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Abstract

In 1995, Jockusch constructed an infinite family of centrally symmetric 3-dimensional sim-
plicial spheres that are cs-2-neighborly. Here we generalize his construction and show that for
all d > 3 and n > d + 1, there exists a centrally symmetric d-dimensional simplicial sphere with
2n vertices that is cs-[d/2]-neighborly. This result combined with work of Adin and Stanley
completely resolves the upper bound problem for centrally symmetric simplicial spheres.

1 Introduction

In this paper we construct highly neighborly centrally symmetric d-dimensional spheres with an
arbitrarily large even number of vertices. A simplicial complex is centrally symmetric (cs, for short)
if it possesses a free simplicial involution. We refer to a pair of vertices that form an orbit under this
involution as antipodes or antipodal vertices. One large class of examples is given by the boundary
complexes of cs simplicial polytopes: a polytope P is cs if P = —P; the involution, in this case, is
induced by the map v — —v on the vertices.

A (non-cs) simplicial complex is called ¢-neighborly if every ¢ of its vertices form a face. For
instance, the boundary complex of the (d + 1)-dimensional simplex is (d 4 1)-neighborly, while the
boundary complex of the (d + 1)-dimensional cyclic polytope with n > d + 3 vertices, C(d + 1,n),
is [d/2]-neighborly. The interest in neighborly polytopes arises from the celebrated upper bound
theorem [12, 22] asserting that among all d-dimensional simplicial spheres with n vertices, the
boundary complex of C'(d+1, n) simultaneously maximizes all the face numbers. The cyclic polytope
in this statement can be replaced with any [d/2]-neighborly d-dimensional simplicial sphere — the
objects that abound in nature, see [18].

This notion of /-neighborliness can be easily modified for the class of cs complexes: a cs simplicial
complex A is cs-€-neighborly if every set of £ of its vertices, no two of which are antipodes, is a face of
A. Furthermore, the same notion applies to any (not necessarily cs) full-vertex subcomplex I' of A.
For instance, the boundary complex of the (d+1)-dimensional cross-polytope is cs-(d+1)-neighborly,
while the boundary complex of the same cross-polytope with one facet removed is cs-d-neighborly.
Adin [1] and Stanley (unpublished) proved that in a complete analogy with Stanley’s upper bound
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theorem, among all cs simplicial spheres of dimension d and with 2n vertices, a cs-[d/2]-neighborly
sphere simultaneously maximizes all the face numbers, assuming such a sphere ezists. (See [16, 17]
for an extension of this result to cs simplicial manifolds.)

Thus, two natural questions to consider are: do there exist cs simplicial polytopes of dimension
d+ 1 > 4 with arbitrarily many vertices whose boundary complexes are cs-[d/2]-neighborly? Do
there exist cs simplicial spheres of dimension d > 3 with arbitrarily many vertices that are cs-[d/2]-
neighborly?

The answer to the first question was given by McMullen and Shephard [13] more than fifty years
ago: extending the 4-dimensional case worked out by Griinbaum [4, p. 116], they proved that while
there do exist cs (d+ 1)-dimensional polytopes with 2(d+2) vertices that are cs-[d/2]-neighborly, a
cs (d+1)-dimensional polytope with 2(d+3) vertices cannot be more than cs-|(d+2)/3|-neighborly.
Moreover, according to [10], a cs (d + 1)-dimensional polytope with more than 24+ vertices cannot
be even cs-2-neighborly.

The second question remained a total mystery until in 1995 Jockusch [6] showed that, in a sharp
contrast with the situation for cs 4-dimensional polytopes, for every value of n > 4, there exists
a cs 3-dimensional sphere with 2n vertices that is cs-2-neighborly. In addition, for d < 6, Lutz
[11] found (by a computer search) several cs d-dimensional spheres with 2(d + 3) vertices that are
cs-[d/2]-neighborly.

Here, we build on work of Jockusch to provide a complete answer to the second question: for
all values of d > 3 and n > d + 1, there exists a cs d-dimensional combinatorial sphere with 2n
vertices, A¢, that is cs-[d/2]-neighborly. Thus, our result combined with work of Adin and Stanley
completely resolves the upper bound problem for cs simplicial spheres. (At the same time, there is
not even a plausible upper bound conjecture for cs polytopes.)

Our construction is by induction on both d and n. The key idea in constructing AZ; from A?
is to define for each i < [d/2] — 1, an auxiliary d-dimensional ball with 2n vertices, Bo* ¢ A,
that is both i-stacked and cs-i-neighborly, see Sections 2 and 3 for definitions. For d = 3, our
construction reduces to Jockusch’s construction. It is worth mentioning that using the same balls
in fact allows us to construct for any ¢ < [d/2], a family of cs d-dimensional combinatorial spheres
that are cs-f-neighborly but not cs-(¢ + 1)-neighborly.

The structure of the paper is as follows. In Section 2 we discuss several basic facts and definitions
pertaining to simplicial complexes and PL topology. Sections 3 is a hard duty section that contains
our inductive construction and the proof that this construction works. In Section 4, we study some
other properties of the spheres AZ. We close in Section 5 with several remarks and open questions.

2 Preliminaries

In this section we review some background related to simplicial complexes and PL topology. For
all undefined terminology we refer the readers to [2].

A simplicial complex A with vertex set V = V(A) is a collection of subsets of V' that is closed
under inclusion and contains all singletons: {v} € A for all v € V. The elements of A are called
faces. The dimension of a face 7 € A is dim7 := |7| — 1. The dimension of A, dim A, is the
maximum dimension of its faces. A face of a simplicial complex A is a facet if it is maximal
w.r.t. inclusion. We say that A is pure if all facets of A have the same dimension.

Let V be a set of size d + 1. Two fundamental examples of pure simplicial complexes are the
d-dimensional simplex on V, V := {7 : 7 C V}, and its boundary complex, 9V := {7 : 7 C V}.



To simplify the notation, for a face that is a vertex, an edge, or a triangle, we write v, uv, and
wvw instead of {v}, {u,v}, and {u,v,w}, respectively. We denote by (v1,va,...,v,) a path with
edges v1vg, VU3, . .., Up_1Uy if v, # w1, or a cycle if v, = v1. In particular, a path of length one
(v1,v2) is a 1-dimensional simplex, so it can also be written as v703.

Let A be a simplicial complex. The k-skeleton of A, Skelg(A), is the subcomplex of A consisting
of all faces of dimension < k. If 7 is a face of A, then the link of 7 in A is the following subcomplex
of A:

k(r,A):={c €A : ocNnT=0and cUT € A}.

Finally, if A is pure and T is a full-dimensional pure subcomplex of A, then A\I" is the subcomplex
of A generated by those facets of A that are not in I'.

If A and I' are simplicial complexes on disjoint vertex sets, then the join of A and I' is the
simplicial complex AxI'={ocU7 : 0 € A and 7 € I'}. Two important special cases are the cone
over A with apex v defined as the join A x 7 and the suspension of A, XA, defined as the join of
A with a 0-dimensional sphere. In the rest of the paper, we write A * v in place of A x .

Let V be a set of size d + 1 and let V be the d-dimensional simplex on V. A combinatorial
d-ball is a simplicial complex PL homeomorphic to V. Similarly, a combinatorial (d — 1)-sphere is
a simplicial complex PL homeomorphic to 9V.

One advantage of working with combinatorial balls and spheres is that they satisfy several
natural properties that fail in the class of simplicial balls and spheres. For instance, if A is a
combinatorial d-sphere and I' C A is a combinatorial d-ball, then so is A\I', see [5]. Furthermore,
the link of any face in a combinatorial sphere is a combinatorial sphere. On the other hand, the
link of a face 7 in a combinatorial d-ball B is either a combinatorial ball or a combinatorial sphere;
in the former case we say that 7 is a boundary face of B, and in the latter case that 7 is an interior
face of B. The boundary complex of B, 0B, is the subcomplex of B that consists of all boundary
faces of B; in particular, 0B is a combinatorial (d — 1)-sphere.

The following lemma summarizes a few basic but very useful properties of combinatorial balls.
We only prove the last part; the proofs of the first two parts along with additional information on
PL topology can be found in [5], see also [9].

Lemma 2.1.

1. Let B and B’ be combinatorial balls. Then B x B’ is a combinatorial ball; its interior faces
are sets of the form FUF', where F is an interior face of B and F' is an interior face of B'.
Furthermore, the cone over 0B, OB * v, is a combinatorial ball; its boundary complex is 0B.

2. Let B and B’ be combinatorial d-balls such that BNB' C 0BNOB' is a combinatorial (d—1)-
ball. Then B U B’ is a combinatorial d-ball. The set of interior faces of B U B’ consists of
the interior faces of B, the interior faces of B', and the interior faces of BN B'.

3. Assume that combinatorial balls B and B’ are full-dimensional subcomplexes of a combinato-
rial sphere I'. If B and B’ share a common interior face, then they share a facet.

Proof:  For part 3, let 7 be a common interior face of B and B’. Assume that dimI' = d and
dim 7 = k. Then the link of 7 in B is a combinatorial (d — k — 1)-sphere, and so is the link of 7 in
I". Furthermore, the link of 7 in B is contained in the link of 7 in I'. Thus, these two links must be
equal. In particular, every facet F' of I' containing 7 must be a facet of B. By the same argument,
such an F' must also be a facet of B’. The result follows. 0



A simplicial complex A is centrally symmetric or cs if its vertex set is endowed with a free
involution o : V(A) — V(A) that induces a free involution on the set of all nonempty faces of
A. In more detail, for all nonempty faces 7 € A, the following holds: «a(7) € A, «(7) # 7, and
a(a(r)) = 7. To simplify notation, we write a(7) = —7 and refer to 7 and —7 as antipodal faces of
A. Similarly, if I is a subcomplex of A we write —I" in place of «(T).

One example of a cs combinatorial d-sphere is the boundary complex of the (d + 1)-dimensional
cross-polytope, 9Cy ;. The polytope Cj,, is the convex hull of {+ey,+ea,...,+e411}, where

e1,ea,...,eq41 are the endpoints of the standard basis in R, As an abstract simplicial com-
plex, 9C};, , is the (d + 1)-fold suspension of {(}}. Equivalently, it is the collection of all subsets
of Vgy1 := {#£wv1,...,+vg41} that contain at most one vertex from each pair {£wv;}. In particular,

every cs simplicial complex with vertex set V, is a subcomplex of 0C;:.

We close this section with a discussion of neighborliness and stackedness. Let A C 9C;; be a
simplicial complex, possibly non-cs, and let 1 < i < n. We say that A is cs-i-neighborly (w.r.t. V),
if Skel;_1(A) = Skel;_1(0C};). For i = 1, this simply means that V(A) = V,,. For convenience, we
also refer to simplices (i.e., faces of OC}) as cs-0-neighborly complexes.

A combinatorial d-ball B is called i-stacked (for some 0 < ¢ < d), if all interior faces of B are
of dimension > d — i, that is, Skely_;_1(B) = Skely_;_1(9B). In particular, 0-stacked balls are
simplices, and 1-stacked balls are also known as stacked balls. The notion of stackedness takes its
origins in the generalized lower bound theorem [14, 15, 23].

The following lemmas will be handy.

Lemma 2.2. Let By and By be combinatorial balls of dimension di and do, respectively. If By is
i1-stacked and Bsy is io-stacked, then

1. The complex By * Bg is an (i1 + i2)-stacked combinatorial (dy + do + 1)-ball.

2. Furthermore, if dy = do2 = d, i1 < i3, and BN By C 0B1NJBy is a combinatorial (d—1)-ball
that is i3-stacked for some i3 < ig, then By U By is an io-stacked combinatorial d-ball.

Proof:  For part 1, observe that by definition of stackedness, all interior faces of B; have dimension
> dj —ij; for j = 1,2. Hence by Lemma 2.1, the interior faces of By * Bs, which is a combinatorial
(d1 4 dg + 1)-ball, have dimension > (dy + da) — (i1 + i2) + 1. Thus, By x By is (i1 + i2)-stacked.
Part 2 similarly follows from Lemma 2.1 and the definition of stackedness. Indeed, the interior
faces of both By and Bs have dimension > d — 49. All other interior faces of By U By are interior
faces of By N By, and so have dimension > (d — 1) — i3 > d — i2. Hence By U By is ig-stacked. [

Lemma 2.3. Let k > 1 be an integer. Let A C OC}: be a combinatorial (2k — 1)-sphere that is cs-k-
neighborly w.r.t. Vy,, and let B C A be a combinatorial (2k—1)-ball that is both cs-(k—1)-neighborly
w.r.t. Vi, and (k — 1)-stacked. Then A\B is a combinatorial (2k — 1)-ball that is cs-k-neighborly
and k-stacked.

Proof: Let F' € OC;; be any set of size < k. Since A is cs-k-neighborly, F' is a face of A. Thus, if
F ¢ B, then F' € A\B. On the other hand, if F' € B, then since dimF <k—-1< (2k—1)—(k—1)
and since B is (k — 1)-stacked, F' must be a boundary face of B and thus also a face of A\B. We
infer that A\B is cs-k-neighborly.

Next let F' be a face of A\B of dimension < (2k —1) —k =k —1, ie., |[F| <k — 1. Since B is
cs-(k — 1)-neighborly, it follows that F' € B. Thus F must lie on the boundary of B and hence also
on the boundary of A\B. We conclude that A\B is k-stacked. O



3 The construction

Our goal is to construct A? — a cs combinatorial d-sphere with 2n > 2d + 2 vertices that is
cs-[d/2]-neighborly. Our method is to build a certain ball on those 2n vertices that is both cs-
([d/2] — 1)-neighborly and ([d/2] — 1)-stacked. The following lemma explains the significance of
these balls and outlines the inductive procedure on n we will use once such balls are constructed.
For all values of d + 1 < n, the vertex set of A? will be V;,, = V(9C%). In particular, our initial
complex Aillntl is 9CY, 4.

Lemma 3.1. Let d > 1 and 1 < i < [d/2] be integers. Assume that Aﬁ’i is a cs combinato-
rial d-sphere with V(Aﬁl;z) = V,, that is cs-i-neighborly. Assume further that Bl ¢ A% s ¢
combinatorial d-ball that satisfies the following properties:

o the ball BX™ is both cs-(i — 1)-neighborly w.r.t. Vi, and (i — 1)-stacked, and

e the balls Bg’i_l and —Bg’i_l share no common facets.

di=1 ) ith,

8(—Bg’i_1) % (—Up41) s a cs combinatorial d-sphere with V(AZL) = V41 that is cs-i-neighborly.

Then the complex Ai’jrl obtained from A% by replacing B&Y with oBE! *Upt1 and — By’

Proof:  Observe that Bg’i_l and BBff’i_l *Un41 are two combinatorial balls with the same boundary.
The fact ‘that B&1 and —B%*! share no common facets combined w1th Lemma 2.1 then implies
that An ',1 is a combinatorial sphere. Moreover, the deﬁmtlon of An v along with the fact that

Aﬁ’z is a cs complex guarantees that the complex A% ny1 1 also cs.

To show that Anll—l is cs-i-neighborly, consider a set ' € 9C;; , with |F| < i < [d/2]. If v,
isin F, then F\v,1 is a face of OC} of size at most ¢ — 1. Since B~ ig ¢s-(i — 1)-neighborly and
(i — 1)-stacked, it follows that

F\vn 41 € Skel;_o(B%~1) C Skely_;(B%~1) C 9B%~!

Hence F € 9B ! « vn+1 - An—H If —v,41 € F, then by the above argument, —F' € Aiil, and
so by symmetry, F' € An—f—l Finally, if +v,41 ¢ F, then since AL s cs-i- neighborly, F' € ALY
As any face of + B3~ of dimension < i — 1 is on the boundary of +pdi-t

Fe A\ +BF A

The idea is to build B [d/2]-1

, we conclude that
O

from balls that are less cs-neighborly using intertwined induction.

Definition 3.2. Let d > 1, i < [d/2], and n > d + 1 be integers. Define A% and B inductively
as follows:

e For the initial cases, define Al = (vi,va,...,vn, —v1,—V2,..., —Vp,v1), Ad+1 = 0Cj,,
BY = () if j <0, and BL? == (—v1)vy. (In particular, Bl C AL for all § < 0.)

e Assume that A%-! and B4 C A%-1 are already defined for all i < |(d —1)/2] and m > d.
If d = 2k, then define B2—Lk A% I\ BZ=LR=1 (for m > 2k). Then, for all n > d+ 1 and
< |d/2], define

B = (Bd Li vn> U ((—Bffj’i_l) « (—vn)> .



d,[d/2]-1 and albo that Bd [d/21-1 is

d:1d/2]- 1), define Al (ai ]the
d,[d/2]-1

o If A? is already defined (and assuming that A% D B

a combinatorial ball that shares no common facets with —B,;

complex obtained from A by replacing Bn’( 2171 with aBd [d/21-1

with 3(—Bf@l’w/2w_1) * (—Upt1).

* Upy1 and — By’

To get the feel for this construction, we start by computing several explicit examples of com-
plexes produced by Definition 3.2. Note that the join of any simplicial complex with the void
complex () is the void complex. Hence by induction, for all d > 1, Bg’o is the simplex on the vertex
set {—v1,Un_d+1, Vn—d+2,---,Unt. In particular, the link of v;11 in A?H is 8BZ-2’0, the boundary
of the triangle {—wv1,v;—1,v;}; similarly, the link of —v;;1 is the boundary of {vi, —v;—1,—v;}. It
follows that A2 is obtalned from OC; by symmetric stacking — an operation defined in [7].

To get a handle on B! it is worth noting that for i < [d/2] — 1, Definition 3.2 implies that

Bl = (BIT3 s (vaet 0) U BI3 ) # (—var,va))
U ((—BZ:%“) (~tn-1,=00) U B3 5 (va1, —on))
(Bd 5" (U 1,%)) U <(—Bz:§’i_1) % (U, —Up—1, —vn)> U (BZ:g’i_Q * (Up—1, —vn)) .

If we let d = 3 and i = 1, then
B?L’l = ((Un727 Un—3y++-,V1y, =Un—2, =Un-3,..., _Ul)*(vnfla 'Un)) U ((Ula _fUan)*(Unv —Un—1, _Un)) .

In particular, B¥! is a combinatorial 3-ball that has 2n—3 facets; it is cs-1-neighborly w.r.t. V,, and
1-stacked. This complex plays a key role in Jockusch’s construction [6] of cs-2-neighborly 3-spheres:
in fact, Jockusch’s 3-spheres are exactly the complexes A3, for n > 4. ‘

Several other easy consequences of Definition 3.2 are: if ¢ < |d/2] and if BZ” is well-defined,
then every facet of B contains either Up Or —vp,, and no face of B contains two antipodal
vertices. This latter property and the fact that A 941 = 0Cj,, is cs-(d + 1)-neighborly implies that

Al 41 does contain all balls B4 d;l for i < [d/2], so we can at least start executing the algorithm in
Definition 3.2 for all d (once we have taken care of smaller dimensions).

Our remaining task is to show that this algorithm never gets stuck and that its output, A%,
is a cs combinatorial d-sphere with 2n vertices that is cs-[d/2]-neighborly. To start, we verify
in Lemma 3.3 that if Definition 3.2 allowed us to reach a point where the complex A¢ and its

d,[d/2]-1

subcomplex By’ were constructed, then all complexes produced by the definition up to that

point satisfy all the assumptions of Lemma 3.1. This allows us to advance one more step and

d,[d/2]-1
n+1

d,[d/2]—

construct A4 11- We then need to show that Al 41 produced in this way contains B’

Lemma 3.3. If the algorithm reached the (d,n)-th step and produced a pair A% D By , then
Aﬁ is a c¢s combinatorial d-sphere with vertex set V,, that is cs-[d/2]-neighborly while the complexes

" (for 0 < i < [d/2]) are combinatorial d-balls that are cs-i-neighborly w.r.t. V;, and i-stacked.
Furthermore, they satisfy the following “nesting property”: —p%i~t ¢ gt (for all © < [d/2]).
Finally, for all i < |d/2], Bg’i and —Bg’i share no common facets.

Proof: ~ We verify the properties of A% and B4 by induction on the dimension and the number
of vertices. Since AY g1 = 0Cy,,, the complex Ag 1 1s indeed a cs combinatorial d-sphere with



V(A4 +1) = Vay1 that is cs-[d/2]-neighborly. Furthermore, for any m > 2, BY and B! satlsfy all

the conditions: By is an edge, and hence it is a cs-0-neighborly and 0-stacked 1-ball, while Bhlisa
path on V,,,, and hence a cs-1-neighborly (w.r.t. V;;,) and 1-stacked 1-ball. Finally, -BLY = v1(—vm)
and

11 _ Al\pl0 _ 1,0
Bm - Am\‘Bm - (_vla —V2,..., = Um,V1,02,... 7vm) > -B.".

For the inductive step, since the algorithm reached the (d,n)-th step, we can assume that the
complexes Bg:}’j (for j < [(d—1)/2]) satisfy all the conditions of the lemma and that if n > d+2,
then A? | is a cs combinatorial d-sphere (with vertex set V;,_1) that is cs-[d/2]-neighborly. We

now show that then the same holds for B" (for all 0 < i < [d/2]) and Al
We start with the nesting property. By definition, for all i < |d/2| = [(d —1)/2],

—Bg’i_l _ ((_Bg:%’b—l) % (_Un)> U <Bg:iai—2 * ’Un) s and
B = (B (o)) U (B ).

d112 dlz

By the inductive hypothesis, B, is a subcomplex of B, ;. Hence — B ¢ B for i <

|d/2]. We will treat the case of d =2k—1, i =k a bit later.
Next, it follows from the nesting property and the definition of BS ' that ng’l and BZ:%’%l

share no common facets for all 1 < i < [d/2] < [(d — 1)/2], and hence neither do BY" and
—Bd This result also implies the nesting property for d = 2k — 1 and ¢ = k: since B2k L= and

—sz LA have no common facets, — B2 1FT1 ¢ A2k—1\ g2 LE—L — pZEeLk

We now show that By’ is an i-stacked combinatorial d-ball. For the case of i < |d/2], recall
that B is the union of D; = ng’i x vy and Dy = (—ng’ifl) % (—vp). By the inductive
hypothesis and Lemma 2.1, D; and Dy are combinatorial d-balls. The nesting propery implies that
DiNDy = —ng’ifl and by the inductive hypothesis it is also a combinatorial (d — 1)-ball. Since
it is contained in 0D, N 0Ds, Lemma 2.1 guarantees that Bg’i = D1 U Dy is a combinatorial d-ball.
Furthermore, by the inductive hypothesis and Lemma 2.2, Dy is i-stacked, Do is (i — 1)-stacked
and the intersection is (i — 1)-stacked. Thus the union B is i-stacked.

Next we turn to treating cs-neighborliness: we show that for all i < |d/2], B&" is cs-i-neighborly
w.r.t. Vj, Whlle A% is a cs combinatorial d-sphere that is cs-[d/2]-neighborly w.r.t V;,. The statement
about B " follows easily from the definition of B and the inductive hypothesm asserting that
BZ_%J is cs-j-neighborly w.r.t. V,,_y for j =i — 1,i. Now, if n = d + 1, then A% = = 0Cy, 1, s0 it is
a cs combinatorial d-sphere on V,, that is cs-[d/2]-neighborly, and if n > d + 1, then the inductive
hypothesis on An 1 along with Lemma 3.1 and the established properties of Bd (d/ 211
A4 is a cs combinatorial d-sphere on Vj, that is cs-[d/2]-neighborly.

Finally, we discuss the case of d =2k — 1, ¢ = k. Since B2k—Lk A%k_l\ngfl’kfl, we obtain

imply that

from the previous paragraph and Lemma 2.3 that B%k_l’k is a combinatorial (2k — 1)-ball that is
cs-k-neighborly and k-stacked. This completes the proof. O
d,[d/2]—-1

is a subcomplex of Ad 1- (Recall that our assumptions
d,[d/2] -1

It now remains to show that B,/
include that Bd LIA=D/21-1 40, subcomplex of A%~ for all m > d and that By’ is a sub-
complex of A%.) To facilitate the proof of this result, we rely on the following lemma,; its proof is
an immediate consequence of the definition of B , Lemma 2.1, and the nesting property.



Lemma 3.4. Under the assumptions of Lemma 3.3, for all d > 2 and 0 <1 < |d/2],
i d—1, d—1,i— d—1,i d—1,i—
aBg’ = <aBn—} * ’Un> U (a<_Bn—i 1) * (_U’ﬂ)> U (Bn—} \(_Bn—% 1)) .

A combinatorial sphere A is called k-stacked if it is the boundary complex of a combinatorial
k-stacked ball.
%k _

Corollary 3.5. Under the assumptions of Lemma 3.3, for all k > 1 and n > 2k + 1, 0By,
A26=L I particular, A2 is k-stacked.

Proof: By definition, the complex A2¥~1 is obtained from A?ﬁ:ll = Bi’i_ll’k_l U Bgli_ll’k by
replacing :tBik__ll’k_1 with i(@BZ’i_ll’k_l % Up). On the other hand, Lemma 3.4 and the fact that

OB2F—LE — gpZE—1E=1 (ield that
oB2kk — (gp2k-1k—1 9(— B2k—1k—1 R2h—Lk B2E—1k=1
n - n—1 *Up | U (_ ) * (_Un) U \(_ ) .

n—1 n—1 n—1

Hence aB%k’k = A1 Since by Lemma 3.3, the ball sz’k is k-stacked , the sphere A2¥~1 is also
k-stacked. O

We are now in a position to show that the ball Bg’ [4/211 5 indeed a subcomplex of AZ. This

will require one additional lemma.

Lemma 3.6. Under the assumptions of Lemma 3.3, for alld > 2, n > d+1, and0 <i < j < ld/2],
the following inclusion holds: Bff_l’Z C 6Bff’ﬂ.

Proof:  The proof is by induction on d. We start by checking the statement in the following base
cases.

1. If j = 0 (and hence i = 0), then for any d > 2,

d0 _ _ pd—-1,0
8Bn = 8{—1)1,1)n,d+1, e ,’Un} 2 {—’Ul,’l)n,dJrQ, e ,’Un} = Bn .

2. If i = 0, then by Lemmas 3.4 and 3.5, for any 7 > 0 and d > 2j,

dj d-1, 2j.j _ A%

0By’ D 0B, _17xv, 2 -+ D aBn—d+2j*{vn*d+2j+1’ N An—d+2j*{vn*d+2j+17 ceyUp b
. d—1,0 _ 12j-1,0 ) 2j—1 2j-1,0

Since By, = Bn7d+2j * {Un—d+2j+1,---,Un} and An7d+2j D Bn7d+2j, we conclude that

B0 c oI,
3. If j > 1 and d = 2j, then Lemma 3.5 implies that for any i < j, B = A¥ ™1 > g2~

For the inductive step we can thus assume that 1 < j < d/2 (equivalently, that 1 < j <
|(d—1)/2]), and that the statement holds for d — 1 and all 0 < ¢ < j < [(d —1)/2]. Then

B = (Bt on) U ((CBITY « (—uw)
(é) (8Bffj’j * vn) U ((—832:}’j_1) * (—vn)>

C OB,

Here (x) follows from the inductive hypothesis and (xx) follows from Lemma 3.4. This completes
the proof. O

a,[d/2-1 - Ad

An immediate corollary of Lemma 3.6 is that B, | il



Corollary 3.7. Foralld>2 andn >d+1,

BZﬁm_l < <8Bg’fd/21_1 * Un+1) U (8(—35’[‘”2]_1) * (—Unﬂ)) C AZH'

Proof:  The first inclusion is by definition of Bg’ [4/2171 nd Lemma 3.6, and the second inclusion
is by definition of A?_;. O

Corollary 3.7 together with Lemma 3.3 completes the proof that the construction described in
Definition 3.2 never gets stuck and that for every d > 2 and n > d+ 1 it outputs a cs combinatorial
d-sphere with vertex set V,, that is cs-[d/2]-neighborly. We summarize this in the theorem below:

Theorem 3.8. For alld > 2 and n > d+ 1, the complex Afll is a c¢s combinatorial d-sphere with
vertex set V,, that is cs-[d/2]-neighborly.

Remark 3.9. Let 1 < i < [d/2]. Since by nesting property,

Bg,i—l C Bg,[d/2]-1 U (_Bg,(d/z]—1) ’

it follows from Corollary 3.7 that B ¢ AZ. This allows us to construct cs-i-neighborly spheres
that are not cs-(¢ + 1)-neighborly for all 1 < ¢ < [d/2]. Indeed, Lemmas 3.1 and 3.3 along
with Theorem 3.8 imply that the complex Ai’il obtained from A% by replacing the subcomplexes
:l:Bg’i*1 with :l:(@Bf@l’F1 * Un+1) is a cs combinatorial d-sphere that is cs-i-neighborly. To see that
att
Bg’i_l is cs-(i — 1)-neighborly, it is not cs-i-neighborly. In particular, ﬁBg’i_l is not cs-i-neighborly,
and hence A, is not cs-(i + 1)-neighborly.

1 s not cs-(i+1)-neighborly, note that the inductive proof of Lemma 3.3 in fact shows that while

4 Properties

It is our hope that the spheres A? constructed in this paper will find many other applications. With
this in mind, in this section we discuss several additional properties that these spheres possess. One
important property is that certain face links in Ag are also highly cs-neighborly.

Proposition 4.1. For all k > 2 and n > 2k — 1,

2k—1 2k—3 2k
k(vnvni1, A7) = 8577 = 1k(vnUng1Vnt2, A5 o).

Proof: The assertion holds if n = 2k — 1 since in this case all complexes appearing in the
statement are the boundary complexes of cross-polytopes. Thus assume n > 2k. By definition of
Ai’fﬁl, Lemma 3.4, and Lemma 3.5,

k(vpvp41, Ai’fﬁl) = Ik(vp, asz—lvk—l) — aBik:l?,kfl _ Aik_f’,
Similarly,
Ik(0nUn1Vn42, A 5) = lk(vnvnﬂ,@Bil_‘;”f_l) = Ik(vp, B2~ 1E-1) = gB2k—2h—1 — A26-3

This completes the proof. O



In view of Proposition 4.1, it is natural to ask whether the link of v,,; in AZ* oy s A%"‘_l,
and, more generally, whether An "1 1s a suspension. This is especially relevant to our discussion
since suspensions of c¢s-k-neighborly spheres are also cs-k-neighborly; in particular, both complexes
EA%k_l and A%’il are c¢s combinatorial 2k-spheres that are cs-k-neighborly w.r.t V,,11. Are they
isomorphic? The following proposition shows that the answer is no.

Proposition 4.2. Ifn > 2k + 1, then the complex AQH is mot a suspension. In particular, An+1
is not isomorphic to A1,

Proof: We will rely on the following three observations.
1. f A=3T and F €T, then lk(F,A) = X1k(F,T).
2. For k>2and n >2k+1, Aik:; is not a suspension.

To see this, recall that A?*23 is cs-(k — 1)-neighborly. Now, a cs (2k — 4)-sphere that is not
the boundary of the cross-polytope can be at most cs-(k — 2)-neighborly. Hence, if A% 3
were a suspension, it would also be at most cs-(k — 2)-neighborly.

3. For £ > 1 and m > 2¢ + 1, the complex OBZ 1 ig not a cs complex.

If 0B2 1 were a cs complex, then the link lk(v,,, 8B2M—1) = 8324_1 =1 would coincide with
—lk(—vm,ﬁB%’#l) = —8(—32471’572) 8325 ” % Since the balls B% M L and B% M 2

m—1
share no common facets, their union would then be a (2¢ —1)-sphere strlctly contalned in the

(2¢ — 1)-sphere A2~1 which is impossible.

We are now ready to prove the proposition. If k = 1, then A2 41 is obtained from OC3 by
symmetric stacking, and so A2 11 is not a suspension for n > 3. Thus let k¥ > 2, and assume by
contradiction that An "1 1s a suspension with suspension vertices +v; for some i <n + 1.

If ¢ < n—1, then by Observation 1, the link of v,_jv,v,41 in Ai’fH must be a suspension.
However, by Proposition 4.1, Ik(v,—10p0p+1, An +1) = Aik__;’, which according to Observation 2 is
not a suspension.

If i = n+ 1, then lk(vp41, AZX ) must equal Ik(—vn41, A% ). In particular, Ik(v,41, A% ,) =
aB% *=1 must be a cs complex, which contradicts Observation 3.

If i = n, then by Observation 1, lk(v,41, A% ,) = OB2* 1 must be a suspension with sus-

2%k—1,k—2 . 2k— 1 K—1
pension vertices +v,. However, since —B," " is strictly contained in B~ , the complexes

Ik(v,,, OBaFF—1) = (‘33% LA and 1k(— U, OB h = E)(—B%C Lk- %) are not equal.

n—1
Finally, if i =n — 1, then by Observation 1, we must have

Ik(vn—1, k(vpvni1, AZF 1)) = Tk(—vp—1, k(vqvni1, AZE ).

The proof of Proposition 4.1 implies that the former complex is Aik:;’ while the latter complex is

8(—B2k__22’k_2). These complexes cannot be equal since one is c¢s and the other one is non-cs. [

Remark 4.3. The ball B?Ji’f is “special” in the following sense: while Bn 11 C Al forall d > 1,

i < [d/2] — 1, and n > d (see Remark 3.9), the ball B2k is not a subcomplex of AZE L for

n+1 is
n > 2k. Indeed, a straightforward computation using that A2F—1 = B%k_l’k U Bﬁk_l’k_l along with

the definition of Bii’f implies that BZTf U (— Biilf) = YAZ=1 Our claim that Bflli]f Z AZK,

(for n > 2k + 1) then follows from Proposition 4.2. However, in the case of n = 2k, the same

computation shows that Bgllzfl U (—Bgllzfl) SAZTL = %(9C8,) = 0Cy, =A%

10



To close this section, we show that while A2 71 is not the suspension of A2k=1 " the complexes
A2k and A2F=1 are closely related:

Proposition 4.4. Let k > 2 and n > 2k + 1. Then A%k D A%"‘_l.

Proof:  To prove the statement, it suffices to construct a combinatorial 2k-ball D,, that satisfies
the following properties:

e D, D _ng’kil-
e D, and —D,, share no common facets and their union is Azk in particular, £D,, C AQk
e 0D, = d(—D,) = A?*=1 and so A2F=1 C A2k,

We construct D,, by induction on n. For the base case, define Doy 41 := B% "r1- This ball has
all the desired properties: this follows from Lemma 3.3, Corollary 3.5, and Remark 4.3.

For the inductive step, assume that there exists a combinatorial 2k-ball D,, that satisfies all
of the above properties. In particular, —D,, contains B2 as a subcomplex. Recall also that

OB%k’k_l D ng_l’k_l (see Lemma 3.6). Thus, the following complex is well-defined:

Das i= ((=Da\BZF1) U (=B s (—u 1) JU((OBZHFDN\BEH) 04 ) - (41

This definition along with the inductive assumption that D,, and —D,, share no common facets
implies that D,4+1 and —D,,+; share no common facets either. Further, since 8sz’k_1 contains
B2F1E72 (gee Lemma 3.6) and since B2 "*7? and B~ "*~! share no common facets (this follows
from the nesting property), equation (4.1) guarantees that

C1k— 1k 2k, k—1
Dusr 2 ((=BZ1) s (—unn) ) U (B2 2 w0, ) = — B2

Recall that AQ_H is obtained from A2* by replacing +B2FEL with :I:(@B,%k’k*1 * Upt1). This
together with the definition of D,,;1 and the inductive hypothesis asserting that D,,U(—D,) = AZ¥
implies that D11 U (—=Dp41) = An—i—l

It only remains to show that D,, 11 is a combinatorial 2k-ball with 0D, 11 = O(—Dy41) = Aikﬂl.
We use eq. (4.1) and the inductive hypothesis that d(—D,,) = A2*~1_ First, the boundary of
OBZFE—L Up+1 coincides with the boundary of B2Hk-1 . Thus, replacing the subcomplex B2kl
of the combinatorial ball —D,, with 3B,21k k=l Un+1 results in a combinatorial ball D’ ni1 that has
the same boundary as —D,,. The ball Dj,_; has v,41 as an interior vertex whose link in D], is

OBZ*1 Now, BZ~1*71 is contained in both dB2**~! and oD, = 9(—Dy) = AZ"1. Since

2k—1,k—1

Un+1 is an interior vertex of Dj, ;, removing B, *Upy1 from D] results in a combinatorial

ball D}, whose boundary is obtained from that of —D,, by replacing B2FLRL with gB2R bR

lekl 2k—1,k—1
n ) *

Un+1. Finally, the balls (—B , which is

a subcomplex of their boundaries. This yields that D, = Dy, U ((—ng LE=Ly o (—vn+1)> is

a combinatorial ball. Further, the boundary of D, is obtained from the boundary of D) ; by

replacing — B2~ 171 with 8(—B,2Lk_1’k_1) % (—vp+1). We conclude that 0D, 11 = Ai’ill. O

Observe that the 2k-ball D,, constructed in the proof of Proposition 4.4 is k-stacked. (Indeed,
since the boundary of D, is a cs-k-neighborly complex w.r.t. V,,, no face of D,, of dimension < k—1
is an interior face of D,,, and so all interior faces of D,, have dimension > k = 2k — k.) Thus
one curious consequence of Proposition 4.4 and Corollary 3.5 is that for n > 2k + 1, A2*~1 is the
boundary complex of at least four distinct k-stacked 2k-balls, namely, D,,, —D,,, ng’k, and — B2k,

(—vn41) and D intersect along —B;,
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5 Closing remarks and questions

We close with a few open questions.

The spheres A? we constructed here are cs combinatorial spheres that are cs-[d/2]-neighborly.
Hence, according to [13], for d > 3 and n > d + 3, they are not the boundary complexes of cs
polytopes. In fact, it follows from results of Pfeifle [19, Chapter 10] that they are not even cs fans
(at least for d big enough). However, these spheres might still possess some additional “liked by
all” properties:

Problem 5.1. Let d > 3 and n > d + 3. Are the spheres AZ vertexr decomposable or at least
shellable? Are they realizable as (non-cs) fans? Are they even realizable as boundary complexes of
(non-cs) polytopes?

It is well-known that there are many (non-cs) neighborly polytopes and neighborly spheres. For
example, the number of combinatorial types of [d/2]-neighborly (d 4 1)-polytopes with n vertices
is at least n“2 "(1+W) for ¢ > 1 and n — 00, see [18, Section 6]. Are there many cs d-spheres that

are cs-[d/2]-neighborly?

Problem 5.2. Find many new constructions of cs combinatorial d-spheres that are cs-[d/2]-
neighborly.

Finally, it is worth mentioning that in a contrast with cs combinatorial spheres, there exist cs
combinatorial 2k-manifolds with n > 2(2k+ 1) vertices that are cs-(k+ 1)-neighborly. (The interest
in such complexes arises in part from Sparla’s conjecture [20, 21] that posits an upper bound on
the Euler characteristic of cs combinatorial 2k-manifolds with 2n vertices; see [17] for some results
on this conjecture.) One construction of such an infinite family is given in [8]: for each k > 1, it
produces a cs triangulation of the product of two k-dimensional spheres with 4k + 4 vertices that
is ¢s-(k + 1)-neighborly. For additional constructions in low dimensions, see [3, 11, 20].

Problem 5.3. Find new constructions of (infinite families of ) c¢s combinatorial 2k-manifolds that
are cs-(k + 1)-neighborly.
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