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Abstract— This paper studies attack-resilient Gaussian pro-
cess regression of partially unknown nonlinear dynamic systems
subject to sensor attacks and actuator attacks. The problem is
formulated as the joint estimation of states, attack vectors, and
system functions of partially unknown systems. We propose
a new learning algorithm by incorporating our recently de-
veloped unknown input and state estimation technique into the
Gaussian process regression algorithm. Stability of the proposed
algorithm is formally studied. We also show that average
case learning errors of system function approximation are
diminishing if the number of state estimates whose estimation
errors are non-zero is bounded by a constant. We demonstrate
the performance of the proposed algorithm by numerical
simulations on the IEEE 68-bus test system.

I. INTRODUCTION

Machine learning is increasingly used in cyber-physical
systems (CPS) for a broad area of applications such as
image recognition in self-driving vehicles, control of energy
systems, and healthcare systems. These data-driven tech-
niques are well suited for complex systems whose models are
challenging to obtain. However, machine learning systems
are threatened by cyberattacks [1], [2]. Protecting machine
learning systems from cyberattacks is imperative.

Literature review. The problem of interest is related to
machine learning in the presence of training data errors; i.e.,
fault tolerant learning [3], [4], and adversarial learning [5].
They focus on probably approximately correct learning in
the presence of (malicious) noises; i.e., they aim to design
and analyze algorithms which generate approximately correct
results with high probability. Fault tolerant learning focuses
on complete random errors, while adversarial learning con-
siders adversarial errors which maximize the learning error.
Unlike the papers mentioned above, this paper studies attack-
resilient machine learning; i.e., obtaining correct machine
learning despite that training data are potentially corrupted.

Our work is closely related to data-driven learning of un-
known dynamic systems using Gaussian process regression
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(GPR) [6]. Gaussian process (GP) is proven as an efficient
tool for system identification [7], fault detection [8] and
control [9] of unknown dynamic systems. In [10], GPR
is amalgamated with extended Kalman filter; i.e., the GP-
EKF algorithm to achieve fault detection of completely
unknown dynamic systems. To enhance identification accu-
racy, papers [10], [11] replace extended Kalman filter by
unscented Kalman filter and apply the algorithm to sensor
fault detection [10] and state estimation [11]. In [12], GPR
is integrated with square root Cubature Kalman filter, which
is computationally cheaper and numerically more reliable
than the GP-EKF algorithm. None of the above data-driven
techniques is applicable to handle attacks or attack-resilient
learning. No theoretic guarantee is provided in the above.

Contribution. We present a new attack-resilient GPR
algorithm for partially unknown nonlinear dynamic systems
subject to sensor attacks and actuator attacks. We incorporate
our recently developed unknown input and state estimation
technique [13] into the Gaussian process regression algo-
rithm to address the challenge that the system function is
unknown. GPR then uses the history of the estimates to ap-
proximate the system function. Average case learning errors
of system function approximation are expected to diminish.
We show the performance of the proposed algorithm by
numerical simulations on the IEEE 68-bus test system.

II. PROBLEM FORMULATION

Consider the nonlinear stochastic system

xk = f(xk−1, uk−1 + da,k−1) + wk−1

yk = Ckxk + ds,k + vk (1)

where xk ∈ Rn, yk ∈ Rm, uk ∈ Ra, da,k ∈ Ra and
ds,k ∈ Rm are state, output, input, actuator attack vector,
and sensor attack vector, respectively. We assume that noise
vectors wk ∈ Rn and vk ∈ Rm are independent and
identically distributed zero-mean Gaussian, with covariance
matrices Q , E[wkw

T
k ] and R , E[vkv

T
k ].

Attack model. Signal injection attacks are comprised of
signal magnitude attacks; i.e., the attacker injects attack
signals, and signal location attacks; i.e., the attacker chooses
targeted sensors and actuators. Signal injection attacks are
modeled by actuator attack da,k and sensor attack ds,k
where zero value of either attack vector indicates that the
corresponding actuator or sensor is free of attack, and a non-
zero value indicates the magnitude of the attack.

Knowledge of the defender. System function f in (1) is
unknown to the defender while output matrix Ck is known.
The defender is accessible to input uk and output yk but is
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unaware of the attack vectors da,k and ds,k, as well as which
actuators/sensors are under attacks. Noise vectors wk, vk and
autocovariance Q are unknown but R is known.

Objective. The defender aims to recursively estimate state
xk, attack vectors da,k, ds,k and learn system function f in
the presence of sensor attacks and actuator attacks.

III. PRELIMINARIES

This section summarizes the notations and notionsr. It also
discusses classic GPR following the presentation in [6].

A. Notations and notions

Hat notation over a variable denotes an estimate of the
variable. In particular, x̂k|k−1 is a predicted state (an estimate
without the current output); x̂k is a state estimate (an estimate
with the current output); d̂k is an estimate of attack vector
of dk; and f̂ is an approximation of function f . Also, ãk ,
ak − âk denotes the estimation error and P ak , E[ãkã

T
k ]

denotes the error covariance of ak. Let dim(v) denote the
dimension of vector v. Gaussian distribution is denoted by
N (µ,Σ), where µ is mean and Σ is covariance.

Definition 3.1: (Definition 6.1 in [6]) Hilbert space H of
real functions f defined on X is called a reproducing kernel
Hilbert space (RKHS) endowed with an inner product 〈·, ·〉H
if there exists a unique function g such that for every x ∈ X ,
g(x, x′) as a function of x′ belongs to H, and g has the
reproducing property 〈f(·), g(·, x)〉H = f(x). �
In the above definition, function g is called kernel, and
‖f‖H ,

√
〈f, f〉H is a norm induced by the inner product.

B. Gaussian Process Regression

GPR is a non-parametric regression algorithm by GP
implementation. Consider the model

z = f(x) + w (2)

with input x ∈ Rn and scalar output z ∈ R where w ∈ R is
zero-mean Gaussian noise with variance σ2. We are going
to approximate function f in (2), given a set of input-output
observations. A pair xi, zi of input-output observation is
called training data. A set D , 〈X,Z〉 of training data
is given where X = [x1, · · · , xN ],Z = [z1, · · · , zN ] and
N is the number of the training data pairs. GPR aims to
approximate function f in (2) by utilizing the training data
set D under the assumption that f is a zero-mean GP
(see p.540 in [14] for the GP definition). Under the GP
assumption, [f(x1), · · · , f(xN )]T is multivariate Gaussian
and we denote its covariance by (kernel matrix) G(X,X),
where (i, i′) element of G is denoted by kernel g(xi, xi′).
Kernel represents a similarity between the outputs. Please
refer to Table 4.1 in [6] for commonly used kernel functions.

According to p.200 in [6], given test input x∗, the Gaussian
predictive distribution over test output z∗ has mean

µ(x∗, D) = gT∗ (G(X,X) + σ2I)−1Z (3)

and variance Σ(x∗, D) = g(x∗, x∗)−gT∗ (G(X,X)+σ2I)−1g∗
where g∗ = G(X, x∗). We call them as GPR mean and GPR
variance, respectively. If output z ∈ Rm in (2) is multi-
dimensional, then GPR is conducted for each output element

of z. Let µ(x∗, D(i)) and Σ(x∗, D(i)) denote the GP for
the ith element of z where D(i) = 〈X,Z(i)〉 and Z(i) =
[z1(i), · · · , zN (i)]T . Then, we define the function GPR as

[µ̄(x∗, D), Σ̄(x∗, D)] , GPR(x∗, D) (4)

where µ̄(x∗, D) = [µ(x∗, D(1)), · · · , µ(x∗, D(n))]T and
Σ̄(x∗, D) = diag(Σ(x∗, D(1)), · · · ,Σ(x∗, D(n))) denote
the GPR mean of function f and its covariance, respectively.

This paper utilizes Gaussian kernel, where (i, i′) el-
ement of G is described by Gij = g(xi, xj) =

σ2
he
− 1

2 (xi−xj)TW (xi−xj). Diagonal matrix W represents the
length scale of each input, and σ2

h is a variance. A set of
parameters θ = [W,σh, σ] is called hyper-parameters and
they show the user’s interpretation of the regression function.
They may be chosen by maximizing the log-likelihood of
the training output so that the choice of hyper-parameters is
optimal: θmax = argmaxθ(log(p(Z|X, θ))) as in [6].

IV. ATTACK-RESILIENT GAUSSIAN PROCESS
REGRESSION (ARGPR)

We, in this section, derive a data-driven attack-resilient
learning algorithm to address the problem described in
Section II. In Section IV-A, we discuss preliminary steps.
Then, a description of training data set is given in Section IV-
B. Section IV-C presents the solution, the Attack-resilient
Gaussian Process Regression (ArGPR) algorithm. The pro-
posed algorithm is derived in detail in Section IV-D.

A. Output decomposition, and system transformation

We discuss two inherent difficulties and tricks to deal with
them. First, the defender is unaware of the sensor attack
locations. We will first address the problem under the as-
sumption that the locations of vulnerable sensors are known.
In Section VI, we discuss how to relax this assumption.
Under this assumption, output yk in (1) is decomposed into

y1,k = C1,kxk + d1,k + v1,k, y2,k = C2,kxk + v2,k (5)

where y1,k is the potentially corrupted sensor output, and
y2,k is the sensor output that is free of attacks.

Second, state estimation errors and function approximation
errors are dependent. To break the interdependency, we
let actuator attack vector estimate compensate the actuator
attack and the errors of the function approximation. Then,
function approximation errors no longer induce errors in state
estimation. In particular, we rewrite system (1) as follows:

xk = f(xk−1, uk−1) + d′2,k−1 + wk−1 (6)

where d′2,k−1 , f(xk−1, uk−1 + da,k−1) − f(xk−1, uk−1).
Given function approximation f̂k(·) = µ̄(·, D̂k) in (4) and
state estimate x̂k−1, system model (5) and (6) becomes

xk = f̂k([xTk−1, u
T
k−1]T ) + d2,k−1 + wk−1

y1,k = C1,kxk + d1,k + v1,k, y2,k = C2,kxk + v2,k (7)

where d2,k−1 , d′2,k−1 + f̃k(xk−1, uk−1), and
f̃k(xk−1, uk−1) , f(xk−1, uk−1) − f̂k([xTk−1, u

T
k−1]T )

is unknown approximation error. The covariance matrix of
wk−1 is approximated as Q̂k−1 = Σ̄([x̂Tk−1, u

T
k−1]T , D̂k).

2982

Authorized licensed use limited to: Penn State University. Downloaded on July 30,2021 at 15:17:44 UTC from IEEE Xplore.  Restrictions apply. 



Since both actuator attack d′2,k−1 and function approximation
error f̃k(xk−1, uk−1) are unknown, the defender is unable
to separate them from the sum d2,k−1. Therefore, we will
estimate transformed attack vector d2,k−1 instead of d′2,k−1

and da,k−1, and its estimate is denoted by d̂2,k−1.
Our estimation algorithm will utilize linearization to track

covariance. Linearization of system (7) at the estimates is

xk = Ak−1xk−1 +Bk−1uk−1 + d2,k−1 + wk−1

y1,k = C1,kxk + d1,k + v1,k, y2,k = C2,kxk + v2,k

where [ATk−1, B
T
k−1]T =

∂f̂([x̂T
k−1,u

T
k−1]T )

∂[x̂T
k−1,u

T
k−1]T

.

B. Training data set

To regress function f , it is required to know input-output
observations according to Section III-B. Let us define x+

k ,
f(xk, uk) + wk. The desired training data set available at
time k is given by Dk , 〈Xk,X+

k 〉 where

Xk =
[

x1 · · · xN(k)

]
,

[
x0 · · · xk−2

u0 · · · uk−2

]
,

X+
k = [x+

1 , · · · , x
+
N(k)] , [x+

0 , · · · , x
+
k−2] and N(k) is

the number of input-output pairs in the training data set.
However, unlike Section III-B, xk and x+

k are unavailable.
Instead, we use their estimates to perform function regres-
sion. The available training data set is D̂k , 〈X̂k, X̂

+

k 〉 where

X̂k =
[

x̂1 · · · x̂N(k)

]
,

[
x̂0 · · · x̂k−2

u0 · · · uk−2

]
,

X̂
+

k = [x̂+
1 , · · · , x̂

+
N(k)] , [x̂1 − d̂0, · · · , x̂k−1 − d̂k−2].

Although training data set D̂k contains estimation errors,
we will derive an algorithm as if D̂k has no estimation
errors (certainty equivalence principle [15]). The errors in the
training data set will be considered in the analysis section.

C. Algorithm statement

ArGPR algorithm utilizes Gaussian process regression to
approximate unknown dynamic systems, which is then used
to estimate the current internal state by unknown input
and state estimation technique [13]. In particular, ArGPR
algorithm (Algorithm 1) consists of a bank of ArE algo-
rithm 2 (line 2) and a system function estimator (training
set updater, line 3). The ArE algorithm can be seen as an
extension of the extended Kalman filter with two extensions;
first, it incorporates attack vector estimation [13]; second,
the unknown system function is replaced by GPR function
approximation. The ArE algorithm recursively produces state
estimate x̂k, attack vector estimates d̂2,k−1, and d̂1,k. The
following section presents the algorithm derivation in details.

D. Derivation of the ArE algorithm

System learning. Given D̂k, we are able to find approxi-
mation f̂k(·) = µ̄(·, D̂k) of system function f and covariance
Q̂k = Σ̄(·, D̂k) via GPR([xT , uT ]T , Dk) in (4). They will
be used as if they are the ground truth.

Actuator attack d2,k−1 estimation. Assuming that there
is no actuator attack, we predict the current state (line

Algorithm 1: Attack-resilient Gaussian Process Regression
(ArGPR)

1: Input: x̂k−1, P xk−1, and D̂k;
2: [x̂k, d̂2,k−1, d̂1,k, P

x
k , P

d2
k−1, P

d1
k ] = ArE(x̂k−1,

P xk−1, D̂k);
. Training data set update

3: D̂k+1 = D̂k ∪ 〈[x̂Tk−1, u
T
k−1]T , x̂k − d̂2,k−1〉;

4: f̂k([xT , uT ]T ) = µ̄([xT , uT ]T , D̂k);
5: Return: x̂k, d̂2,k−1, d̂1,k, P xk , P d2k−1, P d1k , D̂k+1, and
f̂k([xT , uT ]T ).

Algorithm 2: Attack-resilient Estimation (ArE)

1: Input: x̂k−1, P xk−1, Dk;
. Actuator attack d2,k−1 estimation

2: [x̂′k|k−1, Q̂k−1] = GPR([x̂Tk−1, u
T
k−1]T , Dk);

3: [ATk−1, B
T
k−1]T =

∂µ̄([x̂T
k−1,u

T
k−1]T ,Dk)

∂[x̂T
k−1,u

T
k−1]T

;
4: ŷ′2,k = C2,kx̂

′
k|k−1;

5: R̃2,k = C2,kAk−1P
x
k−1A

T
k−1C

T
2,k+R2+C2,kQ̂k−1C

T
2,k;

6: Mk = (CT2,kR̃
−1
2,kC2,k)−1CT2,kR̃

−1
2,k;

7: d̂2,k−1 = Mk(y2,k − ŷ′2,k);
8: P d2k−1 = MkC2,kAk−1P

x
k−1(MkC2,kAk−1)T +

MkR2M
T
k +MkC2,kQ̂k−1(MkC2,k)T ;

. State prediction
9: x̂k|k−1 = f̂k([x̂Tk−1, u

T
k−1]T ) + d̂2,k−1;

10: Q̄k−1 = (I−MkC2,k)Q̂k−1(I−MkC2,k)T+MkR2M
T
k ;

11: Āk−1 = (I −MkC2,k)Ak−1;
12: P xk|k−1 = Āk−1P

x
k−1Ā

T
k−1 + Q̄k−1;

. State estimation
13: Lk = (P xk|k−1C

T
2,k −MkR2) (C2,kP

x
k|k−1C

T
2,k + R2 −

C2,kMkR2 −R2M
T
k C

T
2,k)−1;

14: x̂k = x̂k|k−1 + Lk(y2,k − C2,kx̂k|k−1);
15: P xk = (I −LkC2,k)P xk|k−1(I −LkC2,k)T +LkR2L

T
k +

(I − LkC2,k)MkR2L
T
k + LkR2M

T
k (I − LkC2,k)T ;

. Sensor attack d1,k estimation
16: d̂1,k = y1,k − C1,kx̂kf ;
17: P d1k = C1,kP

x
k C

T
1,k +R1;

18: Return: x̂k, d̂2,k−1, d̂1,k, P xk , P d2k−1, and P d1k .

2) as x̂′k|k−1 = f̂k([x̂Tk−1, u
T
k−1]T ). From this estimation,

actuator attack d2,k−1 can be estimated by yj2,k in (5) as
d̂2,k−1 = Mk(y2,k − C2,kx̂

′
k|k−1) ' Mk(C2,kAk−1x̃k−1 +

C2,kd2,k−1 + C2,k−1wk−1 + v2,k) (line 7) where function
f̂k([x̂Tk−1, u

T
k−1]T ) is linearized. Assuming that E[x̃k−1] = 0,

we choose gain matrix Mk by the Gauss Markov theorem
in [16] as Mk = (CTk,2R̃

−1
2,kC2,k)−1CT2,kR̃

−1
2,k (line 6) where

R̃2,k , C2,kAk−1P
x
k−1A

T
k−1C

T
2,k + R2,k + C2,kQ̂k−1C

T
2,k.

Estimation error of d2,k−1 is given by

d̃2,k−1 = −Mk(C2,kAk−1x̃k−1 + C2,kwk−1 + v2,k) (8)

where MkC2,k = I is used. Error covariance matrix is
found by P d2k−1 = MkC2,kAk−1P

x
k−1(MkC2,kAk−1)T +

MkC2,kQ̂k−1(MkC2,k)T +MkR2,kM
T
k (line 8).
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State prediction. Generate state prediction x̂k|k−1 by sim-
ulating system (1) as x̂k|k−1 = f̂k([x̂Tk−1, u

T
k−1]T ) + d̂2,k−1

(line 9). The state estimation error becomes

x̃k|k−1 ' Ak−1x̃k−1 + d̃2,k−1 + wk−1 (9)

where function f̂k is linearized. Substitution (8) into (9)
leads to (line 12) P xk|k−1 = Āk−1P

x
k−1Ā

T
k−1 + Q̄k−1. where

Q̄k−1 , (I −MkC2,k)Q̂k−1(I −MkC2,k)T +MkR2,kM
T
k ,

and Āk−1 , (I −MkC2,k)Ak−1.
State estimation. Update state prediction x̂k|k−1 as (line

14) x̂k = x̂k|k−1 +Lk(y2,k−C2,kx̂k|k−1). Substitution y2,k

in (5) into this equation leads to x̃k ' (I−LkC2,k)x̃k|k−1−
Lkv2,k. Its error covariance matrix is (line 15)

P xk = (I − LkC2,k)P xk|k−1(I − LkC2,k)T + LkR2,kL
T
k

+ (I − LkC2,k)MkR2,kL
T
k + LkR2,kM

T
k (I − LkC2,k)T .

Minimizing tr(P xk ) with decision variable Lk is an uncon-
strained optimization problem. We can find the minimizer by
taking derivative of tr(P xk ) and setting it equal to zero

∂ tr(P xk )

∂Lk
= 2((C2,kP

x
k|k−1C

T
2,k −R2,kM

T
k C

T
2,k

− C2,kMkR2,k +R2,k)LTk +R2,kM
T
k −C2,kP

x
k|k−1).

The solution is Lk = (P xk|k−1C
T
2,k − MkR2,k)(R2,k +

C2,kP
x
k|k−1C

T
2,k−C2,kMkR2,k−R2,kM

T
k C

T
2,k)−1 (line 13).

Sensor attack d1,k estimation. Given x̂k, and the assump-
tion that E[x̃k] = 0, sensor attack d1,k can be estimated by
y1,k in (5) (line 16): d̂1,k = y1,k−C1,kx̂k = C1,kx̃k+d1,k+
v1,k. Estimation error is obtained by d̃1,k = −(C1,kx̃k+v1,k)
with covariance P d1k = C1,kP

x
k C

T
1,k +R1,k (line 17).

Training data set update (ArGPR). Lastly, we construct
a new training data pair and add it to the training data
set (line 8) Dk+1 = Dk ∪ 〈[x̂Tk−1, u

T
k−1]T , x̂k − d̂2,k−1〉.

Then, the algorithm returns estimates of system function
and output function from the updated training data set as
f̂k([xT , uT ]T ) = µ̄([xT , uT ]T , Dk).

V. AVERAGE CASE LEARNING OF GPR
This section presents an analysis of function approxima-

tion errors in terms of average case learning of GPR. The
error f(xk−1, uk−1) − f̂k([x̂Tk−1, u

T
k−1]T ) is the point of

interest. This error becomes f̃k(xk−1, uk−1) if xk−1 = x̂k−1.
Training data set. Let us define the errors in the training

data set as follows: ∆xi = xi− x̂i, ∆Xk = Xk−X̂k, ∆x+
i =

x+
i − x̂+

i , and ∆X+
k = X+

k − X̂
+

k . Using the above notations,
training data set D̂k becomes

D̂k , 〈X̂k, X̂
+

k 〉 = 〈X̂k, f(X̂k)+wk−f(X̂k)+f(Xk)−∆X+
k 〉

= 〈X̂k, Ẑk−f(X̂k)+f(Xk)−∆X+
k 〉 = 〈X̂k, Ẑk+∆Zk〉

where f(X̂k) = [f(x̂1), · · · , f(x̂N(k))] and Ẑk = f(X̂k) +

wk. In the analysis, we use X̂k and Ẑk as the input and
output to learn function f as the classic GPR in Section III-B.
Correspondingly, we consider ∆Zk = [∆z1, · · · ,∆zN(k)] =

−f(X̂k) + f(Xk)−∆X+
k be the output errors.

Analysis in RKHS. Most widely used kernels, including
Gaussian kernel, satisfy the following assumption.

Assumption 5.1: Kernel g is continuous symmetric and
positive definite. Kernel is time-invariant.
Hyper-parameter θ is chosen time-invariant to satisfy As-
sumption 5.1. Under Assumption 5.1, there exists a unique
Reproducing Kernel Hilbert Space H (RKHS) by the Moore-
Aronszajn theorem (Theorem 6.1 in [6]).

Now consider the minimization of functional

Jk[f̂ ] =
1

2
‖f̂‖2H +

1

2σ2

N(k)∑
i=1

(x̂+
i − f̂(x̂i))2 (10)

where σ2 is the variance of w in (2). The second term works
for data fitting and the first term smooths the solution, called
regularizer. According to Section 6.2.2 in [6], the minimizer
of functional (10) is the GPR mean function (3). In particular,
the minimizer of the above functional is in the form of

f̂(x∗) =

N(k)∑
i=1

αig(x∗, x̂i) (11)

by the representer theorem [17]. By (11), functional (10)
becomes

Jk[α] =
1

2
αTG(X̂k, X̂k)α+

1

2σ2
‖X̂

+

k −G(X̂k, X̂k)α‖2

where α = [α1, · · · , αN(k)]
T . By taking its derivative with

respect to vector α and setting it equal to zero, we can
obtain the solution α = (G(X̂k, X̂k) + σ2I)−1X̂

+

k . The
complete solution f̂(x∗) = gT∗ (x∗)(G(X̂k, X̂k) + σ2I)−1X̂

+

k

is identical to the GPR mean function in (4). Motived
by this property, let us define f̃k|Jk(xk−1, uk−1, x̂k−1) ,
f(xk−1, uk−1)− f̂k|Jk(x̂k−1) where f̂k|Jk = argminf̂ Jk[f̂ ].
Note that f̃k|Jk = f̃k and f̂k|Jk = f̂k, provided that D̂k is
known and x̂k−1 = xk−1 holds. We will analyze average
case GPR learning f̂k|E[Jk] under the following assumptions.

Assumption 5.2: The function f is in RKHS H.
Since g ∈ H, any linear combination of g is in RKHS
H. Thus, function f is in RKHS H if and only if there
exist a set of xi ∈ Rn+a, and βi ∈ R such that f(x) =∑∞
i=1 βig(xi, x). Comparing this equation with (11), As-

sumption 5.2 implies that the chosen kernel can perform
sufficiently well to approximate the regression function.

Assumption 5.3: Input X̂k and output Ẑk in training data
are sampled from probability distributions with correspond-
ing probability measure µ(x̂, ẑ). State estimation errors ∆Xk,
∆X+

k are independent of Xk and Ẑk, respectively.
Under Assumption 5.1, according to Mercer’s theorem (The-
orem 4.2 in [6]), there is a set of orthonormal eigenfunctions
{φj} and nonnegative eigenvalues {λj} corresponding to
the kernel such that g(x, x′) =

∑∞
j=1 λjφj(x)φj(x′) where∑∞

j=1 λj < ∞. Under Assumption 5.2, there exists a set
of constants cj ∈ R such that f(x∗) =

∑∞
j=1 cjφj(x∗).

There are infinitely many set of orthonomal eigenfunctions.
Of them, we choose one such that Assumption 5.4 holds;
e.g., φj(x) = e

√
−1

2
jx (Fourier transform).

Assumption 5.4: Eigenfunctions satisfy φj(x + ∆x) =
φj(x)φj(∆x).

Theorem 5.1: Under Assumptions 5.1, 5.2, 5.3 and 5.4,
it holds that
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f̂k|E[Jk](x∗) =
∑∞
j=1

[ λj

λj+σ2/N(k)
1

N(k)

∑N(k)
i=1 (cjφj(−∆xi)

+ ∆xi
∫
φj(x̂)dµ(x̂))φj(x∗)

]
.

Interpretation of Theorem 5.1. According to Theo-
rem 5.1, identification error is described by

f̃k|E[Jk](xk−1, uk−1, x̂k−1) = f(xk−1)− f̂k|E[Jk](x̂k−1)

= f(xk−1)−f̂k|E[Jk](xk−1)+f̂k|E[Jk](xk−1)−f̂k|E[Jk](x̂k−1)

=

∞∑
j=1

(cj −
λj

λj + σ2/N(k)
cj)φj(xk−1)

+

∞∑
j=1

λj
λj + σ2/N(k)

(cj − cj
1

N(k)

N(k)∑
i=1

φj(∆xi))φj(xk−1)

−
∞∑
j=1

λj
λj + σ2/N(k)

∫
φj(x̂)dµ(x̂)

N(k)

N(k)∑
i=1

∆x+
i φj(x̂k−1)

+

∞∑
j=1

λj
λj + σ2/N(k)

1

N(k)

N(k)∑
i=1

(cjφj(∆xi)

−∆x+
i

∫
φj(x̂)dµ(x̂))(φj(xk−1)− φj(x̂k−1)).

The first term shows the function identification error given
∆Xk = 0 and ∆X+

k = 0. This error decreases as N(k) →
∞, where limk→∞N(k) = limk→∞ k + N(0) = ∞. The
second term is the error induced by ∆Xk. Since φi(0) = 1
under Assumption 5.4, this error is zero if ∆Xk = 0. If the
total approximation error induced by ∆Xk grows slower than
a linear rate; i.e., there exist α > 0, 0 < β < 1, and kτ such
that ‖N(k) −

∑N(k)
i=1 φj(∆xi)‖ ≤ α(N(k))β for ∀k ≥ kτ ,

then limN(k)→∞ cj−cj 1
N(k)

∑N(k)
i=1 φj(∆xi) = 0. Similarly,

the third term is the error induced by ∆X+, and vanishes if
∆x+

i = 0. Also, limN(k)→∞
1

N(k)

∑N(k)
i=1 ∆x+

i = 0 if there
is the finite number of indices such that ∆x+

i 6= 0. The last
term is the error induced by the current input. This term
decreases as the estimation error ‖x̂k−1 − xk−1‖ decreases.

VI. DISCUSSIONS: UNKNOWN COMPROMISED SENSORS

If the defender is unaware of vulnerable sensors, the
defender needs to consider all possible combinations of
sensor attack locations. Let J denote the set of hypothetical
modes, and each mode j ∈ J assumes that a particular
subset of sensors may be corrupted by sensor attacks, and the
others are free of sensor attacks. Due to different assumptions
on the attack locations, each mode j ∈ J has different output
yj1,k and yj2,k in (5). We conduct ArE algorithm (Algorithm 2)
for each mode j ∈ J and find a prior probability and a
posterior probability (see below). Then, the training data set
update in ArGPR algorithm (Algorithm 1) is conducted using
the values associated with the most likely mode ĵk.

We quantify the difference between the predicted
output and the measured output as follows νjk =
yj2,k − Cj2,kx̂

j
k|k−1. The output error νjk is a multi-

variate Gaussian random variable. Therefore, the like-
lihood function is given by N j

k , p(yk|j =

true) = N (νjk; 0, P̄ jk|k−1) =
exp(−(νj

k)T (P̄ j
k|k−1

)−1νj
k/2)

(2π)
dim(y

j
2,k

)/2|P̄ j
k|k−1

|
1
2

TABLE I: System variables and parameters

System variables
f angular frequency θ phase angle
PM mechanical power Pij power flow
PC controllable load PL net load
Pelec electrical power output
System parameters
D damping constant m angular momentum
tij tie-line stiffness

where P̄ jk|k−1 = Cj2,kP
j
k|k−1(Cj2,k)T + Rj2,k is the error

covariance matrix of νjk. By the Bayes’ theorem, the posterior

probability is ρjk =
ρ̄jk∑|J |
i=1 ρ̄

i
k

, where ρ̄jk = max{ηjkρ
j
k−1, ε}

and 0 < ε < 1
|J | is a pre-selected small constant preventing

the vanishment of the mode probability. The most likely
mode is chosen as the current mode ĵk = argmaxj(ρ

j
k).

VII. NUMERICAL SIMULATION

We present the simulations on the IEEE 68-bus test system
(Figure in [18]) where the results of the ArGPR algorithm
are compared with those of the GP-EKF algorithm in [12].

System model. We consider a power network represented
by an undirected graph (V, E) where V , {1, · · · , 68} and
E ⊆ V × V are the set of buses and the set of transmission
lines, respectively. Let us denote Si , {l ∈ V\{i}|(i, l) ∈ E}
the set of neighboring buses of i ∈ V . Each bus is either a
generator bus i ∈ G or a load bus i ∈ L and V = G ∪ L.
The dynamic system of a generator bus i ∈ G with attacks
is described as the following nonlinear system [19]:

∆θ̇i(t) = ∆fi(t) + w1,i(t)

∆ḟi(t) = − 1

mi

(
Di∆fi(t) +

∑
j∈Si

∆Pij(t)−∆PMi
(t)

+ da,i(t) + ∆PLi(t)
)

+ w2,i(t)

yi,k =[∆θi,k,∆fi,k,∆Peleci,k]T + [0, dTs,i,k]T + vi,k (12)

where ∆Pij(t) = tij sin(∆θi(t)−∆θj(t)) and ∆Peleci,k =
∆PLi

(t) + Di∆fi(t). Table I summarizes the system vari-
ables and parameters and ∆ denotes the distance from
nominal value. Vectors da,i(t) ∈ R and ds,i,k ∈ R2 denote
actuator attack and sensor attack, respectively. The dynamic
system for i ∈ L has the same dynamic model except
∆PMi(t) = −∆PCi(t). We assume that power demand
∆PLi

(t) is known because it can be predicted by load
forecasting methods [20]. Mechanical power ∆PMi

(t) and
controllable load ∆PCi

(t) are considered known inputs of
each bus, and we implement backstepping based stabilizing
distributed controllers [21] for frequency control. Subscript
k of a continuous-time variable stands for kth discrete time
value; e.g., da,i,k = da,i(tk).

Simulation settings. Noises wi(t) and vi,k are zero-mean
Gaussian with covariance Qi,k = 0.012I , and Ri,k = 0.012I .
Sampling period is ε = 0.1s. The system parameters are
adopted from page 598 in [22], where Di = 1, tij = 1.5,
and mi = 10 for ∀i ∈ V . The systems (12) for ∀i are subject
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Fig. 1: State estimation errors
∑
i∈V ‖xi,k − x̂i,k‖2 in log-

scale, where xi,k = [∆θi,k,∆fi,k]T .

to both actuator attacks da,i(t) = 30 sin( i·tk10π )+ i
100 for t > 1

and sensor attacks ds,i,k = [2+0.3 sin(tk− i), 0]T for t > 7.
Distributed implementation. We implement the ArGPR

algorithm in a distributed way. Each bus is associated with a
local defender. At time k, each local defender i measures
yi,k and receives ∆θ̂j,k−1 from j ∈ Si. For the ArGPR
algorithm, mechanical power ∆PMi(t) (controllable load
∆PCi

(t), resp.) as well as the estimate of neighboring states
θ̂j,k are treated as inputs for i ∈ G (i ∈ L); i.e., ui,k =
[∆PMi,k, {∆θ̂j,k}j∈Si ]T (ui,k = [∆PCi,k, {∆θ̂j,k}j∈Si ]T ).
Each local defender is unaware of system (12) but is aware
of the true hypothetical mode. We use 1 randomly chosen
training pair for initialization. The GP-EKF algorithm in [12]
is implemented with the same settings for comparison.

Simulation results. Figures 1 and 2 summarize the sim-
ulation results. In Figure 1, the bold line represents the
ArGPR algorithm, the dashed line represents the GP-EKF
algorithm. It shows that state estimation errors of the ArGPR
algorithm diminish, while those of the GP-EKF algorithm
remain large. On the other hand, the GP-EKF algorithm fails
to estimate states attack-resiliently. Figure 2 presents attack
vector estimation errors where d′2,i,k = [0,−da,i,k/mi]

T =

[0,−3 sin( i·t
10π )− i

1000 ]T , and function approximation errors
f̃i,k. The both errors remain low in ArGPR, but function
approximation errors are subject to attacks in the GP-EKF.

VIII. CONCLUSION

We study attack-resilient GPR of unknown nonlinear dy-
namic systems against both sensor attacks and actuator at-
tacks. We propose a new learning algorithm by incorporating
our recently developed unknown input and state estimation
technique into the Gaussian process regression algorithm.
We empirically demonstrate that the proposed algorithm
estimates internal state attack-resiliently, outperforming the
GP-EKF algorithm. Unlike existing attack detectors, the
proposed algorithm does not require prior system models.

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[2] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami. Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, pages 506–519. ACM, 2017.

[3] D. Angluin and P. Laird. Learning from noisy examples. Machine
Learning, 2(4):343–370, 1988.

[4] S. A. Goldman and R. H. Sloan. Can PAC learning algorithms tolerate
random attribute noise? Algorithmica, 14(1):70–84, 1995.

Fig. 2: Actuator attack vector estimation errors in log-scale∑
i∈V ‖d′2,i,k−d̂2,i,k‖2; function approximation errors in log-

scale
∑
i∈V ‖f̃i,k‖2.

[5] M. Kearns and M. Li. Learning in the presence of malicious errors.
SIAM Journal on Computing, 22(4):807–837, 1993.

[6] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for
machine learning, volume 1. MIT press Cambridge, 2006.

[7] J. Wang, A. Hertzmann, and D. M. Blei. Gaussian process dynamical
models. In Advances in neural information processing systems, pages
1441–1448, 2006.

[8] M. A. Osborne, R. Garnett, K. Swersky, and N. De Freitas. Prediction
and fault detection of environmental signals with uncharacterised
faults. In AAAI, 2012.

[9] R. Murray-Smith and D. Sbarbaro. Nonlinear adaptive control using
nonparametric Gaussian process prior models. IFAC Proceedings
Volumes, 35(1):325–330, 2002.

[10] B. Safarinejadian and E. Kowsari. Fault detection in non-linear
systems based on GP-EKF and GP-UKF algorithms. Systems Science
& Control Engineering: An Open Access Journal, 2(1):610–620, 2014.

[11] J. Ko, D. J. Kleint, D. Fox, and D. Haehnelt. GP-UKF: Unscented
Kalman filters with Gaussian process prediction and observation mod-
els. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ
International Conference on, pages 1901–1907. IEEE, 2007.

[12] E. Kowsari, B. Safarinejadian, and J. Zarei. Non-parametric fault
detection methods in non-linear systems. IET Science, Measurement
& Technology, 10(3):167–176, 2016.

[13] H. Kim, P. Guo, M. Zhu, and P. Liu. On attack-resilient estimation of
switched nonlinear cyber-physical systems. In 2017 American Control
Conference, pages 4328–4333, 2017.

[14] D. J. C. MacKay. Information theory, inference and learning algo-
rithms. Cambridge university press, 2003.

[15] P. Whittle. The risk-sensitive certainty equivalence principle. Journal
of Applied Probability, pages 383–388, 1986.

[16] T. Kailath, A. H. Sayed, and B. Hassibi. Linear estimation, volume 1.
Prentice Hall Upper Saddle River, NJ, 2000.

[17] B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer
theorem. In International Conference on Computational Learning
Theory, pages 416–426. Springer, 2001.

[18] X. Zhang, C. Rehtanz, and B. Pal. Flexible AC transmission systems:
Modelling and control. Springer Science & Business Media, 2012.

[19] A. J. Wood and B. F. Wollenberg. Power Generation Operation and
Control. New York: Wiley, 1996.

[20] H. S. Hippert, C. E. Pedreira, and R. C. Souza. Neural networks
for short-term load forecasting: A review and evaluation. IEEE
Transactions on power systems, 16(1):44–55, 2001.

[21] H. Kim, M. Zhu, and J. Lian. Distributed robust adaptive frequency
control of power systems with dynamic loads. IEEE Transactions on
Automatic Control, 2019. To appear.

[22] P. Kundur, N. J. Balu, and M. G. Lauby. Power system stability and
control. McGraw-Hill, 1994.

2986

Authorized licensed use limited to: Penn State University. Downloaded on July 30,2021 at 15:17:44 UTC from IEEE Xplore.  Restrictions apply. 


