Passive non-reciprocity in a system of asymmetrical rotational oscillators
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Abstract

In this paper we investigate an elastically-linked, nonlinear, in-plane rotator system and
experimentally study its non-reciprocal impulse response. The nonlinearity of the system arises
from the angled elastic linkage in rotational motion. A chain of rotators coupled with such linkages
reaches an acoustic vacuum when the pretension of the elastic links vanish, leading to large
nonlinearity tunable via small pretension. Using an analytical model and experimental exploration,
we observe a broadband non-reciprocity in a weakly pre-tensioned, asymmetric, three-rotator
system. In addition, we use a nonlinear normal mode (NNM) analysis, capturing the main
qualitative dynamics of the response, to explain the observed non-reciprocity mechanism. The
analysis shows that equal applied impulses, combined with energy-dependent frequency/mode
shapes, result in robust non-reciprocity features, contrary to the reciprocal response present in the

linear counterpart of this system.

1 Introduction

Reciprocity, a fundamental property of linear time-invariant systems, ensures an identical response
when a source and receiver interchange position [1-3]. Breaking reciprocity, due to its large

potential in applications such as targeted energy transfer [4-8], wave transmission control [9-17],

1 Address all correspondence to this author.



and signal filtering/protection [18-20], has attracted increased recent attention. In acoustic and
elastic media, active means to break reciprocity have adopted odd-symmetry field/circulation [12,
15, 21], time modulated materials [13, 18, 22-26] and external control [27-29], as reviewed in [30].
However, these active methods, due to their complexity and external dependencies, raise concerns

about instability and energy consumption for practical implementation [27].

An alternative for achieving non-reciprocity relies on nonlinear mechanisms and system
asymmetry, which can be realized in a passive manner and thus avoid the aforementioned
shortcomings of active systems. In general, nonlinearity in itself is not sufficient for breaking
reciprocity; for this to happen the break of configurational symmetry is also needed. Li et al.
leveraged nonlinearity-induced higher harmonics to bypass the bandgap of a superlattice in one
direction [10, 11]. Other researchers utilized nonlinear bifurcations in a variety of systems to break
reciprocity [5, 28, 31, 32]. In phononic structures, nonlinear propagation zones in both weakly and
strongly nonlinear lattices exhibit direction dependency due to asymmetry, leading to tunable non-
reciprocity [19, 33-36]. In low degree of freedom nonlinear systems, a new non-reciprocity
mechanism has been identified which occurs due to nonlinear resonance and targeted energy
transfer [6]. However, this mechanism requires symmetry breaking by a boundary nonlinear
energy sink, which needs to be ungrounded and free to oscillate from one end of the lattice,

restricting its generality.

Inspired by [6, 37, 38], in this paper we propose an asymmetric, lightly pre-tensioned, three-rotator
system exhibiting passive non-reciprocity due to strong geometric nonlinearity. We show that the

geometric nonlinearity in the system is tunable to the pretension of the elastic couplings, whose



absence leads to an acoustic vacuum [37, 39]. Using this system, we uncover a new, broadly-
applicable passive mechanism that passively breaks acoustic reciprocity. The simple three-rotator
system exhibits broadband non-reciprocity in experimental tests, which agrees well with results
from direct numerical simulation of an associated analytical model. Unlike non-reciprocity
mechanisms featuring nonlinear resonance or bifurcation, we show that the observed non-
reciprocal response arises from energy-dependent nonlinear normal modes (NNMs) intrinsic to the
unit cell. Further, interpreting nonlinear non-reciprocity using NNM analysis suggests a new tool
for exploring non-reciprocity in nonlinear media, which can be extrapolated to a class of nonlinear

non-reciprocal problems where excitations induce distinct energies.

2 System Description

Figure la depicts three in-plane rotators linked by linear springs at their arms. Each rotator, with
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Figure 1: System Description. a) Depiction of three in-plane rotators at the equilibrium position with
system parameters marked. b) Depiction at arbitrary angular displacement indicating the angular
measures and spring stretch.

identical arm length, is pinned at its center and allows only rotational motion. The massless spring
deforms only in its axial direction. The system is scaled by a moment of inertia hierarchy I; <

I, < I3. In this paper, we only consider small-angle oscillations around the equilibrium under the



condition L; < D; (i.e., each spring is either pre-tensioned or un-stretched at the position shown in
Fig. 1a). Further, we define the angular displacement for these rotators counter-clockwise positive,

as shown in Fig. 1b.

We next present the rotators’ equations of motion. Each rotator is subject to a restoring and

dissipation torque,

L6;-Ty,—-T;=0 (1)
1,0, —Tyy —T23— T, =0 (2)
1363 — T3, — T3 =0, 3)

where T;j describes the restoring torque on the it" rotator resulting from the elastic linkage

between the i" and j rotators, and T; denotes the equivalent dissipation torque on the i‘" rotator.
Due to the rotation, the rotator arm stretches the elastic linkage along an angle, and, in turn, the
restoring torque becomes non-proportional to the elastic linkage deformation. Hence, the system
possesses geometric nonlinearity. To derive the restoring torque from the rotation geometry we

consider the following expressions,

r; =rcos(8;) i+ rsin(6;) j (4)

rj = rcos(6;)i+rsin(6;)j (5)

L=Qr+Dy)i —1ry—1, (6)

AL = |L| — Ly~ (7)

T, =1 X (kl-*AL i), 8)
|L|



where i, j denotes the indices of two adjacent rotators, and i* = min (i, j) is used to describe the
parameters associated with the linkage between the i*" and j* rotator. Vectors r and L then
represent the angular positon of the rotator and stretch of the linkage, respectively. Guided by
experimental observations, we model the dissipation torque as a combination of linear viscous

damping and Coulomb friction with viscous coefficient c; and frictional torque T; £
T; = —c;6; - sgn(0,)T;;. 9)
Since we are interested in small-angle oscillations, we introduce a small parameter € << 1 to scale

the angular displacements, 8; — €0;, and express the governing equations in a Taylor series with

respect to €,
L6, + (kg191 + k12(0; + 92)) €+ (V1+2(91 +6,)° +y12(6; — 6;)° + )’g1913)€3 +0(e®)
+c,0; + sgn(@l)Tlf =0 (10)
L6, + (kgze2 + ky2(6; + 03) + ko3(0; + 93)) €
+(¥2(61 + 62)° +¥5(6; + 65)% + y12(0, — 01)% + y53(6;, — 03)° + ¥,42605)e® + 0(€®)
+c,0, + sgn(6)T,; =0 (11)
1565 + (kg393 + kp3(0; + 93)) €+ (¥3:(0; + 05)° +y53(05 — 65)° + Yg3933)53 + 0(e)
+c30; + sgn(8:)Ts; = 0, (12)
where the linear stiffness kg;, k;j, and nonlinear stiffness )/l-J;, Yij and yg; are functions of the

system parameters — the Appendix provides complete expressions for each. Note that the linear

stiffnesses kg; and k;; are both proportional to the pretension of the springs (D; — L;).



Egs. (10)-(12) document that (i) the system only contains odd (hardening) nonlinearities, and (i)
its linear stiffness can be modified or eliminated by adjusting or removing the pretensions of the
springs. In both linear and cubic terms, the restoring torque depends on the sum of angular
displacement, 6; + 8;, unlike rectilinear counterparts which depend on displacement differences.
In fact, this subtle difference results in a qualitative difference in the wave propagation problem in
a periodic structure composed of such rotator structures. For an extended discussion, we direct the

readers to Note I in the Supplemental Material.

3 Experimental Results

Figure 3a depicts three 3D-printed rotators, each with radius 28.5mm, attached to low friction
bearings affixed to a vibration isolation table. By varying the quantity of nuts and bolts attached
to each rotator, an asymmetrical moment of inertia distribution can be introduced. In the designed
experiment, from left to right, the rotators have inertia, 3.45 X 107%,1.28 x 10™> , and
3.16 X 1075 kgm?, respectively. As illustrated in Fig. 3b, the elastic linkage between two
adjacent rotators consists of a weakly pre-tensioned short spring and two metal rings, which allows
for axial extension and prevents spring bending. These elements have negligible mass compared
to the three rotators and are all sufficiently lubricated. We perform a system identification study
(utilizing the patternsearch function in MATLAB), detailed in Supplementary Material Note 1I,
to accurately match the physical experiment to our analytical model, which employs MATLAB’s
ODEA45 function to numerically integrate the governing equations. We present the identified

experimental parameters below.



Table 1. System parameter identification results.

Rotator 1 Rotator 2 Rotator 3
Moment of Inertia I; 3.45x 107° 1.28 x 1075 3.16 x 1075
[ kgm?]
Dissipation 1.31 x 107> 8.7 x 107° 9.8 x 107°
Coefficients ¢; [Nms]
Dissipation 6.0 x 1077 3.18 x 107° 1.2 x107°
Coefficients Tl-f [Nm]
Linkage 1 Linkage 2
Stiffness k; [N /m] 870 670
Un-deformed Length 11.44 11.48
L; [mm]
Gap distance D; 11.74 11.84
[mm]

We use an impact hammer to strike a rotator arm at either end of the chain using the same impulse
level. The impacts are carefully applied at roughly the same distance from the center of the rotator
such that the angular impulses are equal. We then use a laser Doppler vibrometer to capture the
response at the other end of the chain. As such, we present the experimental non-reciprocal
response in Figs. 2c-f, at an impulse level P = 3.85 + 0.15 N -ms, obtained from direct
integration of experimental force responses, as depicted in the inscribed figures. Noteworthy,
though the two impulse excitations are not precisely the same (as shown in the inset figures), the
impulse levels of two excitations are sufficiently close such that the contribution to reciprocity
breaking from non-identical excitations is negligible compared to the nonlinear effects; this is

substantiated in Supplementary Material Note III.
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Figure 2: Experimental/numerical non-reciprocity results. a) Experimental setup used in testing, b)
detailed view of the spring connection, c) time response (numerical and experimental) of the small
(left) rotator when excitation is applied on the right. The impact (force [N] vs. time [ms]) is documented
in the top right corner, d) time response (numerical and experimental) of the large (right) rotator,
when the excitation is applied on the left. The impact is again plotted in the top right corner, e) and f)
wavelet transformation (shaded) of the time responses shown in c¢) and d), superimposed by the
nonlinear normal modes (solid lines) of the system.

In Figs. 2c-d, the experimental responses show a high-degree of agreement with the superimposed
numerical simulation results. We observe a large response at the left rotator when the impact
excites the right rotator, compared to a smaller response at the right rotator when exciting the left
rotator. A roughly 2:1 amplitude ratio appears in both experimental and numerical results. Results

from a wavelet transformation performed on the experimental and numerical responses are



displayed in Figs. 2e-f, respectively. The wavelet results clarify the strong non-reciprocity in the
frequency domain. Three dominant harmonics in the left rotator response show considerable
amplitude when the right rotator is excited, yet only two such harmonics appear in the right rotator

response when the impulse is applied on the left.

4 Nonlinear Normal Mode (NNM) Analysis

In order to better illustrate the dynamics of the system and interpret the non-reciprocal
phenomenon, we apply a nonlinear normal mode (NNM) analysis to the three degree-of-freedom
geometrically nonlinear system. Similar to linear normal modes (LNM), NNMs depict periodic
solutions of the nonlinear ODEs, yet in an energy-dependent framework. As defined by Shaw and
Pierre in [40, 41], a NNM is a two-dimensional invariant manifold in phase space, where an orbit
starting on the manifold stays on the manifold for all time. At low energy limits, the NNM manifold
is tangent to the corresponding LNM, which is represented by a plane in the phase space. Different
from the displacement ratio in the linear mode shape concept, each NNM prescribes specific
displacements for each degree of freedom, and hence a specific energy level for the entire system.
We use the Newmark method and a continuation algorithm to numerically compute the NNMs, as
detailed in [42-44], keeping only terms up to O (e>) in Egs. (10)-(12). The energy-sensitive NNM
can then be well illustrated in a frequency-energy plot accompanied with specific nonlinear mode

shapes, which are the major focus of the following analysis.

In Fig. 3a, three NNM branches emerge, each of them exhibiting increasing frequency with
increasing modal energy. To verify with experimental/numerical results, we compute the

instantaneous energy of the system at each time, and then replace the energy axis of Figure 3a with



time. The resultant plot is then superimposed on Figs. 2e-f, where we find a high degree of
agreement between the frequency evolution and NNM trajectories. Note that the
experimental/numerical frequency branches are expected to be lower than the NNM results, since
the dynamics composed of multiple NNMs (in our case, three) must have a total energy no less
than the energy of each composed NNM. Conversely, the energy of each NNM in the presented

dynamics must be lower than the total energy of the system as captured in simulations/experiments.
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Figure 3: a) Computed nonlinear normal modes (NNMs) of the system. Two vertical
dashed lines indicate the energy level of the system when one rotator is excited. b-g)
Nonlinear mode shapes corresponding to the markers in a). Rotator 1, 2 and 3 represents
the small, medium and large rotator, respectively.
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In a system with hardening nonlinearity (as the system considered herein), a lower energy leads to
a lower frequency — this is also illustrated in Fig. 3a.

The energy-dependent dynamics uncovered by the NNM analysis is key to understanding the non-
reciprocal dynamics. In the studied system, due to the moment of inertia difference of the excited
rotator, the same level of inputted impulse results in distinct initial energy (E = P?/21I;) inputted
to the system. As indicated by the dashed lines in Fig. 3a, the excitation on the left rotator (small
moment of inertia) results in a larger initial energy (green dashed line) than the energy (purple
dashed line) resulting from excitation on the right rotator (large moment of inertia). From these

starting energies, dissipation then drives the response frequency leftwards to the low energy regime
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Figure 4 The wavelet response of the impulse excitation superimposed with NNM results. (a)-(c) The wavelet
response for each rotator when the impulse applies on the large rotator. (d)-(f) The wavelet response for each
rotator when the impulse applies on the small rotator. Each column represents corresponding rotator, e.g. the
first column describes the response of the small rotator as indicated by the schematics on the top. The hammer
symbol in (c) and (d) indicates the impulse excitation applies at this rotator.
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in Fig. 3a. As such, the responses are associated with non-identical oscillation frequencies, which

breaks reciprocity in the frequency domain, and matches the observations in Figs. 2e-f.

Moreover, the nonlinearity not only generates the aforementioned frequency variation, but also
leads to different nonlinear mode shapes at each excitation event (that is, these mode shapes are
energy-dependent). Figures 3b-g illustrate the nonlinear normal mode shapes for each mode at two
different energy levels (purple and green). Despite the difference in the amplitude of modal
displacement (nonlinear normal modes are energy dependent, and cannot be normalized), the
modes are fundamentally dissimilar at the given two energy levels. In the second mode (Figs. 3¢
and f), the modal displacement of the large rotator (Rotator 3) is out-of-phase with respect to the
small rotator (Rotator 1) at low energy, yet becomes in-phase with the small rotator at high energy.
Similarly, in the third mode, the modal displacement of the medium rotator (Rotator 2) changes its

sign at two energy levels as indicated in Figs. 3d, g.

In Fig. 4 we present the modal participation of these NNMs as predicted by the numerical model.
We superimpose the NNMs on the wavelet results for each rotator under different excitation,
whose horizontal axes are replaced by the instantaneous energy of the system (unlike Fig. 2 which
uses time). The color of each frequency branch reveals the modal participation at this rotator. Note
that the intensity of the frequencies vary from rotator to rotator, and thus the range of the color
bars are not chosen to be identical. Similar to LNMs, the participation of each NNM reacts to the
initial conditions. When the impulse is applied to the large rotator, we observe in Fig. 4c that most
of this rotator’s response is dominated by the first NNM. As documented in Figs. 4a-b, the other

two rotators exhibit response from all three NNMs, albeit it at lower amplitudes that observed in

12



Fig. 4c. When the impulse is applied to the small inertia rotator, however, we observe in Fig. 4d a

very large modal participation in the third NNM for this rotator, while the large inertia shows a

correspondingly small participation in this NNM as shown in Fig. 4f. These results qualitatively

match the mode shapes in Figs. 3b-g. In such a qualitative view, we have shown that, upon the

same impulse excitation, as required by the reciprocity theorem, the response dynamics are distinct

in both frequency and amplitude (mode shape).

Further, we show next that non-reciprocity still holds even if we seek an approximate solution of

the system as a linear combination of the obtained NNMs, similar in spirit to the harmonic balance

method. To this end, consider a combination of NNMs at the excitation energy level, with the

energy-dependent frequency w and mode shapes v provided in Table 2.

Table 2. Frequency and mode shapes for each nonlinear normal mode at the excited energy level.

w1 [HZ] W, [Hz] w3 [Hz] 121 12 VU3
Large 3.88 9.50 19.00 [—0.046] [—0.076] [—0.087]
Inertia 0.062 0.070 —0.001
Excitation [—0.106 [—0.005 | 0
Small 5.22 12.84 27.86 [—0.096] [—0.159] [—0.184]
Inertia 0.130 0.150 0.017
Excitation [—0.210 [—0.010 0

We seek an approximate solution in the modal form,

x = C vy sin(w,t + ¢p1) + C,v, sin(w,t + ¢p,) + C3vz sin(wst + ¢3),

where C; and ¢; denote constants determined by the initial conditions,

x(o)l = O’x(o)l =

13

0

0
Pr*

I3

(13)

(14)



Pr*

x(0)s = 0,%(0)g = 15 . (15)

0

In Egs. (13)-(15) we have converted the impulse excitation P to into an equivalent initial velocity,

Prt . . . o :
Ir , with r* being the distance between the excitation point to the center of the rotator, and

i

subscripts I denotes the large inertia excitation and s on the small inertia excitation. Recall that the
former initial condition results in a lower energy E; while the latter results in a higher energy E,.
After computing C; ... C3 and ¢, ... 3, we update Eq. (13) and present the receiving signal as

(x,); = 0.0603 sin(24.38¢t) — 0.0360 sin(59.69t) + 0.0057 sin(119.38¢) (16)
(x3)s = 0.0084 sin(32.80t) — 0.0027 sin(80.68t) — 0.0003 sin(175.05¢t),  (17)

where (x;); represents the response of the small rotator at large inertia excitation, and (x3) the
response of the large rotator under small inertia excitation. Clearly, reciprocity is broken, as these
two responses exhibit significantly different modal amplitudes and frequencies, unlike that
recovered by a similar procedure for a linear system where the responses would be identical. We
also observe that the response in Eq. (16) has larger modal amplitudes for each mode, and lower
oscillating frequencies, as compared to the response in Eq. (17), which qualitatively matches the

experimental results in Figs. 2c-f.

5 Concluding Remarks

In conclusion, we experimentally and numerically demonstrate non-reciprocal impulse response
in an asymmetric in-plane rotator system, where tunable nonlinearity arises from pre-stretch of

elastic linkages. We use a nonlinear normal mode analysis to capture the major dynamics of the

14



system and find a high degree of agreement between theory and experiment. A further analysis
reveals that the same level of impulses applied on rotators with differing moments of inertia induce
differing initial energy, which contributes to non-identical oscillation frequency and dissimilar

mode shapes, ultimately yielding non-reciprocal response.

The analysis of reciprocity-breaking, informed by a NNM analysis, should be applicable to a large
class of nonlinear, non-reciprocal systems where identical impulses induce asymmetrical energy
input. Because of the simplicity of the proposed mechanical system, the structure can be
conveniently modified and employed as a nonlinear attachment to control waves in a linear wave
guide, or tuned as a shock isolator which protects targets from high energy impacts while
maintaining the energy transmission in the opposite direction. Future work aims to extend the
structure to 1D and 2D periodic lattices and study their dynamical responses subject to harmonic

excitations.
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Appendix

Stiffness Expressions

The functional dependence of the stiffness parameters appearing in Egs. (10)-(12) are provided in

Table Al.
Table A1l. Stiffness expressions.
kgl kyr(D; — L)
kgz kir(D; — Ly) + kor(Dy — L)
kg3 kor(Dy — L)
ki kir?(Dy — Ly)
D,
k23 kor?(Dy — Ly)
D,
Yg1 H 2r%L, . 2rLy B D, —L;
3 D? D, 2
Yg2 kyr <2r2L1 . 2rl, D, - L1> k,r 2riL, - 2rl; Dy — Ly
3 D? D, 2 3 D? D, 2
Yg3 k,r 2r2%L, 2rL, D,—1L,
ER A

Yi2 kyr?Ly ﬁ N i n 1)

2D, 'D? 6D; 6
Y23 koL, T_Z N 5_7" n 1)

2D, ‘Dz 6D, 6
Y12 kqr? 1- rly Ly )

6 2DZ 2D,
Y23 kor? - rl, Ly )

6 2DZ 2D,
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