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Abstract 

In this paper we investigate an elastically-linked, nonlinear, in-plane rotator system and 

experimentally study its non-reciprocal impulse response. The nonlinearity of the system arises 

from the angled elastic linkage in rotational motion. A chain of rotators coupled with such linkages 

reaches an acoustic vacuum when the pretension of the elastic links vanish, leading to large 

nonlinearity tunable via small pretension. Using an analytical model and experimental exploration, 

we observe a broadband non-reciprocity in a weakly pre-tensioned, asymmetric, three-rotator 

system. In addition, we use a nonlinear normal mode (NNM) analysis, capturing the main 

qualitative dynamics of the response, to explain the observed non-reciprocity mechanism. The 

analysis shows that equal applied impulses, combined with energy-dependent frequency/mode 

shapes, result in robust non-reciprocity features, contrary to the reciprocal response present in the 

linear counterpart of this system. 

 

1 Introduction 

Reciprocity, a fundamental property of linear time-invariant systems, ensures an identical response 

when a source and receiver interchange position [1-3]. Breaking reciprocity, due to its large 

potential in applications such as targeted energy transfer [4-8], wave transmission control [9-17], 
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and signal filtering/protection [18-20], has attracted increased recent attention. In acoustic and 

elastic media, active means to break reciprocity have adopted odd-symmetry field/circulation [12, 

15, 21], time modulated materials [13, 18, 22-26] and external control [27-29], as reviewed in [30]. 

However, these active methods, due to their complexity and external dependencies, raise concerns 

about instability and energy consumption for practical implementation [27].  

 

An alternative for achieving non-reciprocity relies on nonlinear mechanisms and system 

asymmetry, which can be realized in a passive manner and thus avoid the aforementioned 

shortcomings of active systems. In general, nonlinearity in itself is not sufficient for breaking 

reciprocity; for this to happen the break of configurational symmetry is also needed. Li et al. 

leveraged nonlinearity-induced higher harmonics to bypass the bandgap of a superlattice in one 

direction [10, 11]. Other researchers utilized nonlinear bifurcations in a variety of systems to break 

reciprocity [5, 28, 31, 32]. In phononic structures, nonlinear propagation zones in both weakly and 

strongly nonlinear lattices exhibit direction dependency due to asymmetry, leading to tunable non-

reciprocity [19, 33-36]. In low degree of freedom nonlinear systems, a new non-reciprocity 

mechanism has been identified which occurs due to nonlinear resonance and targeted energy 

transfer [6]. However, this mechanism requires symmetry breaking by a boundary nonlinear 

energy sink, which needs to be ungrounded and free to oscillate from one end of the lattice, 

restricting its generality.  

 

Inspired by [6, 37, 38], in this paper we propose an asymmetric, lightly pre-tensioned, three-rotator 

system exhibiting passive non-reciprocity due to strong geometric nonlinearity. We show that the 

geometric nonlinearity in the system is tunable to the pretension of the elastic couplings, whose 
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absence leads to an acoustic vacuum [37, 39].  Using this system, we uncover a new, broadly-

applicable passive mechanism that passively breaks acoustic reciprocity. The simple three-rotator 

system exhibits broadband non-reciprocity in experimental tests, which agrees well with results 

from direct numerical simulation of an associated analytical model. Unlike non-reciprocity 

mechanisms featuring nonlinear resonance or bifurcation, we show that the observed non-

reciprocal response arises from energy-dependent nonlinear normal modes (NNMs) intrinsic to the 

unit cell. Further, interpreting nonlinear non-reciprocity using NNM analysis suggests a new tool 

for exploring non-reciprocity in nonlinear media, which can be extrapolated to a class of nonlinear 

non-reciprocal problems where excitations induce distinct energies.  

 

2 System Description 

Figure 1a depicts three in-plane rotators linked by linear springs at their arms. Each rotator, with 

identical arm length, is pinned at its center and allows only rotational motion. The massless spring 

deforms only in its axial direction. The system is scaled by a moment of inertia hierarchy 𝐼1 <

𝐼2 < 𝐼3. In this paper, we only consider small-angle oscillations around the equilibrium under the 

Figure 1: System Description. a) Depiction of three in-plane rotators at the equilibrium position with 

system parameters marked. b) Depiction at arbitrary angular displacement indicating the angular 

measures and spring stretch.  
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condition 𝐿𝑖 ≤ 𝐷𝑖 (i.e., each spring is either pre-tensioned or un-stretched at the position shown in 

Fig. 1a). Further, we define the angular displacement for these rotators counter-clockwise positive, 

as shown in Fig. 1b. 

 

We next present the rotators’ equations of motion. Each rotator is subject to a restoring and 

dissipation torque,  

𝐼1𝜽̈𝟏 − 𝑻𝟏,𝟐 − 𝑻𝟏 = 0 (1) 

𝐼2𝜽̈𝟐 − 𝑻𝟐,𝟏 − 𝑻𝟐,𝟑 − 𝑻𝟐 = 0 (2) 

𝐼3𝜽̈𝟑 − 𝑻𝟑,𝟐 − 𝑻𝟑 = 0, (3) 

where  𝑻𝒊,𝒋  describes the restoring torque on the 𝑖𝑡ℎ rotator resulting from the elastic linkage 

between the 𝑖𝑡ℎ and 𝑗𝑡ℎ rotators, and 𝑻𝒊 denotes the equivalent dissipation torque on the 𝑖𝑡ℎ rotator. 

Due to the rotation, the rotator arm stretches the elastic linkage along an angle, and, in turn, the 

restoring torque becomes non-proportional to the elastic linkage deformation. Hence, the system 

possesses geometric nonlinearity. To derive the restoring torque from the rotation geometry we 

consider the following expressions,  

𝒓𝒊 = 𝑟 cos(𝜃𝑖) 𝒊 + 𝑟 sin(𝜃𝑖) 𝒋 (4) 

𝒓𝒋 = 𝑟 cos(𝜃𝑗) 𝒊 + 𝑟 sin(𝜃𝑗) 𝒋 (5) 

𝑳 = (2𝑟 + 𝐷i∗)𝒊 − 𝒓𝟏 − 𝒓𝟐 (6) 

Δ𝐿 = |𝑳| − 𝐿𝑖∗  (7) 

𝑻𝒊,𝒋 = 𝒓𝒊 × (𝑘𝑖∗Δ𝐿
𝑳

|𝑳|
) , (8) 
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where 𝑖, 𝑗 denotes the indices of two adjacent rotators, and 𝑖∗ = min (𝑖, 𝑗) is used to describe the 

parameters associated with the linkage between the 𝑖𝑡ℎ  and 𝑗𝑡ℎ  rotator. Vectors 𝒓  and 𝑳  then 

represent the angular positon of the rotator and stretch of the linkage, respectively. Guided by 

experimental observations, we model the dissipation torque as a combination of linear viscous 

damping and Coulomb friction with viscous coefficient 𝑐𝑖 and frictional torque 𝑻𝒊𝒇
, 

𝑻𝒊 = −𝑐𝑖𝜽̇𝒊 − 𝑠𝑔𝑛(𝜃𝑖)𝑻𝒊𝒇
. (9) 

Since we are interested in small-angle oscillations, we introduce a small parameter 𝜖 ≪ 1 to scale 

the angular displacements, 𝜃𝑖 → 𝜖𝜃𝑖 , and express the governing equations in a Taylor series with 

respect to 𝜖,  

𝐼1𝜃̈1 + (𝑘𝑔1𝜃1 + 𝑘12(𝜃1 + 𝜃2)) 𝜖 + (𝛾12
+ (𝜃1 + 𝜃2)3 + 𝛾12

− (𝜃1 − 𝜃2)3 + 𝛾𝑔1𝜃1
3)𝜖3 + 𝑂(𝜖5)  

+𝑐1𝜃̇1 + 𝑠𝑔𝑛(𝜃1)𝑇1𝑓
= 0 (10) 

𝐼2𝜃̈2 + (𝑘𝑔2𝜃2 + 𝑘12(𝜃1 + 𝜃2) + 𝑘23(𝜃2 + 𝜃3)) 𝜖  

+(𝛾12
+ (𝜃1 + 𝜃2)3 + 𝛾23

+ (𝜃2 + 𝜃3)3 + 𝛾12
− (𝜃2 − 𝜃1)3 + 𝛾23

− (𝜃2 − 𝜃3)3 + 𝛾𝑔2𝜃2
3)𝜖3 + 𝑂(𝜖5) 

+𝑐2𝜃̇2 + 𝑠𝑔𝑛(𝜃2)𝑇2𝑓
= 0 (11) 

𝐼3𝜃̈3 + (𝑘𝑔3𝜃3 + 𝑘23(𝜃2 + 𝜃3)) 𝜖 + (𝛾23
+ (𝜃2 + 𝜃3)3 + 𝛾23

− (𝜃3 − 𝜃2)3 + 𝛾𝑔3𝜃3
3)𝜖3 + 𝑂(𝜖5)  

+𝑐3𝜃̇3 + 𝑠𝑔𝑛(𝜃3)𝑇3𝑓
= 0, (12) 

where the linear stiffness 𝑘𝑔𝑖 , 𝑘𝑖𝑗 , and nonlinear stiffness 𝛾𝑖𝑗
+ , 𝛾𝑖𝑗

−  and 𝛾𝑔𝑖  are functions of the 

system parameters – the Appendix provides complete expressions for each. Note that the linear 

stiffnesses 𝑘𝑔𝑖 and 𝑘𝑖𝑗 are both proportional to the pretension of the springs (𝐷𝑖 − 𝐿𝑖).  
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Eqs. (10)-(12) document that (i) the system only contains odd (hardening) nonlinearities, and (ii) 

its linear stiffness can be modified or eliminated by adjusting or removing the pretensions of the 

springs. In both linear and cubic terms, the restoring torque depends on the sum of angular 

displacement, 𝜃𝑖 + 𝜃𝑗 , unlike rectilinear counterparts which depend on displacement differences. 

In fact, this subtle difference results in a qualitative difference in the wave propagation problem in 

a periodic structure composed of such rotator structures. For an extended discussion, we direct the 

readers to Note I in the Supplemental Material.  

 

3 Experimental Results 

Figure 3a depicts three 3D-printed rotators, each with radius 28.5mm, attached to low friction 

bearings affixed to a vibration isolation table. By varying the quantity of nuts and bolts attached 

to each rotator, an asymmetrical moment of inertia distribution can be introduced. In the designed 

experiment, from left to right, the rotators have inertia,  3.45 × 10−6, 1.28 × 10−5 , and 

 3.16 × 10−5 𝑘𝑔𝑚2 , respectively. As illustrated in Fig. 3b, the elastic linkage between two 

adjacent rotators consists of a weakly pre-tensioned short spring and two metal rings, which allows 

for axial extension and prevents spring bending. These elements have negligible mass compared 

to the three rotators and are all sufficiently lubricated. We perform a system identification study 

(utilizing the patternsearch function in MATLAB), detailed in Supplementary Material Note II, 

to accurately match the physical experiment to our analytical model, which employs MATLAB’s 

ODE45 function to numerically integrate the governing equations. We present the identified 

experimental parameters below. 
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Table 1. System parameter identification results. 

 Rotator 1 Rotator 2 Rotator 3 

Moment of Inertia 𝐼𝑖 
[ 𝑘𝑔𝑚2] 

3.45 × 10−6 1.28 × 10−5 3.16 × 10−5 

Dissipation 
Coefficients 𝑐𝑖 [𝑁𝑚𝑠] 

1.31 × 10−5 8.7 × 10−6 9.8 × 10−6 

Dissipation 
Coefficients 𝑇𝑖𝑓

 [𝑁𝑚] 
6.0 × 10−7 3.18 × 10−6 1.2 × 10−6 

 Linkage 1 Linkage 2 

Stiffness 𝑘𝑖  [𝑁/𝑚] 870 670 

Un-deformed Length 
𝐿𝑖  [𝑚𝑚] 

11.44 11.48 

Gap distance 𝐷𝑖  
[𝑚𝑚] 

11.74 11.84 

 

We use an impact hammer to strike a rotator arm at either end of the chain using the same impulse 

level. The impacts are carefully applied at roughly the same distance from the center of the rotator 

such that the angular impulses are equal. We then use a laser Doppler vibrometer to capture the 

response at the other end of the chain. As such, we present the experimental non-reciprocal 

response in Figs. 2c-f, at an impulse level  𝑃 ≈ 3.85 ± 0.15  𝑁 ∙ 𝑚𝑠 , obtained from direct 

integration of experimental force responses, as depicted in the inscribed figures. Noteworthy, 

though the two impulse excitations are not precisely the same (as shown in the inset figures), the 

impulse levels of two excitations are sufficiently close such that the contribution to reciprocity 

breaking from non-identical excitations is negligible compared to the nonlinear effects; this is 

substantiated in Supplementary Material Note III.  
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In Figs. 2c-d, the experimental responses show a high-degree of agreement with the superimposed 

numerical simulation results. We observe a large response at the left rotator when the impact 

excites the right rotator, compared to a smaller response at the right rotator when exciting the left 

rotator. A roughly 2:1 amplitude ratio appears in both experimental and numerical results. Results 

from a wavelet transformation performed on the experimental and numerical responses are 

Figure 2: Experimental/numerical non-reciprocity results. a) Experimental setup used in testing, b) 

detailed view of the spring connection, c) time response (numerical and experimental) of the small 

(left) rotator when excitation is applied on the right. The impact (force [N] vs. time [ms]) is documented 

in the top right corner, d) time response (numerical and experimental) of the large (right) rotator, 

when the excitation is applied on the left. The impact is again plotted in the top right corner, e) and f) 

wavelet transformation (shaded) of the time responses shown in c) and d), superimposed by the 

nonlinear normal modes (solid lines) of the system.  
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displayed in Figs. 2e-f, respectively. The wavelet results clarify the strong non-reciprocity in the 

frequency domain. Three dominant harmonics in the left rotator response show considerable 

amplitude when the right rotator is excited, yet only two such harmonics appear in the right rotator 

response when the impulse is applied on the left.  

 

4 Nonlinear Normal Mode (NNM) Analysis  

In order to better illustrate the dynamics of the system and interpret the non-reciprocal 

phenomenon, we apply a nonlinear normal mode (NNM) analysis to the three degree-of-freedom 

geometrically nonlinear system. Similar to linear normal modes (LNM), NNMs depict periodic 

solutions of the nonlinear ODEs, yet in an energy-dependent framework. As defined by Shaw and 

Pierre in [40, 41], a NNM is a two-dimensional invariant manifold in phase space, where an orbit 

starting on the manifold stays on the manifold for all time. At low energy limits, the NNM manifold 

is tangent to the corresponding LNM, which is represented by a plane in the phase space. Different 

from the displacement ratio in the linear mode shape concept, each NNM prescribes specific 

displacements for each degree of freedom, and hence a specific energy level for the entire system. 

We use the Newmark method and a continuation algorithm to numerically compute the NNMs, as 

detailed in [42-44], keeping only terms up to 𝑂(𝜖5) in Eqs. (10)-(12). The energy-sensitive NNM 

can then be well illustrated in a frequency-energy plot accompanied with specific nonlinear mode 

shapes, which are the major focus of the following analysis.  

 

In Fig. 3a, three NNM branches emerge, each of them exhibiting increasing frequency with 

increasing modal energy. To verify with experimental/numerical results, we compute the 

instantaneous energy of the system at each time, and then replace the energy axis of Figure 3a with 
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time. The resultant plot is then superimposed on Figs. 2e-f, where we find a high degree of 

agreement between the frequency evolution and NNM trajectories. Note that the 

experimental/numerical frequency branches are expected to be lower than the NNM results, since 

the dynamics composed of multiple NNMs (in our case, three) must have a total energy no less 

than the energy of each composed NNM. Conversely, the energy of each NNM in the presented 

dynamics must be lower than the total energy of the system as captured in simulations/experiments.  

Figure 3: a) Computed nonlinear normal modes (NNMs) of the system. Two vertical 

dashed lines indicate the energy level of the system when one rotator is excited. b-g) 

Nonlinear mode shapes corresponding to the markers in a). Rotator 1, 2 and 3 represents 

the small, medium and large rotator, respectively.  
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In a system with hardening nonlinearity (as the system considered herein), a lower energy leads to 

a lower frequency – this is also illustrated in Fig. 3a. 

The energy-dependent dynamics uncovered by the NNM analysis is key to understanding the non-

reciprocal dynamics. In the studied system, due to the moment of inertia difference of the excited 

rotator, the same level of inputted impulse results in distinct initial energy (𝐸 = 𝑃2/2𝐼𝑖) inputted 

to the system. As indicated by the dashed lines in Fig. 3a, the excitation on the left rotator (small 

moment of inertia) results in a larger initial energy (green dashed line) than the energy (purple 

dashed line) resulting from excitation on the right rotator (large moment of inertia). From these 

starting energies, dissipation then drives the response frequency leftwards to the low energy regime 

Figure 4 The wavelet response of the impulse excitation superimposed with NNM results. (a)-(c) The wavelet 

response for each rotator when the impulse applies on the large rotator. (d)-(f) The wavelet response for each 

rotator when the impulse applies on the small rotator. Each column represents corresponding rotator, e.g. the 

first column describes the response of the small rotator as indicated by the schematics on the top. The hammer 

symbol in (c) and (d) indicates the impulse excitation applies at this rotator.  
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in Fig. 3a. As such, the responses are associated with non-identical oscillation frequencies, which 

breaks reciprocity in the frequency domain, and matches the observations in Figs. 2e-f.  

 

Moreover, the nonlinearity not only generates the aforementioned frequency variation, but also 

leads to different nonlinear mode shapes at each excitation event (that is, these mode shapes are 

energy-dependent). Figures 3b-g illustrate the nonlinear normal mode shapes for each mode at two 

different energy levels (purple and green). Despite the difference in the amplitude of modal 

displacement (nonlinear normal modes are energy dependent, and cannot be normalized), the 

modes are fundamentally dissimilar at the given two energy levels. In the second mode (Figs. 3c 

and f), the modal displacement of the large rotator (Rotator 3) is out-of-phase with respect to the 

small rotator (Rotator 1) at low energy, yet becomes in-phase with the small rotator at high energy. 

Similarly, in the third mode, the modal displacement of the medium rotator (Rotator 2) changes its 

sign at two energy levels as indicated in Figs. 3d, g.  

 

In Fig. 4 we present the modal participation of these NNMs as predicted by the numerical model. 

We superimpose the NNMs on the wavelet results for each rotator under different excitation, 

whose horizontal axes are replaced by the instantaneous energy of the system (unlike Fig. 2 which 

uses time). The color of each frequency branch reveals the modal participation at this rotator. Note 

that the intensity of the frequencies vary from rotator to rotator, and thus the range of the color 

bars are not chosen to be identical. Similar to LNMs, the participation of each NNM reacts to the 

initial conditions. When the impulse is applied to the large rotator, we observe in Fig. 4c that most 

of this rotator’s response is dominated by the first NNM. As documented in Figs. 4a-b, the other 

two rotators exhibit response from all three NNMs, albeit it at lower amplitudes that observed in 
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Fig. 4c. When the impulse is applied to the small inertia rotator, however, we observe in Fig. 4d a 

very large modal participation in the third NNM for this rotator, while the large inertia shows a 

correspondingly small participation in this NNM as shown in Fig. 4f. These results qualitatively 

match the mode shapes in Figs. 3b-g. In such a qualitative view, we have shown that, upon the 

same impulse excitation, as required by the reciprocity theorem, the response dynamics are distinct 

in both frequency and amplitude (mode shape). 

 

Further, we show next that non-reciprocity still holds even if we seek an approximate solution of 

the system as a linear combination of the obtained NNMs, similar in spirit to the harmonic balance 

method. To this end, consider a combination of NNMs at the excitation energy level, with the 

energy-dependent frequency 𝜔 and mode shapes 𝑣 provided in Table 2.  

Table 2. Frequency and mode shapes for each nonlinear normal mode at the excited energy level. 

 

We seek an approximate solution in the modal form,  

𝒙 = 𝐶1𝒗𝟏 sin(𝜔1𝑡 + 𝜙1) + 𝐶2𝒗𝟐 sin(𝜔2𝑡 + 𝜙2) + 𝐶3𝒗𝟑 sin(𝜔3𝑡 + 𝜙3) , (13) 

where 𝐶𝑖 and 𝜙𝑖 denote constants determined by the initial conditions, 

𝒙(𝟎)𝒍 = 𝟎, 𝒙̇(𝟎)𝒍 = {

0
0

𝑃 𝑟∗

𝐼3

} (14) 

 𝜔1 [Hz] 𝜔2 [Hz] 𝜔3 [Hz] 𝒗𝟏 𝒗𝟐 𝒗𝟑 

Large 

Inertia 

Excitation 

3.88 9.50 19.00 
[
−0.046
0.062

−0.106
] [

−0.076
0.070

−0.005
] [

−0.087
−0.001

0
] 

Small 

Inertia 

Excitation 

5.22 12.84 27.86 
[
−0.096
0.130

−0.210
] [

−0.159
0.150

−0.010
] [

−0.184
0.017

0
] 
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 𝒙(𝟎)𝑺 = 𝟎, 𝒙̇(𝟎)𝑺 = {

P r∗ 

𝐼1

0
0

} . (15) 

In Eqs. (13)-(15) we have converted the impulse excitation 𝑃 to into an equivalent initial velocity, 

P r∗ 

𝐼𝑖
, with  r∗  being the distance between the excitation point to the center of the rotator, and 

subscripts 𝒍 denotes the large inertia excitation and 𝒔 on the small inertia excitation. Recall that the 

former initial condition results in a lower energy 𝐸1 while the latter results in a higher energy 𝐸2. 

After computing 𝐶1 … 𝐶3 and 𝜙1 … 𝜙3, we update Eq. (13) and present the receiving signal as 

(𝑥1)𝒍 = 0.0603 sin(24.38𝑡) − 0.0360 sin(59.69𝑡) + 0.0057 sin(119.38𝑡) (16) 

(𝑥3)𝒔 = 0.0084 sin(32.80𝑡) − 0.0027 sin(80.68𝑡) − 0.0003 sin(175.05𝑡) , (17) 

where (𝑥1)𝒍 represents the response of the small rotator at large inertia excitation, and (𝑥3)𝒔 the 

response of the large rotator under small inertia excitation. Clearly, reciprocity is broken, as these 

two responses exhibit significantly different modal amplitudes and frequencies, unlike that 

recovered by a similar procedure for a linear system where the responses would be identical. We 

also observe that the response in Eq. (16) has larger modal amplitudes for each mode, and lower 

oscillating frequencies, as compared to the response in Eq. (17), which qualitatively matches the 

experimental results in Figs. 2c-f.  

 

5 Concluding Remarks 

In conclusion, we experimentally and numerically demonstrate non-reciprocal impulse response 

in an asymmetric in-plane rotator system, where tunable nonlinearity arises from pre-stretch of 

elastic linkages. We use a nonlinear normal mode analysis to capture the major dynamics of the 
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system and find a high degree of agreement between theory and experiment. A further analysis 

reveals that the same level of impulses applied on rotators with differing moments of inertia induce 

differing initial energy, which contributes to non-identical oscillation frequency and dissimilar 

mode shapes, ultimately yielding non-reciprocal response.  

 

The analysis of reciprocity-breaking, informed by a NNM analysis, should be applicable to a large 

class of nonlinear, non-reciprocal systems where identical impulses induce asymmetrical energy 

input. Because of the simplicity of the proposed mechanical system, the structure can be 

conveniently modified and employed as a nonlinear attachment to control waves in a linear wave 

guide, or tuned as a shock isolator which protects targets from high energy impacts while 

maintaining the energy transmission in the opposite direction. Future work aims to extend the 

structure to 1D and 2D periodic lattices and study their dynamical responses subject to harmonic 

excitations.  
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Appendix  

Stiffness Expressions 

The functional dependence of the stiffness parameters appearing in Eqs. (10)-(12) are provided in 

Table A1. 

Table A1. Stiffness expressions. 

 

 

 

 

𝑘𝑔1 𝑘1𝑟(𝐷1 − 𝐿1) 

𝑘𝑔2 𝑘1𝑟(𝐷1 − 𝐿1) + 𝑘2𝑟(𝐷2 − 𝐿2) 

𝑘𝑔3 𝑘2𝑟(𝐷2 − 𝐿2) 

𝑘12 𝑘1𝑟2(𝐷1 − 𝐿1)

𝐷1
 

𝑘23 𝑘2𝑟2(𝐷2 − 𝐿2)

𝐷2
 

𝛾𝑔1 𝑘1𝑟

3
(
2𝑟2𝐿1

𝐷1
2 − 𝑟 +

2𝑟𝐿1

𝐷1
−

𝐷1 − 𝐿1

2
) 

𝛾𝑔2 𝑘1𝑟

3
(

2𝑟2𝐿1

𝐷1
2 − 𝑟 +

2𝑟𝐿1

𝐷1
−

𝐷1 − 𝐿1

2
) +

𝑘2𝑟

3
(
2𝑟2𝐿2

𝐷2
2 − 𝑟 +

2𝑟𝐿2

𝐷2
−

𝐷2 − 𝐿2

2
) 

𝛾𝑔3 𝑘2𝑟

3
(
2𝑟2𝐿2

𝐷2
2 − 𝑟 +

2𝑟𝐿2

𝐷2
−

𝐷2 − 𝐿2

2
) 

𝛾12
+  𝑘1𝑟2𝐿1

2𝐷1
(

𝑟2

𝐷1
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