
1.  Introduction
Antarctica's ice shelves are losing net mass to the ocean, mainly through excess iceberg calving and basal 
melting (Adusumilli et al., 2020; Rignot et al., 2013). While surface melt does not yet significantly impact 
overall mass balance, it is widespread on Antarctica's ice shelves (e.g., Zwally & Fiegles, 1994; Trusel et al., 
2015) and is predicted to increase (Trusel et al., 2015). Over the last decade, widespread and rapid changes 
have been observed in some regions of the Antarctic Ice Sheet, including thinning (Fricker & Padman, 2012; 
Paolo et  al.,  2015; Shepherd et  al.,  2003) and dramatic disintegration of Antarctic Peninsula ice shelves 
through hydrofracture (Rott et al., 1996; Scambos et al., 2003; Cook and Vaughan, 2010). Although no major 

Abstract  Surface melting occurs during summer on the Antarctic and Greenland ice sheets, but the 
volume of stored surface meltwater has been difficult to quantify due to a lack of accurate depth estimates. 
NASA's ICESat-2 laser altimeter brings a new capability: photons penetrate water and are reflected from 
both the water and the underlying ice; the difference provides a depth estimate. ICESat-2 sampled Amery 
Ice Shelf on January 2, 2019 and showed double returns from surface depressions, indicating meltwater. 
For four melt features, we compared depth estimates from eight algorithms: six based on ICESat-2 and two 
from coincident Landsat-8 and Sentinel-2 imagery. All algorithms successfully identified surface water at 
the same locations. Algorithms based on ICESat-2 produced the most accurate depths; the image-based 
algorithms underestimated depths (by 30%–70%). This implies that ICESat-2 depths can be used to tune 
image-based algorithms, moving us closer to quantifying stored meltwater volumes across Antarctica and 
Greenland.

Plain Language Summary  Summer surface melting on Antarctica's ice shelves is a small 
component of overall ice sheet mass loss but can be important for individual ice shelves and may 
increase as the climate warms. However, the volume of meltwater has been difficult to monitor because 
depth estimates are challenging. NASA's ICESat-2 laser altimetry mission brings a new capability to this 
problem. ICESat-2 532 nm photons (green light) are able to pass through water and reflect from both 
the water surface and the underlying ice surface; the difference in elevation provides meltwater depth 
estimates. In this pilot study, we compared depths from eight algorithms (six ICESat-2 and two image 
based) over four Amery Ice Shelf meltwater lakes for an ICESat-2 pass in early January 2019. The ICESat-2 
algorithms all produced more reliable depth estimates, and the image-based algorithms underestimated 
the depths. This implies that ICESat-2 water depths can be used to tune image-based depth retrieval 
algorithms, enabling improved performance and allowing us to estimate more accurately how much 
surface melt is stored in melt ponds on the ice sheets each summer.
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Key Points:
•	 �ICESat-2 photons penetrate surface 

melt lakes and reflect from both the 
water surface and the underlying ice, 
providing depth estimates

•	 �We compared depths from eight 
algorithms (six ICESat-2 and two 
image-based) for four lakes present 
on Amery Ice Shelf in January 2019

•	 �Depths from ICESat-2 were more 
accurate than from imagery 
(30%–70% too low); merging these 
data will improve estimates ice-sheet 
wide
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changes on this scale have been identified in the East Antarctic Ice Sheet (EAIS; which contains approx-
imately 75% of the total Antarctic ice sheet area, 85% of the volume, and accounts for 52 m of potential 
sea-level rise [Lythe & Vaughan, 2001]), there is a possibility that areas of the EAIS could become more vul-
nerable to hydrofracture as atmospheric temperatures increase and surface melt increases (Bell et al., 2018; 
Kingslake et  al.,  2017; Lai et  al.,  2020). Therefore, it is important to monitor the amount of meltwater 
produced each melt season. Supraglacial lakes are one important destination for surface meltwater (Stokes 
et al., 2019); others include firn (via refreezing and storage in aquifers), and the ocean (through dolines 
and off the front of ice shelves). One way to monitor the state of the ice sheet's supraglacial hydrology is 
to quantify the amount of meltwater stored in lakes. This has been challenging, however, due to a lack of 
accurate depth estimates.

Amery Ice Shelf experiences annual surface melt, and previous studies indicate interannual variability in 
meltwater timing and duration and the extent of the drainage system (Phillips, 1998; Spergel et al., 2021). In 
this paper, we introduce a new technique for estimating melt water depth from ICESat-2 data and demon-
strate it on Amery Ice Shelf, EAIS, during the January 2019 melt season. We describe a pilot project with 
investigators who contributed depth estimates for four Amery melt lakes along a single ICESat-2 ground 
track. We used eight algorithms to estimate the depth of meltwater stored in melt features: six based on 
ICESat-2 data (five semi-automated or fully-automated algorithms in various stages of development, and 
one manual method, used as a baseline for comparison in the absence of ground truth); and two based on 
imagery (Sentinel-2 and Landsat 8). We compared the results from the ICESat-2 algorithms and then com-
pared the ICESat-2 depth estimates with depth estimates from Landsat 8 and Sentinel-2 satellite imagery. 
Although ICESat-2 only provides water depth estimates along its ground tracks and has limited spatial 
sampling of short-lived melt features, the ICESat-2-derived depth estimates can provide a training data set 
for image-based methods, which can then be extended to provide depth estimates across entire melt regions. 
This will significantly improve our capability to estimate the volume of surface melt stored in surface lakes 
on each ice sheet.

2.  Previous Observations of Amery Surface Melt
Amery Ice Shelf (area 70,000 km2) is EAIS's largest ice shelf, and buttresses the largest drainage basin in EAIS 
(the Lambert-Amery system); this basin drains ∼16% of the area and ∼14% of the volume of the EAIS, with 
7.7 m of sea-level potential (Tinto et al., 2019). Located between 69°S and 73°S, Amery Ice Shelf is far enough 
north that it experiences significant surface melting each summer (Kingslake et al., 2017; Phillips, 1998), and 
it has been suggested that it may be susceptible to breakup within a few decades if it experiences warming 
trends similar to those which took place on the Peninsula (Scambos et al., 2003). The onset date, freeze over 
date, and duration of surface melting vary from year to year; these are all climate-related variables that can be 
monitored with satellite remote sensing (Phillips, 1998; Tedesco, 2007; van den Broeke, 2005).

Surface melt features on southern Amery Ice Shelf were documented as early as 1960, when it was noted 
that extensive summer melting took place forming rivers, melt lakes, and dolines (Mellor & Mackinnon, 
1960). They have also been detected by aerial observation, in synthetic aperture radar and Landsat satellite 
imagery, and in satellite radar altimetry (e.g., Phillips, 1998; Swithinbank et al., 1988). Surface meltwater 
mostly collects in longitudinal-to-flow topographic depressions between glacier flowlines, which transport 
water downstream toward the center of the ice shelf as “meltstreams” (Figure 1). Surface melt features are 
spatially extensive, and individual meltstreams and lakes can be several kilometers wide. These meltwater 
systems are active in most summers, carrying large volumes of meltwater and exhibiting considerable inter-
annual variability (Spergel et al., 2021).

A previous Amery study (Phillips,  1998) showed that meltwater in the surface depressions changes the 
shape of ERS-1 radar altimetry waveforms: one meltstream was sufficiently wide (∼2 km) to create a bright 
target on the surface, leading to a specular return. Specular returns were detected in 3-day repeat data in the 
1992/1993 and 1994/1995 melt season; the short repeat time allowed for a precise constraint on onset time 
and duration. This provided limited information about interannual variability of melt onset, extent, and 
duration. However, this was only for two melt seasons, and there was no estimate of meltwater depth, so it 
did not allow for monitoring the surface volume.
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3.  Data and Methods: Estimating Meltwater Depths from Satellites
3.1.  ICESat-2 Meltwater Depth Estimates

3.1.1.  ICESat-2 Laser Altimetry

ICESat-2 carries the Advanced Topographic Laser Altimeter System (ATLAS), which is a photon-counting, 
532 nm (green light) lidar operating at 10 kHz. ATLAS splits the transmitted laser pulse into six beams, to 
form three pairs (each pair containing one weak and one strong beam, separated by 90 m) 3.3 km apart. 
Each beam has a ground-footprint of ∼17 m in diameter (estimated to be closer to ∼11 m from on-orbit 
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Figure 1.  Left: Sentinel-2 image over Amery Ice Shelf, January 2, 2019 showing ICESat-2 ground track 0081 GT2L acquired on the same day. The magnified 
areas show the four melt lakes considered in this study. Right: ATL03 data for the four melt lakes, with each photon colored by its confidence level for being a 
land-ice surface signal. ATL06 surface elevations are also shown.
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assessments; Magruder et al., 2019 in review), offset by 0.7 m along track. This beam configuration and 
acquisition design provides a snapshot of surface slope across each ground track, while also obtaining six 
times more observations than a single beam. ICESat-2's 1,387 unique reference ground tracks (RGTs) ex-
tend to 88°, and it samples them four times a year (91-day repeat cycle) in the polar regions. ICESat-2 began 
pointing to the planned RGTs in late March 2019 once the on-orbit pointing calibrations were determined 
and updated within the on-board pointing control systems (Martino et al., 2019); thus, the early ICESat-2 
observations used here were not repeat tracks within the current 91-day cycle. Over ice sheets, ICESat-2 has 
demonstrated better than 13 cm of surface measurement precision (1-sigma standard deviation), based on 
assessments of both the ATL03 and ATL06 data products (Brunt et al., 2019).

3.1.2.  ICESat-2 Over Amery

We identified an ICESat-2 pass over the southern Amery Ice Shelf during the 2018/2019 melt season, that 
had contemporaneous Landsat-8 and Sentinel-2 imagery: Track 0081 on January 2, 2019. We examined both 
Level-2 (ATL03; Neumann et al., 2019) and Level-3a (ATL06 Land Ice Product; Smith et al., 2019) ICESat-2 
products. ATL03 data contain the full stream of returned photons (Neumann et al., 2019), geolocated and 
classified as high, low, or medium confidence of representing the surface. ATL03 data showed double re-
turns located in surface depressions, indicating meltwater (Figure 2). The ATL06 algorithm developed in 
the years leading up to launch provides averaged elevations for one surface only (based on ATL03 data for 
40 m overlapping segments at 20 m spacing) and is optimized for ice surfaces. ATL06 heights cannot be used 
to examine meltwater features that create a second surface (Figure 1); this application requires analysis of 
the ATL03 photon data, which requires new algorithms.

3.1.3.  ICESat-2 Meltwater Depth Algorithms

ICESat-2 approaches to estimating lake depths require separation of the water surface and underlying ice 
topography from the ATL03 photon cloud. We tested six algorithms for this application; these were all devel-
oped in the less than 2 years since launch and are in various stages of development (Table 1):

�(i)	� Adapted ATL08 algorithm. This approach is derived from an existing algorithm developed for the 
ATL08 land and vegetation along-track product (Neuenschwander & Pitts, 2019). ATL08 leverages both 
the ATL03 signal finding approach and an alternative method for noise filtering. The algorithm work 
flow is unique among the ICESat-2 along-track geophysical products with its ability to segregate the re-
turn signal into multiple surfaces. In the traditional ATL08 implementation, these segregated surfaces 
represent canopy heights and terrain heights, respectively, using statistical signal classification for each 
type. For application over melt ponds, we implemented the ATL08 signal finding and surface classifi-
cation schemes based on ATL03 input similar to the traditional approach but applied them in reverse 
order: the ground-finding component to the water surface and the top of canopy height extraction to 
the melt lake bottom. That is, we reconfigured the ATL08 algorithm to perform top-down analysis for 
segregation of water and underlying ice rather than the bottom-up approach used for land and vege-
tation. Looking forward, since ATL08 identified points are indexed to ATL03, the fundamental ATL08 
algorithm components (signal finding, point classification, and multisurface interpretation) can be 
further optimized to exploit the observed bathymetric signatures associated with the water column and 
radiometry of the water/lake bottom ratios at a range of along-track resolutions.

�(ii)	� ATL13-melt.v1. This method estimates depths at discrete points using a modified version of the oper-
ational depth algorithm developed for the ATL13 Inland Water Data Product (Jasinski et al., 2019). We 
assume that meltwater pond boundaries are approximately known, and exact boundaries are refined 
by anomaly analysis. Surface mean height and standard deviation are computed using a quasi-physical 
statistical model. Surface signal photons are analyzed for along-track, 50-signal photon short segments, 
aggregated to longer segments as necessary. Depth profile retrievals include deconvolution of the AT-
LAS Impulse Response Function from the observed profile. Bottom analysis begins several surface 
height standard deviations (default 12 sigma) or 6 m below the mean surface, whichever is deeper. 
Histograms of the long segment vertical profiles are evaluated at three elevation levels of confidence 
with the highest confidence attributed to bottom. Depth is computed as the difference between the 
mean surface and mean bottom elevations.
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Figure 2.  Left: ICESat-2 ATL03 photon data over the four melt lakes used in this study, with median depth estimates from the ICESat-2 algorithms shown in 
red. Above each plot are the corresponding same-day Sentinel-2 images, showing the location of the ICESat-2 ground track segment. Right: Comparison of 
depth estimate retrievals for each lake. To aid visual comparison, image-based estimates have been multiplied by refractive index, and background topography 
has been removed.
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�(iii)	� Lake surface-bed separation (LSBS; Fair et al.,  2020). This method uses ATL03 data to separate 
lake features into distinct arrays for the surface and bed. LSBS is accomplished by distributing ATL03 
data into elevation bins, with the expectation that water surfaces are easily identifiable in histograms 
of high confidence photons. Once a lake surface is identified, statistical inference is used to derive 
an initial guess for the lake bed topography. To improve the estimation, we also incorporate photon 
refinement procedures developed for the ATL06 surface finding algorithm (Smith et al., 2019). With 
this approach, the window for acceptable signal photons is a function of the residuals of photons rela-
tive to the regression. The accepted photons then provide a “best guess” for the surface and bed of melt 
lakes, from which water depth is calculated. (To compare with Fair et al., 2020, our Lakes 1, 3, and 4 
are their Figures 4a, 4b and 4d, respectively).

�(iv)	� Watta (Datta & Wouters, 2021). This method uses ATL03 data to identify the surface and bottom of 
a lake as well as potential intermittent ice layers. This method identifies the first three maxima of an 
adaptive kernel density estimate of elevation values for photons over a moving along-track footprint 
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Algorithm Level of automation Research goal Advantages Disadvantages

(i) Adapted ATL08 Fully automated extraction 
of water surface and sea 
floor in ATL03 transect 
for coastal regions. 
Semiautomated for melt 
ponds

Shallow water coastal bathymetry 
for benthic habitat mapping

Photon level resolution. 
Classifies signal as 
surface, sea floor, or 
water column for further 
aggregation or analysis

Limited to ATL03 input and 
has not been adapted 
to accommodate signal 
artifacts due to detector 
saturation

(ii) ATL13-melt.v1 Automated with a priori 
knowledge of a melt lake 
being present within an 
ATL03 segment

Inland and near shore hydrology 
for melt lakes, ponds, and 
streams

Continuous, along-track 
open water surface height 
statistics and slope; along-
track depth at discrete 
points, 15–50 m spatial 
resolution

Results limited to only along-
track profiles for each beam

(iii) LSBS Automated with a priori 
knowledge of a melt lake 
being present within an 
ATL03 segment

Supraglacial lake depth retrievals Distinguishes between lake 
surface and bed. Retrieves 
depths for deep lakes. 
Performs retrievals for 
ICESat-2 and ATM

Detection of small lakes 
(<200 m in diameter) is 
difficult with ICESat-2. 
Uncertainties may increase 
when noise at the lake bed is 
significant

(iv) Watta Fully automated To detect melt lake depth, ice over 
a lake, ice under the surface 
of a lake, slush, refrozen melt 
lakes. Feature types assigned 
probabilistically, accounting 
for signal saturation

Can be used under multiple 
beam/cloud conditions 
with associated quality 
flags. Detects small-scale 
bathymetry

Detection of slush and water 
flowing downstream still in 
development. More sensitive 
to outliers due to minimal 
smoothing (to capture 
smaller-scale features)

(v) SuRRF Automated with a priori 
knowledge of a single melt 
lake being present within 
an ATL03 segment

Supraglacial lake depth retrievals, 
to use in combination with 
satellite imagery

Robust even with high levels 
of background noise, 
smoothly tracks the ice 
surface at lake edges

Does not work if the water 
surface is not flat (i.e., 
flowing water with an along-
track surface gradient), 
tends to smooth out fine-
scale details

(vi) Manual method No automation Provides an approximate baseline 
for comparison with image-
based and ICESat-2-based 
retrievals

Captures the approximate 
depth and shape of 
melt lakes without large 
outliers.

Depth estimate is a subjective 
visual best guess of where 
the surface/bed is and may 
be biased; fine-scale details 
are smoothed out by taking 
an ensemble

Table 1 
Main Characteristics of the Six ICESat-2 Melt Depth Algorithms Used in This Study: Level of Automation, Research Goal, and Known Advantages and 
Disadvantages
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and then assigns types for (i) surface, (ii) ice on surface, (iii) subsurface ice, and (iv) bottom based on 
the relative height and strength of the signal. The algorithm has been tested with ATLAS's strong and 
weak beams with a mix of photon confidence levels. It was developed and evaluated over Western 
Greenland during the 2019 melt season, with lakes at all times throughout the season. For 14 of these 
cases, we were able to collect same-day high-resolution imagery from Planet SkySat, which we used 
both to validate the surface and to extract total melt volumes.

�(v)	� Surface Removal and Robust Fit (SuRRF). This method requires as input a segment of ATL03 
data that is known to contain a single melt lake. It finds the flat water surface in ATL03 data by his-
togram-binning the entire segment and finding the peak, then removes all photons corresponding to 
that surface. Then, a smooth line is fit to the remaining photon data (all ATL03 photon confidences), 
using a robust, locally weighted moving average. For all locations where the elevation of the final 
smooth line is lower than the elevation of the lake surface, the water depth is the difference between 
the two. At all other locations, water depth is set to zero. See Text S1 for a complete description of 
this algorithm.

�(vi)	� Manual picking. This is a manual approach used to generate a manual baseline, as a guide for true 
water depth in the absence of in situ ground truth data. We created an interactive tool in which us-
ers can draw their own best guess estimate of the melt lake surface and bottom elevations on ATL03 
photon data plots. For each contribution, both elevations were interpolated to a fine common grid and 
depth was calculated as the difference. We received a total of 56 depth estimates, 12 of which came 
from researchers on the ICESat-2 Science Team or members of their groups who work with ATL03 data 
(see Acknowledgments). The differences in depth between the mean of these 12 “expert estimates” and 
the mean of the remaining estimates were insignificant, with a bias of 2.2 cm and a standard deviation 
of 6.6 cm. Therefore, we used all 56 manual estimates to construct a “baseline” ensemble estimate, to 
compare with all other algorithms. To make this ensemble robust to outliers, we used the mean of all 
depth estimates falling within the middle quartiles at each location.

3.2.  Image-Based Meltwater Depth Estimates

To obtain meltwater depth estimates from Landsat-8 and Sentinel-2 multispectral imagery we used a light 
attenuation algorithm widely used for supraglacial lake depth retrieval in Greenland and Antarctica (e.g., 
Sneed & Hamilton, 2011; Tedesco & Steiner, 2011) Landsat-8 and Sentinel-2 multispectral imagery:

         dln ln / ,wz A R R R g�

where Ad is the albedo of the lake bed, R∞ is the reflectance of optically deep water (>40 m), Rw is the 
observed water reflectance, z is water depth, and g is a two-way attenuation coefficient. The values of Ad, 
R∞, and g depend on the imagery and band used. We identified lake pixels by thresholding the Normalized 
Difference Water Index (Moussavi et al., 2020) and estimated Ad by averaging reflectances over a three-pix-
el-wide ring around each lake and R∞ as the fifth percentile Top Of Atmosphere reflectance in nearby coastal 
tiles that included ocean pixels.

For Landsat-8, we used g derived from depth measurements from Greenland and Antarctic lakes (Moussavi 
et al., 2020; Pope, 2016; Pope et al., 2016) and averaged the depths from the red band and the panchromatic 
band to produce the final depth estimate.

For Sentinel-2, we estimated depths from the red band, using g = 0.83 (Williamson et al., 2018).

3.3.  Comparison of Meltwater Depth Estimates

We used ATL03 Release 003 data (Neumann et al., 2020) for the central strong beam (GT2L) of a single IC-
ESat-2 Track 81 across Amery Ice Shelf from January 2, 2019. The acquisition time was near the peak of the 
melt season and was the same day as available Landsat-8 and Sentinel-2 images. The track sampled several 
locations with substantial surface water bodies and we selected four of these, as highlighted in Magruder 

FRICKER ET AL.

10.1029/2020GL090550

7 of 11



Geophysical Research Letters

et al. (2019) (Figure 1). These four melt lakes represent a variety of widths (∼800 m to 2 km) and depths 
(∼1–6 m).

For some of the melt lakes, there is an “after event,” which manifests as an apparent second flat return sur-
face located between 0.5 and 4.2 m below the water surface (e.g., Figure 1, lake 2). These are the result of the 
ATLAS transmit pulse shape and the instrument response when the detectors are temporarily saturated by 
strong surface returns. For the purposes of this analysis, we ignored these subsurface returns.

We ran all of the ICESat-2 depth retrieval algorithms over this 150 km section of track. We also ran depth 
estimates for the two Landsat-8 and Sentinel-2 images that were acquired across the region sampled by the 
track on the same day and interpolated the image-based results to the ground track locations for comparison 
with the ICESat-2 depth retrievals.

Since the image-based depth estimates are of true water depth, we multiplied them by the refractive index 
for freshwater at 532 nm (1.33; Parrish et al., 2019) so that they could be qualitatively compared against 
the “manual baseline” (Figure 2). For quantitative comparison of absolute depth values, however, we per-
formed this correction in the opposite way: that is, we corrected the ICESat-2 depths for refractive index.

4.  Results and Discussion: Differences Between Meltwater Depth Estimates
4.1.  Accuracy of Manual Baseline Data

The manual picking method tends to place the lake bed at elevations below the flat water surface at which 
photon density first increases significantly again (Figure  2), while the ICESat-2-based algorithms tend 
to place it closer to the second peak in photon density (i.e., deeper). Over land-ice surfaces, the ATL06 
algorithm uses the latter approach and has been validated to be accurate to better than 3 cm with better 
than 9 cm of surface measurement precision (Brunt et al., 2019). However, while traveling through water, 
many photons in the ICESat-2 laser beams are subject to multiple scattering, which biases those photons’ 
registered elevations toward lower elevations. While the effect of multiple scattering suggests that the 
true lake bed may be shallower than the elevation of peak photon density, depth is likely underestimated 
when using the first (shallowest) increase in photon density. This is because in the presence of an across-
track slope, a first increase in density would always be due to the photons returned from the highest point 
within ICESat-2's ∼11 m footprint. Furthermore, there will always be a spread of photons about a surface 
based on the pulse width of the beam; typically, we see a spread of about 25 cm. Therefore, we believe 
that the true depths of the melt lakes are actually a few centimeters deeper than the manual baseline 
estimates. In addition to this potential depth bias, the manual method is an ensemble of 56 individual 
estimates and thus tends to smooth out not only noise and artifacts but also some structural details in the 
photon data. However, in the absence of ground truth data for the lakes considered in this study, we used 
the manual picking data as a proxy for the true depths (a “manual baseline”). Using the manual baseline 
for comparison, we assessed the performance (qualitatively and quantitatively) of each meltwater depth 
retrieval algorithm.

4.2.  Qualitative Comparison With Manual Baseline

In general, all algorithms (ICESat-2 and image based) primarily identified supraglacial water at the same lo-
cations, and the along-track widths they estimated were approximately the same for each meltwater feature, 
and consistent with the manual baseline. Broadly speaking, the shape of all lakes (how the depth changes 
with distance along track) is qualitatively similar, and depth maxima were in approximately the same lo-
cations on the track; however, the absolute depths were different for all algorithms (Figure 2). All ICESat-2 
algorithms captured different amounts of structural detail. Overall, the techniques that use the ICESat-2 
data produced depths closest to the manual baseline, with the closest estimate being the ATL08 technique. 
This is because the ATL08 algorithm estimates the surface from the median value, which places its derived 
surface below the “top” of the lake bottom returns, similar to the manual baseline. LSBS produced false pos-
itives between the lobes of lakes 3 and 4, that is, estimated depths over nonmelt areas; LSBS had no depth 
estimate for the northern lobe of lake 2.
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4.3.  Quantitative Comparison With Manual Baseline

Overall, the five algorithms based on ICESat-2 produced depths that were much closer to the manual base-
line than the image-based algorithms. Most ICESat-2-based algorithms show a bias toward deeper depths 
when compared to the manual baseline (Figure S1). The ATL08 algorithm produced the estimates that were 
closest to the manual baseline (mean of differences is 0.02 m, standard deviation 0.2 m). We averaged the 
depth estimates from the five ICESat-2 algorithms to form an ICESat-2 “ensemble”; the ensemble mean 
lies mostly at deeper depths, and the mean of the differences between the ICESat-2-based estimates and 
the manual baseline is −0.13 m (the ICESat-2 depths are deeper than the manual baseline). However, the 
standard deviation of differences between the depths from the manual baseline and the ICESat-2 algorithm 
ensemble (0.17 m) is lower than that of any single algorithm, so the ensemble lake bottom fits the general 
“shape” of the lake bottom better; implying that the ultimate meltwater retrieval algorithm will combine 
aspects of all five algorithms.

For these four lakes, both image-based techniques produced meltwater depth estimates that were too shal-
low: the mean of the differences between the image-based estimates and the manual baseline is +0.71 m 
(the image-based depths are shallower than the manual baseline); the standard deviation is 0.75 m, that is, 
average depths were 70% too low for the Landsat-8 technique and 30% for Sentinel-2. This large difference 
between Landsat-8 and Sentinel-2 estimates for these four lakes is not consistent with Moussavi et al. (2020) 
based on a larger sample of 42 Landsat-8–Sentinel-2 imagery pairs. They showed that, while the depths of 
individual lakes measured with Sentinel-2 and Landsat-8 varied, overall there was reasonable agreement 
between the two approaches. However, the fact that ICESat-2 depths are more accurate for the same lakes 
implies that ICESat-2 depths can be used to tune image-based algorithms.

4.4.  ICESat-2 Algorithm Automation and Efficiency

Since ICESat-2 operates continuously and has six beams, there is a potential for a vast amount of ICESat-2 
data for any given melt season. It is not efficient to search through all the ATL03 data for melt features, even 
when surface water persists only for weeks to months each year on each ice sheet. This means that an auto-
mated algorithm will ultimately be required. The ICESat-2 algorithms we considered are in various stages of 
development and have varying levels of automation; most of them are only partially automated (Table 1). As 
we showed here, the search domain can be narrowed using contemporaneous imagery to identify potential 
regions of surface water. In the absence of this imagery, we propose that the ATL06 data themselves could 
be used to locate potential regions of standing surface water (based on the fact that their surfaces are flat, 
which could be searched for using ATL06 slope estimates). This approach may not work, however, if the 
meltwater is flowing.

5.  Summary
After only a few months on orbit, ICESat-2 acquired data during an Antarctic melt season (2018–2019). Us-
ing ICESat-2 ATL03 (full photon) data from one ground track across Amery Ice Shelf, EAIS, at the peak of 
the melt season (January 2019), we demonstrated that the ICESat-2 signal penetrates the surface meltwater; 
photons are returned from both the water surface and the underlying ice surface. ICESat-2 operates contin-
uously and has six beams, producing large amounts of ATL03 ICESat-2 data each melt season. Therefore, 
it is desirable to find a technique to locate both the surface meltwater and the underlying ice surface in the 
data and automatically provide an accurate estimate of the distance between the two (the meltwater depth). 
Since this capability of ICESat-2 was recognized, several algorithms have been developed to estimate water 
depth estimates.

We performed a pilot study where we compared depth estimates from six different ICESat-2 algorithms in 
various stages of development and two image-based algorithms for four melt lakes on January 2, 2019. To 
assess the estimates, we created a baseline using a manual picking technique based on ICESat-2 data. All 
algorithms were equally reliable in detecting the presence of surface melt; however, the ICESat-2-based 
algorithms provided the most accurate melt depth estimates, with the estimates from the adapted ATL08 
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algorithm being the closest to the manual baseline. The image-based algorithms tended to underestimate 
melt depths by 30%–70%. While this study presents results for just four lakes on one ice shelf, since the 
Landsat-8 has been used for most meltwater depth estimates around Antarctica and Greenland to date, it 
is likely these estimates are too low. ICESat-2 melt depths will allow us to improve the performance of im-
age-based approaches that have better spatial coverage, or even to examine the performance of supervised 
statistical learning algorithms trained on ICESat-2 depths, moving us closer to an assessment of total melt-
water produced each melt season across Antarctica and Greenland.

Data Availability Statement
All data and code needed to produce the figures in this manuscript are available on Zenodo: https://doi.
org/10.5281/zenodo.4299237.
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