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ABSTRACT

Phononic metamaterials enabled the realization of many acoustic components analogous to their electronic counterparts, such as transistors,
logic gates, and calculators. A key component among these is the demultiplexer, a device that receives multiple signals and sorts them based
on their frequencies into separate channels. Previous experimental realizations of acoustic and elastic multiplexers have employed plates with
pillars or holes to demultiplex frequencies. However, existing realizations are confined to two dimensions, which can limit potential acoustic
or elastic circuit design. Here, we show an experimental realization of a three-dimensional, four channel phononic demultiplexer. Our design
methodology is based on bundles of pass-bands within a large bandgap that can easily be tuned for multi-channel frequency demultiplexing.
The proposed design can be utilized in acoustic and elastic information processing, nondestructive evaluation, and communication applica-
tions, among others.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0030830

Phononic crystals and acoustic metamaterials consist of periodic
arrangements of basic building blocks that repeat in space. These
materials have the ability to control waves in an unprecedented man-
ner, at different length and frequency scales. One of the unique prop-
erties of these materials is their ability to support forbidden frequency
bands (i.e., bandgaps) in their dispersion spectrum. Within a bandgap,
waves cannot propagate and are reflected toward the source. The main
mechanisms for creating these forbidden bands within the frequency
spectrum are either destructive interference (e.g., in Bragg scattering
bandgaps) or local resonance. When a bandgap is open due to Bragg
scattering, the wavelength of the affected waves is usually at the same
order of the spacing between the unit cells (i.e., lattice spatial periodic-
ity).1,2 In contrast, when a bandgap is open due to resonances, the
wavelength of the attenuated waves can be independent of the lattice
spacing.3 Such resonances induce properties that might not exist in
conventional materials, like negative effective mass or stiffness.4–6

Phononic crystals and metamaterials with such exotic properties have
been utilized for many applications such as vibration and sound insu-
lation,7,8 seismic wave protection,9,10 wave guiding,11,12 and frequency
filtering,13,14 among others.15

Phononic crystals and metamaterials have been proposed as plat-
forms to enable mechanical information processing. Potential applica-
tions range from thermal computing16–18 (at small scales) to ultrasound
and acoustic based computing (at larger scales).19,20 Current realizations
of fundamental phonon computing elements such as acoustic
switches,21,22 rectifiers,23,24 diodes,25–28 transistors,29,30 memory,31 and
lasers32,33 have been inspired by their electronic counterparts. Among
such devices, demultiplexers are combinational logic devices that take a
single input at one end and route it to one of the several output channels
[Fig. 1(a)]. There exist multiple theoretical proposals for realizing pho-
non demultiplexers for both acoustic13,34,35 and elastic waves36–46 with
few experimental demonstrations.35,47,48 The main working principle for
most of these designs is based on embedded cylinders,13,36,46,49 holes,47

or pillars48 in a host plate. These realizations constrain demultiplexing
phonons to two dimensions. A device that can demultiplex phonons in
three dimensions for all wave polarization remains elusive. In this paper,
we numerically design and experimentally characterize a 3D phonon
demultiplexer for elastic waves [Fig. 1(b)].

To realize our demultiplexer, we design a cubic unit cell that has
two important characteristics: (1) a wide bandgap to filter out
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undesirable frequencies and (2) a bundle of pass bands inside the large
bandgap to allow only the targeted frequencies to pass. The unit cell is
composed of eight masses, one at each of the unit cell’s corners, con-
nected by 12 beams [Fig. 2(a)].

To verify our design hypothesis, we first consider an infinite unit
cell model, where one single unit cell is assumed to repeat in space in
all directions. We analyze the unit cell using Bloch periodic boundary
conditions.50 The dispersion curves of the unit cell, correlating wave-
number with frequency, are calculated using the wave equations for
heterogeneous media51 within an infinite medium. We use the finite
element method to solve the elastic wave equations (COMSOL 5.4).
The solution is the wavefunction uðx; j; tÞ ¼ ~uðxÞ expðiðj>x�xtÞÞ,
where ~u is the Bloch displacement vector, x is the position vector, j is
the wavenumber, x is the frequency, and t is the time. The resulting
dispersion curves are normalized by the unit cell size and the longitu-
dinal speed of sound in the medium, X ¼ fa=c. The dispersion non-
dimensionalization comes at no loss of generality as it is first calculated
with all the considered material parameters. The dispersion plot shows
a significant bandgap [shaded gray region in Fig. 2(b)] with a relative
width of�124%. The relative width of the bandgap is calculated as the
absolute width of the bandgap divided by its central frequency. Within
the bandgap region, there exist two pass bands with a central fre-
quency ofX ¼ 0:29 and 0:53, which we engineer to work as the trans-
mission bands for our demultiplexer.

To better explain the behavior of the proposed design, we visualize
the unit cell’s vibrational mode shapes by superimposing the displace-
ment profiles as a heat map over its geometry for eight different frequen-
cies [Fig. 2(c)]. The first two mode shapes (X1;2 ¼ 0:08 and 0:1)
resemble the first vibrational modes of the beams connecting the corner
masses. The third and fourth modes (X3;4 ¼ 0:15 and 0:17) show the
mixed resonance modes of the corner masses along with the first vibra-
tional modes of the connecting beams. All four modes exist below the

bandgap. The fifth mode shape, which exists in the first passband
(X5 ¼ 0:28), shows the second vibrational mode of the connecting
beams. The third vibrational mode of the unit cell beams manifests itself
within the second passband (X6;7 ¼ 0:52 and 0:55). At the edge of the
bandgap (X8 ¼ 0:74), the connecting beams vibrate in their fourth
mode shape. The masses work as pivots or fixation points for the con-
necting slender beams, which behave as fixed-fixed beams with well-
defined vibrational mode shapes.We note the existence of a very low fre-
quency branch(es) along the path C� X and X – M, due to the lack of
the diagonal coupling between the corner masses. In addition, the simple
geometry of the unit cell causes many of the vibrational mode shapes to
be degenerate. Based on this simple design concept, the unit cell can be
considered as a simple mass spring model with a large bandgap with
embedded bands of transmission. By changing the diameter of the
beams or the ratio between the mass of the beam and the mass of the
corner block, we can change the position of the bandgap and its width.
Alternatively, by scaling the unit cell length a, we can shift the position
of the bandgap along with its embedded pass bands within the frequency
spectrum. An advantage of scaling the entire unit cell, while keeping all
aspect ratios the same, is preserving all the dispersion characteristics of
the unit cell (e.g., group velocities) without alteration. This preservation
can help in maintaining consistency in the performance of the different
channels, such as the mode shapes and wave polarization.

The demultiplexer is constructed by designing four channels out
of the same unit cell, but with four different lattice constants. All four

FIG. 1. 3D Phononic demultiplexer. (a) A conceptual schematic of a 4-channel
demultiplexer with four different input frequencies excited at one end and sorted in
four predefined channels at the other end. (b) A 3D-printed realization of the 4-
channel phonon demultiplexer, where four different frequencies are excited at the
base and passively sorted into their corresponding channel.

FIG. 2. Basic building block. (a) The unit cell composed of eight masses at its cor-
ners connected with 12 beams forming a cube. (b) Dispersion curves of the meta-
material unit cell along the path C� X � M � R � C assuming infinite repetition
of the unit cell in all directions. Full bandgaps, where waves are prohibited from
propagation, are highlighted in gray. The inset shows the irreducible Brillouin zone
for a symmetric cubic unit cell. (c) Selected elastic mode shapes of the unit cell at
the R point at the four different transmission bands.
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channels are connected at one end (i.e., the base of the demultiplexer).
The excitation takes place at the base with multiple frequencies that
get sorted into the four channels. To correctly confirm the behavior of
the scaled unit cells, we calculate the dispersion curves for four differ-
ent lattice constants a ¼ 30, 36, 42, and 48mm [Figs. 3(a), 3(c), 3(e),
and 3(g)]. The dispersion curves for these four unit cells are calculated
based on 1D Bloch periodicity (only along the jx direction). Basing
the analysis on 1D periodicity, as opposed to 3D periodicity, gives rise
to extra modes along the free boundaries with no periodicity. These
boundary modes manifest themselves as added lines in the dispersion
curves. A clear difference between the 1D and 3D periodic dispersion
curves can be seen, for example, by comparing the number of branches
below the first bandgap in Figs. 2(b) and 3(a). A detailed comparison
between 1D, 2D, and 3D periodicity is presented in the supplementary
material. The existence of multiple flat or quasi-flat lines is mainly due
to the added standing modes and does not affect the transmission sig-
nal. This can be seen in the amplitude of the transmission within the
narrow pass bands in comparison to the transmission in the large pass
bands at higher frequencies [Figs. 3(b), 3(d), 3(f), and 3(h)]. The 1D
periodic dispersion curves serve as the limiting case for the perfor-
mance of the proposed design. As more periodicity is incorporated in
the model (i.e., along jy andjz directions), less vibration modes
become available at the free boundaries and the dispersion curves
become identical to Fig. 2(b). Therefore, having a demultiplexer chan-
nel with more unit cells in all directions will result in less dispersion
lines and wider band gaps. A variation in the presented design with
input signals from all directions is presented in the supplementary
material.

To validate the infinite unit cell model against the finite structure
with all the connected channels, we numerically simulate the exact
geometry of the demultiplexer as seen in Fig. 1(b) using the finite ele-
ment method. Each channel is composed of an array of 8 unit cells tes-
sellated along the z direction. All channels are connected to a baseplate
with a thickness of Th¼ 3mm. The top end of each channel is termi-
nated by a plate with the same thickness for signal extraction. The
plate thickness, Th, is chosen such that its resonance frequencies (i.e.,
the plate mode shapes) do not coincide with the operational frequen-
cies of the channels. The channels are arranged in a 2� 2 grid

separated by 30mm. A harmonic excitation is applied at the bottom
surface of the baseplate. We sweep the excitation frequency between 1
and 32 kHz and record the displacement at the end of each of the
channels [Figs. 3(b), 3(d), 3(f), and 3(h)]. The predicted bandgap fre-
quencies using the infinite unit cell model are shaded in gray in all
panels of Fig. 3. The results of both the finite and infinite models are
in very good agreement. Within the band gaps, shown as the gray
shaded regions in Fig. 3, the amplitude of the transmitted wave is
many orders of magnitude less than that of the passband frequencies.
The fact that all channels are connected at the base does not affect the
robustness of the individual channels’ performance. In addition, we
also plot the logarithm of the full displacement fields as a heat map at
the four operational frequencies of the demultiplexer (Fig. 4). The dis-
placement field at each frequency shows a clear transmission of elastic
phonons at targeted frequency, while the rest of the channels show
negligible motion.

To experimentally validate our numerical simulations, we fabri-
cate the demultiplexer through additive manufacturing (laser sinter-
ing) using polyamide (Young’s modulus E¼ 2.3GPa and density

FIG. 3. Infinite medium vs finite structure. The calculated dispersion curves and their corresponding frequency response functions (FRFs) for unit cells with the side length
equal to (a) and (b) 30 mm, (c) and (d) 36 mm, (e) and (f) 42 mm, and (g) and (h) 48 mm. The dispersion curves are calculated along the C� X direction with periodicity only
along the x direction. The FRFs are calculated for a structure composed of 1� 1� 8 unit cells. The bandgaps are highlighted in gray in both dispersion curves and FRFs.
The dashed horizontal lines mark the operational frequencies used in the different channels.

FIG. 4. Demultiplexer numerical simulations. Numerically calculated mode shapes
of the demultiplexer operating at (a) x1¼11.7 kHz, (b) x2¼ 13.9 kHz, (c)
x3¼ 15.9 kHz, and (d) x4¼ 18.1 kHz. The heat map represents the normalized
intensity of motion (i.e., the logarithm of displacement divided by its maximum
amplitude) through the entire structure when excited at the base.
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q ¼ 1200Kg/m3). We characterize the vibration response of the
meta-device by harmonically exciting the baseplate with a piezoelec-
tric disk (repeating the previously performed numerical simulations in
Figs. 3 and 4). We measure the transmitted vibrations at the end of
each channel using a laser Doppler vibrometer LDV (Polytec OFV-505
with an OFV-5000 decoder, using a VD-06 decoder card). We excite
the system by sweeping through frequencies between 10 and 40kHz
and record the amplitude of the transmitted vibrations at the end of
each channel (Fig. 5). In general, the measured signals at the end of
each channel are in very good agreement with the numerical simula-
tions. In particular, the size and position of the bandgaps seem to sup-
port our numerical predictions. More importantly, the measured
vibrations between 10 and 20 kHz show a clear bandgap, as predicted
by the numerical simulations in all channels, and demonstrate clear
transmission of the signal in the designated pass bands in each channel.
The experimental measurements show clear evidence of phonon
demultiplexing based on frequency in the realized meta-device.

In this study, we design, analyze, and realize the first 3D pho-
nonic demultiplexer. Our design relies on defining relatively narrow
pass bands within a wide bandgap. Designing the width of the pass-
band allows for a wider operational bandwidth and ensures transmis-
sion of each signal to its designated channel. The complete bandgap
for all directions and polarization (in-plane, out of plane, and rotation)
of the wave allows for phonon demultiplexing in three dimensions.
Multiplexing elastic and acoustic waves in 3D can enable the design of
higher dimensional all-phononic circuits, taking advantage of the
recent progress in advanced manufacturing. Due to these advances in
fabrication and the material invariant nature of the design principle,
our meta-device can be easily scaled to operate at desired frequencies
with no geometry alteration. For example, the same design fabricated
at half the size would operate around twice the frequency (i.e., in the
ultrasound regime). Our demultiplexer has possible applications in
imaging, communications, and phonon-based information processing.

See the supplementary material for detailed dispersion curves
with different periodic boundary conditions and an alternative design
of the multiplexer based on our unit cell.
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