
Action Fractions: The Design and Pilot of an Integrated Math+CS
Elementary Curriculum Based on Learning Trajectories

Carla Strickland, Kathryn M. Rich, Donna Eatinger, Todd Lash*, Andy Isaacs,

Maya Israel**, and Diana Franklin

University of Chicago, Chicago, IL, USA

*University of Illinois at Urbana-Champaign, IL, USA

**University of Florida, Gainesville, FL, USA

{castrickland,kmrich,dmeatinger,aisaacs,dmfranklin}@uchicago.edu

toddlash.edu@gmail.com,misrael@coe.ufl.edu

ABSTRACT
The computer science (CS) education field is exploring several in-

structional strategies for teaching CS to children in elementary

school. Strong arguments have been made for integration— con-

structing activities that not only teach CS, but use the CS to support

learning in a core subject. Integrating CS materials into a specific

curriculum is a non-trivial task that may unfairly burden elemen-

tary teachers, who are often generalists. Successful development

and classroom implementation of integrated materials relies on

many decisions about what, when, and how much subject matter

to cover in relation to the main curriculum.

In this paper, we describe the design of a collection of 3rd and

4th grade (8–10 years old) integrated math+CS lessons. Our in-

structional materials use Scratch as a programming language and

employ a learning trajectory approach to integrate the CS concepts

of sequence, decomposition, repetition, conditionals, variables, and

debugging into fractions content in a popular elementarymathemat-

ics curriculum. The integrated lessons are inserted throughout the

main mathematics curriculum, providing multiple, non-continuous

exposures to CS content. In addition, we present preliminary data

from selected activities, including teacher feedback about the struc-

ture and impact of the math+CS instructional materials on their

students’ work.

CCS CONCEPTS
• Social and professional topics → K-12 education; Model
curricula;

KEYWORDS
Curriculum Design, Integration, Scratch, K-12 Education

ACM Reference Format:
Carla Strickland, Kathryn M. Rich, Donna Eatinger, Todd Lash, Andy Isaacs,

and Maya Israel, and Diana Franklin. 2020. Action Fractions: The Design

and Pilot of an Integrated Math+CS Elementary Curriculum Based on

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCSE ’21, March 13–20, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8062-1/21/03. . . $15.00

https://doi.org/10.1145/3408877.3432483

Learning Trajectories. In The 52nd ACM Technical Symposium on Computer
Science Education (SIGCSE’21), March 13–20, 2021, Virtual Event, USA. ACM,

New York, NY, USA, 7 pages. https://doi.org/10.1145/3408877.3432483

1 INTRODUCTION
As movements, such as CS4All, increasingly advocate for more

CS instruction in K-12 schools, teachers and districts are seeking

instructional materials to support CS implementation. While many

instructional materials are available, including CS Unplugged [37]

and code.org [40], most of thesematerials present CS as a standalone

subject, particularly at the elementary level. There is growing mo-

mentum to introduce CS in an integrated manner, especially in

the early grades (e.g., [14]; [33]). The rationale for this momentum

includes several points: (1) research suggests learning CS can pro-

vide opportunities for students to engage in critical thinking (e.g.,

[10]) in a fun and motivating manner (e.g., [29]); (2) there is often

natural overlap between CS and content areas such as mathematics

(e.g., [22]), which makes for instruction that is mutually enhancing

to both disciplines; (3) CS educational experiences have histori-

cally only been available to a subset of students who have access

to enrichment activities, but by including CS in content areas, all

students will engage in CS instruction ([38]); and finally (4) there

are practical reasons for CS integration including lack of time for

stand-alone CS courses in already packed school days (e.g., [12]).

The growing impetus to approach CS in an integrated manner,

combined with the scarcity of instructional materials for integrated

instruction, has placed the burden of instructional development

on teachers [15]. However, development of instructional materials,

and of integrated materials in particular, is a complex and difficult

process. As the field continues to develop and iterate on instruc-

tional materials to suit the needs of a variety of teachers, students,

and instructional contexts, detailed descriptions of instructional

design principles, the needs those design principles fulfill, and how

the principles are enacted in specific instructional materials will

be beneficial. Such discussions will help to illustrate challenges in

instructional materials development and establish the need to pro-

vide greater instructional support to teachers attempting integrated

instruction.

In this paper, we present Action Fractions, a set of integrated

fractions + CS activities for third and fourth grade students, along

with the design principles underlying them. The materials utilize

Scratch [19], a visual block-based language and programming en-

vironment designed for students in grade 3 (age 9) and older. We

 SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

1149

Paper Session: Math / Assessment

https://doi.org/10.1145/3408877.3432483

SIGCSE ’21, March 13–20, 2021, Virtual Event, USACarla Strickland, Kathryn M. Rich, Donna Eatinger, Todd Lash*, Andy Isaacs, and Maya Israel**, and Diana Franklin

begin by presenting prior work in Section 2. The design principles

and the Action Fractions activities are presented in Sections 3 and 4.

In order to show Action Fractions in the classroom, we then present

methods of data collection with preliminary results (Section 5).

2 PRIOR WORK
To integrate CS into mathematics instruction, we considered two

bodies of work. First, we drew upon elementary CS-only and inte-

grated learning for pedagogical approach. Second, work on learning

trajectories (LTs) in math and CS was used to design a cohesive

sequence of activities that gradually built skills over two years.

2.1 Computer Science in Elementary School
CS instruction in elementary school has two distinct historical

waves of instruction - the 1980-90’s and post 2000. The modern

era saw the rise of visual block-based languages (VBBLs) such as

Scratch [11] and Alice [8]. With VBBLs, instruction began in infor-

mal settings through constructionist-inspired curricula [21] such

as the Creative Computing Curriculum [6]. These were typified

by open-ended, personally-meaningful projects that allowed stu-

dents agency over what concepts they learned and applied, and

to what they applied them. As the CSforAll movement has gained

steam, there has been an increase in CS in formal elementary school

settings. This has led to more scaffolded, structured approaches.

For example, the Use->Modify->Create approach [18] supplements

these open-ended (Create) projects with example code that more

closely targets student learning to specific concepts (Use->Modify).

Alternatively, with a puzzle-based curriculum such as Code.org,

students complete many highly-structured small puzzles in order

to practice individual skills in a single context. Once many of these

skills are built, students may create a culminating project that al-

lows them to apply those skills in their chosen context.

Other work has sought to situate CS instruction within the con-

text of another core subject. Through a series of several youth

programs, Lee et al. showed rich computational environments, i.e.

environments that encourage access to the environment’s internal

mechanisms, allow students to create meaningful and instructive

models of problems they have encountered in other areas [18]. Inte-

gration of CS education with pre-established disciplines, especially

in STEM, is therefore an attractive option.

Prior work on integration has focused primarily on the mid-

dle school level or above. Zhang et al. have proposed and tested

a framework for middle-school CS and science integration built

around the Logic Programming language [41], and Rodger et al.

have found success in introducing teachers, especially mathematics

teachers, to the Alice programming environment [27]. In addition,

Schanzer, Fisler et al. have shown that the integration of algebra

and text-based programming in the Bootstrap curriculum leads to

improvements in students’ understanding of function composition

and word problems, characterizing the effect as a transfer of skill

supported by "deep structural connections between the domains"

[31]. These approaches trace a pathway toward the widespread

deployment of CS concepts in the classroom. We aim to expand on

this work by exploring integration at the elementary level.

2.2 Learning Trajectories
Learning trajectories are hypothetical pathways that begin with

students’ prior knowledge, progress through instructional activities,

and arrive at particular learning goals [35]. While actual routes to

learning for particular students cannot be perfectly predicted [2],

LTs are useful tools for guiding curriculum development because

they provide research-based descriptions of how learning is likely

to progress under ideal instructional conditions [7]. Further, LTs

can serve as effective learning tools for teachers to develop models

of how students might think about particular concepts [40]. De-

signing instructional materials with reference to LTs therefore has

the potential to both guide coherent instructional experiences for

students and support teachers’ implementation of lessons featur-

ing content where they are still developing expertise. Research is

emerging about progressions and trajectories for CS learning [9, 32,

39, 25, 24, 23]. In this paper we build on this work by presenting a

set of instruction materials developed with reference to CS LTs.

3 DESIGN PRINCIPLES
In this section, we discuss the six design principles (DPs) that guided

the design of Action Fractions.

DP1: Mathematics Focus. We chose integration with mathematics

because of the time dedicated to it during the typical elementary

school day, the inclusion of all students in mathematics instruction,

and synergies between mathematics and CS. To ensure mathemat-

ical coherence across our sequence of activities, we focus on one

mathematical content domain: fractions, as covered in an existing

mathematics curriculum.

We chose fractions for two reasons. First, there is a clear need for

innovation in fraction instruction. Many students find the propor-

tional reasoning involved in fractions difficult [5, 4] and struggle to

overcome whole-number biases when working with fractions [36,

34]. Difficulties with fractions are particularly troublesome because

fluency with fractions is critical for success in algebra and beyond

[20]. Second, fractions are a good fit with several CS concepts. The

utility of visual representations in learning fractions [17, 3] and

the Common Core’s [1] emphasis on visual representations fit well

with the visualization inherent in computer programming at the

elementary level.

DP2: Following CS LTs. We also needed tools for guiding a coher-

ent sequence of CS content. As such, our second design principle

was to follow a set of research-based CS LTs [26, 24, 23] to decide

which CS ideas (e.g., repetition) to address in our lessons and in

what order. For example, an early activity in our sequence, Fraction

Circles 1, serves as an initial exposure to the effects of repeating

the same command multiple times and how doing so can have a

cumulative effect on the program output. A later activity builds on

this idea and introduces the Scratch "repeat" block as a compact

way to tell a computer to repeat commands.

DP3: Using a familiar lesson structure. Recognizing the challenges
that both students and teachers would face in working through

integrated lessons (often for the first time), we chose to structure

the lessons to match the format of the companion mathematics

curriculum. We felt the familiar structure would help both teachers

and students to focus on the challenges of the new content. As such,

 SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

1150

Paper Session: Math / Assessment

SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

Figure 1: Fraction Circles 1 Lesson Opener

each integrated lesson features a warm-up activity, a focus activity

that serves as the body of the lesson, and a wrap-up discussion.

The lesson pages were also visually styled after the mathematics

curriculum so teachers would know where to look for particular

features or kinds of information. Figure 1 shows an example opening

page of a lesson, which outlines the lesson activities.

DP4: Universal Design for Learning (UDL). In order to increase

access and engagement, we planned instruction in a way that ac-

counted for a wide range of learner differences by applying the

principles of Universal Design for Learning (UDL [28]) to our les-

son creation process. The UDL framework, developed by CAST

(http://cast.org), has three primary principles: (1) Multiple means

of engagement (the “why” of learning), (2) multiple means of rep-

resentation (the “what” of learning), and (3) multiple means of

expression (the “how” of learning). These principles provided a

roadmap to design CS-integrated instruction based on students’

potential strengths and challenges [16].

Through the iterative development process, lessons were re-

viewed to identify potential barriers to student learning and sug-

gestions for teachers to help mitigate them. The nature of these

barriers varied and included potential student challenges related

to hardware or software use or related to academic content and

language. Two other features designed to increase accessibility

were included. First, “I Can” statements, were designed to make

the learning goals explicit, activate prior knowledge, and allow stu-

dents to self-monitor the learning processes and objectives. These

“I Can” statements, written in student-friendly language, are in-

troduced at the beginning of every lesson and revisited at the end

of the lesson. During both lesson segments, students are asked to

self-evaluate their understanding and mastery of the lesson goals.

Second, another UDL-informed lesson feature focused on providing

flexible options for adapting the lessons based on student prefer-

ences. These options might involve providing additional ways of

engaging with the content with physical and virtual manipulatives

or alternate ways in which students could show their learning.

Figure 2 shows an example of all three UDL-informed features.

DP5: TIPP&SEE. We utilize a TIPP&SEE learning strategy[30]

to teach students how to learn from the provided example code,

mediated through a worksheet. It leads students in purposeful play

Figure 2: Fraction Circles 1 UDL Considerations

Figure 3: Lesson Sequence and CS Content Coverage.
(Asterisk marks Fraction Circles 1.)

with recorded observation, finding and making predictions about

code related to particular actions they observed, and deliberate

tinkering by making code changes to understand how individual

blocks work. Results have shown that students using TIPP&SEE

perform better on post-assessments of loops questions[30], and

they complete more technical requirements of the activities[13].

DP6: Comprehensive supports within lessons. As a final design

principle, we strove to provide everything a teacher might need to

implement the lessons within their classroom. Along with detailed

descriptions of how to implement the lesson activities, our lessons

include background information about the content for teachers,

printable student pages, links to starter Scratch projects with cus-

tom blocks, discussion questions with sample student answers, slide

decks, and when appropriate, suggestions for lesson adaptations.

Each lesson opener page (Figure 1) also clearly identifies the mathe-

matics content standards and target CS content to help teachers see

how the lessons fit together. While such materials do not negate

the need for teachers to carefully plan their teaching, we aimed to

allow teachers to devote their planning time to understanding the

lesson and its purpose rather than preparing materials.

4 DESCRIPTION OF MATERIALS
4.1 Lesson Sequence and CS Content Coverage
Figure 3 shows the full sequence of 25 integrated lessons and iden-

tifies the focus CS concepts in each—one or more of sequence,

decomposition, repetition, conditionals, variables, or debugging.

The light bars indicate unplugged activities. These Action Fractions

lessons are interspersed throughout the main mathematics curricu-

lum. At each grade level, during the three major chapters that cover

fractions, they provide roughly weekly exposure to CS content.

 SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

1151

Paper Session: Math / Assessment

SIGCSE ’21, March 13–20, 2021, Virtual Event, USACarla Strickland, Kathryn M. Rich, Donna Eatinger, Todd Lash*, Andy Isaacs, and Maya Israel**, and Diana Franklin

Figure 4: Students observe and explore the provided code.

4.2 Example Lesson: Fraction Circles 1
Fraction Circles 1 is an early 3rd grade lesson that begins with a

whole-group warm-up using physical fraction circle piece manipu-

latives to focus students’ attention on expressing fractions as sums

of same-denominator unit fractions (e.g.
3

8
=

1

8
+

1

8
+

1

8
), the core

mathematics idea for this activity. In the main activity, students in-

teract with a pre-coded Scratch project. Custom blocks are provided

to control which size fraction-circle piece will be shown in the vir-

tual manipulative and place these pieces. Students’ introduction to

the code blocks and their operations is scaffolded with a TIPP&SEE

worksheet (Figure 4). The goal is for them to understand that they

can control what size piece is shown (the denominator) and how

many pieces are shown (the numerator) on the virtual manipulative

by making changes to the code. A teacher-led whole-group discus-

sion reviews what they learned about the project. Students then

complete a journal page with a set of exercises, each with a target

fraction (Figure 5). Students write the fraction as a number, draw

the fraction-circle picture, modify the script, and write a number

sentence that shows the fraction as a sum of unit fractions. As noted

by the asterisk in Figure 3, the CS focus areas include sequence

(students must use specific instructions that are understood by the

computer), repetition (students use the same Add Piece block re-

peatedly and observe the cumulative effect), and decomposition

(students discuss first setting the denominator, then adding pieces).

5 PILOT IMPLEMENTATION
Here we describe our pilot of the Action Fractions materials, in-

cluding the participants, data, analysis, and key results.

Figure 5: Part of a student journal page. Each exercise has
some fields filled in; students fill in the other fields.

5.1 Participants and Recruitment
Elementary teachers were recruited from schools using the com-

panion math curriculum. Our teacher participants were generalists,

with no background in CS. All participating teachers attended a one

or two-day professional development workshop (PD) to introduce

them to the Scratch environment and Action Fractions materials. In

the 2018–19 school year, five teachers, six classes, and 105 students

participated, and in the 2019–20 school year, eleven teachers, twelve

classes, and 257 students piloted our lessons.

5.2 Data Collection
Four data sources were collected and analyzed: (a) TIPP&SEE stu-

dent worksheets (described above), (b) student journal pages where

they recorded the answers to the exercises with target fractions,

(c) feedback surveys that teachers completed after implementing

each lesson, and (d) teacher interviews. Student work was collected,

de-identified, scanned, and stored on a secure cloud server. Teacher

feedback surveys were completed online. Teacher interviews were

conducted and transcribed at the end of each academic year.

During recruitment and PD, teachers expressed general concerns

about the required CS expertise, the amount of curricular time the

lessons would require, the level of engagement of the materials

(beyond the novelty of the "coding"), and the relevance of the CS

content with respect to their core mathematics curriculum. We sur-

mised that these concerns were issues that would not only impact

their practice, but how they spoke to administrators, parents, and

students about the study. Accordingly, we attended to these specific

issues when designing our teacher surveys and interviews.

5.3 Analysis
We collated teachers’ responses to the feedback surveys to gain a

sense of how accessible and engaging they found the lessons, the

time it took to implement them, and any other issues related to their

concerns during recruitment and PD. To supplement the overall

picture of teachers’ responses to the lessons, we looked through the

open-response sections of the surveys and the interview transcripts

to support or further explain the trends. We also looked for quota-

tions that elucidated teachers’ reactions to how we operationalized

specific design principles.

Student TIPP&SEE and journal page responses were coded and

analyzed for accuracy and completeness. We then reviewed the

 SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

1152

Paper Session: Math / Assessment

SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

Figure 6: Teachers rated student engagement for various les-
son components.

interesting unexpected or incorrect answers in more detail to de-

termine what types of errors students made and infer reasons why

they may have produced the unexpected answers. In Section 5.4.2

we include one set of interesting student answers.

5.4 Results
We present two sets of results. First, we discuss the extent to which

we were able to operationalize our design principles to create

lessons that were usable, enjoyable, and accessible to students and

teachers. Second, we present an interesting pattern of results in

the student data about how students navigated the constraints the

lesson placed on both the computational and mathematical aspects

of their solutions.

5.4.1 Operationalization of Design Principles. The six design prin-

ciples laid out in Section 3 represent our best intentions to address

barriers that generalist elementary school teachers may face as they

attempt to implement integrated CS curriculum. Here we present

results as to how well our lessons addressed their particular con-

cerns about student engagement, instructional time, and relevance

to their mathematics curriculum.

Figure 6 shows that in general, teachers highly rated the level of

student engagement across the lessons. For example, in Fraction

Circles 1, one teacher said, “I felt students were focused and really

in tune to what they were learning.” With respect to time, 72%

of responses on the feedback survey indicated the lessons were

an appropriate length. Four out of five teachers responded that

they completed Fraction Circles 1 in the recommended 60 minutes

of instructional time. However, even though most teachers rated

the time required as appropriate, some still commented that they

needed 15 to 20 extra minutes for students to complete the activ-

ities and the whole-class wrap-up discussions. Several teachers

chose to dedicate additional instructional time to complete these

lessons when needed, which further supports their assessment of

the activities as engaging for students.

The teacher surveys and interviews provide additional evidence

of the role our design principles played in the success of the lessons.

Teachers appreciated the ways in which the lessons attended to

the new CS learning and enriched the math learning. One teacher

commented that Action Fractions lessons, “not only added another

component in a fun way to learn what they were already learn-

ing in class but then it did deepen their understanding.” Teachers

also specifically mentioned the UDL features in their end-of-year

interviews. One teacher said, "I enjoyed the I Can statements at

the beginning because a lot of them [students] gave thumbs down

on everything and then by the end, you know, it made sense [to

them]." Teachers also responded well to familiar lesson structure,

with one saying “[I] like [how] the teacher lesson guide mimics ...

the actual math lesson content.”

5.4.2 Constraint and Variation. The Action Fractions lessons make

ample use of custom blocks to allow students to express the mathe-

matics directly as code and to show the effects visually. For example,

in Fraction Circles 1, the mathematical focus is building non-unit

fractions from unit-fraction pieces. To allow students to express

this mathematical idea directly in code, we provided custom blocks

to set the denominator and place individual unit-fraction pieces.

We used custom blocks in part to facilitate tight coupling to the

mathematics concepts (see DP1). We also felt that using custom

blocks often highlighted a particular idea from the Sequence LT

(see DP2), which is that programs are built from a limited set of

instructions. The TIPP&SEE worksheets (see DP5) allowed us to

guide students in discovering what the custom blocks did.

Despite the advantages of using custom blocks in relation to our

DPs, reliance on custom blocks did introduce a tension in terms of

the variety of solutions students would produce. The specificity of

the custom blocks placed limitations on the sequences of blocks

that could produce a particular answer, especially if students only

used the blocks that had been formally introduced. In the case of

Fraction Circles 1, for example, the top row in Figure 5 shows the

only code sequence that would show
2

6
using the blocks students

had explored. We wondered if such constraints might limit the

variety of solutions students produced.

As it turned out, students found ways to create varied solutions

even under the restrictions placed on their code. Our implementa-

tion data showed that while many students produced the expected

solutions using the custom blocks, it was not uncommon for stu-

dents to produce answers to some parts of the problems that showed

richer variation. For example, in the case of Fraction Circles 1, four

third graders used the Repeat block in their code instead of adding

multiple Add Piece blocks. One example is shown at the top of Fig-

ure 7. This occurred despite our deliberate choice not to introduce

the repeat block in this lesson and instead allow students to explore

how adding multiple copies of the same block resulted in a cumula-

tive effect on the output (see discussion of DP2). Three additional

third graders used multiplication symbols in their representations

of the code to indicate multiple repeat blocks (as in the bottom of

Figure 7), suggesting they were thinking about how to condense

their code even if they had not yet discovered the repeat block.

More variationwas evident in some students’ numbers sentences:

students recorded mathematical representations of their solutions

that showed uses ofmathematics other than the intended addition of

unit fractions. Eleven students used additionwith non-unit fractions

(e.g.,
2

12
+ 2

12
= 4

12
) and seven used addition with zero (e.g.,

3

4
+ 0

4
= 3

4
). We found this result particularly interesting because

all of these are correct and display mathematical understanding,

but they do not correspond with the blocks available for the script.

 SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

1153

Paper Session: Math / Assessment

SIGCSE ’21, March 13–20, 2021, Virtual Event, USACarla Strickland, Kathryn M. Rich, Donna Eatinger, Todd Lash*, Andy Isaacs, and Maya Israel**, and Diana Franklin

Figure 7: Student work featuring the use of repetition.

For example, there is no block corresponding to a non-unit fraction.

Thus, these students displayed some variation in their mathematical

solutions but were not able to express those solutions with the code

blocks we provided.

Responses outside those suggested by the custom blocks also

occurred in other lessons. For example, in a lesson about addition

of fractions, students sometimes produced solutions other than

what we intended (for example, producing the number sentence

2

3
+

0

3
=

2

3
when asked to find two fractions that sum to

2

3
, when our

expectation was
1

3
+

1

3
=

2

3
). The custom blocks in this lesson would

allow students to create code with a 0 in the numerator. However,

students did not usually record scripts on their journal pages that

matched these mathematically varied solutions.

6 DISCUSSION
Here we examine insights from our design process and implementa-

tion results and discuss the successes and challenges they highlight.

6.1 Successes
Overall, our six design principles were utilized to create a coherent

set of integrated mathematics+CS lessons. Many of these lessons

were manageable for teachers to implement in a class period, and

teachers appreciated many of the features that were embedded in

the lessons (Section 5.4). Thus, this serves as a proof-of-concept

that the creation of integrated lessons that target important math-

ematical and computer-science content—and that are feasible for

elementary teachers to implement—is possible. Future research

is needed to investigate the impact of such lessons on students’

attitudes towards and learning of both disciplines.

The variation displayed by some students in their responses,

perhaps constrained by the custom blocks and structure of the

projects, eased concerns about the limitations of our lessons. In

particular, the handful of students using the repeat block prior to

its introduction illustrated that even within lessons constrained

by mathematics content, Scratch retained its "high-ceiling" quality.

Moreover, the mathematical limitations on what the custom blocks

were able to represent did inhibit students from thinking about

other ways of creating their number sentences.

6.2 Challenges
Although we were pleased to find that students and teachers re-

sponded positively to most lessons, we would be remiss to not

acknowledge the difficulties involved in creating these lessons.

Each lesson required significant collaboration between expert CS

education researchers, mathematics education researchers, curricu-

lum developers, and current and former classroom teachers. The

fully developed lessons are the result of several years of discussion

and collaboration. Even so, some teacher feedback indicates cer-

tain lessons had a high level of difficulty or could not be feasibly

implemented in a traditional class period. The overall challenge of

creating coherent, integrated CS materials highlights the impor-

tance of supporting teachers by providing such materials—or at

the very least, the backbones of such materials. Full creation of

integrated materials is a heavy burden to place on teachers, even

when those teachers have adequate CS knowledge.

The integration context significantly constrained what and how

much CS content covered, resulted in unequal coverage both be-

tween CS content areas (Figure 3) and within CS content areas

(multiple activities focus on a single point in the LT). For example,

Decomposition is in more than half of the lessons, but most of

those lessons are addressing the same big idea in the LT (Problem

decomposition is a useful early step in problem solving).

The overall impact of these challenges is dependent on the pur-

poses that integrated activities such as ours are meant to serve.

Although our presented data did not focus on this, we believe our

activities have the potential to support students in using computing

to enrich their mathematical learning and gaining familiarity with

some basic computing concepts. However, the activities do not

serve as a comprehensive introduction to beginning computing.

When it comes to the variation students displayed within their re-

sponses, while we were impressed by the student ingenuity, we also

acknowledge that such responses raise questions about whether

the activities adequately support students in seeing connections be-

tween their pictures, fractions, number sentences, and code. When

students used numerators or operators with no equivalents in the

provided code blocks, they may not have seen these connections.

This reveals a tension in the activity design. On one hand, it is

possible to create custom blocks that would support more variety

in the student solutions. For example, in the Fraction Circles 1 ac-

tivity, if we wanted to support the expression of +
2

12
, we could

add an input to the Add Piece block for how many pieces to place.

Then a single instruction would place multiple pieces, equivalent

to a non-unit fraction. This might allow more students to see the

connections between their pictures, fractions, number sentences,

and code. However, this change has the potential to pull focus from

the intended mathematics learning goal, which is for students to

see that every fraction as composed of unit fractions. In addition,

the more flexible block is more complex, which could be inappro-

priate for such an early computing activity. In general, we faced

challenges in balancing a desire to support creative variation in

student responses and target specific learning goals.

7 CONCLUSION
The Action Fractions instructional materials and pilot implemen-

tation results illustrate both the possibility of creating coherent

integrated mathematics and CS materials and the many challenges

involved in doing so. We hope that our design principles support fu-

ture efforts in integrated materials development and our discussion

of challenges starts a conversation about how to best distribute this

ambitious work among researchers, developers, and teachers.

 SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

1154

Paper Session: Math / Assessment

SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

8 ACKNOWLEDGMENTS
We are grateful to the teachers and students who piloted Action

Fractions in their classrooms with such dedication and enthusiasm.

This project was funded by National Science Foundation (NSF)

Grant No. 1932920.

REFERENCES
[1] National Governors Association et al. “Common core state standards”. In:

Washington, DC (2010).

[2] Michael T Battista. “Conceptualizations and issues related to learning progres-

sions, learning trajectories, and levels of sophistication”. In: The Mathematics
Enthusiast 8.3 (2011), pp. 507–570.

[3] Merlyn J Behr et al. Rational number concepts. Ed. by R. Lesh and M. Landau.

Academic Press, pp. 91–126.

[4] Ty W Boyer and Susan C Levine. “Child proportional scaling: Is 1/3= 2/6= 3/9=

4/12?” In: Journal of Experimental Child Psychology 111.3 (2012), pp. 516–533.

[5] Ty W Boyer, Susan C Levine, and Janellen Huttenlocher. “Development of

proportional reasoning: Where young children go wrong.” In: Developmental
psychology 44.5 (2008), p. 1478.

[6] Karen Brennan, Christian Balch, and Michelle Chung. “Creative computing”.

In: Harvard Graduate School of Education (2014).

[7] Jere Confrey, Alan P Maloney, and Andrew K Corley. “Learning trajectories: A

framework for connecting standards with curriculum”. In: ZDM 46.5 (2014),

pp. 719–733.

[8] Stephen Cooper, Wanda Dann, and Randy Pausch. “Alice: A 3-D Tool for

Introductory Programming Concepts”. In: Proceedings of the Fifth Annual CCSC
Northeastern Conference on The Journal of Computing in Small Colleges. CCSC
’00. Ramapo College of New Jersey, Mahwah, New Jersey, USA: Consortium

for Computing Sciences in Colleges, 2000, 107–116.

[9] Hilary Dwyer et al. “Identifying elementary students’ pre-instructional ability

to develop algorithms and step-by-step instructions”. In: Proceedings of the 45th
ACM technical symposium on Computer science education. 2014, pp. 511–516.

[10] Georgios Fessakis, Evangelia Gouli, and E Mavroudi. “Problem solving by 5–6

years old kindergarten children in a computer programming environment: A

case study”. In: Computers & Education 63 (2013), pp. 87–97.

[11] Louise P Flannery et al. “Designing ScratchJr: support for early childhood learn-

ing through computer programming”. In: Proceedings of the 12th International
Conference on Interaction Design and Children. ACM. 2013, pp. 1–10.

[12] Krista Francis and Brent Davis. “Coding robots as a source of instantiations

for arithmetic”. In: Digital Experiences in Mathematics Education 4.2-3 (2018),

pp. 71–86.

[13] Diana Franklin et al. “Exploring Student Behavior Using the TIPP&SEE Learn-

ing Strategy”. In: Proceedings of the 2020 ACM Conference on International
Computing Education Research. ICER ’20. Virtual Event, New Zealand: Asso-

ciation for Computing Machinery, 2020, 91–101. isbn: 9781450370929. doi:

10.1145/3372782.3406257. url: https://doi.org/10.1145/3372782.3406257.

[14] Maya Israel and Todd Lash. “From classroom lessons to exploratory learning

progressions: mathematics+ computational thinking”. In: Interactive Learning
Environments 28.3 (2020), pp. 362–382.

[15] Maya Israel et al. “Supporting all learners in school-wide computational think-

ing: A cross-case qualitative analysis”. In: Computers and Education 82 (2015),

pp. 263–279. doi: https://doi.org/10.1016/j.compedu.2014.11.022.

[16] Maya Israel et al. “Teaching Elementary Computer Science through Universal

Design for Learning”. In: Proceedings of the 51st ACM Technical Symposium on
Computer Science Education. 2020, pp. 1220–1226.

[17] Nancy C Jordan et al. “Developmental predictors of fraction concepts and

procedures”. In: Journal of Experimental Child Psychology 116.1 (2013), pp. 45–

58.

[18] Irene Lee et al. “Computational Thinking for Youth in Practice”. In:ACM Inroads
2.1 (Feb. 2011), pp. 32–37. issn: 2153-2184. doi: 10.1145/1929887.1929902. url:

http://doi.acm.org/10.1145/1929887.1929902.

[19] John Maloney et al. “The Scratch Programming Language and Environment”.

In: Trans. Comput. Educ. 10.4 (Nov. 2010), 16:1–16:15. issn: 1946-6226. doi:

10.1145/1868358.1868363. url: http://doi.acm.org/10.1145/1868358.1868363.

[20] National Mathematics Advisory Panel. Foundations for success: The final report
of the National Mathematics Advisory Panel. US Department of Education, 2008.

[21] Seymour Papert. Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc., 1980.

[22] Christina Pei, David Weintrop, and Uri Wilensky. “Cultivating computational

thinking practices and mathematical habits of mind in lattice land”. In: Mathe-
matical Thinking and Learning 20.1 (2018), pp. 75–89.

[23] Kathryn M. Rich et al. “A K-8 Debugging Learning Trajectory Derived from

Research Literature”. In: Proceedings of the 50th ACM Technical Symposium
on Computer Science Education. SIGCSE ’19. Minneapolis, MN, USA: ACM,

2019, pp. 745–751. isbn: 978-1-4503-5890-3. doi: 10.1145/3287324.3287396. url:

http://doi.acm.org/10.1145/3287324.3287396.

[24] Kathryn M. Rich et al. “Decomposition: A K-8 Computational Thinking Learn-

ing Trajectory”. In: Proceedings of the 2018 ACM Conference on International
Computing Education Research. ICER ’18. Espoo, Finland: ACM, 2018, pp. 124–

132. isbn: 978-1-4503-5628-2. doi: 10.1145/3230977.3230979. url: http://doi.

acm.org/10.1145/3230977.3230979.

[25] Kathryn M. Rich et al. “K-8 Learning Trajectories Derived from Research

Literature: Sequence, Repetition, Conditionals”. In: Proceedings of the 2017 ACM
Conference on International Computing Education Research. ICER ’17. Tacoma,

Washington, USA: ACM, 2017, pp. 182–190. isbn: 978-1-4503-4968-0. doi: 10.

1145/3105726.3106166. url: http://doi.acm.org/10.1145/3105726.3106166.

[26] KathrynM Rich et al. “K-8 learning trajectories derived from research literature:

Sequence, repetition, conditionals”. In: Proceedings of the 2017 ACM Conference
on International Computing Education Research. ACM. 2017, pp. 182–190.

[27] Susan Rodger et al. “Integrating Computing into Middle School Disciplines

Through Projects”. In: Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education. SIGCSE ’12. Raleigh, North Carolina, USA: ACM,

2012, pp. 421–426. isbn: 978-1-4503-1098-7. doi: 10.1145/2157136.2157262. url:

http://doi.acm.org/10.1145/2157136.2157262.

[28] David H Rose and Anne Meyer. Teaching every student in the digital age: Uni-
versal design for learning. ERIC, 2002.

[29] José-Manuel Sáez-López, Marcos Román-González, and Esteban Vázquez-Cano.

“Visual programming languages integrated across the curriculum in elementary

school: A two year case study using “Scratch” in five schools”. In: Computers &
Education 97 (2016), pp. 129–141.

[30] Jean Salac et al. “TIPP&SEE: A Learning Strategy to Guide Students through

Use–>Modify Scratch Activities”. In: Proceedings of the 2019 ACM SIGCSE Tech-
nical Symposium on Computer Science Education. SIGCSE ’19. ACM. Portland,

OR, USA, 2019.

[31] Emmanuel Schanzer et al. “Transferring Skills at Solving Word Problems from

Computing to Algebra Through Bootstrap”. In: Proceedings of the 46th ACM
Technical Symposium on Computer Science Education. SIGCSE ’15. Kansas City,

Missouri, USA: ACM, 2015, pp. 616–621. isbn: 978-1-4503-2966-8. doi: 10.1145/

2676723.2677238. url: http://doi.acm.org/10.1145/2676723.2677238.

[32] Linda Seiter and Brendan Foreman. “Modeling the learning progressions of

computational thinking of primary grade students”. In: Proceedings of the ninth
annual international ACM conference on International computing education
research. 2013, pp. 59–66.

[33] Pratim Sengupta, Amanda Dickes, and Amy Farris. “Toward a phenomenology

of computational thinking in STEM education”. In: Computational thinking in
the STEM disciplines. Springer, 2018, pp. 49–72.

[34] Robert S Siegler et al. “Fractions: The new frontier for theories of numerical

development”. In: Trends in cognitive sciences 17.1 (2013), pp. 13–19.
[35] Martin A Simon. “Reconstructing mathematics pedagogy from a constructivist

perspective”. In: Journal for research in mathematics education (1995), pp. 114–

145.

[36] Stamatia Stafylidou and Stella Vosniadou. “The development of students’ un-

derstanding of the numerical value of fractions”. In: Learning and instruction
14.5 (2004), pp. 503–518.

[37] Rivka Taub, Michal Armoni, and Mordechai Ben-Ari. “CS unplugged and

middle-school students’ views, attitudes, and intentions regarding CS”. In:

ACM Transactions on Computing Education (TOCE) 12.2 (2012), pp. 1–29.
[38] David Weintrop et al. “Defining computational thinking for mathematics and

science classrooms”. In: Journal of Science Education and Technology 25.1 (2016),

pp. 127–147.

[39] Linda Werner et al. “The fairy performance assessment: measuring computa-

tional thinking in middle school”. In: Proceedings of the 43rd ACM technical
symposium on Computer Science Education. 2012, pp. 215–220.

[40] P Holt Wilson, Gemma F Mojica, and Jere Confrey. “Learning trajectories in

teacher education: Supporting teachers’ understandings of students’ mathemat-

ical thinking”. In: The Journal of Mathematical Behavior 32.2 (2013), pp. 103–
121.

[41] Yuanlin Zhang et al. “LP Based Integration of Computing and Science Education

in Middle Schools”. In: Proceedings of the ACM Conference on Global Computing
Education. CompEd ’19. Chengdu,Sichuan, China: ACM, 2019, pp. 44–50. isbn:

978-1-4503-6259-7. doi: 10.1145/3300115.3309512. url: http://doi.acm.org/10.

1145/3300115.3309512.

 SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

1155

Paper Session: Math / Assessment

https://doi.org/10.1145/3372782.3406257
https://doi.org/10.1145/3372782.3406257
https://doi.org/https://doi.org/10.1016/j.compedu.2014.11.022
https://doi.org/10.1145/1929887.1929902
http://doi.acm.org/10.1145/1929887.1929902
https://doi.org/10.1145/1868358.1868363
http://doi.acm.org/10.1145/1868358.1868363
https://doi.org/10.1145/3287324.3287396
http://doi.acm.org/10.1145/3287324.3287396
https://doi.org/10.1145/3230977.3230979
http://doi.acm.org/10.1145/3230977.3230979
http://doi.acm.org/10.1145/3230977.3230979
https://doi.org/10.1145/3105726.3106166
https://doi.org/10.1145/3105726.3106166
http://doi.acm.org/10.1145/3105726.3106166
https://doi.org/10.1145/2157136.2157262
http://doi.acm.org/10.1145/2157136.2157262
https://doi.org/10.1145/2676723.2677238
https://doi.org/10.1145/2676723.2677238
http://doi.acm.org/10.1145/2676723.2677238
https://doi.org/10.1145/3300115.3309512
http://doi.acm.org/10.1145/3300115.3309512
http://doi.acm.org/10.1145/3300115.3309512

	Abstract
	1 Introduction
	2 Prior Work
	2.1 Computer Science in Elementary School
	2.2 Learning Trajectories

	3 Design Principles
	4 Description of Materials
	4.1 Lesson Sequence and CS Content Coverage
	4.2 Example Lesson: Fraction Circles 1

	5 Pilot Implementation
	5.1 Participants and Recruitment
	5.2 Data Collection
	5.3 Analysis
	5.4 Results

	6 Discussion
	6.1 Successes
	6.2 Challenges

	7 Conclusion
	8 Acknowledgments

