
advected downstream. During this time they probably deformed 

viscously, causing the fracture to widen such that it can be seen in the 
125-m-resolution satellite image. We tracked the stress upstream along 
streamlines (assuming steady flow) for all fracture features and identi-
fied the maximum dimensionless stress R̃xxmax  that the fracture had 
experienced since crossing the grounding line. For each fracture loca-
tion detected by the DCNN, we then plotted R̃xxmax and the correspond-
ing dimensionless toughness at the location where maximum dimen-
sionless stress occurs, as shown in Extended Data Fig. 9b. Compared 
with R̃xx and K̃Ic evaluated at the locations of the fracture features, Ex-
tended Data Fig. 9a, the points evaluated at the locations of the maxi-
mum dimensionless stresses are shifted to the right, so are still in the 
physical regime where the theory predicts stable surface fractures. This 
shows that although brittle fractures can form upstream at higher 
stresses compared to their current locations, most of them (89%) remain 
in the physical regime where LEFM predicts stable surface fractures, 
after they are advected downstream to their current locations. Note 
that, from the MOA images we do not know exactly where or when each 
fracture initially forms, but we do know that the majority of the surface 
fractures experience physical conditions that allow brittle surface frac-
ture both at their maximum stress in the past (Extended Data Fig. 9b) 
and their current stress state (Extended Data Fig. 9a). We thus used 
equation (2) (the analytical solution for the boundary between the 
no-surface-fracture/stable-surface-fracture regimes based on LEFM; 
red line in Extended Data Fig. 9) to estimate the areas where physical 
conditions allow the formation of dry, stable and brittle surface fractures 
before they can later deform viscously and advect downstream. These 
areas are vulnerable to hydrofracture (red area in Fig. 4a) because 
water-filled fractures are unstable (from both LEFM and zero-stress 
approximation).

The surface expression of basal crevasses. As described in the main 
text, a subset of the fracture features identified by the DCNN could be 
surface expressions of basal crevasses30–32. Although the DCNN was 
not trained to distinguish surface expressions of basal crevasses30–32 
from surface fractures, we note that the two features are not mutu-
ally exclusive and very often coexist31 (to comprehensively distinguish 
these two features continent-wide radar profiles showing basal crevasse 
would be required). As noted by Bassis and Ma58, a sufficiently wide 
basal crevasse can induce tensile stress near the surface large enough 
to create surface fractures. Most importantly, we showed that most 
DCNN-identified fracture features (related to basal crevasses or not) 
occur where dimensionless stresses are sufficient to form stable dry 
surface fracture (Fig. 3c).

Lake locations
Stokes’ supraglacial lake locations compared with vulnerability 
map. Stokes et al.25 mapped supraglacial lakes in Landsat imagery 
from January 2017 across all East Antarctic ice shelves (defined using 
BedMap2’s37 ice-shelf mask). Plotting their lake locations on our map 
of vulnerability to hydrofracture (Extended Data Fig. 10), we see that 
most lakes lie in the resilient regions (yellow–green areas).

To obtain an upper estimate of the proportion of East Antarctic 
ice shelves that experience meltwater ponding and are vulnerable 
to hydrofracture, we summed the areas of the 1 km × 1 km grid boxes 
that contain lakes and lie in the vulnerable regions, then divided by 
the total area of East Antarctic ice shelves, to give ~0.63%. The pro-
portion of East Antarctic ice shelves that lie at the intersection of all 
three circles in Fig. 1 (that is, have meltwater ponds, are vulnerable to 
hydrofracture and provide substantial buttressing) is approximately 
the same (~0.6%) because Stokes’ lakes mostly lie in places providing 
substantial buttressing (as identified by Fürst et al.13). Note that areas of 
most individual lakes are ~0.001–0.01 km2 (see figure 3a in ref. 25)—much  
smaller than the spatial resolution (1 km2) of our vulnerability map. Thus 
the true overlaps between these regions may be two to three orders of 
magnitude smaller than estimated here.
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Data availability
The training, validation, and testing datasets are available at https://
github.com/chingyaolai/Antarctic-fracture-detection and https://
doi.org/10.5281/zenodo.3949427. The neural-network mapped frac-
ture locations on the MOA 2009 (125 m resolution) imagery (Fig. 2) 
and the data required to construct the vulnerability map (Fig. 4) are 
available at https://doi.org/10.15784/601335. MOA (2009) imagery 
(https://doi.org/10.7265/N5KP8037) is available at the National Snow 
and Ice Data Center (NSIDC). Strain-rate fields are calculated from 
the dataset SUMER Antarctic Ice-shelf Buttressing, Version 1 (https://
doi.org/10.5067/FWHORAYVZCE7) available via the NSIDC. Ice-shelf 
thickness data are from Bedmap2 (https://www.bas.ac.uk/project/
bedmap-2/). The surface temperature data from the RACMO2.3p2 
regional climate model are available from J.M.v.W. ( j.m.vanwessem@
uu.nl).

Code availability
The code for our experiment is available at https://github.com/
chingyaolai/Antarctic-fracture-detection (https://doi.org/10.5281/
zenodo.3949427). The U-Net implementation65 is available at https://
github.com/jakeret/tf_unet. The FPN implementation is available at 
https://github.com/qubvel/segmentation_models. The deep learning 
framework, TensorFlow, is available at https://www.tensorflow.org/. 
Scripts for calculating the fracture stability diagram (Fig. 3c) are avail-
able from the corresponding author upon request.
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Extended Data Fig. 1 | Data preparation and the neural network 
architecture. a, The training and validation data were taken from a 8,000 
pixel × 8,000 pixel subset (covering the Larsen and George VI ice shelves) of  
the 125-m-resolution MODIS imagery, which produced 32 tiles of 1,000 
pixel × 1,000 pixel images containing ice shelves. The tiles were randomly 
separated into training (26 tiles) and validation (6 tiles) sets. b, Example of a 

training tile. c, The corresponding labels with white pixels indicating fractures. 
d, The U-Net architecture. The contracting and expansive paths give the 
U-Net29 its U-shaped architecture. Arrows illustrate operations within the 
network and at each stage the data dimension is noted. The input image (left) is 
1,000 pixels × 1,000 pixels with one channel and the output prediction (right) 
of the U-Net contains two classes (fracture and non-fracture).
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Extended Data Fig. 2 | Performance of the DCNN and fracture classification. 
a, (i), Comparisons of AUC for the validation data over number of parameters 
(N) for an edge detector44, single-layer CNN with different filter sizes (1 × 1, 
28 × 28, 56 × 56; denoted by k), U-Net with different depths of first-layer feature 
maps (1, 2, 4, 16, 32, 64; denoted by d) and FPN43 using a ResNet-18 backbone. 
(ii), The AUCs and N values of each model evaluated against the validation data 
are summarized in the table. b, The performance of the U-Net (with d = 32) 
evaluated against an unseen testing set is shown by the ROC curves.  

c, d, Examples of validation label images (c) and original MOA images (d).  
e, Output of the model, continuous values between 0 and 1. f, Binarized 
classification of fractures that used a threshold (0.2), maximizing the F1 score 
on the validation set. Fracture features with predictions exceeding the 
threshold are marked in white. g, The resolution of the fracture map was 
reduced to 1 km, the resolution of the strain rate data, before we incorporated 
the DCNN result with other data in Extended Data Fig. 6.



Extended Data Fig. 3 | Stresses acting on a surface fracture and fracture 
stability. a, b, The effects of tensile resistive stress, hydrostatic stress of water 
and overburden stress of ice on opening or closing of a surface fracture in dry (a)  
and water-filled fractures (b). c, The stress intensity factor (KI) as a function of 
surface fracture depth (ds) (Supplementary equation (5)) computed with 
R xx = [0.5, 1] MPa, H = 300 m, surface firn density ρs = 400 kg m−3 and C = 0.02 m−1 
(see Supplementary equation (6); ref. 2). (The solution derived in this work is 
shown with a solid curves and that of Van der Veen (ref. 2) by dashed curves.)  

d, e, The additional impacts of a firn layer are due to reduced density (d) and 
reduced viscosity (e). Reduced overburden stress due to lower density firn 
compared with ice acts to deepen surface fractures (black dot on green curve in c).  
In contrast, the reduced tensile resistive stress due to the reduced firn viscosity 
reduces surface fracture depth. The net effects of firn, shown by the red curve 
in c, are secondary compared with the effects from tensile resistive and 
overburden stresses of ice. We therefore did not include the effect of firn in the 
main analysis.
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Extended Data Fig. 4 | Physical regimes of surface and basal fractures.  
a, b, The schematics of a surface (a) and basal crevasse (b) with depth varying 
resistive stress R xx(z) due to the vertical temperature gradient (assumed to be 
linear). c, The fracture stability diagram for surface and basal crevasses with 
and without temperature effects (assuming the surface and the base of ice shelf 
are −30 and 0 °C, respectively). Dashed and solid lines represent the transition 
boundaries of stable-to-unstable and no fracture-to-stable fracture regions, 
respectively. Warmer ice at the base reduces the ice viscosity (and thus stress), 
which impacts the locations of the stability boundaries of basal crevasse.  
d, The five physical regimes (I–V) defined by the transition boundaries for 
surface crevasse (black curves in c) and basal crevasse with temperature effects 
(light blue curves in c). e–h, The locations corresponding to regimes I–V on ice 
shelves are determined by different estimates of stress. The percentage values 

denote the portion of ice-shelf area containing the physical condition in each 
regime. The green, pink, blue, red, yellow and white areas correspond to 
regimes I, II, III, IV, V and the U-Net-detected fracture locations, respectively.  
e, f, The stress field determined by the temperature dependent viscosity factor 
B(T) (equation (6) in ref. 57) combined with along-flow strain rates obtained by 
Fürst et al.13 (e) and Wearing61 (f). g, h, The stress fields in the along-flow (g) and 
1st principal (h) stress directions calculated by ref. 13 include the effects of 
damage-induced ice softening through the data assimilation and model 
inversion process. The second row of e–h is the close-up view of the white box 
in the first row. Note that the spatial areas of regimes I—V were calculated solely 
on the basis of the dimensionless stress and toughness, and are independent of 
the U-Net result. The spatial resolution is 1 km, the same as the stress field 
resolution used in ref. 13.



Extended Data Fig. 5 | Comparison between dry and water-filled fractures 
in LEFM. a, The stress intensity factor (Supplementary equation (5)) as a 
function of surface fracture depth was calculated for hydrofractures (blue 
curves) and dry surface fractures (black curves) for H = 1,000 m. The number 
alongside each curve is the corresponding R xx. Above the critical stress 
R* ≈ 60 kPaxx  (calculated using equation (2) and KIc ≈ 150 kPa m1/2) dry-surface- 
fracture depths are stable (black dot). Hydrofractures can become unstable 
when a pre-existing flaw filled with water reaches a depth denoted by the white 
dots. Water-filled initial flaws smaller than di will remain closed. When stress is 

sufficiently compressive, water-filled fractures will not grow (for example, the 
blue curve has negative slopes for any surface fracture depth below the red 
line). b, Comparison of ds with previous theories. Our numerical solution 
approaches Weertman’s solution at large ice thickness. c, d, The required di to 
destabilize a hydrofracture as a function of stress is shown by blue curves. The 
pre-existing flaw depths required to initialize stable dry surface fractures are 
plotted as a red curve in c, and reach a maximum of ~3.8 m at the critical stress 
R*xx  (dashed line). Note that at R*xx  the required initial flaw depth is the same as 
fracture depth, that is, d d d= = * ≈ 3.8 msi s  (half-white half-black dot in a).
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Extended Data Fig. 6 | Antarctic-wide data used to predict vulnerability to 
hydrofracture. a–d, The dimensionless toughness and dimensionless stress 
were evaluated using strain rates (a), ice-shelf thickness (b), surface 

temperature (c) and viscosity factor B (d, calculated from surface temperature) 
and plotted on the fracture stability diagram (Fig. 3c).



Extended Data Fig. 7 | Surface fracture stability diagram. The two 
parameters determining fracture stability, K̃Ic and R̃xx, were computed at every 
1 km × 1 km location on all ice shelves marked as red (n = 1,258,908 points) and 

all fracture features detected by the DCNN marked as yellow dots (n = 31,962). 
The frequency distribution of the yellow points is shown in Fig. 3c.
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Extended Data Fig. 8 | Alternative stress computations. Sensitivity of 
surface fracture stability diagram (top) and the vulnerability map (bottom)  
to choices of stress and strain rate data. a–c, Results computed using strain 
rates calculated by ref. 61 (a) and ref. 13 along-flow stress (b) and first principal 
stress (c), which includes damage-induced ice softening. The colour scale for 
the bottom row is the same as Fig. 4. The percentage values in the bottom row 

denote the percentage of the total ice-shelf area that is in the red regime in the 
second row (that is, both buttressed and vulnerable to hydrofracture). Our 
main conclusions—that ice-shelf stresses closely agree with the fracture 
criteria, and that large buttressed areas are vulnerable to hydrofracture—are 
not affected by the use of these alternative stress fields.



Extended Data Fig. 9 | Advection of fracture and stress history. We tracked 
the resistive stress upstream along streamlines (assuming steady-state) and 
identified the maximum dimensionless stress R̃xxmax each fracture feature had 
experienced in the past. a, The dimensionless parameters R̃xx and K̃Ic evaluated 
directly at the locations of fracture features are shown (same as Fig. 3c) for 

comparison. b, For each location identified as a fracture by the DCNN,  
we evaluated R̃xxmax and the corresponding K̃Ic at the location where R̃xxmax 
occurred. R̃xxmax calculated for most fractures features exceeds the threshold 
for surface fracture formation (red line; equation (2)).
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Extended Data Fig. 10 | East Antarctic lake locations compared with 
vulnerability map. Stokes et al.25 have mapped lakes across much of East 
Antarctica for one melt season (2017), enabling us to compare these locations 
with our vulnerability map (Fig. 4). a–e, The lakes mapped by Stokes et al. are 
marked in light blue with expanded views shown in b–e. We find that only a tiny 

proportion of the ice-shelf area in East Antarctica accumulates meltwater, 
provides buttressing and is vulnerable to hydrofracture. An upper estimate of 
the overlap between lake-covered area (top circle of Fig. 1) and stress 
state-related vulnerable area (bottom left circle of Fig. 1) is only ~0.63% of the 
East Antarctic ice-shelf area.
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