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Existence of CMC Cauchy surfaces and spacetime
splitting

GREGORY J. GALLOWAY™

It is a pleasure to dedicate this paper to Robert Bartnik, who has made
fundamental contributions to this area

Abstract: In this paper, we review results on the existence (and
nonexistence) of constant mean curvature spacelike hypersurfaces
in the cosmological setting, and discuss the connection to the space-
time splitting problem.

1. Introduction

It is a great pleasure to contribute to this special issue in honor of Robert
Bartnik on the occasion of his 60th birthday. I was a visiting professor in the
mathematics department at UC San Diego during the 1983-1984 academic
year. That was the year S.-T. Yau arrived in the department, along with his
entourage of graduate students and post docs, Robert among them. It was an
exciting year. Robert’s work has had, and continues to have, a great impact
on so many people working in geometric analysis and mathematical relativity.
Personally, my interactions with Robert that year set a direction for my own
research that has lasted to the present.

Early in the year I learned from Robert, and then later from Yau, Yau’s
point of view concerning the Hawking-Penrose singularity theorems. In es-
sence, Yau'’s proposal was to establish the rigidity of the Hawking-Penrose
singularity theorems. From the standpoint of rigidity one would like to elim-
inate from the singularity theorems conditions like the generic condition and
retain only weak curvature inequalities such as the strong energy condition,
which requires the Ricci curvature on timelike vectors to be nonnegative.
This perspective is well-illustrated by the following ‘prototypical’ singularity
theorem, which in fact is a special case of the Hawking-Penrose singularity
theorem [25, Theorem 2, p. 266].
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Theorem 1. Let (M, g) be a space-time which satisfies the following.

(a) M is globally hyperbolic with compact Cauchy surfaces.!

(b) M obeys the strong energy condition, Ric(X,X) > 0 for all timelike
vectors X .

(c) M satisfies the generic condition, i.e. on each inextendible timelike and
null geodesic vy there is a point p and a vector X € T, M orthogonal to
~" such that

(L.1) g(R(X, 7)Y, X) #0,

where R is the Riemann curvature tensor. (In other words, there is a
nonzero tidal acceleration somewhere along v [4, 25].)

Then M 1is timelike or null geodesically incomplete.

Let us make a remark about the proof of this theorem. In a spacetime
with a compact Cauchy surface there is a standard procedure for constructing
a causal (timelike or null) line, i.e. an inextendible causal geodesic such that
each finite segment maximizes the Lorentzian distance between its end points.
(In the case of a null line 7, this is equivalent to 7 being globally achronal,
meaning that no two points can be joined by a timelike curve.) Under the
assumptions of the theorem, this line cannot be complete, for otherwise the
curvature conditions imply the existence of a pair of conjugate points, which
would destroy the maximality.

Note that Theorem 1 is false without the generic condition; consider, for
example, the flat spacetime cylinder closed in space. But the point of view
taken here is that it should fail only under very special circumstances. Such
considerations lead to the following conjecture, explicitly stated by Bartnik
as Conjecture 2 in [2].

Conjecture 1 (Bartnik splitting conjecture). Let (M,g) be a space-time
which satisfies (a) and (b) of Theorem 1. If (M,gq) is timelike geodesically
complete then (M, g) splits isometrically as a product (R x V, —dt>©h), where
(V. h) is a compact Riemannian manifold.

Thus, according to the conjecture, such spacetimes M must be singular
(timelike geodesically incomplete) except under very special circumstances.
Remarkably, despite various attempts and partial results, the conjecture re-
mains open in the full generality stated here. For more recent developments,
and some related results, see e.g. [19, 20].

1See Section 2 for definitions.
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In the next section we will review some results concerning the existence
of constant mean curvature (CMC) spacelike hypersurfaces, an area to which
Bartnik has made many important contributions. Some of the results dis-
cussed lead to partial proofs of Conjecture 1. We will also recall some impor-
tant examples (the first due to Bartnik) of spacetimes with compact Cauchy
surfaces satisfying the strong energy condition that do not admit any CMC
Cauchy surfaces. A certain CMC existence conjecture (stated in [18]) is also
discussed. In Section 3 we briefly comment on an entirely different approach
that has been taken in an effort to prove Conjecture 1. This is the ap-
proach first advocated by Yau, who posed the problem [32] of establishing
a Lorentzian analogue of the Cheeger-Gromoll splitting theorem. We also
make some brief comments about Lorentzian horospheres, as developed in
[19, 20].

2. Existence and nonexistence of compact CMC Cauchy
surfaces

We begin with some basic definitions and facts. For causal theoretic notions
used, but not defined below, we refer the reader to the standard references
[4, 25, 28).

By a spacetime we mean a time oriented Lorentzian manifold (M, g) of
dimension > 4. We assume throughout that M and g are smooth (C°°). We
further restrict attention to spacetimes (M, g) that are globally hyperbolic.
Classically, this means (i) the ‘causal diamonds’ J*(p) N J~(g) are compact
for all p,q € M and (ii) M is strongly causal. Following [28], we define a
Cauchy (hyper)surface in M to be a subset S that is met exactly once by
every inextendible timelike curve. In particular, S is achronal, i.e. no two
points of S can be joined by a timelike curve. In fact, it follows that a Cauchy
surface S is an achronal C° hypersurface that is met exactly once by every
inextendible causal curve (see e.g. [28, Lemma 29 on p. 419]). By considering
the flow of a timelike vector field, one sees that any two Cauchy surfaces are
homeomorphic, and that if S is a Cauchy surface in M then M is homeomor-
phic to R x S. Implicit in the proof of some of the results to be discussed is
the once folk theorem, and now theorem, that a smooth globally hyperbolic
spacetime admits Cauchy time function [5], i.e. a smooth time function ¢ all
of whose level sets are Cauchy surfaces.

Let V be a smooth spacelike hypersurface in a spacetime (M, g). To set
conventions, the second fundamental form K of V is defined as: K(X,Y) =
9(Vxu,Y), where X, Y € TV, V is the Levi-Civita connection of M, and u



670 Gregory J. Galloway

is the future directed timelike unit normal vector field to V. Then the mean
curvature H is given by, H = try K, where h is the induced metric on V.

To simplify certain statements, we shall use the following terminology: A
CMC Cauchy surface (resp., mazimal Cauchy surface), is a smooth spacelike
Cauchy surface with constant mean curvature (resp., zero mean curvature).

2.1. Existence

The following result relates Conjecture 1 to the existence of CMC Cauchy
surfaces.

Theorem 2. Let (M,g) be a globally hyperbolic spacetime, which satisfies
the strong energy condition (SEC), Ric(X,X) > 0 for all timelike vectors X .
Suppose further that (M, g) contains a compact CMC Cauchy surface S. If
(M, g) is timelike geodesically complete, then (M, g) splits isometrically as a
product (R x S, —dt* @ h), where h is the induced metric on S.

This is Corollary 1 in Bartnik’s paper [2]. Let us make a few comments about
the proof. First of all, one can immediately reduce to the case that S is max-
imal, H = 0. For if H = ¢ # 0, then by Hawking’s cosmological singularity
theorem [25, Theorem 4, p. 272], M would be timelike geodesically incom-
plete, either to the past of future. Then, assuming .S is maximal, Bartnik
proves that a neighborhood U ~ (—¢,€) x S of S must be foliated by CMC
Cauchy surfaces S;, t € (—¢,€). The proof is a very nice implicit function
theorem argument, which uses the linearization of the mean curvature oper-
ator acting on functions u € C*°(S) having spacelike graphs with respect to
Gaussian normal coordinates. (It is an argument we have subsequently used
in various guises over the years.) As above, each S; must be maximal, and, in
fact, must be totally geodesic, as otherwise it could be perturbed to a Cauchy
surface with nonvanishing mean curvature, and again one runs into a prob-
lem with Hawking’s theorem. One is now well on the way to establishing the
splitting in Theorem 2.

Existence results for CMC Cauchy surfaces have often involved ‘barrier
conditions’, a prime example of which is the following.

Theorem 3. Let (M,g) be a spacetime with compact Cauchy surfaces. Let
Sy and S_ be two such Cauchy surfaces, with Sy in the timelike future of
S_, and suppose that the mean curvature Hy of Sy and H_ of S_ satisfies

(2.2) H,y <Hy< H_,

for some constant Hy. Then there exists a Cauchy surface S between Si and
S_ with mean curvature Hy.
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This theorem is a special case of the prescribed mean curvature result of
Gerhardt [21, Theorem 6.1], and of Bartnik [1, Theorem 4.1]. (In [1], Bartnik
also proves, assuming a ‘uniform interior condition’, the existence of a max-
imal spacelike hypersurface in the asymptotically flat setting.) In the case
that S_ is future expanding, H_ > 0, and S, is future contracting, H, < 0,
Theorem 3 implies the existence of a maximal Cauchy surface between S,
and S_.

Now, one would like to use Theorem 2 to make some progress with Con-
jecture 1. Theorem 3 is no help in this regard, since if (M, g) satisfies the
SEC, it would necessarily be timelike geodesically incomplete. However, after
carefully studying Bartnik’s thesis (see e.g. [1], which is based on his thesis),
we saw how to give a variation of an argument in his proof of [1, Theorem
4.1], so as to establish the existence of a maximal Cauchy surface, subject to
a certain causal theoretic condition.

Theorem 4 ([14]). Let (M, g) be a spacetime with compact Cauchy surfaces,
which satisfies the SEC and is timelike geodesically complete. Suppose further
that M has no ‘observer horizons’, i.e.,

(2.3) I~ (y)=1I"(y)=M for every inextendible timelike curve v in M.

Then M contains a maximal Cauchy surface.

Existence of nontrivial observer horizons (1% () # ) often signal the
presence of a singularity. But, as de Sitter space shows, this need not be
the case in general. It remains open whether, for example, a future timelike
geodesically complete spacetime with compact Cauchy surfaces, which satis-
fies the SEC, can have past observer horizons. We come back to this point
later.

Theorems 2 and 4 have as an immediate consequence the following.

Corollary 5 ([14]). Under the additional assumption that (M, g) has no ob-
server horizons, Conjecture 1 holds.

In fact, at the time we obtained this result, Theorem 2 was not avail-
able. Instead, we were able to use a variation of Theorem 2 due to Gerhardt
[21, Theorem 7.4]. He proved, assuming the SEC, and subject to a certain
compactness condition, that the region between two compact maximal hy-
persurfaces splits as a metric product.

We make a brief comment about the proof of Theorem 4. Bartnik’s proof
of the prescribed mean curvature result [1, Theorem 4.1] is an application of
Leray-Schauder fixed point theory, employed in a suitable form. The proof
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of Theorem 4 follows a similar approach. One considers graphs of functions,
defined on a fixed time slice S = {¢t = 0}, with respect to a well chosen time
function t. What is needed to make everything work is an a priori height
estimate. Somewhat interestingly, classical singularity theory is used to es-
tablish this. By more or less following Bartnik’s proof, we obtain a sequence
of functions w,, € C*(S) satisfying, H(u,) (= mean curvature of graph uy,)
= %un Each such graph must meet S (at which u, = 0), otherwise it would
have strictly nonzero mean curvature, implying timelike geodesic incomplete-
ness by the Hawking singularity theorem. The no observer horizon condition
then implies (cf. [14, Theorem 3.1]) that the family of graphs stays within a
compact subset of M, hence providing the desired height estimate. One can
then use a gradient estimate and elliptic regularity to obtain a subsequence
which converges in C* to a function u with H(u) = 0.

In [2], Bartnik obtained a much stronger version of Theorem 4. For space-
times (M, g) with compact Cauchy surfaces, the no observer horizons condi-
tion (2.3) was shown in [14] to be equivalent to several other conditions. In
particular one has the following.

Proposition 6. Let (M,g) be a spacetime with compact Cauchy surfaces.
Then the no observer horizons condition (2.3) holds if and only if the sets
0J%(p) are compact for all p € M.

The proof makes use of basic properties of achronal boundaries [29]. In
particular, it is convenient to make use of the fact that the achronal bound-
aries 0.J*(p), when compact, are Cauchy surfaces [17, Proposition 4.8].

Bartnik’s CMC existence result in [2] only requires that there exists a
single point p such that dJ%(p) are compact (and does not require timelike
completeness).

Theorem 7 ([2]). Let (M, g) be a globally hyperbolic spacetime with compact
Cauchy surfaces, which satisfies the SEC. Suppose there exists a point p € M
such that the sets dJ*(p) are compact. Then there exists a CMC Cauchy
surface passing through p.

In fact, Bartnik stated the causality condition in this theorem in a dif-
ferent, but equivalent, form, namely that there exists a point p € M such
that M \ (I"(p) U I~ (p)) is compact. Also, we note that the assumption of
compact Cauchy surfaces is redundant, since this follows from the assumed
compactness of J=(p).

Bartnik’s proof of Theorem 7 relies on his powerful result on the Dirichlet
problem for the prescribed mean curvature equation, Theorem 4.1 in [3]. Let
S be a smooth spacelike compact Cauchy surface passing through p. Consider
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Sy = S\{p}. The compactness of M\ (I7(p)UI~(p)), ensures that D(S,), the
total domain of dependence of S}, has closure contained in a compact globally
hyperbolic set K, namely the region between two Cauchy surfaces, sufficiently
far apart. In Bartnik’s terminology, (S,, K) forms a standard data set. In the
present configuration, this guarantees that for each A € R, there exists a
smooth spacelike hypersurface Vy in D(.S),) with mean curvature H = X, such
that dV\ = {p}. (In particular, there is no singular set, as defined in [3].)
The uniqueness of V) is proved using the SEC, and an argument of Brill and
Flaherty [6], so that the family Vi, A € R, forms a foliation in D(S,). Then
by a very clever argument, Bartnik shows that there exists some A\* € R such
that Vi« extends smoothly across p.
Theorems 2 and 7 now combine to give:

Corollary 8 ([2]). Under the additional assumption that there exists a point
p € M, such that 0J%(p) are compact, Conjecture 1 holds.

A recent paper by Dilts and Holst [11], in which they formulate several
conjectures concerning the existence of CMC Cauchy surfaces, rekindled our
interest in this existence question. Motivated by some of their considerations,
Eric Ling and the author recently obtained a new CMC existence result based
on a spacetime curvature condition [18]. To describe this result, we recall
some aspects of the causal boundary of spacetime (cf. [22, 25]). Heuristically,
the future causal boundary €% consists of ‘ideal points’ which represent the
‘future end points’ of future inextendible timelike curves. This is made precise
in terms of indecomposable past sets (IPs). Let P be a past set, P = I~ (5)
for some set S C M. By definition, P is an indecomposable past set if it
cannot be expressed as the union of two past sets which are proper subsets of
P. Tt can be shown [4, 25] that, for strongly causal spacetimes, there are only
two types of indecomposable past sets: the timelike past of a point p, I~ (p),
and the timelike past of a future inextendible timelike curve v, I~ (). The
latter sets are called terminal indecomposable past sets, or TIPs for short.
The future causal boundary C7 is, by definition, the set of all TIPs. The past
causal boundary €~ is defined in a time-dual manner.

Note that C* consists of a single point (TIP) if and only if 7~ (y) = M for
all future inextendible timelike curves 7. A time-dual statement holds for CT.
Hence, the ‘no observer horizon condition’ (2.3) can be expressed by saying
that €* and €~ each consist of a single point. With Bartnik’s CMC existence
result in mind, in [31], Tipler made the following very nice observation.

Proposition 9 (Tipler [31]). Let (M, g) be a spacetime with compact Cauchy
surfaces. If €% consists of a single point, then there is a point p € M, suffi-
ciently far to the future, such that J*(p) are compact.
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In fact, Tipler considers somewhat more general results, which require
somewhat more involved arguments. For a simple direct proof focused on the
statement above, one may consult [18]. Thus, in Theorem 7 and Corollary 8,
the condition that the sets J*(p) be compact for some p can be replaced by
the condition that the future causal boundary consists of a single point.

We now introduce a curvature condition, related to the strong energy
condition, which can be used to show under certain circumstances that the
future causal boundary C consists of a single point. Let IT be a timelike plane
in the tangent space T, M. Then the sectional curvature, K (II), associated to
II is defined as,

B J(R(X,Y)Y, X)
E) = X X)) — (X V)E”

where X,Y € T,M are any two vectors spanning II and R is the Riemann
curvature tensor. Given any unit timelike vector u, extend v to an orthonor-
mal basis {u, €1, ..., e } for T, M. Then as is well-known (cf. [4]), the spacetime
Ricci curvature in the direction u is given by

n

Ric(u,u) = — ZK(HZ-) ,

i=1

where II; is the timelike plane spanned by u and e;. Hence, the assumption of
nonpositive timelike sectional curvatures implies the strong energy condition.
This assumption is the strongest assumption consistent with gravity being
attractive. As shown in [18], assuming natural conditions on the pressure and
density, perfect fluid filled FLRW spacetimes, and sufficiently small perturba-
tions of them, have nonpositive timelike sectional curvatures. The relevance
of this curvature condition to the causal boundary was pointed out in [20]
(cf. also [18]).

Proposition 10. Let (M, g) be a spacetime with compact Cauchy surfaces
and with everywhere non-positive timelike sectional curvatures, K < 0. If
(M, g) is future timelike geodesically complete then the future causal boundary
CT consists of a single point.

This is the time dual of [20, Proposition 5.11]. We make a comment about
the proof. Suppose there exists a future inextendible timelike geodesic v such
that I~ (y) # M. Hence 01~ () # (. By properties of achronal boundaries
[29], DI~ (7) is an achronal C° hypersurface ruled by future inextendible null
geodesics. However, by the time-dual of Theorem 3 in [12], (see also [4, Theo-
rem 14.45]), which is an application of a result of Harris ([24, Theorem 3| that
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relies on his triangle comparison theorem, any such null geodesic would even-
tually enter its own timelike future, contradicting the achronality of 01~ (7).
Theorem 7 and Propositions 9 and 10 combine to give the following.

Theorem 11 ([18]). Let (M, g) be a spacetime with compact Cauchy surfaces.
Suppose (M, g) is future timelike geodesically complete and has everywhere
nonpositive timelike sectional curvatures, i.e. K < 0 everywhere. Then (M, g)
contains a CMC Cauchy surface.

In particular, it follows that Conjecture 1 holds, with condition (b) re-
placed by the assumption of nonpositive timelike sectional curvatures. This
has also been shown to hold as an application of the Lorentzian splitting
theorem [12] (see the next section for further discussion).

In the absence of an immediate counterexample, and the fact that the
assumption of nonpositive timelike sectional curvatures implies the strong
energy condition, one may be tempted, as indeed was done in [18], to make
the following conjecture.

Conjecture 2. Let (M,g) be a spacetime with compact Cauchy surfaces.
If (M, g) is future timelike geodesically complete and satisfies the SEC then
(M, g) contains a CMC Cauchy surface.

A question related to this conjecture is whether the assumptions imply
that the future causal boundary consists of a single point. Note that a proof of
this conjecture would settle Conjecture 1 in the affirmative. In either conjec-
ture, if it were to help, it would be reasonable to replace “timelike geodesically
complete” by “causal geodesically complete”.

We mention one further situation which implies the existence of a CMC
Cauchy surface.

Theorem 12. Let (M,g) be a spacetime with compact Cauchy surfaces,
which satisfies the SEC. If (M, g) admits a future complete timelike conformal
Killing vector field X then (M, g) contains a CMC Cauchy surface.

In fact, the proof of Theorem 1.3 in [10] can be easily adapted (using
[10, Theorem 1.5]) to show that if a spacetime (M, g) with compact Cauchy
surfaces admits a future complete timelike conformal Killing vector field then
the future causal boundary consists of a single point. Theorem 12 then follows
from Theorem 7 and Proposition 9.

2.2. Nonexistence

In [2], in addition to establishing a CMC existence result, Bartnik also put
to rest the possibility that every spacetime (M, g) with compact Cauchy sur-
faces which satisfies the SEC contains a CMC Cauchy surface. We give here
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a rough description of his example. Let M; be the standard future expanding
dust filled FLRW model with toroidal time slices. Let M5 be the time reversed
version of My, which is then past expanding. Bartnik describes how to glue
these spacetimes together across a portion of the Schwarzschild spacetime,
in a manner somewhat similar to the construction of the Openheimer-Snyder
stellar model, except now each FLRW region is on the outside and the vac-
uum Schwarzschild region is on the inside. The resulting spacetime (M, g)
satisfies the strong and weak energy conditions [25] and has compact Cauchy
surfaces with topology T3#7T3. Bartnik gives two arguments to show that this
spacetime has no CMC Cauchy surfaces, one of which is topological. Briefly,
suppose S is a CMC Cauchy surface with mean curvature Hg > 0. Using
the time-inverting isometry that exchanges M; and Ms, one obtains a CMC
Cauchy surface S, having mean curvature Hg, = —H(S) < 0. Moreover, by
the Brill-Flaherty argument, S is necessarily in the timelike past of S,. But,
then, by Theorem 3, there exists a maximal Cauchy surface Sy ~ T3#T? in
between. The Hamiltonian constraint (i.e., traced Gauss equation) and the
weak energy condition would then imply that Sy carries a metric of nonneg-
ative scalar curvature. However, a manifold having topology T3#7 cannot
support a metric of nonnegative scalar curvature [30, 23|. Bartnik’s example
does not contradict Conjecture 2. While it has some future complete timelike
geodesics and some past complete timelike geodesics, it is neither future, nor
past, timelike complete.

In [9], Chrusciel, Isenberg and Pollack constructed an example of a max-
imal globally hyperbolic vacuum (Ric = 0) spacetime with compact Cauchy
surfaces, which has no CMC Cauchy surfaces. The example is an application
of their localized gluing results for vacuum initial data sets. They first pro-
duce a sufficiently generic vacuum initial data set (g, K) on V a T3. They
then perform their ‘connected sum’ gluing procedure on the initial data sets
(V,g,K)and (V, g, —K), in the process maintaining certain symmetry proper-
ties. The process requires that the initial data be CMC (in this case maximal)
near the points where the gluing is to take place. To accomplish this, they
make use of Bartnik’s results [2] on the plateau problem for prescribed mean
curvature spacelike hypersurfaces, already discussed in connection with the
proof of Theorem 7. Taking the maximal globally hyperbolic development of
the resulting vacuum initial data set produces a vacuum spacetime (M, g)
with Cauchy surface topology T3#7T3, and with a time-reflection property
somewhat similar to that of Bartnik’s example. Similar arguments now show
that (M, g) contains no CMC Cauchy surfaces.

Until recently virtually nothing has been known about the global prop-
erties of the Chrusciel-Isenberg-Pollack (CIP) example (apart from the fact
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that it contains no CMC Cauchy surfaces). In view of Bartnik’s example and
Conjecture 2, there has been an expectation that the CIP example is not
causal geodesically complete, either to the future or past. This, in fact, has
recently been shown by Burkhart, Lesourd and Pollack. In [7], they exploit
the symmetry of the CIP construction to observe that the central 2-sphere in
the connected sum is a marginally outer trapped surface, and show that this
leads, for sufficiently small “neck size parameter” ¢, to future (and past) null
geodesic incompleteness for the resulting spacetime. Burkhart and Pollack [§]
have gone on to show that this behavior is not an artifact of the symmetry but
rather a consequence of the geometry of the underlying gluing construction
of Isenberg, Mazzeo and Pollack [26], which is used in [9]. In particular, they
show that any spacetime which arises from the IMP gluing construction must
be future and past null geodesically incomplete provided the neck size pa-
rameter is sufficiently small and the initial data set has a noncompact cover.
This is consistent with ideas associated with topological censorship, whereby
one expects wormholes to pinch off to form singularities.

3. Further remarks
3.1. Lorentzian horospheres

In [19, 20] Carlos Vega, together with the author, developed a very general,
causal theoretic based, theory of Lorentzian horospheres in globally hyper-
bolic spacetimes. Let (M, g) be a globally hyperbolic future timelike geodesi-
cally complete spacetime. Very roughly speaking, a (past) Lorentzian horo-
sphere in (M, g) is obtained by taking a limit (in a precise sense) of ‘spheres’,
whose ‘centers’ are compact sets (or a certain generalization thereof) that
approach future infinity. Lorentzian horospheres, as defined in [19, 20], are
always globally defined C” achronal hypersurfaces in spacetime.

Cauchy horospheres are a particular class of horospheres defined for fu-
ture timelike geodesically complete spacetimes (M, g) with compact Cauchy
surfaces. To each compact Cauchy surface S in (M, g), there is an associ-
ated (past) Cauchy horosphere S (S) C J~(S), obtained by taking a limit
of spheres of radius k£ € N, whose (sequence of) centers are the compact
Cauchy surfaces Sy, = {x € M : d(S,z) = k}, each of which is a Lorentzian
distance k to the future of S. Cauchy horospheres have a number of nice
geometric properties. Assuming (M, g) obeys the SEC, then a past Cauchy
horosphere S2_(9) is an acausal C° hypersurface with mean curvature H > 0
in the support sense. If, further, (M, g) is past timelike geodesically complete
and S (S) is compact then S (S) is a maximal Cauchy surface and (M, g)
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splits as in Conjecture 1, with V' = S (S) (cf. [19, Section 4]). As discussed
in [19, 20] there are several conditions that insure, assuming timelike com-
pleteness, that S._(.S) is compact. These conditions will be satisfied, if, for
example, the future causal boundary consist of a single point. A number of
other more general rigidity results, based on horospheres, including applica-
tions with positive cosmological constant, are discussed in [19, 20].

3.2. The Lorentzian splitting theorem

Beyond the development of causal theory, to a large extent, the proofs of the
Hawking-Penrose singularity theorems involve the extension of Riemannian
comparison geometry to Lorentzian manifolds. As an approach to the prob-
lem of establishing the rigidity of the singularity theorems, Yau posed in his
well-known problem section [32], the problem of establishing a Lorentzian ana-
logue of the Cheeger-Gromoll splitting theorem. This problem was completely
resolved by the end of the ’80s. The most basic version of the Lorentzian split-
ting theorem, due to Eschenburg [13], is as follows.

Theorem 13 (Lorentzian Splitting Theorem). Let M be a globally hyper-
bolic, timelike geodesically complete spacetime, satisfying the strong energy
condition, Ric(X, X) > 0, for all timelike X. If M admits a timelike line,
then M splits as an isometric product, (M™*1, g) ~ (R x ", —dt*> ® h) where
3™ is a smooth, geodesically complete, spacelike hypersurface, with induced
metric h.

In [15] and [27] proofs were obtained under weaker assumptions. In [15],
we were able to prove the above by only assuming that the timelike line is com-
plete, while retaining the global hyperbolicity assumption. In [27], Newman
gave a proof assuming timelike geodesic completeness, but without assuming
global hyperbolicity, which corresponds to the original version posed by Yau.
All of the proofs are based on an analysis of the Lorentzian Busemann func-
tions bf associated to the given timelike line ~y. In our proof, we established a
maximum principle for Lorentzian Busemann functions restricted to a maz-
imal spacelike hypersurface. We then used this to show that bff agree along
a maximal hypersurface S defined near v(0). One is then well on the way to
establishing a splitting in a neighborhood of . The proof is completed by
globalizing as in [13]. Where does one go for the maximal hypersurface? As in
previous examples discussed above, one appeals to Bartnik’s basic existence
result [1] on the Dirichlet problem for the prescribed mean curvature equa-
tion, which, as was needed in the present case, allows for rough boundary
data. This technique was again used in [27], and in general it simplifies a
number of arguments in the proof of the Lorentzian splitting theorem.
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One would like to use Theorem 13 to prove Conjecture 1. As mentioned in
the introduction, there is a standard procedure to construct a causal line, i.e.
a causal geodesic each segment of which maximizes the Lorentzian distance,
in a spacetime (M, g) with a compact Cauchy surface S: One takes a sequence
of points {g,} C I'(S) extending to future infinity, and a sequence of points
{pn} C I~(S), with p, € I~ (gy), extending to past infinity, and considers
the maximal timelike geodesic segment ~,, from p, to ¢,, each of which must
intersect S. By the compactness of S, some subsquence will converge to a
causal (timelike or null) line . Unfortunately, without any further assump-
tions, this limit line v need not be timelike; the segments 7, can turn null
in the limit. An unpleasant example is given in [12] of a causal geodesically
complete spacetime with compact Cauchy surfaces, which does not contain
any timelike lines. However, this example does not satisfy any nice curvature
conditions.

It is easy to see that the condition in Corollary 8, that the sets 9J%(p)
be compact for some p € M, is sufficient to rule out null lines. Indeed, any
inextendible null geodesic  must meet both 8.J~ (p) and dJ*(p) (as they are
Cauchy surfaces), from which it can easily be argued that 7 is not achronal. In
this case (M, g) contains a timelike line, and Theorem 13 can be used to obtain
Corollary 8. As discussed and reviewed in [19, 20], there are several other
conditions that ensure the existence of a timelike line, and hence, under which
Conjecture 1 holds. All such conditions are implied by the condition that the
future causal boundary consists of a single point. Nevertheless, as mentioned
at the beginning, Conjecture 1 remains open in full generality. In consideration
of these issues, in [16] we studied the rigidity of spacetimes satisfying the null
energy condition and containing a null line. There we showed, under the
assumption of null geodesic completeness, that a null line must be contained
in an embedded achronal totally geodesic null hypersurface; in effect, another
CMC result.
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