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Abstract

We extend several g-type theorems for connected, orientable homology manifolds without
boundary to manifolds with boundary. As applications of these results we obtain Kiihnel-
type bounds on the Betti numbers as well as on certain weighted sums of Betti numbers of
manifolds with boundary. Our main tool is the completion A of a manifold with boundary
A; it is obtained from A by coning off the boundary of A with a single new vertex. We
show that despite the fact that A has a singular vertex, its Stanley—Reisner ring shares a few
properties with the Stanley—Reisner rings of homology spheres. We close with a discussion of
a connection between three lower bound theorems for manifolds, PL-handle decompositions,
and surgery.

1 Introduction

This paper is devoted to the study of face numbers of manifolds with boundary. While [24]
established the best to-date lower bounds on the g-numbers of manifolds with boundary, our
emphasis here is on Macaulay-type inequalities involving the g-numbers.

The quest for characterizing possible f-vectors of various classes of simplicial complexes or at
least establishing significant necessary conditions started about fifty years ago with McMullen’s
g-conjecture [18] that posited a complete characterization of f-vectors of simplicial polytopes. In
ten years, this conjecture became a theorem [8, 34]. This gave rise to algebraic and combinatorial
versions of the g-conjecture for simplicial spheres. Very recently Adiprasito [1] announced a proof
of the most optimistic algebraic version of this conjecture. In the late 1990s, Kalai proposed a
far reaching generalization of the sphere g-conjecture to simplicial manifolds without boundary.
The authors proved that the (weaker) algebraic version of the g-conjecture for spheres implies all
the enumerative consequences of Kalai’s manifold g-conjecture, see [28]. Furthermore, Murai and
Nevo [22] establsihed a g-variation of this result. In this paper we extend both of these statements
to manifolds with boundary.

The main idea (that goes back to Kalai [13, Section 11]) is as follows: given a simplicial complex
A whose geometric realization is a connected, orientable, homology manifold with boundary, we
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define the completion of A — a complex A obtained from A by coning the boundary of A (all
components of it) with a single new vertex vy. We then show that, despite the fact that A has
a singular vertex, a certain quotient of a generic Artinian reduction of the Stanley—Reisner ring
of A enjoys several properties that Artinian reductions of the Stanley—Reisner rings of simplicial
spheres have. This result together with the computation of the Hilbert function of this quotient
allows us to extend virtually all known results on face numbers of orientable manifolds without
boundary to the class of orientable manifolds with boundary.

The main results and the structure of the paper are as follows. In Section 2 we discuss basics
of simplicial complexes and Stanley—Reisner rings. In particular, we review Grabe’s theorem on
local cohomology [12] and introduce our main player — the completion A of a manifold with
boundary A. Section 3 is devoted to the Gorensteiness and the weak Lefschetz property of a
certain quotient of the Stanley—Reisner ring of A, see Theorem 3.1 and Corollary 3.6. Section 4
computes the Hilbert function of this quotient, Theorem 4.1. This result is used in Section 5
to establish two versions of g-theorems for manifolds with boundary, Theorems 5.1 and 5.3. In
Section 6 we use these g-results to derive Kiithnel-type bounds on the Betti numbers and certain
weighted sums of Betti numbers of manifolds with boundary. Finally, in Section 7, we examine
the combinatorial and topological consequences of some of the known inequalities for f-vectors
of homology manifolds with boundary when they are sharp. More specifically, we discuss a
connection between three lower bound theorems for manifolds, PL-handle decompositions, and
surgery, see Theorems 7.2, 7.11, and 7.16.

2 Preliminaries

In this section we review the necessary background material on simplicial complexes and their
Stanley—Reisner rings with a special emphasis on homology manifolds with and without boundary
as well as on singular simplicial complexes that have only one singular vertex. We refer the reader
to [35, Chapter 2] and the papers [29, 30] for more details on the subject.

2.1 Simplicial complexes: homology manifolds and their completions

A simplicial complez A on the ground set V is a collection of subsets of V' that is closed under
inclusion. The maximal faces (with respect to inclusion) are called facets. The dimension of a
face F € Ais dim F' := |F| — 1 and the dimension of A is the maximal dimension of its faces. A
complex is pure if all of its facets have the same dimension. A complex A is j-neighborly if every
j-element subset of V is a face of A.

Let A be a simplicial complex and let F' be a face of A. The star and the link of F' in A are
the following subcomplexes of A:

stF=staF:={GEA | GUFeA}, kF=IkaF:={GestaF | GNF =0}

In particular, the link of the empty face is the complex A itself. We refer to the links of non-
empty faces as proper links. The contrastar of F in A (also known as the deletion of F' from A) is
cost ' = costa F':={G € A |G 2 F}. If v is a vertex (i.e., a O-dimensional face), it is customary
to write v € A, stv, kv, and cost v instead of {v} € A, st{v}, Ik{v}, and cost{v}. (In fact, we
will sometimes write A — v instead of cost{v}.) Also, if v9 ¢ V is a new vertex, then the cone
over A with apex vp is vo * A== AU{vyUF | F € A}.



Throughout the paper, we fix an infinite field k. We denote by H,(A;k) the reduced simplicial
homology of A with coefficients in k and by 3;(A) := dimy H;(A; k) the i-th reduced Betti number.
Occasionally, we also use the (reduced) relative simplicial homology of a pair (A,T): H;(A,T;k)
and the corresponding Betti numbers §;(A,T') := dimy H;(A, T'; k). We remark that H;(A,I'; k) =
H;(A,T;k) for all ' C A and all 7 > 0 and that Ho(A,T;k) = Ho(A,T;k) if T # (. On the other
hand, Bo(A,0) = Bo(A) = Bo(A,0) — 1.

One of the central objects of this paper is a k-homology manifold. A pure (d — 1)-dimensional
simplicial complex A is a k-homology manifold without boundary (or a closed k-homology manifold)
if the homology (computed over k) of every proper link of A, lka F', coincides with the homology
of a (d — 1 — |F|)-dimensional sphere. In this case, we write A = (). Similarly, a pure (d — 1)-
dimensional simplicial complex A is a k-homology manifold with boundary if every proper link
of A, Ika F, has the homology of a (d — 1 — |F|)-dimensional sphere or a ball (over k), and the
boundary complex of A, i.e.,

DA = {F e A| H.(Ika F;k) = o} u {0},

is a (d — 2)-dimensional k-homology manifold without boundary. The faces of OA are called
boundary faces. The non-boundary faces of A are called interior faces. When the field plays no
role we simply call A a homology manifold (with or without boundary). We refer the reader to
Chapter 8 of Munkers’ book [19] (and especially §§63, 65, 70 and 72 there) for more background
on homology manifolds.

The prototypical example of a homology manifold (with or without boundary) is a triangu-
lation of a topological manifold (with or without boundary). A connected k-homology manifold
A is orientable if the top homology of the pair (A, 0A) is 1-dimensional. In this case, (A, 0A)
satisfies the usual Poincaré—Lefschetz duality associated with orientable compact manifolds. Note
that an arbitrary triangulation of any topological manifold (orientable or not, with or without
boundary) is an orientable Z/27Z-homology manifold.

A k-homology (d — 1)-sphere is a (d — 1)-dimensional k-homology manifold without boundary
that has the same homology as the (d — 1)-dimensional sphere. A k-homology (d — 1)-ball is a
(d — 1)-dimensional k-homology manifold with boundary whose homology is trivial and whose
boundary complex is a k-homology (d — 2)-sphere. The contrastar of any vertex in a k-homology
(d — 1)-sphere is a k-homology (d — 1)-ball. Furthermore, every proper link of a k-homology
manifold without boundary is a k-homology sphere, while a proper link of a k-homology manifold
with boundary is a k-homology sphere or ball.

Let A be a k-homology manifold with or without boundary and let vy € V be a new vertex.
A key to most of our proofs is the completion of A, A, defined as follows:

A= AU (vg * OA).

Note that we define vg* () = 0; hence if A is a homology manifold without boundary, then A = A.

A pure simplicial complex I' is a complex with at most one singularity if all of the vertex links
of I' but possibly one are k-homology balls or spheres. This exceptional vertex is called a singular
vertex; the other vertices are called non-singular. For instance, if A is a k-homology manifold
with boundary, A is a completion of A, and v # vg, then both A and cost A v are complexes with
(at most) one singular vertex, namely, vg.

When only topological properties of a space are relevant we may use capital roman letters.
For instance, “If X is a d-dimensional ball, then its boundary Y is a (d — 1)-dimensional sphere.”



2.2 Face numbers and the Stanley—Reisner rings

Let A be a (d — 1)-dimensional simplicial complex on the vertex set V. Denote by f;(A) the
number of i-dimensional faces of A. The f-vector of A is f(A) = (f-1(A), fo(A),..., fa—1(A))
and the h-vector of A is h(A) = (ho(A), h1(A),. .., hq(A)), where

hi(A) = Zi:(—l)” @:‘Z) fi-1(4).

J=0

Let A = k[z, | v € V] be a polynomial ring, and let m = (x, | v € V') be the graded maximal
ideal of A. For F C V, write zp := [] Zy. The Stanley—Reisner ideal In of A is the ideal of
A defined by

veF

In=(zp | FCV,F¢A).

The Stanley—Reisner ring k[A] of A (over k) is the quotient ring k[A] = A/Ia. In particular,
k[A] is a graded ring; it is also a graded A-module. If dim A = d — 1, then the Krull dimension
of k[A] is d and the Hilbert series of k[A] is given by ([35, Chapter II.1])

d ) 3
Hilb(k[A; \) = W

A linear system of parameters (or l.s.o.p for short) for k[A] is a sequence © = 01,...,04 of
d = dim A + 1 linear forms in m such that

k(A, 0) := k|A]/OKk[A]

has Krull dimension zero (i.e., it is a finite-dimensional k-space). Since k is infinite, by the
Noether normalization lemma, an l.s.0.p. always exists: a generic choice of 01, ..., 0 does the job.
The ring k(A, ©) is called an Artinian reduction of k[A].

We need a few more definitions. If M is a finitely-generated graded A-module, we let M;
denote the j-th homogeneous component of M. For 7 € A, define (0:p 7) :={v € M | 7v = 0}.
The socle of M is the following graded submodule of M:

Soc M = ﬂ(O:Mxv):{I/EM]mI/:()}.
veV

In particular, for any choice of integers i; < iy < -+ < iy, @;ZI(SOC M);; is a submodule of M.
For a standard graded k-algebra M = A/I of Krull dimension zero, this allows us to define the
interior socle of M:

do—1
Soc® M := @(Soc M);, where dy :=max{j | M; # 0}.
=0
We say that A/I is a level algebra if Soc®(A/I) = 0, and that A/I is Gorenstein if it has a

1-dimensional socle. Equivalently, A/I is Gorenstein if it is level and dimy(A/I)g, = 1.
We are interested in the Hilbert functions of k(A, ©) and its quotient

k(A,0) :=k(A,0)/Soc’k(A, O).



Definition 2.1. Let A be a (d — 1)-dimensional simplicial complex and let © = 6;,...,60,4 be a
generic 1.s.0.p. for k[A]. The h’- and the h”-numbers of A are defined by

hi(A) :=dimg k(A,0); and  Rj(A) = dimy k(A,0); (for j > 0), respectively.

Although k is suppressed from our notation, the A’- and h”-numbers do depend on k. For any
(d—1)-dimensional simplicial complex A, h(A) = 0 for all j > d (see [35, Proposition I11.2.4(b)]),
while h/y(A) = R4(A) = Ba_1(A) (see [38, Theorem 4.1] and [3, Lemma 2.2(3)]). The following
theorem collects several other known results on A/- and h”-numbers.

Theorem 2.2. Let A be a (d — 1)-dimensional simplicial complex.
1. If A is a k-homology sphere or a ball, then h(A) = hi(A) for all 0 <i < d.

2. If A is a k-homology manifold with or without boundary, then
AN .
hi(A) = hi(A) — <Z> Z(—l)lfj,é’j_l(A) V0<i<d.
j=1
3. If A is a connected, orientable k-homology manifold without boundary, then

1
J=1

hi(A) = hi(A) - (>Bz 1(A) = h(A)<C.Z>zi:(1)i‘ij1(A) VO<i<d-—l.

4. If A is a complex with (at most) one singular vertex u, then for all 0 < i < d,

i—1

18 =18 = 0 ()3 + (7 ) rateona).

J

Part 1 of this theorem is due to Stanley [33], part 2 is due to Schenzel [32], part 3 is [28, Theorem
1.3], and part 4 is a special case of [30, Theorem 4.7]. When A is a k-homology manifold with
boundary, part 4 allows us to compute the hA’-numbers of A. One of the goals of this paper is to
understand the h”-numbers of A where we in addition assume that A is connected and orientable.
This requires some results on the local cohomology of k[A] that we review in the next subsection.

It is worth pointing out that there are several reasons for working with A instead of A itself.

One of the reasons is that, as we will see in Section 3, the ring k(A, ©) is Gorenstein. Another
reason is that the h”-numbers of k-homology manifolds with boundary are hard to calculate. In
view of Schenzel’s formula (Theorem 2.2(2)), to compute the A”-numbers of a homology manifold
A (with or without boundary), one needs to understand the module Soc k(A, ©). Theorems 2.2
and 3.4 in [29] decompose this module into two parts: the first part involves the well-understood
local cohomology modules of k[A] while the second part involves a certain mysterious submodule of
Soc H(k[A]). If A is a connected, orientable k-homology manifold without boundary, then, as was
shown in [28, Theorem 2.1], the socle of H%(k[A]), and hence also the “mysterious submodule”,
vanish in all but the 0-th degree; this leads to the proof of Theorem 2.2(3). However, for k-
homology manifolds with boundary, at present we are lacking even a conjectural description of
this mysterious part. For instance, if A is a 2-dimensional disk then the h-vector of A is (1, m,n,0)
with m >n > 0. If n > 0, then 0 < dimg Soc® k(A,0) < m —n and every value in the inequality
is possible. In particular, the topology of A does not determine dimy Soc® k(A, ©).




2.3 Local cohomology and Grabe’s theorem

Let M be an arbitrary finitely-generated graded A-module. We denote by H: (M) the i-th local
cohomology of M with respect to m.

For a simplicial complex A, Griibe [12] gave a description of H{ (k[A]) and its A-module
structure in terms of simplicial cohomology of the links of A and the maps between them. When
A is a complex with one singular vertex u, this description takes the following simple form. For
F € A, consider the i-th simplicial cohomology of the pair (A, costa F') with coefficients in k:

Hi(A) == HY(A, costa F; k) = H I (1ks F; k).

In particular, Hj = Hi(A,0;k) = H(A;k). G C F € A, welet o* : Hi.(A) — H5(A) be the
map induced by inclusion ¢ : costa G — costa F'.

Theorem 2.3. [Grébe] Let A be a (d—1)-dimensional simplicial complex with one singular vertex
u, and let —1 <i<d—1. Then

| 0 if j <0,
HP (K[A]) -y = ¢ Hy(D)  if j=0,
Hi (D) if j>0.

For every vertex w # u and any integer j, the map X : H&H(k[A])_(jH) — HEYK[A])—; is
the zero map; on the other hand,

0-map ‘ if 7 <0,
=4 U Hiu}(A) — Hy(A) if j =0,

identity map: HEU}(A) — Hfu}(A) if j > 0.

The description of Hd(k[A]) is quite a bit more involved. To this end, for a monomial p € A,
define the support of p by s(p) := {v € V | z, divides p}. Let M(A) be the set of all monomials
in A whose support is in A, and let M;(A) := {p € M(A) | deg(p) = j}.

Theorem 2.4. [Gribe| Let A be any (d — 1)-dimensional simplicial complex. Then for j € Z,

HL(K[A])-; = @ H,, where Hp:Hg(;)l(A),
PEM;(A)

and the A-structure on the p-th component of the right-hand side is given by

0-map if €& s(p),
=14 Hg(;)l(A) — Hj(;}xé)(A) if € € s(p), but £ ¢ s(p/xy),
identity map: Hg(;)l(A) — Hg(;}xé)(A) if £ € s(p), and £ € s(p/xy).

3 The Gorenstein and Weak Lefschetz properties

If A is a k-homology sphere and © is an arbitrary l.s.o.p. for k[A], then k(A, ©) is Gorenstein
(see [35, Theorem I1.5.1]). This result was extended in [28, Theorem 1.4] to connected, orientable



k-homology manifolds without boundary: if A is such a complex and © is an ls.o.p. for k[A],
then k(A, O) is Gorenstein. Here we further extend this result to manifolds with boundary.

Throughout this section, we let A be a k-homology manifold with boundary. We assume that
A is (d — 1)-dimensional and has vertex set V', and so A has vertex set Vp := V U {vo}. The main
result of this section is:

Theorem 3.1. Let A be a connected, orientable k-homology manifold with boundary and let ©
be a generic Ls.o.p. for K[A]. Then k(A,©) is Gorenstein.

The proof relies on a few lemmas. For these lemmas we fix a vertex v of A. (Hence v is a
non-singular vertex of A.)

Lemma 3.2. Let A be a (d — 1)-dimensional, k-homology manifold with boundary, and let v be
a vertex of A. Then for all j < d— 3,

Bi(A) = Bj(costy v) and B;(A) = Bj(costa v).

Proof:  The proof is a simple application of the Mayer-Vietoris argument. Indeed, since v # v,
the link L := lks v is a k-homology (d — 2)-sphere, while the link L := lka v is a k-homology
(d — 2)-sphere or a (d — 2)-ball. In either case, 3;(L) = 3;(L) = 0 for all j < d — 3. Since, the

stars sta v and st{ v are acyclic, considering the following portion

HJ(L) — ij(COStA 1)) D f[j(StA’U) — I{I](A) — f]jfl(L)

of the Mayer-Vietoris sequence for A and its analog for A yields the result. O

The following lemma is a generalization of [36, Proposition 4.24]. We set A :=k[z,, | u € V}]
and AY = k[z, | u € Vp\ {v}]. Observe that k[A] and k[cost 5 v] have natural A-module
structures (where multiplication by x, on k[cost 4 v] is the zero map), while k[lk ; v] has a natural
AY-module structure (if w # v is not in the link of v, then multiplication by =z, is the zero
map). Let © = 61,...,04 € A be a generic Ls.o.p. for k[A], and hence also for klcost 4 v]. Since
O is generic, #; has non-vanishing coefficients. So by scaling the variables if necessary, we can
work in an isomorphic setting and assume w.l.o.g. that all coefficients of 6; are equal to 1. Let
01 = 61 — xy, and for j > 1, let 0; = 0; — c;01 where c; is the coefficient of z, in 6;. Then
61,65, ...,0, can be viewed as elements of A, with ©" = {6,,...,6/} C A’ forming an L.s.0.p. for

k[lk 4 v]. Furthermore, the ring k(lks v, ©") inherits an A”-module structure, and defining
xy-y:=—01-y foryek(lksv, 0"
extends it to an A-module structure.

Lemma 3.3. Let A be a (d — 1)-dimensional, connected, orientable k-homology manifold with
boundary, and let v be a vertex of A. Then the map

b+ k(lkg v,0%) — (z,)k(A,©)  given by z — z, - 2,

is well-defined and is a graded isomorphism of A-modules (of degree 1).



Proof:  The proof of [36, Proposition 4.24] shows that ¢, is a well-defined and surjective homo-
morphism of A-modules. Thus to complete the proof, it suffices to check that for 1 <14 < d, the
dimensions of k-spaces (k(lkz v, @”))i_l and ((xv)k(A, @))Z agree. Since v # v, the link lkz v
is a k-homology sphere, and so

dimy (k(lky 0,0%)), , = hi1(lkyv) for all i < d. (3.1)

To compute dimy (( ) K(A, A )) for 7 < d, consider the following exact sequence, induced by
the natural surjection k[A] — k[cost ; AV,

0— (z,)k(A,0) = k(A,0) — k(cost; v,0) — 0. (3.2)

If i = d, then, since A is connected and orientable, dimy (k(A,@))d = Bd_l(A) = 1 while
dimy k(cost; v,0)q = Bd,l(costA v) = 0. Hence, in this case eq. (3.2) implies that

dimy ((z)k(A, 0)), = dimyk (k(A,0)), =1 = B4_1(lkz v) = dimy (k(lkz v,0")), ;.

as desired.

Thus for the rest of the proof we assume that 1 < i < d — 1. Since both A and cost AV are
complexes with at most one singular vertex, namely vg, and since cost; vo = A, we infer from
Theorem 2.2(4) that

— d—1)\ - d—1)\ -

Jj= 1
and that a similar expression holds for dimy (k(costz v, @))Z — hi(cost; v): to obtain it, simply
replace all occurrences of A on the right-hand side of (3.3) with costy v and those of A with

costa v. Since according to Lemma 3.2, for i < d — 1, these replacements do not affect the value
of the right-hand side of (3.3), we conclude that for all 1 <i <d—1,

dimy ((xv)k(A, @))Z L2 Jimy (k(A, ©)), — dimy (k(cost 4 v, @))Z = hi(A) — hi(cost 4 v)
= hi(lkg ) TEY dimy (k(kg v, 0%) |,
where the penultimate step uses [2, Lemma 4.1]. The result follows. ]

We are now in a position to prove Theorem 3.1. Our proof follows the same outline as the
proof of [28, Theorem 1.4] with an additional twist at the end.

Proof of Theorem 3.1: Let A be a (d — 1)—dimensionql, connected, orientable k-homology
manifold with boundary, and let © be a generic l.s.o.p. for k[A]. (As before, we assume w.l.o.g. that
all coefficients of #; are equal to 1.) Then dimy k(A, 0), = Bd,l(A) = 1. Hence, we only need
to verify that the socle of k(A,0) = k(A, @)/ Soc® k(AA7 ©) vanishes in all degrees j # d. Since
(Soc’k(A,0)), =0 and (Soc’k(A,0)), , = (Sock(A,©)), ,, this does hold for j =d — 1.
Now, let j < d—2, and let y € k(A, 0); be such that z, -y € (Sock(A, ©));j+1 for every vertex
v of A. We must show that y € Sock(A, 0). Assume first that v # vg. Then the isomorphism of
Lemma 3.3 implies that y¥ := ¢, !(x, - y) (k(lky v,©")); is in the socle of k(lk v, ©"). Since




lk4 v is a k-homology (d — 2)-sphere, k(lkz v, ©%) is Gorenstein, and hence its socle vanishes in
all degrees < d — 2. Therefore, y¥ = 0. We conclude that

Ty -y = du(y’) = 0in k(A,0) for all v # vp. (3.4)
Finally, to show that z,, -y =0 in k(A, ©), recall that 6, = z,, + Zv;évo Ty, and so
91-y:3:v0-y+z:n@-y. (3.5)

v#£vo

The left-hand side of (3.5) is zero in k(A, ©) = k[A]/Ok[A]. Furthermore, by (3.4), all summands
on the right-hand side of (3.5), except possibly z,, -y, are zeros in k(A, ©). Thus z,, - y must be
zero in k(A, ©). The result follows. O

We now turn to some consequences of Theorem 3.1. As the Hilbert function of a Gorenstein
graded k-algebra of Krull dimension zero is always symmetric, one immediate corollary is

Corollary 3.4. Let AA be a (d - 1)-dimensional, connected, orientable k-homology manifold with
boundary. Then hl(A) = hl]_.(A) for all 0 <i < d.

Let T" be a k-homology (m — 1)-sphere or (m — 1)-ball. We say that I" has the weak Lefschetz
property over k (the WLP, for short) if for a generic Isop © for k[I'] and an additional generic linear
form w, the map -w : k(T @)L%J — k(T, @)L%JH is surjective. For instance, by a result of Stanley
[34], the boundary complexes of all simplicial polytopes have the WLP over Q. Furthermore, it
follows from [20, Cor. 3.5] and [40] that all triangulations of 2-dimensional spheres have the WLP
over any infinite field. Combined with the argument given in [36, Corollary 4.29] (see also the
proof of [29, Theorem 5.2]) this leads to the following (by now well-known) lemma:

Lemma 3.5. Letd > 4 and let A be a (d—1)-dimensional k-homology manifold without boundary.
Then the map k(A,0)4—2 — k(A,0)4_1 is surjective.

Building on some of these ideas, it was proved in [28, Theorem 3.2] that if A is a (d — 1)-
dimensional, connected, orientable k-homology manifold without boundary, and if all but at most

d vertex links of A have the WLP over k, then for generic © and w, the map -w : k(A,0), —

k(A,©),,, is an injection for i < |2] and is a surjection for i > [4]. The proof relied on

[36, Theorem 4.26] and on the Gorenstein property of k(A, ©) established in [28, Theorem 1.4]).
Noting that [36, Theorem 4.26] continues to hold for A and using Theorem 3.1 instead of [28,

Theorem 1.4], but leaving the rest of the proof of [28, Theorem 3.2] intact, yields the following

generalization:

Corollary 3.6. Let A be a (d — 1)-dimensional connected, orientable k-homology manifold with
boundary.

1. If d > 4, then the map w : k(A,@)i — k(A>®)i+1 18 an injection for ¢ < 1 and is a
surjection for i > d — 2.

2. If for all vertices v of A, the link Ikz v has the WLP over k, then the map -w : k(A, 0), —

~

k(A,0),,, is an injection for all i < L%J and is a surjection for all i > [g]

9



Remark 3.7. A recent preprint by Adiprasito [1] announces a spectacular generalization of Stan-
ley’s result [34]: for an arbitrary infinite field k, every k-homology sphere has the weak Lefschetz
(and even strong Lefschetz) property over k, and so the hypothesis of the WLP assumption in
the statement of Corollary 3.6 as well as in the rest of the paper might be unnecessary.

To apply results of this section to the study of face numbers of homology manifolds with

boundary, we first need to work out the A”-numbers of A, that is, the Hilbert function of k(A, 0).
This is done in the next section.

4 The h"-numbers of A

In this section we prove the following extension of Theorem 2.2(3) to manifolds with boundary.

Theorem 4.1. Let A be a (d — 1)-dimensi0na}, connected, orientable k-homology manifold with
boundary and let © be a generic l.s.o.p. for K[A]. Then for all i < d,

1. dimy (Sock(A, 9)), = (‘3:11)52_1(A) + (dzl)[g’i_l(A), and

2. h!(A) = hi(A) - 23:1(—1)i_j ((?:%)Bj—l(A) + (dzl)/éj—l(A)>'

Remark 4.2. It is instructive to rewrite both formulas of the theorem purely in terms of A.
Indeed, by connectivity, BO(A) = Bo(A) =0, while

Hi1(Ask) = Hj1 (A sty vo; k) = Hj1(A,0A:k) =2 Hy_j(Ask) YV j<d,

where the first step follows from the acyclicity of vertex stars, the second by excision, and the third
by Poincaré-Lefschetz duality. Furthermore, h;(A) = h;(A) + hi_l(lk A vo) = hi(A) + hi—1(0A)
(see [2, Lemma 4.1]). Thus, for i < d, Theorem 4.1 can be rewritten as

1. dimyg (Sock(A,0)). = (71 Bi—1(A) + () Bai(A);
2. B(A) = hi(A) + hi1(9A) = Y5y (—1)"77 ((dzl)/éjfl(A)‘F (?:i)Bd_j(A)).

Note that if A is a connected, orientable k-homology manifold without boundary, then (1) A=A,
(2) Ba—j(A) = Bj—1(A) for all 1 < j < d (by Poincaré duality), and (3) h;—1(0A) = 0 for all i
(since DA = ). In this case, the above formula for hY(A) reduces to Theorem 2.2(3).

To prove Theorem 4.1, several lemmas are in order. As in the previous section, we continue
to assume that O is a generic l.s.o.p. for k[A] and that all coefficients of 6; are equal to 1.

Lemma 4.3. Let A be a (d — 1)-dimensional k-homology manifold with boundary. Then

R 2 01 . R
(Sock(A,0)). = @( , )(Hgl(k[A]/Hlk[A]))i_j PB(SB)i_@-1) Vi€,

=0~ 7

where SB is a graded submodule of Soc Hﬁll_l( A]/0:k[A ) Furthermore, for j < d— 2,

( ) if £ =1
dimy (HZ (k[A]/6:1k[A ])) =< Bi_1(A) if£=0
0 otherwise.
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Proof: Since A has at most one singularity, Lemma 4.3(2) of [30] implies that k[A]/6,k[A] is a
Buchsbaum A-module of Krull dimension d — 1. The first part of the statement then follows from
[29, Theorem 2.2], while the second part follows from [30, Lemma 4.3(1) and Theorem 4.7]. O

We now turn our attention to the submodule SB of Soc HZ™1 (k[A]/Hlk[A]).

Proposition 4.4. Let A be a (d — 1)—dimensional,A connecAted, orientable k-homology manifold
with boundary. Then, for all £ < —1, (Soc H,ﬁlfl(k[A]/Hlk[A]))g =0, and hence (SB); = 0.

Proof: Since depthk[A] > 1, 6, is a non-zero divisor on k[A]; in other words, the sequence

A~

0 — k[A](=1) -2 K[A] — Kk[A]/0,k[A] — 0

is exact. (For a graded A-module M, M (—1) denotes M with grading defined by M (—1), = My_1.)
The above sequence induces a long exact sequence in local cohomology. In particular, the part

01

HEH(k[A]) (-1) SN HEY(K[A]) — HI(K[A]/0:k[A]) — HE (K[A])(-1) 5 HE (K[A])

is exact. Thus, HZ ! (k[A] /61k[A]), considered as a vector space, is isomorphic to the direct sum
of C := Coker [HE (k[A]) (—1) % HZ1(k[A])] and K := Ker [HE (k[A]) (1) -2 H2 (k[A])].
Futhermore, on the K-part of Hgfl(k[A] /Hlk[A]), the A-module structure is induced by the
A-module structure on HZ (k[A])

Since A has (at most) one singular vertex, namely vy, Theorem 2.3 implies that for £ < —1,
the map -6y : (HZ™* (k[A]))e_1 — (HZ! (k[A]))Z is the identity map. Hence its cokernel, Cy,
vanishes for all £ < —1. Therefore, it only remains to show that the socle (Soc K),, vanishes for
all £ < —1. Indeed, by definition of socles,

(SocK), = (socKer[-91:Hg(k[A])(—1)—>Hg(k[A])}>

= (Soc HA(K[A)) (-1)), = (Soc H ([AY) )

L

-1

The following lemma verifies that the latter term vanishes, and thus completes the proof. O

Lemma 4.5. Let A be a (d — 1)-dimensional, connected, orientable k-homology manifold with
boundary. Then, for all £ > 2, <Soc HE (k[A])) = 0.

Proof: Recall that by Theorem 2.4,

Hy(k[A])-e= €D Hp where H,=HI}(A). (4.1)
PEM(A)

Fix £ > 2, and let p € My(A). Then either p is divisible by 22 for some vertex v of A (possibly
vg) or p is a squarefree monomial whose support has size at least two: s(p) 2 {v,w}. In the
former case, by Theorem 2.4, the multiplication map -x, : H, — H,/,, is the identity map,
and so no non-zero element of H, is in the socle. In the latter case, at least one of v, w is not
vo. Assume without loss of generality that w # v, and consider the map -z, : H, = H,/p, s
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which by Theorem 2.4 is simply +* : Hg(;)l(A) — H d(p}z )(A) We will show that this map is an
isomorphism, and hence that no non-zero element of #, is in the socle in this case as well.

Our argument is similar to the one used in the proof of [28, Theorem 2.1]. Denote by ||A|| the
geometric realization of A, and by b(p) and b(p/z,) the barycenters of realizations of faces s(p)
and s(p/x,), respectively. Consider the following commutative diagram, where the maps f* and

7% are induced by inclusion:

1AL TS ALALL IAL - blp/as) —L— HAY(A, costy s(p/z0)

H |

- N 2x\—1 - ~ ~ * ~ ~
aL(A) LS AELALL AL - b)) L HL(A, costy s(p).

The two maps f* are isomorphisms by the usual deformation retractions. Since w # vy and
w € s(p/xy) C s(p), the links 1k, s(p) and lk4 s(p/x,) are k-homology spheres, so the four k-
spaces on the right and in the middle of the diagram are 1-dimensional. Furthermore, since A is
connected and orientable, the k-spaces on the left of the diagram are 1-dimensional and the two
j*-maps are isomorphisms, so that (j*)~!'-maps are well-defined and are isomorphisms as well.
This implies that +* is an isomorphism and completes the proof. ]

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1: ~ We prove both parts simulataneously. If d = 2, then A is a circle, in
which case the statement is known. So assume d > 3. Lemma 4.3 and Proposition 4.4 imply that
the formula for the dimension of the socle holds for all ¢ < d — 2. Together with Theorem 2.2(4)
and Definition 2.1, this also implies that the formula for A/ (A) holds for all ¢ < d — 2. Thus, it
only remains to show that the theorem holds for i = d—1. Since by Corollary 3.4, the A”-numbers
of A are symmetric, to complete the proof of both parts, it suffices to check that the proposed
expression for h/_(A) is equal to h}(A) = hi(A).

Let x denote the reduced Euler characteristic. Note that since Gq_ 1(A) 1and B4_1(A) =0,
the proposed expression for b/ | (A), hd,l(A)—Z?:i(—l)d i-1 [( 1)Bj—1(A) + 5]-_1(A)] , can
be rewritten as

ha-1(8) = (d= 1) (1+ (=1)%(A)) = (~)*%().
Thus to complete the proof, we only need to verify that
ha-1(8) = hi(A) + (@ = 1) (1+ (~1)"XA) ) + (-1)(A).
To do so, observe that for all 7,
filA) = fi(A) + fi(stz vo) — fi(OA).
This, together with the fact that vertex stars are contractible, implies that
X(08) = X(A) + X(st5 v0) = X(A) = X(A) ~ X(A). (4.2)

12



Finally, according to [30, Theorem 3.1],

har(B) = ) +d (14 (“1)RA)) - (14 (1) x(02))
PEY h(A) + (d— 1) +d(-)A) + (-1 (U(A) - x(D))
= mA)+@-1) (1+ (DRA)) + (D)
The result follows. U

5 Applications: g-theorems for manifolds with boundary

Algebraic results obtained in the two previous sections along with Macaulay’s characterization of
Hilbert functions of homogeneous quotients of polynomial rings allow us to easily derive several
new enumerative results on face numbers of k-homology manifolds with boundary. This section is
devoted to results that generalize and are similar in spirit to the g-theorem for simplicial polytopes.
We follow the custom and define g; := h; — hi_1, g, :== h} — h,_,, and ¢} := h] — b} ;.

We start by recalling that given positive integers a and ¢, there is a unique way to write

a= (qi)+<gi_ll)+~--+<a?>, where a; > a;—1 > --->a; > 75> 1.
i 71— J

| 1 i +1 1 |
i <“7+ >+<az 1t >+...+<%+ > and 0@ — 0
1+1 1 j+1

Macaulay’s theorem [35, Theorem I1.2.2] asserts that a (possibly infinite) sequence (bg, b1, ...) of
integers is the Hilbert function of a homogeneous quotient of a polynomial ring if and only if

Define

bp =1and 0 < by < bé@ for all £ > 1. A sequence that satisfies these conditions is called an
M -vector.

Our first g-type result is an extension of [28, Theorem 3.2] to manifolds with boundary. Recall
that by Remark 4.2(2), if A is a (d — 1)-dimensional, connected, orientable k-homology manifold

~

with boundary, then h(A) = hi(A) + hi_1 (0A) — Yi_y(~1)i ( (“1B5-1(A) + (421 Bd_j(A))

~

for i < d and hjj(A) = 1.

Theorem 5.1. Let A be a (d — 1)-dimensional, connected, orientable k-homology manifold with
boundary. Then

1. h;/(A) = hg,i(A) for all 0 < i <d.
2. Ifd >4, then (1,93’(A),95(A)) is an M -vector.

3. If for all vertices v of A, 1k v has the WLP over k, then (1,gi’(A),gé’(A), e ,g’L’gJ(A)) 18
2

an M -vector.
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Proof: Part 1 is the content of Corollary 3.4. Furthermore, it follows from Corollary 3.6 and
Theorem 4.1 /Remark 4.2 that under our assumptions, for generic © and w, and for i < 2 in part
2 and ¢ < LgJ in part 3,

dimy (k(A, 0)/wk(A, e)) =g/(A, ).

i

Together with Macaulay’s theorem, this completes the proof. O

Remark 5.2. Applying the same reasoning to k(A, ©)/ @?:0 (Soc k(A, @))j instead of k(A, ©),
part 3 of Theorem 5.1 can be strengthened to the statement that

A P A d—1)\ 5 d—1\ 5
(1@ @)@+ () (1 )o@
is an M-vector for every ¢ < | 4] (cf. discussion at the bottom of page 995 in [28]).

Our second g-type result is an extension of [22, Theorem 5.4(i)] to manifolds with boundary.
To this end, in the spirit of [22, Section 5], for a (d — 1)-dimensional, connected, orientable,
k-homology manifold with boundary, A, and for r» < |d/2], define

i(d) = gd) = (1)o@ (12,) i) 6.1)

r
. v (4 d
= 9:(A) + g1 (08) = > (-1) LB+ (T )Be(d)) (5.2)
j=2
where the last equality follows from Remark 4.2(2).

Theorem 5.3. Let A be a (d — 1)-dimensional, connected, orientable k-homology manifold with
boundary.

1. If d > 4, then (1,@1(A),§2(A)) is an M -vector.

2. If for all vertices v of A, lkz v has the WLP over k, then (1,@1(A),§2(A), ) (A)) is
2
an M -vector.

Proof: Observe that by definition of g,(A),

r—1

= W (A)—h_, 1 (A) - <<d i;i 1) Ba—r(D) + (3 : i) Bd—(d—rﬂ)(A))

= hfi,fr(A) - h2177"+1 (A)a (53)

w(&) = 1@ - @) - (1)) F@+ (1))

where the middle step is by Corollary 3.4 and the last step is by Remark 4.2(1). The rest of the
proof follows the proof of [22, Theorem 5.4(i)]: the only change is that we rely on Theorem 3.1

that asserts Gorensteinness of k(A, ©) instead of [28, Theorem 1.4] that asserts Gorensteinness
of the analogous ring associated with a manifold without boundary. O
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Remark 5.4. Assume that for all vertices v of A, lkz v has the WLP over k and that for all
boundary vertices v of A, lkga v has the WLP over k; assume also that » < |(d —1)/2]. Under
these assumptions the non-negativity part of Theorem 5.3(2) is not new: the fact that g,(A) > 0
follows from [24, Theorem 1.5] (see Theorem 7.6) along with the Poincaré-Lefschetz duality and
the long exact sequence of (A, JA). For a detailed treatment of the case d > 4 and r = 2 see the
proof of Proposition 7.15.

6 Applications: Kiihnel-type bounds

The results of previous sections can also be used to extend known Kiithnel-type bounds on the
Betti numbers (and their sums) of manifolds without boundary to the case of manifolds with
boundary. Deriving such bounds is the goal of this section. Throughout this section A is a
homology manifold with boundary such that fo(A) = n. Thus, fo(A) = n + 1. In particular, all
results established in this section should be compared to known results about manifolds without
boundary and n + 1 (rather than n) vertices.

Specifically, Theorem 5.3 in [21] asserts that if A is a (d — 1)-dimensional, connected, k-
homology manifold without boundary that has n 4+ 1 vertices, then (d;d)ﬁl(A) < ("_SH) as long
as d > 4. Furthermore, Theorem 5.1 in [21] asserts that if, in addition, all vertex links of A
have the WLP over k, then (fﬂ)BT(A) < (”;ﬁrr) for all 7 < | 4] — 1. (The conjecture that for
r < |d/2| — 1 and for an arbitrary (d — 1)-dimensional simplicial manifold A with n + 1 vertices,
the inequality (ﬁﬁ)/}r(A) < (”;ﬁ”) holds is due to Kiihnel [17, Conjecture 18].) In the special
case of orientable k-homology manifolds without boundary the same results were proved in [29,
Theorem 5.2] and [27, Theorem 4.3], respectively. An easy adaptation of proofs from [29, 27]
combined with our results from the previous sections leads to the following extension. We do not

know if this extension also holds in the non-orientable case.

Theorem 6.1. Let A be a (d — 1)-dimensional, connected, orientable k-homology manifold with
boundary, and assume that fo(A) = n.

1. If d > 4, then (g)@l(A) + (’f)ﬁd,g(A) < (”_SH). If equality holds, then A is 2-neighborly

and has no interior vertices.

2. If for all vertices v of A, ks v has the WLP over k, then

(T i 1>5~r(A) + <f) Ba—r—1(A) < (n ;ji—r) for all r < L%J 1.

If equality holds, then A is (r+1)-neighborly and has no interior faces of dimension < r—1.

Proof: Since the proof is very similar to that of [27, Theorem 4.3], we omit some of the details.

Fix an integer r: r = 1 for part 1 and any r < L%J — 1 for part 2. It follows from Theorem 5.3

that g,4+1(A) is nonnegative. Hence
A A d—1 d—1\ 5
o= wa@-n@d - (1 )a@ (1) )hea)

b Rematk 4200 (AY (A — (( il)BT(A) + (f) Bd—r—l(A)> :

s}

r
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We conclude that (ril)BT(A) + (f)Bd_r_l(A) < h;H(A) — h”(A). Thus, to complete the proof,

~ ~

it suffices to show that A, (A) — h(A) < (”;ﬁrr) and that if equality holds then A is (r + 1)-

neighborly. (The latter condition implies that A is (r + 1)-neighborly and that all faces of A of
cardinality < r are in the link of vy, and hence that they are boundary faces.)
Indeed, since fo(A) = n, b} (A) = n—d+1. Macaulay’s theorem applied to k(A, ©), then shows

A~

that Al (A) = (fﬂ) for some real number x < n —d + r. Another application of Macaulay’s

theorem, this time to k(A,©)/(Sock(A,0)),, yields that k., (A) < (R/(A))"+1, and hence

that h)/(A) > (¥). Therefore, W (A) = hI(A) < (,51) < (";‘ZJ{T), as desired. Furthermore,

if h;,+1(A) - le(A) = (";ﬁrr), then dimy k(A,@)H_l =h 1 (A) = ("7fif+1), which, in turn,
implies that A is (r + 1)-neighborly. O

Corollary 6.2. Let A be a (d — 1)-dimensional, connected, orientable k-homology manifold with
boundary, and assume that fo(A) = n.

1. If d > 4, then Bl(A) < (”g“)/(g). In particular, if Bl(A) #0, then n > 2d — 1.

B r+1
r < 4] — 1. Consequently, if 3-(A) # 0, then n > 2d — r. Similarly, if both B,(A) and

Ba—r_1(A) are non-vansishing, then n > 2d —r + 1.

2. If for all vertices v of A, lks v has the WLP over k, then Br(A) < ("7d+’”)/(ril) for all

The bounds on the number of vertices in the above corollary are similar in spirit to the
bounds established by Brehm and Kiihnel [10, Theorem B| on the number of vertices that an
(r — 1)-connected, but not r-connected closed PL manifold must have.

Example 6.3. Kiihnel [14] (see also [16]) constructed for every d > 3, a (d — 1)-dimensional
handle, orientable or not depending on the parity of d, with exactly 2d — 1 vertices. (For instance,
when d = 3, this gives a unique 5-vertex triangulation of the Mobius band.) His construction
thus provides a family of connected, orientable over Z/2Z manifolds with boundary that have
non-vanishing 3; and achieve equalities in both statements of Corollary 6.2(1).

We now turn to Kiihnel-type bounds on certain weighted sums of Betti numbers. It was
conjectured by Kiihnel [15, Conjecture B and proved in [29, Theorem 4.4] (see also [26, Theorem
7.6]) that if A is a 2k-dimensional, orientable k-homology manifold without boundary and fo(A) =

n+1, then (—1)F(g(A) — 1) < (";ﬁ;l)/@kjﬁ). In fact, the proof showed that the same upper

bound applies to Bi(A) + Br_1(A) + 2 Zf;g Bi(A). The methods of [26, 29] combined with our
results from Sections 3 and 4 lead to the following extension of this result to manifolds with
boundary.

Theorem 6.4. Let A be a connected, orientable, k-homology manifold with boundary. If A is
2k-dimensional and has n vertices, then

(2

k n—k—1 n—k—1
5 ("ie1 ) (2R 5 2k \ 5 ‘ ("re1 )
@)+ 3 g bty ()o@ + () Jm@) < S o)

Equality holds if and only if A is (k+1)-neighborly and has no interior faces of dimension < k—1.

16



Examples that achieve equality include (k + 1)-neighborly triangulations of closed manifolds
of dimension 2k with one vertex removed. Before proving Theorem 6.4 we discuss some of its
consequences.

Corollary 6.5. Let A be a connected, orientable, k-homology manifold with boundary. Assume
A is 2k-dimensional and has n vertices. Then
- nfkfl)

1. Br(A) < ((zkkfl) . In particular, if B(A) # 0, then n > 3k + 2.

k+1

~ ~ n—k—1
2. If n > 3k + 2, then Br(A) + 25;21 Bi-1(A) < ((21?;11))-
k+1

n—k—1
3. If n > 4k + 2, then Zkﬂ Bi_1(A) < ((2’“;;:1)).
k+1

To derive parts 2 and 3 of Corollary 6.5 from Theorem 6.4, use routine computations with
binomial coefficients to show that if n > 4k + 2, then the coefficient of 8;_1(A) in (6.1) is at least
1 for all ¢ < k, while if n > 3k 4 2, then such a coefficient is > 1 for all i < k— 1. (And, of course,
the coefficient of B;(A) is 1.) The proof of Theorem 6.4 is very similar to that of [29, Theorem
4.4], and so we only sketch the main details.

Proof of Theorem 6.4 (Sketch): Let N, := (fO(A)7(2];+1)+p71) = ("72kpfl+p). In particular,
Niwr = N = ("51): A A
Applying Macaulay’s theorem to k(A, ©)/(Sock(A, ©));, yields that
Nz+1
N;

LAY < (A < Nt Ay -

N (h’(A) — dimy (Sock(A, @))i) for all i < 2k.

Iterating this process (see the proof of [29, Theorem 4.4] for more details), we obtain that

(D) = (D) < (6.2)

N, A N, o Ny A
(Nky1 — Ng) — uanl dimy (Soc k(A, 9))k kH E — 1mk Soc k(A, @))Z
i=2

Nk Nz

On the other hand, since h,(A) = hY(A) + dimy (Soc k(A,@))i and since hlk/+1(A) = hY(A) by
Corollary 3.4, it follows that

11 (D) = B (A) = dimy (Sock(A, ©)), , | — dimy (Sock(A, ©)), . (6.3)
Combining equations (6.2) and (6.3), we conclude that
: Ni1 — N~ Nie A
dlmk (SOC k(A @))k:+l T Z FZ dlmk (SOC k(A, @))’L S Nk+1 — Nk

=2

Substituting expressions for the dimensions of graded components of the socle from Remark 4.2(1)
and, in particular, noting that dimy (Soc k(A, @)) kel (2k+1)ﬁk( ), yields the inequality. The
treatment of equality case is almost identical to that in [29, Theorem 4.4] and is omitted. U
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7 Equality

In this section we examine the combinatorial and topological consequences of some of the known
inequalities for f-vectors of homology manifolds with boundary when they are sharp. This in-
cludes a discussion of a connection between three lower bound theorems for manifolds, PL-handle
decompositions, and surgery. Along the way we propose several problems.

The right-hand side of Theorem 2.2(3) makes sense for any simplicial complex A. So we define

(2
h!(A) = hi(A) — (f) (1B () Vo<i<d-1.
j=1

It turns out that for homology manifolds with boundary, or more generally Buchsbaum com-
plexes, hY > 0 [29, Section 3]. In fact, h”-numbers of Buchsbaum complexes have an algebraic
interpretation, see [25, Theorem 1.2]. Murai and Nevo determined the combinatorial implications
of A = 0. To state this we recall that a homology manifold with boundary is i-stacked if it con-
tains no interior faces of codimension ¢ + 1 or more. A homology manifold without boundary is
i-stacked if it is the boundary of an i-stacked homology manifold with boundary. As is customary,
for both homology manifolds with or without boundary we will generally shorten 1-stacked to
just stacked.

Theorem 7.1. [22, Theorem 3.1] Let A be a (d —1)-dimensional homology manifold with bound-
ary, 1 <i<d—1, and d > 4. Then h/(A) =0 if and only if A is (i — 1)-stacked.

Murai and Nevo further noted that with the same hypotheses, Bg’ = 0 also implied that Bj =0
for all j > i [22, Corollary 3.2]. When A is a PL-manifold with boundary the above combinatorial
restriction has an even stronger topological implication in terms of the PL-handle decomposition
of ||A]]. In order to describe this we review handle decompositions of PL-manifolds. We refer the
reader to Rourke and Sanderson [31] for definitions and results concerning PL-manifolds.

Let B be a (d — 1)-dimensional PL-ball decomposed as a product B = B* x B!, where B* and
Bt are PL-balls of dimensions s and t respectively. Hence,

0B=(0B*xB") ) (B®x0B").
OBsx 0Bt

Now let X be a (d — 1)-dimensional PL-manifold with boundary. We say that X’ is obtained
from X by adding a PL-handle of index s if X' is the union of X and B and, in addition, the
intersection of X and B is contained in the boundary of X and equals 0B® x B!. For instance,
adding a disjoint ball to X is adding a PL-handle of index 0. A PL-handle decomposition of X is
a sequence of (d — 1)-dimensional PL-manifolds

X1CXoC- CX, =X

such that X; is a PL-ball and for 1 < 5 < r — 1 each X, is obtained from X; by adding a
PL-handle.

The following result first appeared as a remark in Section 6 of [37]. We include it here for
completeness.
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Theorem 7.2. Suppose A is a (d — 1)-dimensional PL-manifold with boundary, d > 4, and
RI(A) =0 for some 1 <i < d—1. Then |A|| has a PL-handle decomposition using handles of
index less than 1.

Proof: Let A” be the second barycentric subdivision of A. For each nonempty face F of A, let
vr be the vertex in A” which represents F. The star of vp in A” is a PL-ball and every facet
of A” is contained in exactly one such star. Now order the interior faces F' of A, F|, F,..., F,
so that all of the codimension zero faces (the facets) of A come first, then the interior faces of
codimension one, etc. Finally, set X; = (J]_; star vp,. Thus, for j < fg_1(A), X; is a disjoint
union of j PL-balls. By [31, Proposition 6.9] and the discussion that precedes it, X; C --- C X,
is a handle decomposition of ||A|| with a collar of the boundary removed. Furthermore, the index
of the handle attached to go from X; to X, 1 is the codimension of Fj ;. Since removing a
collar does not change the PL-homeomorphism type of a complex, X; C --- C X, is the handle
decomposition of a PL-manifold which is PL-homeomorphic to ||Al|. Theorem 7.1 completes the
proof. O

What about the converse?

Problem 7.3. Suppose X is a (d — 1)-dimensional PL-manifold with boundary that has a PL-
handle decomposition using handles of index less than i for some 1 < i < d — 1. Is there a
PL-triangulation A of X such that hl!(A) = 07?

For i = 1,2, and d — 1 the answer to the above question is yes. If X has a PL-handle
decomposition involving only handle additions of index zero, then X is a disjoint union of PL-
balls. Hence a disjoint union of (d — 1) simplices triangulates X and has h} = 0. For i = 2 we first
observe that if X has a PL-handle decomposition using handles of index zero or one, then X is a
handlebody and all of these have stacked triangulations, which are precisely triangulations with
h = 0. (This observation is any easy consequence of, say, [11, Theorem 4.5].) For the last case
we first note that any (d — 1)-dimensional PL-manifold with nonempty boundary has a PL-handle
decomposition which does not have (d — 1)-handles [31, Corollary 6.14 (ii)]. On the other hand,
every such space has a PL-triangulation with no interior vertices [9, Theorem 1].

The above theorems and problems have close analogs for manifolds without boundary. Suppose
X' is obtained from X by adding an s-handle. Then the boundary of X’ is a (d — 2)-dimensional
PL-manifold without boundary and is obtained from X by removing a copy of dB* x B! from
0X and replacing it with B* x 9B along the common boundary dB* x B*. Such an operation is
called an (s—1)-surgery on X and we call s—1 the index of the surgery. We denote such a surgery
operation by X = 0X’. So, if X has a handle decomposition Bil=X, CXy,C---CX, =X,
then 0X has a surgery sequence S4 2 = 9X; = --- = 90X, = 0X. From the g-vector point of
view the connection between these two is given by the following theorem of Murai—Nevo. Note
that if A is a (d — 1)-dimensional, connected, orientable homology manifold without boundary,
then eq. (5.2) reduces to g.(A) = g, (A) — (djl) Z;Zl(—l)’"*jﬁj_l(A). We use the same equation
to define g, for all (d — 1)-dimensional homology manifolds without boundary.

Theorem 7.4. [22] Let A be a (d — 1)-dimensional homology manifold and d > 4.
1. If OA # 0 and B (A) = 0 for some i < (d —1)/2, then §;(0A) = 0.
2. If OA = (), the links of the vertices of A have the WLP, and §;(A) = 0 for some 1 < i <
(d—1)/2, then A is (i — 1)-stacked.
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In combination with Theorem 7.2 two natural questions are:

Problem 7.5. Let A be a (d — 1)-dimensional PL-manifold without boundary, d > 4, and 2 <
i < (d—1)/2.

1. If §;(A) = 0, does ||Al| have a surgery sequence beginning with S%~' and using surgeries
whose indices are less than i — 17

2. Suppose X is a (d — 1)-dimensional PL-manifold with a surgery sequence X = X; =
-+ = X, = ||A|| whose indices are less than i — 1. Does X have a PL-triangulation A with
gi(A) =07

Note that for ¢ = 2 the answer to the first part of the problem is yes; see the discussion preceding
Theorem 7.11.

In [24] Murai and Novik considered a different invariant of the f-vector. Let A be a homology
manifold and define f;(A,0A) to be the number of interior i-dimensional faces. If A has a
nonempty boundary, f_1(A,0A) = 0 as the empty set is no longer an interior face. Now define
all of the other invariants, such as h;(A,JA) and g;(A,dA) by using fi(A, dA) instead of f;(A).
For example,

91(A,0A) = h1(A,0A) — ho(A, 0A) = fo(A,0A) — (d+ 1) f-1(A, 0A),
and

d+1

92(A, 0A) = ho(A, 0A) — hi(A,0A) = f1(A,04) —d fo(A,0A) + < 5

) Fo1(A,0A).

Among Murai—Novik’s results is the following.

Theorem 7.6. [24] Let A be a (d — 1)-dimensional k-homology manifold and d > 4.
1. Fori=1or2, gi(A0A)> (1)) (-1)"75,1(A,04).

j=1
2. If the links of the vertices of A satisfy the WLP and 1 <1 < d/2, then

w208 = (T S0 (a,00)

J=1

In fact, Theorem 7.6(1) holds for the larger class of normal pseudomanifolds with boundary and
Betti numbers replaced with the more subtle u-invariant of Bagchi and Datta. See [24, Theorem
7.3] for details.

Now we consider the implications of equality in Theorem 7.6. Suppose A satisfies the hypothe-
ses of Theorem 7.6. Then g1 (A, dA) = (d+ 1)Bo(A, dA) if and only if all of the vertices of every
component of A which has boundary are on the boundary, and every component of A which does
not have boundary is the boundary of a d-simplex. In particular, if A is also a PL-manifold, then
its components with boundary have no further topological restrictions [9], while the components
without boundary must be PL-spheres. The situation for general homology manifolds is less clear.
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For instance, suppose X is the suspension of RP3. Now remove an open ball whose closure does
not include the suspension points of X and call the resulting space Y. Then Y is a Q-homology
ball and excision applied to homology with integer coefficients around the suspension points of X
shows that in any triangulation A of Y the suspension points of X must be vertices of A and are
not on the boundary of A.

Problem 7.7. What are the topological restrictions imposed on k-homology manifolds by the
relation g1 (A, 0A) = (d+ 1)Bo(A, 0A)?

For k-homology manifolds which satisfy equality in Theorem 7.6(1) with ¢ = 2, Murai and
Novik gave a local combinatorial description in terms of the links of the vertices. If A does satisfy
7.6(1) with equality and ¢ = 2, we say that A has minimal go. Before stating their result we
review the operations and properties of connected sum and handle addition.

Let Ay and Ag be (d — 1)-dimensional complexes with disjoint vertex sets. Suppose Fj and
Fy are facets of Ay and Ag respectively and ¢ : Fi — Fb is a bijection. The connected sum of
A1 and Ag along ¢ is the complex obtained by identifying all faces ¢ C F; with ¢(o) C Fy and
then removing the identified facet F; = F5. The resulting complex is denoted by A1#As, or by
A1#4As if we need to specify ¢. To define handle addition we suppose F; and F5 are both facets
of a single component of a complex A and ¢ is still a bijection between them. Now make the
same identifications and facet removal as in the connected sum. As long as the graph distance
between v and ¢(v) is at least three for all v € Fy, the result is a simplicial complex which we
denote by A#, or by Af if we need to specify ¢. If F; and F, are in the same complex, but
distinct components we rename the components as distinct complexes and use the connected sum
notation. Note that if A; and Ag are PL-manifolds without boundary then ||A;#As| and ||A71¢||
are produced from ||A; U Agl| and [|Aq]| respectively by 0O-surgery.

As pointed out in [24, Lemma 7.7] the connected sum of a k-homology ball and a k-homology
sphere of the same dimension is a k-homology ball whose boundary is the same as the boundary
of the original homology ball. Similarly, the connected sum of two k-homology spheres of the
same dimension is another k-homology sphere. On the other hand, the connected sum of two k-
homology balls of the same dimension is neither a k-homology ball nor a sphere. Thus, if A; and
Ay are k-homology manifolds of the same dimension, then A1#4 As is a k-homology manifold if
and only if for each vertex v in the identified facet at least one of v or ¢(v) is an interior vertex.
A similar statement holds for A#. Lastly, we observe that the boundary of Aj#As is the disjoint
union of the boundaries of A; and Ay. Similarly, the boundary of A# equals the boundary of A.

Both connected sum and handle addition introduce a missing facet into the resulting complex.
A missing facet in a (d — 1)-dimensional complex A is a subset F' of cardinality d of the vertices
such that F' ¢ A, but every proper subset of F'is a face of A. For future inductive purposes we
observe that connected sum and handle addition strictly increase the number of missing facets. In
homology manifolds missing facets characterize the connected sum and handle addition operations.

Proposition 7.8. Suppose A is a (d — 1)-dimensional homology manifold, d > 4, and F is a
missing facet of A. Then either A is a connected sum of homology manifolds, or A is the result
of a handle addition on a homology manifold.

Proof:  Consider A. In A, the links of all of the vertices of F are homology spheres, and so
Alexander duality implies that the boundary of F' is locally two-sided (that is, for every z € F,
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|O(F\x)|| separates the link of x, || k4 ||, into two connected components). The argument of [7,
Lemma 3.3] then shows that ||0F) is two-sided in ||A|. Now, if A = @), in which case A = A,
and ||OF)| is two-sided in [|A||, the above statement is known; for a very detailed treatment see
[5, Lemma 3.3]. So assume A # (. Cut A along the boundary of F and fill in the two missing
(d —1)-faces that result from F. We obtain either a connected complex or two disjoint complexes
one of which contains vy — the singular vertex of A. Thus we can write A = I'# or A = A #A,,
where vy is in Aj. Removing vy allows us to write A = I'# or A = Aj#A,.

We consider the case A = Aj#4A2, ¢ : F1 — Fy, as the handle addition case is virtually
identical. All that remains is to show that A; and As are homology manifolds. The vertices of
Ay and As which are not in F} or F5 have links which are simplicially isomorphic to their image
in A, and hence are homology balls or spheres. Now suppose that v € F} and let x be its image in
F. If the link of z in A was a homology sphere, then the links of v in A1 and ¢(v) in As are also
homology spheres. If the link of  in A was a homology ball, then in A the link of z is a homology
sphere I" which is the link of z in A with its boundary coned off. Since F' — x is a missing facet in
I', we can write I' = I'1 #I', where each I'; is a homology sphere and the identified facet is F' — x.
The link of v in Ay is then I'y with the vertex vy removed and hence is a homology ball, while the
link of ¢(v) in Ag is I'y and is therefore a homology sphere. Finally, to see that the boundaries
of Ay and Ay are (possibly empty) (d — 2)-dimensional homology manifolds we simply recall that
the boundary of A = A1#A, is equal to the disjoint union of the boundaries of A; and As. [

We now list several procedures which result in a A that has minimal go. All of the proofs
are routine applications of the definitions and/or an expected Mayer-Vietoris sequence. For in-
stance, the proof of the third part relies on the following observations: [; (Al#Ag, 0(Aq #Az)) =

Bi(A1,0A1) + B1(As2,00:), f1(A1#A2, d(A1#As)) = fi(A1,0A1) + f1(A2,0A2) — (§), and
Jo(A1#02,0(A1#A2)) = fo(A1,0A1) + fo(Ag,0Az) — d.

Proposition 7.9. Let A be a (d — 1)-dimensional k-homology manifold, where d > 4.

1. If A has no interior edges, then A has minimal gs.
2. A has minimal go if and only if each component of A has minimal gs.

3. If A = A1# Ao with A1 and Ay both k-homology manifolds, then A has minimal gs if and
only if A1 and As have minimal go and at least one of A1, Ay has no boundary.

4. If A = T# with T' a k-homology manifold, then A has minimal go if and only if T' has
minimal gs.

Here is the Murai—Novik restriction on links of vertices in complexes with minimal g9. In
combination with the previous propositions it allows us to describe a global combinatorial char-
acterization of such complexes.

Theorem 7.10. [24, Section 7] Let A be a (d — 1)-dimensional k-homology manifold with d > 4
and minimal go. Then the link of every interior vertex is a stacked sphere. Furthermore, for every
boundary vertez v there exists m > 0 (which depends on v) such that the link of v is of the form

TH#HS1f - #Sm,

where T is a homology ball with no interior vertices and each S; is the boundary of a (d — 1)-
simplez.
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Recall that homology manifolds without boundary and minimal gs are well understood: ac-
cording to [21, Theorem 5.3] (that built on [29, Theorem 5.2] and [4, Theorem 1.14], as well as on
the notions of o- and p-numbers introduced in [6]), they are stacked homology manifolds without
boundary, which in turn are precisely the elements of the Walkup’s class introduced in [39] (see
also [13, Section 8]). Each such manifold is obtained by starting with several disjoint boundary
complexes of the d-simplex and repeatedly forming connected sums and/or handle additions. In
particular, if A is a stacked homology manifold without boundary, then A is PL; furthermore,
|A|| is a sphere, a sphere bundle over S!, or a connected sum of several of these. In view of this
and Proposition 7.9(2), we now concentrate on connected homology manifolds with boundary.
Our goal is to prove the following theorem.

Theorem 7.11. Let A be a (d — 1)-dimensional, connected, k-homology manifold with boundary.
Assume further that A has minimal go and d > 4. Then there is a sequence A1 — --- — A, = A
such that every A; has boundary, minimal g, and Ay has no interior edges. Furthermore, for
every 1 <i<r—1, A1 is equal to Afﬁ or Ai#T, where OT = () and T has minimal go.

Proof:  If the link of any vertex is the boundary of a (d—1)-simplex, then either A is the boundary
of the d-simplex or we can remove the vertex and replace its star with a facet. Repeating this
procedure as many times as necessary we can assume that there is no vertex whose link is the
boundary of a (d — 1)-simplex. The proof now continues by induction on the number of missing
facets.

First we show that if A has no missing facets, then A has no interior edges and hence A = Ay
is the required sequence. Thus let e be an interior edge with endpoints v and w. There are two
cases to consider: (i) either v or w is an interior vertex, say v, or (ii) both v and w are boundary
vertices. Theorem 7.10 then shows that in the former case, the link of v must be a stacked sphere
which by our assumption is not the boundary of the simplex; hence, the link of v is of the form
So#S1# - #4Sm, where m > 1 and Sy, is the boundary of the (d — 1)-simplex. Similarly, in
the latter case, since v is the boundary vertex whose link has the interior vertex w, the link of
vis TH#S1# - #4Sm, where m > 1 and S, is the boundary of the (d — 1)-simplex. Thus, in
either case the link of v contains a vertex z (e.g., the vertex of S,, that is not in the image of
¢) such that the link of the edge f = {v,z} is the boundary of the (d — 2)-simplex G (the facet
of Sy, opposite to z). Hence st f is f *x 0G. If G ¢ A then we retriangulate st f by removing f
and inserting two new facets v U G and x U G. (This is usually called a (d — 2) bistellar move.)
The resulting complex is homeomorphic to A but has smaller go. This is impossible, so G € A.
However, G € A implies that v UG or x U G is a missing facet of A as otherwise A contains the
boundary of the d-simplex {v,z} UG.

Once we know that A has at least one missing facet we can write A as Aj#Ay or T'# (see
Proposition 7.8) and apply Proposition 7.9 and the induction hypothesis along with the known
characterization of stacked homology manifolds without boundary to produce the required se-
quence of complexes. O

There are no immediately obvious Betti number restrictions on A when A has minimal go.
However, there are some topological restrictions. For instance, let X be an integral homology
sphere with nontrivial fundamental group and let Y be X with a small ball removed. If A is a
triangulation of Y, then [24, Theorem 7.3] (see also [23]) can be used to show that even though
B1(A,OA) = Bo(A,0A) =0, g2(A,dA) > 0.
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Problem 7.12. What topological restrictions does the above combinatorial decomposition imply
for PL-manifolds with boundary that have minimal go? What about general homology manifolds
with boundary that have minimal go?

Problem 7.13. Is there a similar decomposition for A when A has minimal g; for i > 37

The last inequality we consider is QQ(A) > 0. As noted in Remark 5.4, at least for d > 5,
this inequality is implied by Theorem 7.6. In fact, for connected orientable homology manifolds

A

with boundary, g2(A) > 0 can be a strictly weaker statement than the Murai-Novik inequality

in Theorem 7.6. So it is reasonable to expect a stronger conclusion from go(A) = 0. When a
connected orientable k-homology manifold A satisfies QZ(A) = 0 we will say A has minimal js.
(Note that for homology manifolds without boundary, having minimal g and having minimal go
are equivalent properties.) We begin by noting how connected sum and handle addition interact

with minimal go. The proofs are the usual applications of Mayer-Vietoris and the definitions.

Proposition 7.14. Let d > 4 and let Ay, Ay, and T" be (d —1)-dimensional, connected, orientable
k-homology manifolds with boundary.

1. T# has minimal Go if and only sz has minimal go.

2. Suppose that the connected sum of A1 and Ao is a k-homology manifold. Then the comple-
tion of A1#As has minimal Go if and only if Ay and Ao have minimal §o and at least one
of A1 or Ay has no boundary.

Like in the previous two cases, the key to analyzing complexes with minimal s involves
understanding the links of vertices.

Proposition 7.15. Let A be a (d — 1)-dimensional, connected, orientable k-homology manifold
with boundary such that d > 4 and the completion of A has minimal go. Then the link of every
interior vertex of A is a stacked sphere while the link of every boundary vertex is a stacked sphere
with one verter removed.

Proof:  First we consider d > 5. Since ga(A) = 0, eq. (5.3) implies that h)}_,(A) = h!,_,(A). So
an argument along the same lines as in [29, Theorem 5.2] (but using Lemma 3.3 instead of [36,
Proposition 4.24]) shows that the link of every nonsingular vertex in A is a stacked sphere, and
the result follows. This argument depends on the fact that a (d —1)-dimensional homology sphere
with d > 4 and hg_o = hgq_1 is a stacked sphere. Since vertex links of 3-dimensional homology
spheres are 2-dimensional spheres and hi = ho for all two-dimensional spheres, stacked or not, we
use a different approach for d = 4.
Thus assume d = 4. The definition of g; shows that

92(A) + g1(0A) = g2(A, 0A) + g2(9A).
So go(A) = 0 and (5.2) imply that go(A, A) + go(dA) = 661(A) + 452(A). Since A is an

orientable compact surface go(0A) = 331 (0A) and hence,
92(A,04) = 651(A) = 351(9A) + 452(A).
Now, the long exact sequence of the pair (A, 9A) implies that
B3(A,08) + Pa(A) + F1(9A) + Bi(A, 0A) = B2(9A) + F2(A,0A) + F1(A) + Bo(9A).
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Poincaré-Lefschetz duality applied to A and 0A gives us
14 231(A, 0A) + B1(9A) = 251 (A) + 250(9A) + 1

Thus,
92(A, 0A) = 631 (A, DA) — 655(A) + 482(A) = 1051 (A, DA) — 655(IA).

By Theorem 7.6, A has minimal g2 and 0A has only one component. Theorem 7.10 and the fact
that triangulations of two-dimensional disks with no interior vertices are stacked spheres with one
vertex removed proves that the links of the vertices of A are as claimed. O

Theorem 7.16. Let A be a (d — 1)-dimensional, connected, orientable homology manifold with
boundary such that A has minimal g2 and d > 4. Then there exists a sequence of (d — 1)-
dimensional homology manifolds Ay — -+ — A, = A such that Ay is a stacked homology
manifold, and for all 1 <j <r—1, Ajy1 = Aj#T, where I' has minimal g2 and no boundary, or
Aj = AT

Proof:  As in the proof of Theorem 7.11 we can assume that there is no vertex whose link is the
boundary of a (d — 1)-simplex and continue by induction on the number of missing facets in A.
If A has a missing facet, then Propositions 7.8 and 7.14 allow us to write A as a connected sum
or handle addition as required for the induction step.

In preparation for the base case where A has no missing facets, we first show that if the link
of any vertex w has a missing facet F', then {w} U F is a missing facet of A. For this it is sufficient
to prove that F' € A. To prove that F' € A we follow Walkup’s idea in [39] and retriangulate A
as follows. The previous proposition shows that the link of w in A is a stacked sphere. Remove
w from A and insert F. The union of lk A w and F consists of two PL-spheres whose intersection
is F. Now add two new vertices x and y which cone off these two PL-spheres and call the new
complex A’ Counting edges shows that gg(A’ ) = gg(A) — 1. This is a contradiction since A has
minimal go and A’ is homeomorphic to A. To see that A’ is homeomorphic to A we note that
stw and st z U sty are homeomorphic since they are both (d — 1)-dimensional PL-balls.

Now assume A contains no missing facets. We start by observing that a stacked sphere which
is not the boundary of a simplex contains missing facets. Since no vertex link of A can have a
missing facet, the previous proposition implies that every vertex of A is a boundary vertex and
its link is a stacked sphere with one vertex removed. Hence the link of a vertex w of A can be
written as (Si# - - #Sm) — v, where the S; are boundaries of (d — 1)-simplices. Of course, v is
vg — the vertex added to form the completion of A. It must be the case that v is in every &;.
Otherwise there would be a missing facet in the link of w. But now the union of (images) of S; —v
(i =1,...,m) is a stacking of the link of w which proves that the link of w is a stacked ball. Since
all of the hnks of vertices of A are stacked balls, A is a stacked homology manifold. Indeed, if
F € A were an interior face of A of codimension > 2, then for any w € F', F' — w would be an
interior face of codimension > 2 of the link of w. O

Remark 7.17. All A; in the statement of Theorem 7.16 have a nonempty connected boundary.

Theorem 7.16 allows a description of the possible topological types of A such that A has minimal
ga.
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Corollary 7.18. If A is a (d — 1)-dimensional, connected, orientable homology manifold such
that d > 4 and A has minimal g, then |A|| is a ball, sphere, orientable handlebody with boundary,
orientable SY=2-bundle over S, or a connected sum of two or more of these which have a (possibly
empty) connected boundary.

Problem 7.19. Is there a similar decomposition for minimal §; when i > 37
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