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Abstract

We consider the one-dimensional totally asymmetric simple exclusion process with an arbitrary initial
condition in a spatially periodic domain, and obtain explicit formulas for the multi-point distributions in
the space-time plane. The formulas are given in terms of an integral involving a Fredholm determinant.
We then evaluate the large-time, large-period limit in the relaxation time scale, which is the scale such that
the system size starts to affect the height fluctuations. The limit is obtained assuming certain conditions
on the initial condition, which we show that the step, flat, and step-flat initial conditions satisfy. Hence,
we obtain the limit theorem for these three initial conditions in the periodic model, extending the previous
work on the step initial condition. We also consider uniform random and uniform-step random initial

conditions.
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1 Introduction

In the last two decades, many limit theorems for the height function of the interacting particle systems
in the Kardar-Parisi-Zhang (KPZ) universality class were established when the domain is infinite [BDJ99,
Joh00, Joh03, BFPS07, TW08, TW09, ACQ11, BC14, MQR, Johl17, DOV18, JR19, Liul9] or half-infinite
[BRO1, S104, BBCS18, BBCW18|]. Recently, similar theorems were also beginning to be obtained for the case
of the periodic domain. When the domain is periodic, all particles are strongly correlated if the period is too
small compared with the time. Hence, it is natural to study the situation when the time ¢ and the period
L both become large and all particles are critically correlated. The critical case occurs when ¢t = O(L3/ 2),
which is called the relazation time scale. In this scale, the spatial correlation length and the period of the
domain are of the same order of magnitude.

One of the fundamental models in the KPZ universality class is the totally asymmetric simple exclusion
process. We call the process in a periodic domain (equivalently the spatially periodic process) the periodic
TASEP or PTASEP for short. On the other hand, we call the process on the infinite domain simply the
TASEP. For the PTASEP, a few limit theorems in the relaxation time scale were obtained in the past three
years.! The papers [Prol6], [BL18], [Liul8] evaluated the limit of the one-point distribution function for
three initial conditions; step, flat, and uniformly random initial conditions. For the step initial condition,
the result was further extended to multi-point distributions at non-equal times in [BL19].

The goal of this paper is to evaluate the multi-point distributions for other initial conditions. The main
results are the following.

1) For the PTASEP with an arbitrary initial condition, we obtain an explicit formula for the multi-point
distribution at arbitrary finite times; see Theorem 3.1. The formula is given in terms of an integral
involving a Fredholm determinant.

2) We evaluate the large time limit of the multi-point distribution in the relaxation time scale when the
initial condition satisfies certain assumptions; see Theorem 6.4.

3) We show that the flat and step-flat initial conditions satisfy the assumptions mentioned above. Hence,
we obtain limit theorems for the multi-point distribution for these two initial conditions; see Theorem
7.1.

4) We also obtain similar results for two random initial conditions: uniformly random initial conditions
and uniform-step random initial conditions. See Theorems 11.2 and 11.6 for finite-time formulas and
Theorem 12.1 and 12.3 for limit theorems.

Two key features are: (a) we evaluate multi-point distributions at non-equal times (i.e., multi-time
distributions), and (b) we consider general initial conditions.

Unlike the one-point distribution and the multi-point distribution in the spatial direction, the multi-time
distributions were obtained only recently even for the infinite domain case. For the models in the infinite
domain, Johansson computed the two-time distribution for a directed last passage percolation model in
[Joh17] and for the discrete-time TASEP in [Joh19]. Most recently, in the span of about one month, the multi-
time distribution was evaluated in [JR19] for a directed last passage percolation model and, independently in
[Liul9] for the (continuous-time) TASEP. The work [JR19] was for the step initial condition while the work

ISee [GS92], [DLY8], [Pri03], [GMO04], [GMO05], [BPPPO6] for the earlier work for the other properties of periodic models.



[Liul9] was for both the step or flat initial conditions. We mention that the formulas of these two papers
are different, and it still remains to show that they are equal.

For the periodic domain, the multi-time distribution was computed in [BL19] for the PTASEP with the
step initial condition. This paper extends the work of [BL19] to other initial conditions. The limiting space-
time fluctuation field of the height function in the relaxation time limit, which is the periodic analog of the
KPZ fixed point, depends on the initial condition. In this paper, we describe this dependence by studying
the general initial condition of the PTASEP. We prove the convergence of the multi-point distribution under
certain assumptions on the initial conditions, which we verify for two specific initial conditions, namely the
flat and step-flat initial conditions.

The limits in this paper are taken in the relaxation time scale; ¢t,L — oo while 7 = tL~3/2 is finite.
Hence, the limiting multi-time distributions depend on the relaxation parameter, 7. Since the PTASEP
becomes the TASEP if L. — oo with ¢ kept finite, we expect that limiting multi-time distributions of the
PTASEP converges to limiting multi-time distributions of the TASEP if we take 7 — 0. Unfortunately, this
limit is delicate to take, and we were not able to compute the limit in this paper. However, in [Liul9], the
author re-expressed the finite-time formula of this paper when L is larger than some fixed number, which
is equivalent of taking L. — oo with ¢ fixed. The computation involves a technical calculation, which shows
that many terms of the expansion of a Fredholm determinant cancel out upon integration, and the remaining
terms still sum up to a Fredholm determinant on a different space. As a result, the paper obtained a finite-
time formula for multi-time distributions for the TASEP. By taking the large time limit of this formula, the
author obtained the limiting multi-time distribution of the TASEP on the infinite domain. Adapting (and
simplifying) the method of [Liul9] directly to the 7 — 0 limit of the limiting multi-point distribution is left
as a future project.

We remark that the limit of the multi-point distribution obtained in [BL19] and this paper should be the
finite-dimensional distributions for the universal field for the models in the KPZ universality class when we
consider them in periodic domains.

We now explain how we prove the results of this paper. For the TASEP (on the infinite domain), one
way of computing the one-point distribution is the following. One first computes the transition probabilities
using the coordinate Bethe ansatz method. For the TASEP, this was obtained by Schiitz in [Sch97]. The
one-point distribution is a sum of the transition probabilities. This sum was simplified by [RS05], which
re-derived the the Fredholm determinant formula obtained previously by [Joh00] using a different method.
The Fredholm determinant formula is suitable for the asymptotic analysis, and one can find a large time
limit from it. This method was generalized to evaluate multi-point distributions in spatial directions in
[BFPS07] for several classical initial conditions. The asymptotic analysis was further extended to general
initial conditions in [MQR].

For the PTASEP, we computed the transition probabilities in [BL18] and evaluated the one-point distri-
bution using them. The multi-point distribution is a multi-sum involving the transition probabilities. The
difficult task is to simplify the sum to a formula suitable for the asymptotic analysis. In [BL19], we found
a formula for the multi-point distribution (in the space-time coordinates) in terms of an integral involving
a certain determinant. This formula was obtained for general initial conditions. The involved determinant
is not of the Fredholm type but instead an extension of a Toeplitz/Hankel determinant, which is not easy
to analyze asymptotically. For the special case of the step initial condition, we proved an algebraic identity
which relates the Toeplitz-like determinant to a Fredholm determinant, which was then analyzed asymptot-
ically. One of the main technical results of this paper is an extension of this identity between Toeplitz-like
determinants and Fredholm determinants for general initial conditions. This result is given in Proposition
4.1. As a consequence, we obtain a formula for the general initial conditions in terms of an integral involving



a Fredholm determinant. The formula does not change much from the step initial condition case. Indeed,
the information on the initial condition appears in only two explicit factors. Hence, the asymptotic analysis
for the step initial condition goes through without any changes if we assume that the new factors satisfy
certain assumptions. However, checking the assumptions highly depends on the initial condition. For the
flat initial condition, it is relatively easy to check that the assumptions are satisfied. The step-flat initial
condition is more difficult to check, and this is another technical part of this paper.

We also consider two types of random initial conditions. Since we already have a finite-time formula for
the multi-point distribution for general initial conditions, the result for random initial conditions is obtained
by taking a weighted sum. For uniformly random initial condition and a partially uniformly random initial
conditions, the weighted sum becomes simple and we can do asymptotic analysis.

This paper is organized as follows. The PTASEP is defined in Section 2. We state the results for finite-
time distributions in Section 3. A general identity between a Toeplitz-like determinant and a Fredholm
determinant is discussed in Section 4. Using this identity, we prove the finite-time distribution formulas
in Section 5. The limit theorem for the multi-point distribution for a general initial condition is given in
Section 6. We then discuss two special initial conditions, flat and step-flat initial conditions. We mention
a few properties of these initial conditions in Section 7 and then in Section 8, 9 and 10 we show that these
initial conditions satisfy the assumptions for the general limit theorem. Section 11 and 12 are about the
random initial conditions. Finally, we discuss a certain case of step-flat initial condition from a probability
perspective (instead of algebraic/analytic perspective) in Appendix A.
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2 PTASEP

Let NV < L be two positive integers. L denotes the period and N denotes the number of particles per period.
We label particles from left to right and let xx(¢) be the location of the particle with label k at time ¢ so
that - - < x1(t) < x2(t) < ---. The PTASEP of period L with N particles per period is the interacting
particle system following the usual TASEP rule (in which the particles move to the right) except that there
is an additional periodicity condition:

xk+n(t) =xx(t) + L for all k and t.

Define the set
Ay (L) = {(a1, - ,an) €ZN 1oy < --- < ay < a; + L}.

Definition 2.1. Let N < L be two positive integers. Let

We denote by PTASEP(L, N,Y') the PTASEP of period L with N particles per period which started with the
wnitial condition
Xk+gN(O) =Yk + {L fO’f’ all k‘,g €.

We use the notation PTASEP(L, N) when we do not specify the initial condition.



PTASEP(L, N) is equivalent to the TASEP on a ring of size L with N particles if we keep track of the

winding numbers on the ring.

We are interested in the joint distribution of the particle locations xy,(t;) for 1 < ¢ < m where ¢; are
allowed to be different. The PTASEP can also be described by the height function h(¢,¢). The height
function h(¢,t) for (¢,t) € Z x R4 is defined by

¢
2Jo(t +Zl—277] (>1,
j=1
h(6,t) == 4 2J0(8), (=0, 2.1)
0
200(t) — > (1—2;(t), £<—1,
j=l+1

where Jy(t) is the number of particles that pass 0 to 1 during the time interval [0,¢], and n;(¢) is the
occupation function defined by 7;(¢) = 1 if the site j is occupied at time ¢ or n;(t) = 0 if it is unoccupied at
time t. The joint distribution of the particle locations is equivalent to the finite-dimensional distribution of
the two-dimensional field of the height function. Here we used the convention that h(0,0) = 0. The height
function is related to the particle locations in a simple way. The following fact, which holds for both TASEP
and PTASEP, is well-known and it is easy to check.

Lemma 2.2 (Height function and particle locations). Let K be the integer such that xx (0) < 0 < xx11(0).
Then,
h(¢,t) > b if and only if XK_%_H(t) >0+1 (2.2)

for all bl € Z satisfying b — £ € 27 and b > h(¢,0).
The periodicity of the PTASEP implies that the height function satisfies
h(¢{+ L,t) =h(¢,t) + (L — 2N) for £ € Z and t > 0.

We will consider the large time, large period limit of the two-dimensional field h(¢,¢). Since we take
L — oo, we consider a sequence of PTASEP parameterized by L. For each L, let N = N be the number of
particles per period and we assume that the average density

stays in a compact subset of (0, 1) for all L. We consider the multi-point distribution of the height function
at points (¢;,t;) for 1 <i < m, where we take the scale that

t; =O(L*?) and ;= O(L).

The time scale t; = O(L%/?) is the relaxation time scale at which all locations are non-trivially correlated.
We then consider the fluctuation of the height function under the scale L'/2. Note that time, location, and
height scale as L3/2, L, and L'/?, which is consistent with the KPZ exponent 3 : 2 : 1.

As for the initial condition, we take a sequence
vy =", ") with Y € Ay (L)

and consider the sequence PTASEP(L, Ny, Yr). Naturally, we need to impose conditions for Y7, so that the
law of the height function converges. We will discuss a sufficient condition later. Three important examples
are the following.
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Figure 1: Examples of step, flat, and step-flat initial conditions. A rectangle represents one period.

h(£,0) h(¢,0) h(¢,0)

Figure 2: The height function for the step, flat, and step-flat initial conditions. We use N = 4,L = 16 (step), N = 4,d =
3,L =12 (flat), and N =4,d = 3, L = 16 (step-flat). The graphs include two periods.
Definition 2.3. The step, flat, and step-flat initial conditions for PTASEP(L, N) are the following.

(i) (Step) Sety; =i — N for1 <i<N.

(ii) (Flat) Assume that L = dN for an integer d > 2 and set y; = (i — N)d fori=1,--- ,N.

(iii) (Step-flat) Assume L = dN + Ly for integers d > 2 and 0 < Ly, < L, and set y; = (i — N)d for
i=1,---,N.

See Figure 1. See also Figure 2 for the associated height function.

3 Multi-point distributions

3.1 Finite-time formula for multi-point distribution

The following is the first main result of this paper. We obtain a finite-time formula for the multi-point
distribution for an arbitrary initial condition Y. The proof is given in Section 5.

Theorem 3.1 (Finite-time formula). Let N < L be positive integers. Consider PTASEP(L, N,Y) for an
arbitrary initial condition Y € Xn(L). Set

N
ro = p’(1 —p)t~*, where p = T (3.1)
Fiz a positive integer m, and let (ki t;), 1 < i < m, be m distinct points in Z x [0,00) satisfying 0 < t1 <
<o+ < ty,. Then, for arbitrary integers ai,- -+ , am,
= dz dz,,
P £) > Y S AT, , 3.2
v (Q o (1) > ae}> § p @y S (32)



where the contours are nested circles centered at the origin satisfying 0 < |zp| < --- <|z1| < ro. Here we set
z= (21, ,2zm). The function €y (z) is defined in (3.10). The function Dy (2) is a Fredholm determinant

Dy (2) = det(1 — "),
where &Y is defined in (3.13).

The product 6y (z)Py (z) is an analytic function in the domain 0 < |z,| < --- < |21]| < ro: see Lemma
3.11 below.

Since the PTASEP satisfies the periodicity xx4+n(t) = xi(t) + L, the finite-time formula should re-
spect this property. In addition, we may also re-label the initial condition by specifying any N values
x5(0),xk+1(0), -+, Xg+n—1(0). We discuss the invariance property of the formula under such changes in
Subsection 3.5.

The above result was obtained for the step initial condition in [BL19]. We use the following notations.

Definition 3.2. Let Giep(2) and Psiep(2) = det(1 — H5P) be Gy (2) and Py (z) = det(1 — #Y) when
Y=(-N+1,-N+2,---,0).

The formulas of Gytep(z) and Zsiep(2z) were computed in Theorem 4.6 of [BL19]; we present these formulas
in Subsection 3.4 below. In the next two subsections, we describe the formulas of €y (z) and 2y (z) in terms
of Gustep(2z) and Dyiep(z). We will see that the changes are small and explicit.

3.2 Bethe roots and a symmetric polynomial

The following polynomial and its roots, which appear in the finite time distribution formulas of PTASEP
using the coordinate Bethe ansatz [Bet31, BL18], are important in the analysis of PTASEP.

Definition 3.3 (Bethe roots). Define the polynomial
0o(w) i= w® (w+ 1)EN - E
for z € C. We call this function the Bethe polynomial corresponding to z. Let S, be the set of roots of q.,
S. :={w e C:q.(w) =0} (3.3)
The elements of S, are called the Bethe roots corresponding to z.

The Bethe roots lie on the level curve {w : |w”(w+1)!77| = |z|}. It is easy to check that (see Section 7 of
[BL18]) the level curve consists of a single contour when |z| > rg and of two disjoint contours when |z| < ry.
Here g is defined in (3.1). When |z| = 1y, the level curve has a self-intersection at the point w = —p. See
Figure 3.

Definition 3.4 (Partition of Bethe roots). For |z| < 1o, define the sets
L,={weS,:Re(w) < —p} and R, :={w €S, :Re(w) > —p}. (3.4)

We call the elements of L, the left Bethe roots and the elements of R, the right Bethe roots. Define the
polynomials

¢ L(w) == H (w—u) and g, r(w):= H (w —v), (3.5)

ueLl, VER .

which we call the left Bethe polynomials and the right Bethe polynomials, respectively.



Figure 3: The level curves |w”(w + 1)'~°| = |z| when p = 1/3 for 7 different values of |z|. The dashed, solid, and dotted
curves correspond to the cases |z| > ro, |2| = rg and |z| < 1o, respectively.

By definition,
S:=L,UR, and ¢ (w)=¢ r(w)grL(w).

One can check that £, has L — N elements and R, has N elements for 0 < |z| < ro. See [BL18] and [BL19]
for more properties of these sets.

Definition 3.5 (Symmetric polynomial). For
A= ()‘17"' 7)‘N) € ZN satzsfymg )‘1 > )\2 =2 )\N;

define the symmetric polynomial

det [wN_j(wi + 1)’\-71 N

(2

g)\(W) = N iyj:17 (36)
det [wfvfj]
ij=1
where W = (wy, -+ ,wn).
Since G (W) is a symmetric polynomial of (w1, -+ ,wy), we can regard W as a set W = {wy, -+ ,wn}
instead of a vector W = (wy,--- ,wy). We interchange the meaning of W freely in this paper.

Remark 3.6. The above symmetric polynomial is related to the dual Grothendieck polynomial Gy defined
in [MS13] by the formula

N-1

| -
Wit Ga(wy + 1, wy +1;-1)

N

G\(W) = H

W
=1 7

when A > 0. Another related symmetric function is the inhomogeneous Schur polynomials,

. N
Y det [wN_] (w; — 1)*7}
F=2(w) =

! ij=1

TN )
det [wfvf]}
i,j=1
introduced in [Bor17]. The function F)(\qzo)(W) = (1) MG\ (=W). See [MS13], [Borl7] for algebraic
properties such as Cauchy type identities and orthogonality relations of the above symmetric functions.



We now introduce two quantities which encode the initial condition in the finite-time formula of the
multi-point distribution.

Definition 3.7 (Global energy function and characteristic function). ForY € Xy (L), let
AY)=(ynv,yn—1+1,--- ,y1 + N —1). (3.7)
For |z| < rg, we define the global energy function associated to Y by
Ey (2) == Ga(v)(R2). (3.8)
When Ey (z) # 0, we define the characteristic function by

_ 9 (R:U{up\ {v})
Grar)(Rz)

chy (v, u; 2) : forveR, andu e L,. (3.9)

Hence, £y (z) is the symmetric polynomial above corresponding to A(Y) and evaluated at the right Bethe
roots. The characteristic function involves removing one right Bethe root and replacing it by one left Bethe
root.

Since the Bethe roots are analytic functions of z, the function £y (z) is an analytic function in |z| < ry.
As z — 0, all right Bethe roots converge to 0. It is also easy to check that Gy(W) — 1 as W — (0,---,0).
Hence, £y (#) is an analytic function in |z| < rg satisfying £y (0) = 1. As a consequence, chy (v,u;z) is
defined for all but finitely many points of z inside any compact subset of |z| < rg. Furthermore, if we take
v and u as specific left and right Bethe roots which are continuous in z, then chy (v, u;z) is meromorphic
function in |z| < ro.

The above functions become trivial for the step initial condition.

Lemma 3.8. For the step initial condition, Y = (—N +1,---,0), we have Ey(z) =1 and chy (v,u; z) = 1.
Proof. In this case, A\(Y) = (0,---,0) and the formulas follow easily. O

Formulas for flat and step-flat initial conditions are given in Section 7.

3.3 Definition of %y (z) and %y (z)
Definition 3.9 (Definition of €y (z)). Define

Cy (2) = Ev (21)Cstep(2). (3.10)

Recall the definition of Giep(2) in (3.2). Its explicit formula is given in Definition 3.13.
The only change from the step initial condition is the explicit factor £y (z1). Note that this factor involves
only z1, not zo,- -+, 2.

For m distinct complex numbers z; satisfying |z;| < rg, define the discrete sets

L., ifmisodd,
F= L, UR,, ULy, U---yd 2o DO (3.11)
Rz, , if miseven,
and
R.,, if misodd,
Sy = Ry ULy, UR,, U---g ome IS0 (3.12)
L, , if mis even.



Definition 3.10 (Definition of Py (z)). Let 0 < |zp| < -+ < |z1] < ro. Assume Ey(z1) # 0 so that
chy (v, u; 21) is well defined. Define

Dy (z) = det(I — ) with #Y =Y 4", (3.13)
where K.Y : (2(Fy) — L2(A1) and Ay - 12(.F1) — (2(F) have kernels given by 7Y = H7*P and

v , chy (w, w'; 21) 5P (w, w") forw e R, andw' € L,,,
% (U.),U} ) = step

(3.14)
5 P (w,w') otherwise.

Recall that chgpep(w,w’;21) = 1. Py (z) becomes Piep(2) when Y is the step initial condition as in
Definition 3.2. The explicit formulas of J#;*P, #5*P and Pyep(2) are given in Definition 3.14.

Note that the only difference between %y (z) and Zstep(2) is in the factor chy (w,w’; z1) which depends
only on z1, not on za, -+, Zm.

The above functions satisfy the following analyticity properties. Its proof is given in Remark 5.3 in
Section 5.

Lemma 3.11. The function Gy (z) is analytic and Dy (z) is meromorphic in 0 < |zp,| < --+ < |z1] < 1p.
The product €y (2) Dy (2) is analytic in the same domain.

3.4 Formula of €cp(2) and Zyep(2)

For the completeness, we describe the formulas for the step initial conditions which were obtained in [BL19].
We start with some notational conventions.

Notations 3.12. We write

n

fw) = Hf(wi)

i=1
for a function f and a finite set W = {wy, -+ ,wp} or vector W = (w1, ,wy). If n =0, we set f(W) = 1.

We write
n

AW W) =[] ] (wi = wi)

i=1i'=1
for two finite sets W = {wy,--- ,w,} and W' = {w},--- ,wl,}, or two finite vectors W = (w1, --- ,wy,) and
W= (’UJ/17 7w;1’)'

Recall the definition of the sets £, and R. in (3.4). Recall also the parameters kg, t;, and ay in Theorem
3.1.

Definition 3.13 (Formula of Gyep(2)). For distinct points z;, 1 < j < N, satisfying 0 < |z;| < 1o, define

. ks Ez(Ze) i Hueﬂze (_U)N HveRz( (U + 1)L7N
Gstep(2) = L—l_[1 Ee1(20) [H A(R.,: L)

=1
m L m
Zé—l A(RZZ;‘CszJ
x 9
lH - ] lH Moz (0" Moen, 05 D5

Ze—1

where

Eg(Z) — H (_u)kngfl H (U+ 1)70.@4”6@71\/'675[1)

ueLl, vER
for £>1, and Eo(z) = 1.

10



We remark that the above formula could be written in a more compact form by canceling some common
factors (—u)™ and (v + 1)2~N. The reason we write in this form is that, as shown in [BL19], the four
factors in the brackets converge in the relaxation time scale, and their limits correspond to the factors in the
function Cgep(z) defined in (6.6). Hence it is easy to see the limit of Giep(2) is Cstep(2)-

The formula of Zgep(2) = det(1 — #5%P) involves several definitions. Recall that p = N/L. Recall the
left and right Bethe polynomials defined in (3.5). Define, for 0 < |z| < 1o,

qx,1(w) for R >
Ho(w) = { e ew) > —=p, (3.15)
Ll for Re(w) < —p.

It is easy to check that H,(w) — 1 as z — 0 for any fixed w # —1,0 since the Bethe roots in £, and R,
converge to —1 and 0 respectively as z — 0, see Figure 3. We set H,(w) =1 if z = 0.
Set

w(w + 1)
J(w) i = ———.
(w) L(w + p)
, - wN(w+1)L7N . o .
Note that ¢’ (w) = = 775— Since ¢:(w) = ¢, r(w)g, L(w) and ¢, gr(v) =0 for v € R, we find that
N 1) LN
¢ r(v) = o e il for v e R,.

J(v)g: 1.(v)
The next functions depend on the parameters kg, g, ap. Set
F[(U}) = w*k(/ﬁ»NJrl(w 4 1)7ag+kg7Netgw
for £ =1,--- ,m, and set Fy(w) := 1. Define
for Re(w) > —p,

1
_ ) Fe(w)
= Fi(w) for Re(w) < —p. 10

Finally, we set

\L _ L
Q) =1 () =1 - (20)

Zj <j

for j =1,--- ,m, where we set zg = 2,41 = 0.

Definition 3.14 (Formula of Zscp(2)). Recall the sets 1 and % defined in (3.11) and (3.12). Let z;,
1 < j <m, be distinct points satisfying 0 < |z;| < ro. Let

AP (F) = (A and AP 2(A) = (. S)

be the operators defined by the kernels

w) fi(w L (w))? .
J/lStep(zmw/) = (51(3) +0:(j + (_1)i)) H J((w))J;{( XH 1((w’)))(w —w) Q1(4)
Zi_ (1)t Zi—(=1)
and
Ji/;teP(’w,,’LU) = (5](1) + 6]@ _ (_1)])) H J(“Eﬂ)}{_)jgﬂ )(HZJ((’Z:})EL/ — w) QQ(Z)
Zj+(-1)d it (-
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for
we (L, UR,)NS and w' € (L., UR;,)N.S

with 1 <1i,5 < m. Define
Dtop(2) = det(1 — HCP) where AP = H 7P 7P,
Remark 3.15. Note that
AP (w,w') =0 unless (w,w') € (Lay; , URsy,) X (Layy URLy, )
for some 7 > 1, and
P (W w) =0 unless (W', w) € (Lay; URy,,y) X (Lagyyy URS,,)

for some j > 0. Here we set L.y = R., =0 and L., = R.,., =0 for all j > 1. The above property
implies that the kernels of Jf/lsmp and %Sth can be written as matriz kernels with 2 X 2 block structures with
possible exceptions at the first/last rows and columns; see Section 2.3 of [BL19] for details. The kernels of
Y and HyY also have same structures. The initial condition Y appears only in the first block of 5" ,
which only involves L,, and R, .

3.5 Invariance properties of the finite-time distribution formula

Note that the probability in the left-hand side of the equation (3.2) is invariant if we translate the integer
sites Z by Z + ¢ for any integer c. More explicitly, the multi-point distribution Py ((,~,{xx, (t) > a¢}) is
invariant under the following translation of the parameters:

(T1) y;—~y;+cforall1 <i< Nand ag+— ag+cforall 1 <f<m.

Furthermore, due to the periodicity x;4n(t) = x(t) + L, the probability is also unchanged under either
of the following translations of the parameters:

(T2) y;—~y;+ Lforall1 <i< N and k¢ — k¢ — N forall 1 </ <m.
(T3) ag—ar+ L and kg — kg + N for all 1 < /¢ <m.

Note the minus sign of the translation k¢ — k; — N in (T2).

We can check directly that the finite-time distribution formula in the right-hand side of the equation
(3.2) satisfy these invariance properties. Indeed, each of the functions €y (z) and %y (z) is invariant under
the translations. Recall that 6y (z) involves €y (1) which depends on Y, and Gyep(z) which involve k;, a;’s.
Note that in 6iep(2), the terms Ey(z) are the only ones that depend on the parameters k¢, ap. From the
formulas, we see that

SY(21)|YHY+C:8Y(ZI) H (v+1)¢,

VER 2,
%tEP(z)‘ap—)a(H»c = CgSteP(z) H (U + 1)_67
VER 2,
CgStEP(z)’kei—)kzﬂLN = (gstep(z> H (_U)N H (’U+ 1)N
ueﬁzl vER

Note that the extra factors depend only on the Bethe roots for z;. The invariance of %y (z) under (T1) of is
due to a simple cancellation. On the other hand, the invariance under (T2) and (T3) follows from the next
simple lemma.
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Lemma 3.16 ((4.52) of [BL19]). The Bethe roots corresponding to z satisfy

1wy =] (+1=>.

uel vER .

Proof. Since the Bethe roots are the solutions of the equation w® (w + 1)2=N — 2L =0,

wh(w+ )PV =2 = T w-w) I (w-v). (3.17)

uELz UERZ
Setting w = 0 and raising the power by N,
(~)¥= = T ()™ I (-
ueLl, vER .
Since the cardinality of R, is N, the sign (—1)"V cancels out. On the other hand, since every point v € R,
satisfies 2% = vV (v + 1)L~V taking the product over all v,
= H oV (v + 1IN
VER

The last two equations imply the lemma. O

In Zy(z) = det(I — #Y), the Y-dependent term is chy (v,u;z;). From the definition, it satisfies

chy y.(v,u;21) = chy(v,u;21) (g—_ﬁ)c For the Y-independent part of the kernel, fi(w) (see (3.16)) is
the only term which depends on the parameters of interest. Since fi(w) is defined as one way or its recip-
rocal depending on whether Re(w) > —p or Re(w) < —p, (T1) results in a conjugation of the kernel which
leaves the Fredholm determinant invariant. For (T3), since v™ (v + 1)!~N = vV (u + 1)L~V for all v € £,
and u € R, , this implies the kernel #Y and hence %y (z) are both invariant. Finally, (T2) is a composition

of (T1) with ¢ = L and (T3), thus Py (z) is still invariant.

In addition to the above translations, we also have the invariance that re-labeling the indices for the
initial condition does not change the probability. For example, for a given 1 < n < N, if we set §; = y;j4n
for1<j<N-nandy; =yj—~Ngn+Lfor N—n+1<j <N, and consider the PTASEP with particle
locations X (t) with the initial condition X (0) = g, then it should be related to the original PTASEP by
Xk (t) = Xp4n(t) for all k. This means the invariance under the following transformation:

(T4) Fix0 <n < N—1, and change (y1, - ,y~n) = (Yn+1, -+ syn,y1+L, - ,yn+L) and change ky — ky+n
for all 4.

The fact that the finite-time formula satisfies this invariance can be checked as follows. Set ¥ =
(Yn+1,--- ynsy1 + L, yn + L) and consider &£ (21), which is given by a determinant. Moving the
last N — n columns to the front, using the equation w (w + 1)L~ = 2& in the last n columns of the new
matrix, and taking out common row factors, we find that

E(z1) = (—1)”(N_”)5 (z1)20F H ™™ )"
VER 2,
On the other hand, it is straightforward to see that
(gstep(z)|]w,_>;w+n = %tep(z) H (_u)n H (U + 1)”

u€Ll VER 2,

The invariance (T4) of @y (z) follows from the identity ( DN-1E = 1]

tained by setting w = 0 in (3.17), and the fact that (— ) =(-1".
The determinant %y (z) = det(I — %) is invariant under (T4) by the same reason as the invariance for
(T1).

ueﬁz(_u) -HveRz v, which is ob-
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4 Toeplitz-like determinant and Fredholm determinant

In this section, we prove a determinant identity used in the proof of Theorem 3.1 in Section 5. As mentioned
in the introduction, a finite-time formula for general initial conditions was obtained in [BL19] in terms of a
Toeplitz-like determinant; see Theorem 5.1 below for the statement. In [BL19], we showed that this Toeplitz-
like determinant can be converted to a Fredholm determinant for the case of the step initial condition. In
this section, we prove a general identity between a Toeplitz-like determinant and a Fredholm determinant
which is applicable to arbitrary initial conditions. The main result is Proposition 4.1.

4.1 A general determinant identity

Define the Vandermonde determinant

A(V) = H (v; —v;) = det [vg_lr

1<i<j<n nI=t
for a vector V = (vq,--+ ,v,). Note that A(V) depends on the order of coordinates, but A(V)? does not.
Hence,
AW = ] (w1 —w)?
{w1,w2}CW
w1 FwW2

is well-defined for any finite set W. We use W for either a finite set or a vector.

To state the identity between determinants, we introduce the setup. The key element is that the under-
lying sets are discrete. These discrete sets do not need to be the roots of an algebraic equation which was
the case for the Bethe roots.

Fix positive integers N and m. We introduce the following objects.

(a) Let Sy,---,S,, be finite subsets of C with at least N elements each. The sets are allowed to have
different cardinalities. Assume that S; N S;; 1 =0 foralll1 <i<m—1ifm > 2.

(b) For each 1 <1i <m, let R; be a subset of S; such that |R;| = N
(
(d

)
C) Let L; = S; \ R;.
) Let p1,--- ,pn :S1 — C be functions on Sy and let qq, -+ ,qn : Sy — C be functions on S,,.
)

(e) For each 1 <1i <m,let h; : S; — C be a function on S; such that h;(w) # 0 for all w € R;.

Recall the notational convention introduced in Notations 3.12.

Proposition 4.1 (Identity between Toeplitz-like determinant and Fredholm determinant). Define N x N

matrices T = (Tij)%-:l and M = (Mu)f\[]:1 with entries

m
pzwlchwm
Z [TZs(we — we—1) H

w1651 =1

meSm

and

Z pz U1 qj Um ﬁ

Vyp — U
vich [Tt (ve —ven)

U, ER
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Assume that

N N
e )
det [i(v] )L,Fl det [a;(v] )L’jzl £0,
where Ry = {v§1), - ,v](\})} and R, = {vgm), . ,vgvm)}. Then,
det [T] = det [M]det (I — K1 K>5), (4.1)

where K1 and Ko are finite matrices defined in (4.3) or (4.4) of the next subsection. Furthermore, the
determinant of M has the representation

(m71)N(N71)/2det[pi(vj('l))]gj:l det[q; ( J( ))]” 1 1 A(Ry ﬁ
A('[}gl)7--~ V/U(l)) A(Ugm)a 7v(m)) H/ 2 Rle 1

Remark 4.2. If m =1 and p;(z) = z*, q;(x) = 27, then, writing S1 = S and hy = h, we have

T = Z w I h(w

weS

det [M] =(—1) (4.2)

Hence, the matriz T is a Toeplitz matriz. Similarly, M is also a Toeplitz matriz in this case.

Remark 4.3. For m > 1, the Cauchy-type structure of the determinant plays an important role for this
identity. Such structure allows us to factorize the expansion of the determinant and further regroup the
factors in the form of block matrices in K1 and Ky. Although it is quite direct to check the identity using
Cauchy determinant formula, regrouping the factors properly and reformulating them as block matrices Ky
and Ko is constructive.

In Remark 4.2, the symbol of the Toeplitz determinant is a discrete measure. For the usual case of a
continuous symbol, assuming certain regularity of the symbol, there is a general identity between the Toeplitz
determinant and a Fredholm determinant known as the Borodin-Okounkov-Geronimo-Case (BOGC) identity
[GCT79], [BO0O], [BWO00], [B02]. The above identity is different from the BOGC identity; in the BOGC
identity, the determinant of M in the above is replaced by the limit of the Toeplitz determinant as the
dimension N — oo via the strong Szego limit theorem. In the discrete measure case, there are not enough
moments of the symbol so that the limit N — oo is not applicable. We also mention that a different identity
between “discrete Toeplitz determinants” and Fredholm determinants was used in a different situation; see
[BL14].

4.2 Definition of matrices K; and K,

Define the discrete sets
L,,, if misodd,

R,,, if m is even,

S, Z—L1UR2UL3U"'U{

and
R,,, if m is odd,

SQIZRlULQURgU'“U{ . .
L,,, if m is even.
The rows of the matrices K; and K5 are indexed by sets S; and S, respectively, and the columns are indexed
by sets and S, and Sy, respectively. The matrices K7 and K5 have the following block structures. For odd
m7

By By

Bg BZ
K, = ) ) Ky = ) , (4.3)

Bm Bm—l
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and for even m,
B1 BO
Bg B2

K, = ) , Ky = , (4.4)

Bim_1 B,

where the matrix By is of size |Lx U Riy1] X |Rk U Li41| with the convention that Lo = Ry = L1 =
Rerl = (Z)
To define the matrix By, we introduce the function

re(w) == H (w—w).

vERy
We also set
det [p;(w; o det [q; (w; -
G(W;P) = — il {ﬂlﬁwSN and (W3 Q) = — | S._i)]‘”@ (4.5)
et [w] icii<n ot [wi ] iyen
for W = {ws,--- ,wn} C C with distinct elements w; # w;, (1 <i < j < N), where P = (py,--- ,pn) and

Q = (q1, -+ ,qn). Note that by the assumption of Proposition 4.1, we have G(R1;P) # 0, G(R,; Q) # 0,
and 7;(v) # 0 for v € Ry. We order the elements of the sets L; and R;, 1 < i < m, in an arbitrary way. The
ordering of the elements does not change the determinant det(l — K3 K5). The rows of the matrix By, are
indexed by Ly U Ry+1 and the columns are indexed by Ry U Ly41:

Bk(ukyvk) Bk(uk7uk+1) — TOW U ELk
By, =
Br(viy1,ve) oo | 00 Br(Vkgn,ukt1) o0 | < row vpg1 € Rign
) )
column v, € Ry, column wug41 € Lg41

The entries are defined by, for 1 <k <m —1,

T (Uk)Th41(Vk) 1
B =h : .
k(uk, vx) = hy(ug) v (k) rher (Uk) g — vg
T (W) i1 (Up+1) 1
B .
k}(uk)a uk-‘rl) (uk?) T'k+1(uk)rk-(u1€+1) Uk — Upt1 ) (4 6)
Bk(vk 1 Uk) 1 . 7ﬂk(vk—‘rl)7'k.|.1(’l)k.) . 1 )
o+1) Uk hk+1(vk+1) T;CJrl(’UkJrl)r;c('Uk) Vi1 — Uk

it (W) e (Vkgr) 1
hk+1(vk+1) Tho1 Uk 1)Th (Ut 1) Vka1 — Uy

By (Vgt1, Uk41) =

For k = 0 and k& = m, the entries of the matrices By and B,, are similar but they contain extra factors. The
matrix By has rows indexed by R; and columns indexed by L;, and the entries are defined by

GR1U{wp\{uisP) 1 ri(u) 1

B _ .
o(vi,u1) G(Ry;P) hy(vi) 7ri(v1) vi—w

(4.7)
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for v1 € Ry and u; € Ly. Finally, the matrix B,, has rows indexed by L,,, and columns indexed by R,,, and
the entries are defined by

_ (R U {um} \ {vm}; Q)
B {ttm, vm) = G(Ron: Q) h

m (Um) - 7 (4.8)

for u,, € Ly, and v,,, € R,,.

4.3 Outline of the remainder of the section

The remaining subsections are devoted to the proof of Proposition 4.1. We prove the identity by expanding
the determinants as sums and then compare the two sides of the equation (4.1).

4.4 The left hand side of (4.1)

Applying the Cauchy-Binet formula m times, det[T] is equal to

> det [pifu }<Hdetl 0 _ 1)D det [aw™)] T] b

W<b>esN 1<i<N
1<b< 1sjsm
sSosm

Here, we use the notation W) = (wgé), e ,w%)) and all determinants are N x N with row indices denoted
by 4 and column indices denoted by j. Note that the summand is zero if there is an ¢ such that two of
the coordinates of W) are equal. Thus, we may assume that for every ¢, the coordinates of W) are all
distinct. We then note that for each ¢, the summand is invariant under any permutation of the coordinates
W), Hence, we may multiply the formula by (N!)” and take W® to be a subset of SN of the cardinality

N. Evaluating the Cauchy determinants and using the notations (4.5), the above formula can be written as

m ()
det[T] =(~1)(m=DNW=1/2 37 G p W<m>;Q>HmeA<1WW - th (19)

where the sum is over all possible subsets W) ¢ Sy for all £ =1,--- ,m.

4.5 The determinant of M on the right hand side of (4.1)

Since the matrix M is same as the matrix T except that the sums are over R, instead of Sy, we obtain a
similar formula as (4.9). This time, since |R;| = N, there is only one subset Wy of cardinality N. Hence, we
find that W, = R, and we find that det[M] is equal to (4.2).

4.6 The Fredholm determinant on the right hand side of (4.1)

We expand det(I — K7 K3) using the series definition of Fredholm determinants. Recall that the matrices
K, and K5 have special block structures. In this case, the series has the following formula.

Lemma 4.4 (Lemma 4.8 of [BL19]). For matrices K1 and Ky with the block structures (4.3) or (4.4), we

have
(=" Inl n
det(l — K1 Kp) = i 3 det [Ky (wi, w))] "L det [K(uw}, w)l"L
n WeLT'xRy2? %
w’ eR“le"2
where the first sum is over all possible n = (nq1,n2, - ,nm) € (Z>0)™. Here, |n| :=ny + -+ ny, and
n!:=nql--nyl.
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We now express the determinants in the sum explicitly. Fix n = (n1,n2,--- ,n,,). Since the matrices
K; and Ky have block structures, the sub-matrices [Kl (wl,w])l?‘: and [Ka(w}, ])]| n| ', also have block

structures. We express the components of W and W' in the set L?j by UU) = (u §J), e u%)) and the
components in the set R;-” by V) = (U%j), e Ur(g])) We set ng = ny1 = 0. Using these notations, for odd
m7
inl (m+1)/2
det [K1 (wi, w )] il = H det [B% NUCSRUEESS U(”),V(%))}
=1
and
(m—1)/2
det [Kg(wi,w])]y;‘zl = H det [BQZ(U(24)7 YO e V(2e+1))] ’
£=0
where

B(u® o) | B u)

i’j 73

Byl o) | By, ulh+0)

Bk(U(k), V(k), U(k+1)’ V(k+1)) _
1<i,j<ny,
1<i’ 5 <npya

The case of even m is similar. In both cases,

det [ (wq, w})] " det [ (wf, w;)]}") Hdet [BE(U“ 4GSR UCORZCENIN (4.10)

7,7=1

From the formula (4.6) of the entries of By, each factor determinant in the product in (4.10) can be evaluated
using the Cauchy determinant formula: for 1 < /¢ <m —1,

det [BK(U(Z)’ v e V(zﬂ))}

:(_1)(n£+;1€+1)+mz+1+mzmz+1 hf(U(2)> . (U(e )TLH(U(“_U) r@Jrl(V(Z))rz(V(“_l))
B (VD) (V) (VD) 7y 00 UFD)

AUHAVOYAUEAENAVENAU O, VEED)A VO, D)

TAUO; VOYAUED; VED)A U @; TED) AV O; D)

This computation was also done in Lemma 4.9 of [BL19]. On the other hand, from the definitions (4.7)
and (4.8) of By and By,

ni

G(Ry U {u'V (M. p wy 1
det [Bo(of” )] = det S }<1\> w <1}> S Egm;h vy
ij= G(Ri; P) (v, —uy) - (51 1
and
det [ B (ul™ o™ = det (U s 3\){% ( }) Q T:TLL())hm(U(m))
b= G(Ri Q™ —o™) |, PulVT)
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Combining together, we find that
det(I — KlKg)
)+(“'") G(Ry U {ul" 3\ (ol P)] "
Jj=1

_Z Z 1 1
U G(Ri;P) () =) [
VO eR
l=1,--,m

A(UD; V(l))
CAUMAVD)

6B U (™ N\ o1 Q™A@ vim)
Q(Rm;Q)(u(»m)—v;’")) ] AUMN)A(V M)
" h(UW) (re( U® )2) A(U@ZAV©)?
L he(VO) (ry(V©))? A(Uw) V)2

T re(VE D) (VO) AUO; VED) AV O; U D)
re(UE)re 1 (UO) AUO; UEDAVO; VD)

ij=1

3|\{j

e

In the above equation, we changed the sign of the entries in the first determinant and this change contributed
a (—1)™ factor. Here, the outside sum is taken over all n = (nq1,n2,- -+ , M) € (Z>0)™. Since |R;| = N for
all £, the sum is zero unless ny < N for all £. We note that for given n, the summand is invariant under any
permutation of the coordinates of U® or V) for each ¢ and it is zero if any of the components are equal.
Hence, we may take U®) as subsets of L, of cardinality ns, take V) as subsets of R, of cardinality ns, and
multiply the summand by (n!)?2. We can also combine the sum over n and the inside sum so that the sum
is over all appropriate U® and V) of same cardinality.

4.7 Completion of the proof of Proposition 4.1

By Subsection 4.4, the left-hand side of (4.1) is a sum over all subsets W) of Sy satisfying |[W®)| = N for
1 < ¢ < m. By Subsection 4.6, the right-hand side of (4.1) is a sum over all subsets U®) of L, and subsets
V) of Ry satisfying [U®| = |[VO| for 1 < £ < m. The identity (4.1) is proved if we show the following
lemma.

Lemma 4.5. For each 1 < ¢ < m, let UY) € Ly and V) C Ry be subsets of equal cardinality satisfying
|U®O| = V| < N. Define the set W = (R, \ VEOYUU®. Then,

m AWH2 A
Q(W(l);P)g(W(’”);Q)Hm Hé_(%;v(e().w)(en Hhe(W(@)
=2 )

Tn» A
he(Ry)
| Rz,Re 1) H e(Be)

G(R U {uV}\ (o) ]

= G(R1; P)G(Rm; Q)

. (—1)("31)'5‘(”2"‘) det A(U(l);V(l))

Q(Rl;P)(ugl) —oM) - AUI)AV WD)
n 7= (4.11)
G(Rm U {ui™} \ {v<m>}~ Q) AU, vm)
-det () m) AU AV )
(Rva)(u ) ij=1
ﬁ o(U9) (re(U®)?) A<U“> 2A(VO)?
i Z é(v(l)))Q A(U (£)- V(f))
m—1 W(V(e+1))7,e+1( ) A(U(E) V(£+1 )A(V(E); U(Z+1))
o re(UE D) (UO) AUO; UED) AV O; VERD)
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We prove the identity by expressing each term on the the left-hand side (which is given in terms of the set
W) using the sets U®) and V). The factors involving hy agree since hy (W )hy (V) = hy(Re)he(U®),
which follows from the facts that W) = (R, \ VO) U U® and hence W UV® = R, UU®. The factors
AW®) and AWO; WED) are computed in Lemma 4.6 below. We then compute the factors G(W1); P)
and G(W(™); Q) in Lemma 4.7. These two lemmas prove Lemma 4.5 above.

Both sides of the identity (4.11) are symmetric functions of the variables. For the next lemma, we order
the elements of W®, U® and V© arbitrarily and regard the sets as vectors. The important aspect of the
formula (4.12) below is that the right-hand side depends on A only in terms of r(U) and r'(V).

Lemma 4.6. (a) Let U = (u1, -+ ,upn) and V. = (vy,--- ,v,) be vectors of same dimension n. Let A =
(a1, -+ ,an) be a vector of dimension n' which is allowed to be different from n. All components are
complex numbers. Define new vectors R = (V, A) and W = (U, A). Then,

AW) nAU)AV)rU)
AR) (=Dt AT VI (V) (4.12)
where r(w) = Hil(w — ;) using the notation R = (r1,--- ,ry) with N =n+n’.

(b) In addition, let U and V be vEctorioffame aﬁ/mensionjl, and let A be a vector of possibly different
dimension 1. Define vectors R = (V,A) and W = (U, A). Then,

AW W) _ AU DAV V)r(0)F(U)

V)

A(RR) AU V)AV;O)r(V)
where 7(w) = Hﬁil(w — 7)) with R = (Fy,-- - ) and N =47/,

Proof. These identities were stated in (7.48) and (7.50) of [BL18], and also in (4.43) and (4.44) of [BL19]
for the case that the elements of the vectors are solutions of an algebraic equation. However, the same proof
goes through without assuming it. We include the proof for the convenience of the reader.
(a) It is a easy to see that
AW)  AU)AU;A)

A(R) — A(V)A(V;A)

’

Since r(w) = [[j—, (w — v;) [Ti=, (w — ax), we find after substituting w = u; and taking the product over i
that
() = T rtw) = A@s) | T]tws - an)| = A@sv)A@ )
i=1 ik

Similarly, substituting w = v; in the derivative r’(w) and taking the product over i,

)= T1 = T a] = ore2amyamsa,
i#j i=1k=1
1<i,j<n
Taking the ratio of the above two formulas, we obtain an expression for the ratio of A(U; A) and A(V; A).
Inserting it to the first equation, we obtain the result.
(b) The proof is similar to the case (a). As in (a), we have

AW; W) A(U;U)A(U; A)A(U; A)

AR;R)  A(V;V)A(V;A)A(V;A)
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We then use the identities
FU) = AU AAWU; V), T (V) = AV A)A(V;V)

and similar formulas for r(U) and r(V), which are proved by the same way as in the case (a). We obtain
the result immediately. O

Next lemma finds an expression for G(W®);P) and G(W™); Q).

Lemma 4.7. Let U, V,R,W be same as in Lemma 4.6 (a). Note that U and V are of same dimension n,
and R and W are vectors of same dimension N. Let p; : C — C be a function for each 1 <1i < N and set

_ det[pi(a;)]7

g(O&l’~.. 7O[N) - det[a';_l]%zl
Then,
GW) ) [ G(R) } AU:V)
20— (—1)(2) det , 4.13
o) = T G m s — o |,y ADAW) (4.13)
where
R% = R|”ﬁu_ for1<i,j<n. (4.14)
Proof. From the definition and part (a) of the previous lemma,
GW) _ det[pi(w;)];—1 A(R) (1) _det[PJAU; V)r' (V) (4.15)

G(R) — detlpi(r)]V,_,AW) D QA AV )

where P is the N x N matrix with entries p;(w;) and @Q is the N x N matrix with entries p;(r;). Since the
last N — n columns of P and @ are same, the matrix Q' P has the block structure

* |0

* | 1 ,

where the bottom-right block is the (N — n) x (N — n) identity matrix. Thus, the determinant of Q! P is
equal to the determinant of the n x n top-left block:

det[P] . 1y

We now express the entries of Q7' P using the Cramer’s rule; (Q~'P);; = % where Q(“) which is

same as () except that the ith column is replaced by the jth column of P. From the definition of G and @,
det[Q] = G(R)A(R).
On the other hand, the matrix Q9 = [py(#)]Y,_, where #, = r, for ¢t # i and #; = w;. Note that for
1<j5<n,r =v and w; = u;. Hence, by the definition of G,
det[Q")] = G(RW)A(R™)  for 1 <4,j <mn,

where R%J is defined in (4.14). It is direct to check that

ARY)  r(uy)

AR)  (uy—vi)r'(v:)

QP =

n

ij=1"

and hence,
det[P] _ [Q(Ri’j)A(Ri’j)]n — det [ G(R™M) }" r(U)
det[Q} g(R)A(R) Q=1 g(R)(u] - Ui) i,j=1 T/(V) .
Together with (4.15), this implies (4.13). O

The last two lemmas imply Lemma 4.5, and we complete the proof of Proposition 4.1.
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5 Proof of Theorem 3.1

We prove Theorem 3.1 in this section.

5.1 Toeplitz-like formula

The following Toeplitz-like formula for the multi-point distribution for general initial condition was obtained
in [BL19]. As discussed at the beginning of the previous section, we prove Theorem 3.1 by converting the
Toeplitz-like determinant to a Fredholm determinant formula using Proposition 4.1.

Theorem 5.1 (Toeplitz-like formula; Theorem 3.1 of [BL19]). Consider the process PTASEP(L, N,Y). Fix
a positive integer m, and let (k;,t;), 1 <1i < m, be m distinct points in Z x Ry satisfying 0 <t < -+ <ty

Then, for arbitrary integers a1, -+ ,am,
m dz,, dz;
v (D fon (te) > ae}> §o o@Dy S

where the contours are nested circles satisfy 0 < |zy,| < --- < |z1|. The functions in the integrand are

m L N-1
C(z) = (_1)<km—1><N+1)Z§krl>L H zékz—klz—l)L <(ZZ€1) - 1) (5.1)

—

(=2
and
N
D() det Z w1w1+1yL 7"U_)jﬁc} (52)
v Z)=de v ’wg .
wies, [T/ (we —we—1) ;-2 ’
wmeS ij=1

where for 1 <4 <m,

w(w + 1) wke (w + 1)—ae+kzetew

Ge(w) := .
L(w _|_ p) w_ké—l (w + 1)a2—1+kl—letl—1w

Here, we set tg = kg = ag = 0. Recall from (3.3) that S, = {w € C : q,(w) = 0} is the set of Bethe roots

corresponding to z.

(5.3)

Unlike Theorem 3.1, the complex numbers z; do not need to satisfy |z;| < ro in the above formula.

Theorem 3.1 is proved if we show the following identity.

Proposition 5.2. Let C(z) and Dy (z) be the functions defined in (5.1) and (5.2). Let €y (z) and Dy (z)
be the functions defined in (3.10) and (3.13). Then, we have

C(2)Dy(z) = €v(2) Py (2) (5.4)
for all z = (21, -+ , zm) satisfying 0 < |z;,| < -+ < |21] < r0-

Remark 5.3 (Proof of Lemma 3.11). The Bethe roots are analytic functions of z # 0. From the definitions,

Gy (z) is analytic in 0 < |zpm| < -+ < |21] < 10 and Dy (z) is meromorphic in the same domain with
possible poles when Ey(z1) = 0. On the other hand, from the definitions, the functions C(z) and Dy (z)
are analytic in the same domain. (They are actually analytic in the larger domain 0 < |z,,| < -+ < |z1];

see the paragraph after the proof of Corollary 3.3 of [BL19].) The identity (5.4) implies that the product
Gy (2)PDy (z) is analytic for 0 < |zp| < --- <|z1| < ro.
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5.2 Proof of Proposition 5.2

It is enough to prove the result for z; satisfying £y (z1) # 0 since both sides of the identity (5.4) are
meromorphic functions and the left-hand side is analytic.
We convert Dy (z) to a Fredholm determinant using Proposition 4.1. We set S; = S,,, R; = R.,, and
L, = L,, in the proposition. We also set
pilw) = ™ i w 4 I and gy(w) = wi (55)
for 1 <i< N, and
Gi(w)w(w +1)7Y, i=1,
Gi(w)yw™ v, i=m,

where G;(w) is defined in (5.3). Proposition 4.1 is applicable if

det [pz( ](1))} det {Qi@]('m))}i 70

i,7=1 1,]=
where R; = {vgl), e ,’UE\})} and R, = {vgm), e ,v%n)}. For our choice of p; and q;, using the notation
(3.8),
det |i( 5”)] = (CDNYIIPE AW o),
I’VJ (5.7)

det [qi(v](-m))} = A(vgm), - ,Uj(\r,n)).

The Vandermonde terms are non-zero since all points in R, are distinct. Since we assumed that y (z1) # 0,
Proposition 4.1 is applicable and we obtain

ij=1

m

i(w W)
Dy (z) = det Z iR (;Ueq] H (we)
(=2

w1 €S-, we-1) 4 (5.8)

w'mé;szm
= By(z) det (I — KlKQ) s

where K7 and Ky are kernels defined by (4.3) and (4.4) with the special choices of p;,q;,h; and S;, R;, L;
described above, and

1<4,j<N

_ mN(N-1)/2 He 1A .
By (z) = (=)™ -D/2g .y _L A(R&RZ 3 ];[
from (4.2) using (5.7).
It is thus sufficient to show that
by (z) =C(2)By(z) (5.9)
and
Dy (z) = det(I — K1 K5). (5.10)

Remark 5.4. The equation (5.8) already gives us a formula for the multi-point distribution in terms of an
integral involving a Fredholm determinant. However, we make further changes using (5.9) and (5.10) in
order to make the final formula suitable for asymptotic analysis. In the formula given in Theorem 3.1 it is
easy to take the large time limit in the relazation time scale. Most of the changes made in the identities (5.9)
and (5.10) are cosmetic notational changes, but a few changes use the algebraic equation for the Bethe roots
and hence utilize the fact that we consider a spatially periodic model.
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5.2.1 Proof of (5.9)
Recall that Egpep(z1) = 1 for the step initial condition.
Lemma 5.5 ([BL19]). The identity (5.9) holds for the step initial condition Y = (—N +1,---,—1,0).

Proof. This lemma is same as the identity C(z) = C(z,k)B(z) proved in the paragraph below the equation
(4.52) in [BL19]. The proof uses the equation w” (w + 1)2=N = 2L for the Bethe roots which allows us
to express certain expressions involving functions of R, in terms of functions of L£,,: see (4.49)—(4.52) of
[BL19]. O

Note that By (z) depends on Y only in the factor £y (z1). Thus we may write
By (z) = Ey (21)Bstep (2)-

Since Gy (2) = v (21)Gatep(2) by definition, the above lemma proves (5.9).

5.2.2 Proof of (5.10)

The equation (5.10) is an identity of two Fredholm determinants. Translating the notations, we can show
that #Y = MK\ and 4, = u/ Kop for multiplicative operators A, p, A, i/ which satisfy a certain property
(see (5.11).) These transformations of the operators are not the same as conjugations, but due to the block
structure of the operators, the Fredholm determinant is still invariant under these transformation as we show
in the next lemma.

Lemma 5.6. Let X1,---,%,, be disjoint sets in C and let H = L*(X1U---UX,,, 1) for a measure u. Let
¥4, , 30 be another collection of disjoint sets in C and let H' = L*(X U---UX!  u') for a measure .
Let A: H' — H and B : H — H' be operators defined by kernels. Assume the following block structures for
the kernels:

o A(w,w’) =0 unless there is an index i such that w € Xo;_1 UXg; and w' € 35, _; U,
o B(w',w) = 0 unless there is an index i such that w' € ¥5; U¥h; | and w € Xg; U Xgiq1.

Let A\, i be two complez-valued functions on X1 U ---UX,, and X, be two complex-valued functions on
S U---UX satisfying

Aw)p(w)N (W' (w')y =1 for every (w,w') € ¥; x 3 with 1 <i < m. (5.11)

Assume that the Fredholm determinant det(I — AB) is well-defined and is equal to the usual Fredholm
determinant series expansion. Then, det(I — (AAN)(¢/Bp)) is also well defined by the usual Fredholm
determinant series expansion and

det(I — AB) = det(I — (AAX)(1/Bp)).

Proof. Under the given block structures, the series expansion of the Fredholm determinant becomes (see
Lemma 4.8 of [BL19)])

(1)"/ /
det(I — AB) =
Z ()2 Jsmxxsmm Jspmocex sy, ynm

TLE(ZEU)""

(5.12)

In| In|

det [A(wi, w))] " det [B(w], ;)" TT du'(w)) TT dsu).
=1 =1
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Note that

In|
LA w () | - det [Afws, )] = det [AAN) (g, wf)]"
=1

and

nl

[T whpmws) | - et [Blufw))[5y = det [(4/Bu) (wfwy )]}

If we multiply two terms, the product of A, N, pu, 1 becomes 1 due to (5.11). Hence, the right hand side
of (5.12) does not change if we replace A, B by AAX and u/ By respectively and this completes the proof. [

Now we prove (5.10) by applying the above Lemma. Note that #;Y, #," have the same block structure
as K7 and Ko, respectively. The kernels of K7 and K> are given in terms of r;(w) and h;(w): see (4.6)—(4.8).
We re-write them in terms of H,(w), f;(w), J(w), and Q1 2(j) in Section 3.4 by which the kernels of %" and
Hy,Y are expressed. We first express 7;(w) in terms of H,(w), J(w), and Q1(j), @2(7), and find a relationship
between 7Y, #;Y and Ki, Ko while keeping the term h;(w), which is trivially related to J(w) and f;(w):
see (5.13) below.

We have

ri(w) = g., m(w),  ri(w) =g, g(w).
Observe that if w is a Bethe roots corresponding to z;, then
gz (w) _ oV DN —2b et

4z r(w) = = = :
: qu,L(w) qzi,L(w) qziyL(w)

Using the above formula when w € R, we find that (recall (3.15))

wV H,, (w) forw e L,
ri(w) = gz r(w) =4 WV 2k
— 1= fi -
.. (w) z]L orw € R,
The term in the big parenthesis is Q1 (j) if i = j — (—1)7 and is Q2(j) if i = j + (—1)7. Similarly,
! / wN
ri(w) =q, plw) = ———— for w € R,,.
( ) q .L,R( ) J(w)sz(w)

Using the above identities, it is direct to check that
Y =KX, o = i Koy,

where A, i (and X, i/ respectively) are multiplication operators on . (and % respectively). Their formulas

are:
a1 (w) : _
J(w) H.,, . (w) forwe L., , f1<2k+1<m-1,
hog1(w)
AMw) = J<w)MHzm(w) forwe L, if mis odd,
L
for(w)hop(w)H.,,, (w)% for w e R,,, if 2 <2k <m,
2ok T *ok—1
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and

1

From the definitions,

These relations imply that

and

S S— forw € R, if1<2%k+1<m—1,
J(w)HZ2k+1 (U}) wE
N
w . .
N(w) = T () for w € R,,, if m is odd,
1 L _ L
“2k Lz2k_1 forwe L,,, if 2<2k<m,
H.,,(w) 2ok
f1(w)hy (w)w™ H,, (w) for w € R,
et
f2k+1(w)h2k+1(w)HZ2k+1(w)LijLL forw e R.,, ., f2<2k<m—1,
“ak4+1 T 2k
J(w) f%(w)HZ%(w) forwe L,,, if2<2k<m-—1,
hgk(’w)
J(w)wj{’rfl,(:gu) H, (w) for w e L, if m is even,
1 1
— fi L.,
wN H. (w) or w e L,
1 2k
1- L% forwe L., , if2<2k<m-—1,
_ H22k+1 (w) Z2k+1
p(w) = ) .
forw e R,,, if2<2k<m-—1,
J(w) Hepp (w) '
1 w™
for w e R, if m is even.
J(w) H,, (w)
%ng(w) forwe L, if{=1o0rm,
w
J(w)fe(w) forwel,, if2<l<m-—1,
he(w) = ¢ J(w)
————  fi R, ifl=1
waZ(w) Or W € Ky 1 or m,
J(w) forweR,, f2<l<m-1.
fe(w)
1 forw e L,,,
L L
Z2k+1 — %2k
forweL,,, .,
(M) (w) = 241 e
L}“ forweR
3~ P51 -
1 forweR.,,
@ for w cER
i) w) = iy — e
ZQL’C;LZ?L’H for w € L., ,
z
2k

for k > 1. Thus, (5.11) is satisfied, and Lemma 5.6 implies the equation (5.10).
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6 Large time limit of multi-point distributions

We consider the sequence of PTASEP (L, N1, Yy) where Y7, is the initial condition and N = Ny, is a sequence
of integers indexed by L satisfying 1 < N < L. We now consider the limit of the multi-point distribution as
the period L — co? and time also tends to infinity in the relaxation time scale. The limit was obtained for
the step initial condition case in [BL19]. In this section, we consider the limit for general initial conditions
Y, which satisfy certain assumptions. We assume that the average density

stays in a compact subset of (0,1) for all L.

The finite-time formula of the multi-distribution function changes from the step initial condition to a
general initial condition Y in the factor £y (z1) of the function Gy (z) (see (3.10)) and the term chy (w, w’; z1)
of the kernel 5" (see (3.14).) We assume that the initial condition Y7, satisfies certain asymptotic assump-
tions so that £y (z1) and chy (w, w’; z1) converge. Under these assumptions, we obtain a limit theorem for the
joint distribution of the height function at multiple points in the space-time coordinates. In later sections,
we show that the flat and step-flat initial conditions satisfy the mentioned assumptions.

In the asymptotic analysis of the finite-time formula, it turns out that the integral parameter z needs to
be changed to a re-scaled parameter z as follows:

A= (—p)N (A - p)Ei Nz = (—1)Vrlz, where rg = p?(1 — p)* 7. (6.1)
The condition |z| < r¢ is equivalent to the condition |z| < 1. We will assume the above change and assume
|z| < 1 throughout this section. For z;, we use a similar change using z,.

6.1 Convergence of Bethe roots

The finite-time formula, Theorem 3.1, involves the Bethe roots, which are the solutions of the algebraic
equation
w™ (w4 1)EN = 2F, (6.2)

If we scale z as (6.1) and scale w as

w=—p+Cy/p(l—p L2,

then the equation (6.2) becomes
—¢*/2
e =z (6.3)

as L — 0o. The solutions of the equation (6.3) form a discrete set. See Figure 4.

Definition 6.1. For z satisfying 0 < |z| < 1, define the discrete sets
L,i={¢:e¢/2=7 Re(¢) <0} and R,:={n:e"/2=z Re(n) >0} (6.4)

The convergence of the Bethe roots near the point w = —p to the solutions of the above equation is
precisely stated in the next lemma. Recall the sets (see (3.4)) of the left Bethe roots and the right Bethe
roots,

L.:={weS,:w(w+ )N =25 Re(w) < —p}

2We allow the possibility that the sequence N = N does not exist for some values of L. In that case, we take the limit
L — oo in the set {L : Ny, exists}, which we assumed to be an infinite set. The flat initial condition (see the definition 2.3) is
an example of such a case where we take N = L/d for a positive integer d.
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_1oL

Figure 4: The points are the roots of the equation e=¢*/2 = 4 for z = 0.3+0.2i. The solid line is the level curve of \e‘c2/2| = |z|
for the same z.

and
R.:={wesS, :w¥(w+1)!N =2 Re(w) > —p}.

We denote by D(a,r) = {w € C: |w — a| < r} the disk of radius r centered at a. The following lemma is
from [BL18].

Lemma 6.2 (Lemma 8.1 of [BL18]). Fiz 0 < e < 1/8 and define
ﬁ@tzﬁzﬂD(—@VPﬂ—pﬂf””ﬂ,
(6.5)
RS) =R,ND (—p, p(l— p)L_1/2+€) .

Then, for z and z related by (6.1) with |z| < 1, there are two injective maps

MLJEft : [’ge) — L, and ML,right : ’R/,(;) — R,

satisfying
utp 1/2 —1/243€ (e)
M et (u) — L7* <L logL.  forue L
’ Vp(l=p)
and

MU right (V) — &Ll/2 < [T1/2H3e log L foru e RS)

p(1—p)

for all large enough L. Furthermore, these maps satisfy

L, ND(0, L — 1) € My e (£9) € L, ND(0, L€ + 1)

z

and
R, ND(0, L¢ — 1) C My igne(£L9) € R, ND(0, LE + 1).

We remark that we made two modifications in statement of the above lemma compared to Lemma 8.1 of
[BL18]. First, We redefined ¢ which does not affect the statement. Second, we replaced N~1/2+¢ N—1/2+3¢
and N¢+1 by L=1/2+e [ =1/243¢ and L€ +1 respectively since we use L as the large parameter in this paper.
This modification are easily justified by tracking the error terms in the proof of Lemma 8.1 of [BL18].

6.2 Assumptions on the initial condition

We now state the assumptions on the sequence of the initial conditions Y7, under which we prove the limit
theorem. The conditions are in terms of the global energy function and the characteristic function in
Definition 3.7.
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Assumption 6.3. We assume that the sequence of the initial conditions Yy, satisfies the following three
conditions as L — oo.

(A) (Convergence of global energy) There exist a constant r € (0,1) and a non-zero function Ei.(z) such
that for every 0 < e < 1/2,

Ev, (2) = Bielz) (1+ O(L1/?))
uniformly for |z| <r as L — co.

(B) (Convergence of characteristic function) There exist constants 0 < r1 < ro < 1 and a function
Xic(§,m;2) such that for every 0 < e < 1/8,

chy, (v,u; 2) = xic(n, & 2) + O(L*71/?)

)

uniformly for ry < |z| <rq, u € £ andv e R as L — oo where

6 = ML,left(u) S LZ and n= ML,right(v) S Rz
are the images under the maps defined in Lemma 6.2.

(C) (Tail control of characteristic function) Let r1 and ro be same as in (B). There are constants 0 < € <
1/8 and € ,C > 0 such that for all sufficiently large L and for all z in r1 < |z] < ra,

|chy, (v,u; z)| < o€ max{[€],n|}>~ (6.6)
for either u € L.\ £§€) orv €R, \R(;) where

Mpier(u)  forue £,
§=1 L wtn)

forue £\ LY,
p(L=p)

and
My rigni (V) forv e R,
= L1/2
Ui ﬂ forueRz\Rge).
p(1=p)

A sufficient condition for part (C) to hold is: there are constants €”,C’ > 0 such that
|chy, (v,u; 2)| < C'LE’ (6.7)

for all (v,u) € R, x L, for all 7; < |z| < ro. This is because the right hand side of (6.6) is at least e“~" by
the assumption on wu,v.

We address a small issue in defining the characteristic function. It is defined under the condition that
the global energy function is not zero. Note that since Ej.(z) is an uniform limit of a sequence of analytic
functions &y, (z), it is analytic in |z| < r. Since we assumed that it is a non-zero function, Ei.(z) has only
finitely many zeros in any compact subset of |z| < r. This implies that we can find 0 < 7] < ry < 1 such
that &y, (z) does not vanish for | < |z| < 74 for all large enough L, and chy, (v, u; z) is well-defined. We
also mention that since the Bethe roots depend on z analytically, xic(7,&;2) is an analytic function of z in
the region r; < |z| < rq if we view £ € L,,n € R, as functions of z.
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6.3 Limit theorem

We state the limit theorem in terms of the height function. Recall the definition of h(¢,¢) in (2.1). Due to
the periodicity of the model, it is enough to consider a region of width L in the spatial direction. We use
the following moving frame. Define the vectors e; = (1,0) and e. = (1 — 2p, 1) and set the region

Ry :={(l,t) EZxRsp:0<(—(1-2p)t <L}

(6.8)
={5e1 +tec€ZxR20:0§s§L}.

This choice is made for the following reason. For the TASEP on the whole line, the step initial condition does
not produce shocks since the local density of the particle is a decreasing function as a function of ¢ initially.
However, for the PTASEP with the step initial condition, the local density function is not a decreasing
function and hence there are shocks: see [BL18] for details. The direction of shocks is parallel to the line
¢ = (1 —2p)t. Hence, the region (6.8) is a natural choice to describe the limit theorem for the step initial
condition. Now we state the finite-time formula for the multi-point distribution for general initial conditions
using the formula for the step initial condition. Hence, we choose to state the limit theorem for general
initial condition using the same region.

To emphasize the initial condition in the limit theorem, we add the subscript or superscript “ic” for the
terms in the limit which depends on the initial condition. As discussed in Section 3.5, when we describe the
particles of the PTASEP, there is a freedom of labelling of the particles. For the next theorem, we make the
following choice of the labelling: we assume that zx(0) < 0 < 2x4+1(0). This is equivalent to assume that
the initial condition satisfies yy < 0 < y; + L. This assumption is a simple labelling convention.

Theorem 6.4 (Limit theorem). Consider a sequence PTASEP(L, N1, Y1) where p = pr, = N/L stays in a

compact subset of (0,1) and y%) <0< ygL) + L. Suppose that the sequence of initial conditions Y1, satisfies

Assumption 6.3. Fiz a positive integer m and let p; = (v, 7;) be m points in the region
R = [O, ].] X R>0
satisfying
O<mI<T< < Ty

Then, for p; = sje1 + tje. in Ry given by

L3/2

s; =L, tj =Tj—F—— (6.9)
p(1—p)

and for every fized X1, -+ ,Xm € R, we have

A [ R(p;) — (1 =2p)s; — (1= 2p+2p°)t;
L—oo ﬂ { < Xj}

lim PL _2p1/2(1 _ p)1/2L1/2 - (6.10)

j=1
= ]Fic(xla s Xmy Py, 7pm)7

where P, denotes the probability associated to PTASEP(L, N1,Yy). The function Fi. is defined in (6.13)
below. The convergence is locally uniform in x;,7;, and v;. If 73 = 741 for some i > 2, then the result
still holds if we assume that x; < X;41. If 71 = T, the result holds if x1 < xo and if we assume a stronger
assumption on the tail control of the characteristic function under which the right hand side of (6.6) is
replaced by eC max{le],lnl}' ="
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Figure 5: These the sets L., and R, for ¢ = 1,2,3 corresponding to sets S; and Sz when m = 3. The points in S; are
represented by stars and the points in Sa are represented by dots. We also include the level curves of e=¢/2 = |z;| for a better
visual: dashed lines for S; and solid lines for S».

6.4 Formula of the limiting function

For the step initial condition, the limiting function Fgip, was obtained in [BL19]. The formula involves
Cstep(2z) which is a limit of Gyep(z) and operator K3*P = KitePKZtep which is a limit of JZ5tP = %ftepl/;tep.

These quantities are described in Subsection 6.5 and 6.6. The operators K3'P and K5*°P are defined on the

sets
R,,, if mis even,
S;:=L,, UR,, UL, U---U o (6.11)
L., , ifmisodd,
and
L, , ifmiseven,

Sy :=R,, UL, UR,, U---U { (6.12)

R, , ifmisodd,

where L, and R, are the sets defined in (6.4). See Figure 5. We express Fi. in terms of the above terms.

Definition 6.5 (Limiting function). Let x = (X1, ,Xm), ¥ = (Y1, ,Ym), and T = (11, -+ , T ) e points
in R™ such that p; = (7v;,7;) € [0,1] X Rsg. Assume that

O<m < <1y

and that x; < x;41 when 7, = 7,41 fori=1,--- ,m — 1. Define
dz dZ1
Bty XmiDre D) = § - f Cicl@)Dicla) - (613)
where z = (21, ,Zm) and the contours are nested circles satisfying 0 < |z;,| < -+ < |z1] < 1 and also,

r1 < |z1| < ro with r1,ro being the constants in Assumption 6.3 (B). The first function in the integrand is
given by
Cic(z) = Eic(21)Cstep(2). (6.14)

The second function is

Dic(z) = det(I — K'°), Ki¢ = KK, (6.15)
where Ki¢ : £2(Sg) — £2(S1) and Kif : £2(S1) — £%(S2) are given by Ki¢ = K5'*°P and

Xie (¢ 2K P(C,¢),  if (€ Ry, and (' € Ly,

K2 (Ca C ) = {I{;tep(c7 C/)a otherwise.
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The re-scaled position parameter ; appears in the above formula only in K5*? and K5*P. Tt was shown
in [BL19] that the product K{*PK5*P is unchanged if we replace v; by v; 4+ 1 for some i. Using the fact that
Xic does not depend on 7, it is easy to see that K5*PKIf is also invariant under the same change. Hence,
we find that for each ¢, the function F;. can be extended to a continuous periodic function, with period 1, in
the parameter ~;.

For the completeness, we describe Cyep(z), and K5'P and K5'P explicitly in the next two subsections.
These formulas are from [BL19].

6.5 The factor Cg.,(2)

Let Lig(z) be the polylogarithm function which is defined by
z*
Lis(z ; s
for |z <1 and s € C. Set
Ai(z) = _LLig/Q(Z) and As(z) = L
Vr Vr

Let log z denote the principal branch of the logarithm function with cut R<g. Set

) // nglog(~¢+m)  dgdy _ 1 G (6.16)
(&P —a)(e PR —7)omi2ni  dr S (k+ k)R '

Li5/2 (Z)

for 0 < |z|,|z'| < 1 where the integral contours are the vertical lines Re(§) = a and Re(n) = b with constants
a and b satisfying —y/—log |z] < a < 0 < b < y/—log|z|. The equality of the integral formula and the series
formula is easy to check (see (9.27)-(9.30) of [BL18] for the proof when z = z’.) We also set B(z) := B(z,z).
One can check that

1 /Z (Liy 2(y))?
B(z) = B(z,z) = — ——"dy. 6.17
0 =Bl = - [ =L (617)
Definition 6.6. Forz = (z1, - ,zm) satisfying 0 < |z;| < 1 and z; # z;11 for all j, we define
_ " Zy o oxeAr(ze)+TeA2(7e) B (20)—2B (e 1 1,70)
Coenl?) = L—r{ Zg — ZK—H} L—]l exeA1(ze41)+TeA2(z041) ¢ .

where we set zy, 11 = 0.

Note that Cgiep, and hence Cic(2z), depend on x; and 7;, but they do not depend on the spatial parameters
Yi-

6.6 The operators K;*? and Kj

Set

z wlog(w — ()
_— f 1 1
h(¢,z) = o /ﬂR Py dw or Re(¢) < 0 and |z| < (6.18)

and define
h(¢,z) = h(—(, 2) for Re(¢) > 0 and |z| < 1. (6.19)

For each i, define

e 3(TimTic))C 5 (vi—yi—1)CH(xi—xim1)C g Re(¢) <0,
fi(C) -

6%(7'1'*7'1'—1) S (yi—vic1) P = (xi—xi—1)¢ for RG(C) >0
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where we set 79 = 79 = x¢9 = 0. We also define
Zi_(—_1)i Zii(—1)i
Ql(j)zl_M and Qg(j)zl—M,
Zj Zj
where we set zg = zy,+1 = 0.

Definition 6.7. Let L, and R, be the discrete sets in (6.4), and let S1 and So be the discrete sets in (6.11)
and (6.12). Let
K5 P : 2(Sg) — £2(S1)  and  K5P: £3(Sy) — £%(Sy)
be the operators defined by their kernels
f£;(¢) e () 762 1)) Th(C 25 (a5

KTP((,¢") = (8:(j) + 0:(j + (=1)")) =0 Q1(4)
and 2h(¢2;)~h(’ )=h(¢ )
- f( 025 ) G254 (—1yd ) TG 2 (i
K3(¢'6) = (55 + 80 — (- B 2 2 Q)
for

¢e€ Ly, UR,)NS: and ¢ € (L, UR,)NSy
with 1 <1i,5 <m. Define

Ditep(z) = det(1 — K**P),  where K**P = K{*PK3*P.

We will need a few properties of the function h({,z) in this paper. We record them here.

Lemma 6.8 (Properties of h((,z)). The function h((,z) satisfies the following properties for each fized
|z| < 1.

(a) As a function of C, it is analytic in C\ iR.

(b) For ¢ € iR, the limits of h(n,z) as n — ¢ from the right, Re(n) > 0, and from the left, Re(n) < 0,
exist. We denote them by hy((,z) and h_((,z), respectively.

(¢) There is an alternative formula
1 ¢

2 2
—-—— Liy jo(zel& 7Y)/2)dy for Re(¢) < 0.
V2T J —cotilm(¢) /

h(¢,z) =
(d) It can also be written as

h(C’Z):[RW;Z for Re(¢) < 0.
(e) For ¢ € iR, we have hy((,z) =h_(—(,z), and
hy(¢,z) +h_((,2) = log(1 — Z€<2/2).
In particular, h(¢,z) is continuous at ¢ = 0. We have h(0,z) = 3 log(1 — z).
(f) For every positive constant ¢, we have h({,z) = O((™!) as ¢ — oo in {¢ € C: |Re(¢)| > c}.

Proof. (a) is clear from the definition of the function. (c) is proved in (9.21) of [BL18]. (d) can be checked
from (c) by using the power series of the polylogarithm function and using the identity \/%7 / foo e 2dw =
i e—u24uwd)/2 gy,

R 5= (b) and (e) follow from the Cauchy transform formula (d) and properties of Cauchy
transform. (f) also follows from (d). O
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6.7 Proof of Theorem 6.4

Theorem 6.4 is about the height fluctuation, while Theorem 3.2 is about the particle locations. Hence
we first apply (2.2) and translate the height function in terms of particle locations. After the translation,

the probability in the left-hand side of (6.10) (note that K = N in the formula by our assumption that

yg\,L) <0< y;(LL) + L) is equal to

i () b 6) 2 03} ).

j=1
where
a; = Sj + (1 — 2p)tj + O(l)

and
kj =N+ ps; — p°t; +x;p" 2 (1= p)/2LV? 1 0(1). (6.20)

Recall (6.9) that s; and ¢; are scaled as

L3/2

By Theorem 3.1, we need to prove that

hm f%%YL(Z)@YL(z) le . dZm = ]Fic(Xl,"' s Xm i P1y e ’pm) (621)

L—oo 27Ti21 27TIZm

with the above parameters. We change the variables
7 = (=D)Nrgz; = (=p)N (1 - p) Ve,

where z = (21, -+ ,zy,) satisfies
r < |Zm| << |Z1| < T9

with 71,79 given in Assumption 6.3.

In Section 6 of [BL19], the limit was evaluated for the step initial condition. It was shown that under the
same scales, Guep(2) converges to Cgrep(2z) and after simple conjugations the operators ;" and 5P
converges to K;*? and K5'P respectively. The tail estimates for the operators were also obtained so that the
Fredholm determinant converges (see Lemma 6.6 and Section 6.3.4 of [BL19].) Hence, to prove (6.21), it is
enough to (a) prove the convergence of the global energy function €y, (z1), (b) prove the convergence of the
characteristic function chy, (v, u; z), and (c) prove a tail estimate of chy, (v, u; z). But these three properties
are exactly the conditions in Assumption 6.3. Hence, we obtain Theorem 6.4.

7 Flat and step-flat initial conditions

We consider two particular initial conditions, flat and step-flat initial conditions defined in Definition 2.3.
Recall that
L=dN

for the flat initial condition case, and
L =dN + Ly

for the step-flat initial condition case where d > 2 and 0 < Ly < L are integers. The flat initial condition
is a special case of the step-flat initial condition, but we state and prove the results separately. The initial
height functions in one period are given by (See Figure 2):
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(i) (fat) haat(4,0) = |z| + k(d — 2) for £ = z + kd € Z with z,k € Z satisfying -1 < z < d — 2 and
-N+1<k<0,

(i) (step-flat)
|z| + k(d —2) for £ =z + kd € Z with x,k € Z satisfying

hy(4,0) = —1<z<d—-2and -N+1<k<0,
J4 for ¢ € Z satisfyingd — 1 <{ < Lgs+d—2.

They are extended by hi.(¢ + L,0) = h;.(¢,0) + L — 2N using the periodicity. Note that by definition, the
space parameter £ € Z.

We now consider the large L limit. In the step-flat initial condition, there is a parameter Ls. This
parameter denotes the length of the step part in a period of the step-flat initial condition, while dN = L — L,
denotes the length of the flat part. If Ly = O(1), then the limit is same as the flat initial condition. On the
other hand, if Ly = O(N) = O(L), then it turns out that the limit is same as the step initial condition; see
Appendix A for an argument using using a directed last passage percolation interpretation of the PTASEP.
The interpolating regime turns out to be Ly = O(v/L). We will focus on this case.

The following result shows that both initial conditions satisfy Assumption 6.3. Hence, the limit theorem
6.4 is applicable and we obtain the limit of the multi-point distributions for these two initial conditions. The
proof of the following theorem is given in the next two sections.

Theorem 7.1. We have the following:

(i) (flat) For the flat initial condition, Assumption 6.3 holds with
Epar(z) = (1= 2) 7472 and  xpar(n,&7) = S¢(—nm)e &0 y(n — ¢)

for 0 < |z| < 1, where B(z) is defined in (6.17), h((,z) is defined in (6.18) and (6.19), and d6¢(—n) =1
if n = =&, and is equal to 0 otherwise.

(i) (step-flat) For the step-flat initial condition, if
Ly=pu/d—1LY? +0(1)

for a fized constant p > 0, then Assumption 6.8 holds with

_ 77105’;77+77 +2p)  dy' dn
Egt(z) = exp <— h(p,z / / (72 — 2)(e— (72 — ) 2 2 (7.1)
and xst(n, & 2) is given by
20+ 1) n(—c—2p2)—h(—n—2p2
Xst(1,€32) = §—|(-n—|—2),u h(=€=2p2)~h(=n-2u.2) for Re(§ +2u) >0 (7.2)

and analytically continued for & € C. The above result holds for 0 < |z| < 1, where the function h((,z)
is defined in (6.18).

In the formula (7.2), n is in R,. This implies that Re(n) > 0, and hence Re(n 4+ 2u) > 0. Thus,
h(—n—2u,z) is well-defined for all € R,. On the other hand, £ is in L,, and hence Re(£) < 0. This implies
that Re(€ + 2u) can be positive or negative or zero. When Re(§ + 2u) > 0, we use the formula (7.2). If
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Re(€ + 2u) < 0, then we use the analytic continuation. The analytic continuation for ¢ € C is possible by
Lemma 6.8 (e). The explicit formula is given by

2(n + p) (1 _ Ze(€+2u)2/2)e—h(§+2u72)—h(—n—2uaZ) (7.3)

Xst(1,€52) = et

for Re(€ +2u) < 0.

The step-flat initial condition interpolates the flat and the step initial conditions. We can check this
property for the limits of the global energy function and the characteristic function directly.

Proposition 7.2. The functions Es(z) and xst(n,&;2) in (7.1) and (7.2), (7.3) satisfy the following prop-
erties.
(i) As u—0,
Eg(2) = Egat(2) and  Xst(1,€52) = Xaae (0, &3 2).-

(1) As u— oo,
Esf(z) — Estep(z) =1 and Xsf(777§§ Z) — Xstep(nag;z) =1

Proof. (i) Consider Eg(z) as u — 0. By Lemma 6.8 (c), e~ 2"(02) = (1 — 2)~1/4, For the double integral,
we first deform the contours to ¢ + iR for any constant ¢ > 0 satisfying /2 > |z|. The limit as g — 0 is

Zz/ / ' log(n +11') dr dn
2 Jerir Jopir (€777/2 —2)(e=(1)?/2 — z) 27i 271’

Changing 1 to —, this is equal to —B(z) in (6.16). Thus we obtain Ey(z) — (1 — 2)"/%e~5®) = Eg,(2).
Consider xs¢(n, &;2) as p — 0. We only need to consider ¢ satisfying & € L,. This implies that Re(¢) < 0,
and hence Re(€ 4 2u) < 0 for all small enough p. Thus, by (7.3), the formula in this case is

equal to

2(n + p)

2
== (1 ze(&+21) /2)e—h(f+2/t7Z)—h(—n—2u,Z)_
§+n+2p

Xsf(n 67 )

Since ¢ € L,, we have e=€/2 = 4. Hence, the limit of 1 — 2e(6+21)%/2 44 u — 0 is zero. This implies that

if €+ n # 0, then xs(n,&;2) converges to zero as g — 0. On the other hand, if £ + n = 0, then, using
_ —&2/2
z=e ,

1 — gelét2m)?/2 1 _ g26u+2p®

E+n+2u 24
Therefore, in this case, xs¢(7, &;2) — 262e~20E2) | Hence, xo (1, &;2) — Xaar (1, &;2) as u — 0.
(ii) Consider Eg(z) — 1 as g — oco. Lemma 6.8 (f) implies that h(u,z) — 0 as y — oo. For the double

integral, note that
AT
(e=m?/2 — (e P2 gy 2mi2m \Jwe P2 —z2mi)

by the oddness of the integrand. Hence, we may replace the term log(n + n’ + 2u) by log(w) in the

— =£.

double integral without changing the value. Since log(W) — 0, we find that Eg(z) — 1 as p — oo.
For xst(n, &;2), we note that Re(€ + 2u) > 0 for all large enough p. Hence, Lemma 6.8 (f) implies that
xst(1, &;2) converges to 1 as p — oo. O
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8 Asymptotic evaluations of various products

The proof of Theorem 7.1 involves the limits of various products about Bethe roots. In this section, we
summarize some of the limits obtained from [BL18] and [BL19]. The results in this section do not depend
on the initial conditions.

Fix positive integers L > N and fix a complex number |z| < 1. The trajectory |w® (w + 1)
consists of two disjoint closed curves. Let Ar be the closed curve satisfying Re(w) > —p and let Ay, be the
closed curve satisfying Re(w) < —p:

LN| = |t

Ap ={w e C:|w™(w+ 1"V =z", Re(w)> —p}, 8.1)
AL ={weC: |wN(w+1)E"N| =25, Re(w) < —p}. '

Taking the logarithm, the products are changed to sums involving functions of the Bethe roots. The next
simple lemma transforms the sums into integrals using the residue theorem.
Lemma 8.1 (Lemma 9.1 of [BL18]). Recall the Bethe polynomial
¢ (w) = w™ (w4 1)V — 2L,
(a) Let p(w) be a function which is analytic in the interior and also in a neighborhood of Ar. Then,

Lzt [ p(w)(w+ p)
2mi j{ w(w + 1)qz(u))d

)

> p(v) = Np(0) +

VER .

where the integral is over an arbitrary simple closed contour which lies inside the half plane Re(w) > —p
and contains the curve Ar inside.

(b) Let p(w) be a function which is analytic in the interior and also in a neighborhood of Ay,. Then,

Lsb [ plw)(w+ p)
27i % w(w + 1)qz(w)d

)

> pw) = (L= N)p(-1) +

ueLl ,

where the integral is over an arbitrary simple closed contour which lies inside the half plane Re(w) < —p
and contains the curve Ay, inside.

Proof. The result follows directly from the residue theorem. O

Using the above lemma and applying the method of steepest-descent, we can show the following.

Lemma 8.2. If zX = (=1)Nvkz with |z| < 1 and p = N/L staying in a compact subset of (0,1), then for
every 0 < e < 1/2 the following holds for all large enough L.

(i) (Lemma 8.2 (a) of [BL18]) For w which is a finite distance away from the trajectory Ay, U AR,

[] Vo —u=wr> (1 + O(LH/?)) if Re(w) > —p,

ueLl,
I1 vo—w=(-w~ (1 n O(Lf‘l/Q)) if Re(w) < —p.
VER .

(ii) (Lemma 8.2 (a) and (b) of [BL18]) For w = —p + (+\/p(1 — p)L~=Y? with |¢| < L¢/4,

H Vw—u = (Vw+ 1) Nezh(¢2) (1 + O(L 2 1og L)) if Re(¢) > 0,

uel,
[T vo—w=(v=w)Nez" (1 +O(LY? 1ogL)) if Re(¢) <0,
VER
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where h(C,z) is the function defined in (6.18) and (6.19). Here, when Re(¢) = 0, h((,z) is the limit of
h(n,z) as n — ¢ from Re(n) > 0 for the first case and from Re(n) < 0 for the second case.

(iii) (Lemma 6.7 of [BL19]) There is a constant C > 0 such that for every w satisfying |w + p| > L<1/2,

and
ech_F <

<efk" if Re(w) < —p.

(iv) (Lemma 8.2 (c) of [BL18]) We have
HveRz Hueﬁz vu—u
Muce. (V=0) " Ther. (Vo r D"
where B(z) is the function defined in (6.17).

= e B0 (14 0(L713)

Proof. The proofs are in the papers [BL18] and [BL19], except for the uniform error bound in (ii). In Lemma
8.2 (a) and (b) of [BL18], the error is proven to be uniform assuming that Re(¢) > ¢ for a constant ¢ > 0 for
the first case and assuming that Re(¢) < —c for the second case. However, a quick inspection of the proof
log(w — u) as an

shows that these assumptions are not necessary. The proof proceeds by expressing ), . .

integral using Lemma 8.1 and then applying the method of steepest-descent. O

9 Proof of Theorem 7.1 (ii)

The step-flat initial condition is Yy = (—(N —1)d, -+, —2d, —d,0). To show that Assumption 6.3 holds, we
evaluate the limit of the global energy function and the characteristic function. These functions are given in
terms of the symmetric function (3.6). For step-flat initial condition, the equation (3.7) becomes

>‘(1/s ) - (Ovi(df 1)7 72(d7 1)7 T ’7(N - 1)(d7 1))

and the numerator in the formula of the symmetric function (3.6) becomes a Vandermonde determinant.
Evaluating it, the symmetric function becomes

N
Gavey (W) = [ J(wi + 1)~ @ DE=D TT - g(ws, wy), (9.1)
i=1 1<i<j<N
ww+ 1) —w(w +1)%
g(w,w') := - ) . (9.2)

w—w
Note that when w = w’,
g(w,w) = (dw + 1)(w + 1)?72.

This section is structured as follows. In the subsection 9.1, we discuss a few properties of the roots of
the function g(w,w’). The next three subsections prove the conditions (A), (B), (C) of Assumption 6.3,
respectively, thus proving Theorem 7.1 (ii). Some lemmas stated in these subsections are proved in the last
subsection, Subsection 9.5.

The parameters in Theorem 7.1 satisfy L = dN 4+ L with Ly = u\/ﬁLl/Q + O(1) for a fixed constant
1 > 0. The special case when Lg = 0 is the flat initial condition case. The proof becomes simpler in this
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case, and we give a shorter proof in Section 10 for the flat initial condition. Hence, throughout this section,
we assume that p > 0.
The average density p satisfies

Vvd—1

L~Y2 4 0(L™Y).

This implies that
—d™t = —p—pu/p(L=p)L7* +O(L7H). (9:3)

Note that, in particular, —d~! < —p for all large enough L.
Throughout this section, we assume that

L — (—1)N1r§z, where 19 = p”(1 —p)'=*

for a complex number z satisfying 0 < |z| < 1. The analysis of this section also works if z depends on L but
|z| stays in a compact subset of the interval (0,1). However, to make the presentation simple, we assume
that z does not depend on L.

9.1 Roots of the function g(w,w’)

We discuss a few properties of the roots of the function g(w,w’) defined in (9.2). Note that g(w,w’) is a
symmetric polynomial. For each complex number w, it is a polynomial of degree d — 1 in variable w’. Let

Uw') ={weC:glw,w) =0} (9.4)

be the set of the roots for a given w’, where the roots are counted with multiplicities. Hence, U(w) has d — 1
elements and we have
gww)= [ w-uw).
ueU (w’)
In particular, U(0) consists of d — 1 copies of —1. We can check the following property. Its proof is in
Subsection 9.5.3.

Lemma 9.1. For v € R, with 0 < |z| < 1o, the elements of U(v) are all distinct. The real part of each
element is less than —d 1.

The previous lemma assumes that v € R, in particular that Re(v) > —p. The next lemma is about the
case when w is close to the point —p including the case that Re(w) < —p. In the proof of Theorem 7.1 (ii),
we will use the result when w is in the discrete set £, and is close to the point —p.

Fix 0 < € < 1/8 and denote the disk

D= {w:|w+p| </pl - p)L™1/2*}. (9.5)

By (9.3), w = —d~! is in D for sufficiently large L. Consider the set U(—d~1). The solutions of the equation
g(—d~',w'") = 0 are necessarily the roots of the polynomial p(w’) = (—d=1)(—=d=! + 1)1 —w/(w’ + 1)4%.
It is straightforward to check by considering the critical points that there is a double root at w’ = —d~' and
the remaining d — 2 roots are distinct. The d — 2 roots have real part less than —d~!. Since g(—d~!,w’)
is p(w') divided by —d~! — w’, we conclude that all d — 1 elements of U(—d~!) are distinct, one of them is
w’ = —d~!, and the rest d — 2 has real part less than —d~!. We denote the elements as

U(_dil) = {_dila Ciy 7Cd*2}7

where Re(c;) < —p. For other points w € D, we compare the elements of U(w) with the elements of U(—d~1).
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Figure 6: Left: The curve is the trajectory |w’(w’ 4+ 1)4=1| = | —d~'(=d~! + 1)¢~1| when d = 4. The e points are
U(—d=') = {—d~1,ci.c2} and the A points are U(w) when w is close to —d~!. Two of the points, c1(w) and c2(w), are very
close to the e points. Right: These are the close-up of the points ¢;(w) and ¢;.

Lemma 9.2. Fiz 0 < € < 1/8 and let D be the disk in (9.5). For w = —p + (\/p(1 — p)L™/2 € D with
|| < L€, all d — 1 elements of U(w) are distinct. One of them is given by

W= —p+ (=2u—/p(L - p) L7+ O(L* ).

The rest d — 2 elements are of the form c;(w) = ¢; + O(L?**71) for 1 <i < d — 2. Note that Re(c;(w)) < —p
for all large enough L.

We prove this lemma in Subsection 9.5.1.

Observe that for w = —d~!, we have ¢ = —p from (9.3). Hence, in this case 1 = —p—pu+/p(1 — p)L=/2 4
O(L*71), which is consistent with (9.3). We also note that we have c;(—d~!) = ¢; by definition.

An example of the points w and ¢;(w) are shown in Figure 6. Note that the lemma shows that the
distance between ¢;(w) to ¢; is much smaller than the distance between @ and —p; one is O(L?*~1) and the
other is O(L~1/2). This feature is clearly visible in the picture.

9.2 Global energy function and the condition (A)

The global energy function is &g (z) = Ga(y)(R=) which is obtained by inserting W = R, the right Bethe
roots, in the formula (9.1) of the symmetric function. We re-express the formula which makes the asymptotic
analysis easier. The result is in Lemma 9.3 below.

Recall the definition of U(w) given in (9.4). Define

U, = U U(v).

VER .

This set has (d — 1) N elements. By Lemma 9.1, each element has real part less than —d~!. See Figure 7 for
an example of the set U,. We note that for the flat initial condition case, U, = L,: See the discussions after
Lemma 10.2 in Section 10. For general step-flat initial condition, the set U, is not equal to L., but we will
think it as a proxy to L.

Lemma 9.3 (Global energy function for step-flat initial condition). We have

[Ler. (Vo + l)d [ler, [lucy, Vv —u

Est(z) =
O M V& T T | Thoon, o7 D™ o (V=)

(9.6)

Here and throughout this section, the notation \/w denotes the principal branch of the square root function
with the cut R<g.
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Figure 7: The curve is the trajectory of |w™N (w+1)L=N| = |2|& when L = 15, N = 3, and z = (0.0140.05i)1/5(1.0140.05i)4/5.
Three marked points on the right closed curve are the elements of R,. When d = 4, for each v € R, U(v) has d— 1 = 3 points.
They are indicated by the same marks (disk, triangle, or square) inside the left closed curve. The set of all marked points inside
the left close curve is the set U, .

Proof. By (3.8) and (9.1),

Ek(2) = Gav(Re) = ] 0+ 1)~ DN=DTT g(vi,0), (9.7)
vER, 1<i<j<N
where vy, -+ vy are the elements in the set R.. From the definition of the set U(w) and the symmetry of

g, we have

g(v,v") = H (v—u') = H (v —u) (9.8)

w' €U (v’) u€eU (v)
for v,v" € R,. Multiplying the two products in the above formula and taking the square-root,
g(v,v') = H Vo —u H Vvl —u
u' €U (v’) ueU (v)

for v,v’ € R,. From this we find that

VU —U
H g(vi,vj) H H Vu—u= Hoer, lucu. . (9.9)
1<i<j<N VER. weU,\U(v) [loer. Hucvy Vo —u

We now change the denominator of the last expression. Note that g(w,w) = (dw + 1)(w + 1)?~2. Hence,
setting v = ¢’ in (9.8) and taking the square-root, we find that

H Vo —u=Vdv+1(vv +1)42

ueU(v)

Taking a product,

II II vo—u= ][] Vdv+1iVo+1)*2 (9.10)

vER: uelU (v) vER:

Now, for given v, the set of all roots of the polynomial p(w) := w(w + 1)?~! —v(v 4+ 1)?~! of the variable w
is U(v) U {v}. Hence, the product of the solutions satisfies v ][, cr(,) u = (=1)4=1y(1 + v)?~L. This implies

that [T,cp ) vV—u = (Vo +1)4". Thus,
I v=u= ] Vv+D*" (9.11)

uEU., VER

Inserting the the equations (9.9), (9.10) and (9.11) into (9.7), we obtain the result. O
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We now show that the condition (A) of Assumption 6.3 is satisfied. We take the limit of the formula
(9.6) as L, N — oo. Fix 0 < € < 1/2. The second equations in Lemma 8.2 (i) when w = —1 implies that

[ o+ =1+0L"2).

VER .

On the other hand, the second equation of Lemma 8.2 (ii) with w = —d

H Vdv+1= e%h(_“’z)(l +O(L?10g L)),

VER

implies that

where we used the formula (9.3). It remains to find the limit of the term in the big bracket in the formula
(9.6). This is given in the following lemma whose proof is given in Subsection 9.5.4. From this and using
the symmetry of h(—u,z) = h(u,z) as in (6.19), we see that the condition (A) of Assumption 6.3 is satisfied
with Fg¢(z) defined in (7.1). The following lemma is a generalization of Lemma 8.2 (iv) from y=0to u >0
in which £, is changed to U,.

Lemma 9.4. Under the conditions of Theorem 7.1 (ii), we have, as L, N — o0,

H’UGRZ HuGMz VU —u
HUGR (V v+ 1)(d71)N Hueu (\/TU)N

., oy (9.12)
B nn' log(n +n' + 2 n dn —1/2
—exp< / / (e=m*/2 — z)(e~(1)?/2 — )2711271'1) (1+0(L ))-
9.3 Proof of the condition (B)
By the definition (3.9) of characteristic functions and using the formula (9.1),
1)(d=1)(N-1)
chg(v,u; 2) = (vt1) g g (9.13)
(u+ 1)(d=HN VR,

forve R, and u € L.

Fix 0 < € < 1/8. To check the condition (B) of Assumption 6.3, it is enough to consider v € R and
uwe £l (See (6.5) for the notations.) For such u and v, we use Lemma 9.2 to express the characteristic
function in a different way. The result is given in Lemma 9.6 below whose proof uses the following result.

Lemma 9.5. Recall the notations of Lemma 9.2. For w € D,

L T gt or) — 92200 T e
(w+ 1)(d— 1)NUER N P (w)N

where we recall the right Bethe polynomial ¢, r(w') = [[,cr. (W' —v").

Proof. By the definition of @ and ¢;(w) in Lemma 9.2,
g(w,w') = (v — W) H(w’ — ci(w)). (9.14)
Taking a product,

d—2
[T sw.v)y= T[] | —@) [[( = ci(w))| = (-1)"Ng, g (i quRcZ : (9.15)

v'ER v'ER i=1
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Setting w’ = 0 in (9.14) implies that

d—2
(w+ 1" = ()" [ ea(w).

Dividing (9.15) by the above equation raised by power N, we obtain the result. O

Recall the notation (3.15),

() 2=m(w) for Re(w) < —p, (9.16)
2\W) = w .
% for Re(w) > —p.

In the next lemma, we express the characteristic function for v € R(;) and u € LS) using H,. For such v
and u, we may set

u=—p+&/pl=p) L™ e and v=—p+n/p(l—p)L 2R (9.17)

with |£], |n| < L€. Then, in terms of the notations of Lemma 9.2,

—p+ (=20 —&\/p(1—p)L7 2+ O(L* )
and ¢;(u) = ¢; + O(L*7 1) for 1 <i < d — 2. Similarly,

U

b=—p+(=2u—n)p(l—p) L2+ 0O(L* )
and ¢;(v) = ¢; + O(L*7 1) for 1 <i<d—2.
Lemma 9.6. Fiz 0 <e<1/8. Letv € R and u € £ given by (9.17) above. Then,

(w1 g(0,0)Ho () T He(ci(w))
chyt (v, u;2) = (0 ) g(u ) H. (0) };[1 H.(ei(0)) (9.18)

if Re(d) < —p, and

(u+ 1) g (v, 0)(1 = 2Ea=N (@ + 1) =) T He(ci(w)

(v+ 1) g(u,v)H. (@) H(0) H.(ci(v))
if Re(t) > —p. Here, when Re(d) = —p, the formula is defined by the limit of either of the formulas of
(9.16).

Proof. By (9.13) and Lemma 9.5,

chg (v, u; 2) = (9.19)

i=1

Bt ) = )T )00 0(0) 1 sV ae(e)
By Lemma 9.2, Re(c;(u)) < —p, and hence we may replace ¢, r(ci(u)) by ¢;(u)N H,(c;(u)). The same applies
to g, r(ci(v)). Consider ¢, r(0) and g, r(). Since v € R, we have Re(n) > 0 in (9.17). Thus, we find that
Re(9) < —p and we may replace g, (%) by @~ H,(9). On the other hand, for u € £,, and hence Re(¢) < 0,
the real part of —2u — £ can be either positive or negative. When it is negative and thus Re(@) < —p, we
replace ¢, r() by @V H, (@), and we obtain (9.18). However, if Re(@) > —p, then we first use the identity
¢1(w)g: r(w) = wN (w + 1)LV — 2L to write ¢, g(4) in terms of ¢, 1,(4), and use the definition of H,(w)
for Re(w) > —p to obtain (9.19).

When Re(i) = —p, the limits of two formulas (9.18) and (9.19) are equal using ¢, 1.(w)q. r (w) = W™ (w+
DEN — 21 with w = . O
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We now prove the condition (B) of Assumption 6.3 using Lemma 9.6. The proof follows from the next
asymptotic results most of which are in Section 8.

(a) Since ¢; are O(1) away from the point w = —p and satisfy Re(c;) < —p, the second equation of
Lemma 8.2 (i) implies that

H.(c;(u) =1+ O0(LY?) and H.(c;(v)) =1+ O(L?).
(b) The second equation of Lemma 8.2 (ii) implies that
H,(0) = e"n=2m2) (1 4 O(L1/?)).
(¢) The second equation of Lemma 8.2 (ii) implies that
() = 620 (14 O(L12)) i Re(§ +21) 2 0,

where when Re(€ 4 2u) = 0, we interpret h(—& — 2u,z) as the limit of h(—§ — 2u — §,z) as § | 0. The
first equation of Lemma 8.2 (ii) and the formula (6.19) imply that

H. (@) = eh(=6-2u2) (1 + O(Lefl/z)) — eh(€+2p,2) (1 + O(LE*l/Q))
if Re(§ +2u) <O0.

(d) Note that for w = —p + ¢1/p(1 — p)L™Y/2 with |¢| < L€, we have w(w + 1)471 = (—p)(1 — p)?~1(1 —
%L‘l + O(L*73/2)). Hence, it follows from the definition of g that

(u+1)"tg(v,v)  2(u+n) 1)
(v+1)d-1g(u,v)  E+n+2u <1+O(L 2)) ’

We will show in Lemma 9.7 that & + 1 + 24 is non-zero.

(e) It is straightforward to check using the definition that

1—2la " Na+1) N =1- e s (E+20)° (1+ O(LSefl/Q)).

All of the above limits are uniform for z in a compact subset of the unit disk. From the above results, we
find that the condition (B) of Assumption 6.3 holds with arbitrary two real numbers 0 < 7 < r2 < 1 and
with 2 )

N+ p h(—¢—2p,z)—h(—n—2p,z)
s yGy2) = € ’ ’
Xst (17, €5 2) Etnton

if Re(¢ +2u) > 0, and

2(n+ 2 —h(—&—2p,2)—h(—m—2u,2
et (: £:2) = £+<nn +M2)M(1_Ze(§+2u) /2)g=h(—€=2p.2)~h(=n~211:)

if Re(¢ 4+ 2p) < 0. Here, we note that Re(—n — 2u) < 0. When Re(€ 4 2p) = 0, the formula h(—€ — 24, z)
should be interpreted as the limit of h(—¢ — 2u — 4,z) as the limit of the positive § | 0. As we discussed in
Lemma 6.8 (c), the formula of x«(n,&;2) when Re(€ 4+ 2u) < 0 is an analytic continuation of the formula
when Re(§ + 2u) > 0.

It remains to show that £ +n + 2u in (d) above is not zero.
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Lemma 9.7. For u and v in (9.17), we have (recall that 1 > 0)
IS +n+2u 2
for all sufficiently large L.

Proof. By Lemma 6.2, the discrete sets £, and R, in a L~'/?*¢-neighborhood of the point w = —p converge
to the discrete sets L, and R, respectively, as L — co. Hence, the lemma follows if we show that |£+n+2u| >
V2u for all € € L, and n € R,. The points £ € L, and n € R, satisfy the equation

e &2 =2 = 5 and Re(§) < 0 < Re(n).
All such points are of the form
&=+/—2log|z| (—seca+itana) and n=+/—2log|z|(sec + itanp)

for some —7/2 < o, B < /2. Since cos(a + ) + cos(a — ) = 2cosacos > 0, we have

1 < 1 _ ] — —
cos? (a + ,3) _ I+ cos(a + f) S cos(a — B) — sin? (Of 5). (9.20)
2 2 2 2
A direct calculation shows that
Im(€ + n)| = 24/—21og|z| [sec asec 5 sin (a ;— ﬁ) cos (a —; B)‘
and
[Re(€ +n)| = 24/ —2log |z |sec asec Bsin (a ; B) sin (a ; B)‘ :

Thus, by (9.20), we have [Im(£4-7)| > [Re(£4+n)|. It is easy to see from the geometry that |z +yi+2a| > v2a
if x,y,a € R satisfy |y| > |=| and @ > 0. Hence, we find that |¢ +n 4 2| > v/2u > p and this completes the
proof. O

9.4 Proof of the condition (C)

By (6.7), the condition (C) of Assumption 6.3 is proved if we show that there is a constant C' > 0 such
that |chge(v,u; z)| < CL for all (u,v) € R, X L, and 71 < |z| < ro where r; and ro are from the condition
(B). Since we showed that the condition (B) holds for arbitrary 0 < r < rg < 1, it is enough to fix them
arbitrarily in this subsection.

The characteristic function is given by the formula (9.13). To prove the upper bound of the characteristic
function, we need the following two lemmas which will be proved in Section 9.5.5.

Lemma 9.8. There is a positive constant C' such that

HU’GRZ g(v7vl) >0
(v+1)@-DN | =
forallve R, andr < |z| < re.
Lemma 9.9. There is a positive constant C' such that
[cr, 90.0)| _
(u+ 1)@ O8N | =

forallu e L, and r1 < |z| < ra.
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Using these lemmas and the equation (9.13), the condition (C) is proved if we show that the absolute

value of
(v+ 1)~ Vg(v,0) (u+ 1) (dv+1)(u—w)

(u+ 1)~ Dg(u,v)  (v+1)(u(u+ 1)4=1 —v(v + 1)d-1)

is bounded by C’L for a constant C’ > 0 uniformly for u,v and z. Since the sets £, and R, remain in a
bounded region for bounded z, the following lemma shows the desired bound. This completes the proof of
the condition (C).

Lemma 9.10. There is a positive constant C' such that
lu(u+ 1)1 — v+ 1)1 > CcL™!
forallu e L, andv € R, and for ri < |z| < rs.

Proof. Since u and v are Bethe roots, they satisfy u™(u + 1)X=" = ¥ (v + 1)X=N. This implies that
lu(u+1)?" =1 = |v(v+1)? ~1| since p = N/L. Thus, we find, using (9.3), that

—1_ —1/2
u(u+ 1) Jo+1)? ¢ o1
v+ 1)1 ju+1 u+1
for a positive constant c. The set £, is a subset of the trajectory Ay, given by |w™ (w + 1)L~V = |z|F

satisfying Re(w) < —p, and R, is a subset of the trajectory Ar given by the same equation but satisfying
Re(w) > —p. Consider the point ug of Ay, which is farthest from the point w = —1. This point is the point

which is closest to the point w = —p; this can be seen by noting that on the circle |w + 1| = r, the value of
|w™ (w+ 1)E=] increases as w moves away from the point w = —1 4+ r. Similarly, the point vy of Ag which
is nearest to the point w = —1 is the point which is closest to the point w = —p. Since 2L = (—=1)Vrlz, the

distance between the points uy and vg is of order L~'/2. Hence,

cL—1/2

d—1
w(ut ) > (14 LV syt

v(v+1)d-1

v +1

>
- U0+1

for some positive constants ¢, ¢”’. Thus,

lu(u+ 1) — o+ D)4 > L o(v + 1)),
Since |z| stays in a compact subset of the interval (0,1), |v| and |v + 1| are greater than a postive constant.
This completes the proof. O
9.5 Proof of lemmas

In this section, we prove five lemmas we used in the previous sections. We first prove Lemma 9.2 in
Subsection 9.5.1 whose proof is independent of other lemmas. The proof of other lemmas involves certain
properties of the map w + w(w + 1)?~!. We discuss such properties in Subsection 9.5.2, and then prove
Lemma 9.1, Lemma 9.4, Lemma 9.8, and Lemma 9.9 in the next three subsections.

9.5.1 Proof of Lemma 9.2

Consider the Taylor expansions of g(w,w’). Note that

glw,w') = ~—~L—2"2 where p(w)=w(w+ 1)4"L
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Some of the derivatives are

pl(w)(w —w') = (p(w) — p(w'))

(w — w')? ’
_ P () (w—w') + (pw) — p(w'))
Ju' = N2 )
(w—w')
and
P (w)(w — w')? = 2p' (w) (w — w') + 2(p(w) — p(w'))
Juw = e .
(w—w)
Recall that one of the solutions of the equation g(—d~!,w’) =0 is w’ = —d~! and the other d — 2 solutions
are denoted by w’ = ¢; for 1 <i < d — 2. Since the only critical points of the function p(w) are w = —d~*
and w = —1, we have
Ple) #£0 and p/(—d!) =0.
Furthermore,

p//(_d—l) — (d _ 1>d—2d3—d ;é 0.
From these formulas and the fact that p(—d~!) = p(c;), we find that
g’w(_d_17c’£) = Oa gw’(_d_lu ci) 7é 07 gww(_d_lﬂ ci) 7& 07

and 1
Gu(—d™ ', —d™") = g (=d~ ', —d7") = §p"(—d’1) #0.

Hence, the Taylor expansion of g(w,w’) near the point (w,w’) = (=d~!,—d1) is
g(w,w') = A(w+w' +2d7 ") + O(lw + d ') + O(|w' +d~'}?) (9.21)

1 ¢;) implies that

for a non-zero constant A, and the Taylor expansion near the point (w,w') = (—d~
gw,w') = Bj(w+d ")+ Di(w —¢;) + O(Jlw+d (Jlw+d P+ v —¢l)) (9.22)

for non-zero constant B; and D;.
Now, Lemma 9.2 assumes that w = —p + (y/p(1 — p)L=/? with || < L. By (9.3), such a w can be

written as
w=—d" + ((+pw)V/p(1 = p) L7+ O(L7F).

Thus the solutions w’ of the equation g(w,w’) = 0 for given w above can be found from the equations (9.21)
and (9.22). Solving them, we obtain Lemma 9.2.

9.5.2 Auxiliary lemmas

We discuss two auxiliary lemmas which are used in the proof of the remaining four lemmas.
The first lemma is about the map w > w(w + 1)41.

Lemma 9.11. For every d > 2, there exists a simply connected domain Q1 in C satisfying the following
properties, where Tt denotes the boundary of Q.,

It =o00,.

(i) The region Q4 contains the part {x € R:x > —d~1} of the real line.
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Figure 8: The solid curve is Fj‘p and the dotted curve is I'+ The region Q4 is indicated by the dashed lines. Here, we

down"
assumed d = 4.

(ii) We have I'+ = F,fp UTL  where the curve I'L extends from the point —d~" to infinity such that it

down up

lies in the upper half plane except for the endpoint —d=1. The curve T'3, = {w:w € I%p}.

down

(iii) The map w — w(w + 1)471 is a bijection from Q to C\ (—oo, —(r§H)?] where
]I'(S)f = d—l/d(l _ d—l)l—l/d.

(iv) The map w — w(w + 1)1 is a bijection from 'y, to (—oo, —(xgh)4].

v) Ifw e Qy UTL, then w+ ¢ € Q4 for every constant ¢ > 0.
+ +
See Figure 8. To prove the above lemma, we define a few contours and regions. Define the regions

QL ={weC:|jww+1)" < (H?, Re(w) < —d '},
Qr ={weC:|ww+ 1) < (©H?, Re(w)>—-d '},

and set
FL = 8QL and FR = 8QR (923)

The contours I't, and I'g are simple and closed. The contour I't, contains the point —1 inside and the contour
I'r contains the point 0 inside. The two contours intersect at the point —d~!. See Figure 9.
We also define the set

S :={we C:ww+ 1) is real-valued and w(w + 1)~ < —(xff)?}. (9.24)

We discuss the shape of this set. The equation w(w + 1)~ = —(r§f)? has d solutions and they are on the
contour I', UTR. It is easy to see that there is a double root at w = —d~!. It is also easy to check (by the

structure of the Bethe roots mentioned before the equation (3.4)) that for every real number 0 < a < (rf),

the equation w(w + 1)d_1 = —a has 1 solution in the region g and d — 1 solution in the region €y,.
Furthermore, the roots are continuous functions of a, and the solution in the region {r converges to the
point w = —d~' as a — (r§f)?. We thus find that the solutions of the equation w(w + 1)4~ = —(r§f)?
consists of a double root at w = —d~! and d — 2 points on I'y, \ {—d~!'}. For a real number a > (rff)¢, there
are d distinct solutions of the equation w(w+1)4~! = —a and these solutions lie in the region C\ (1, UQR).
In conclusion, the set S consists of (d — 1) simple contours, one of which intersects the point w = —d~!,
and the rest contours intersect points on I't,. The contour that passes the point w = —d~! is symmetric
about the real axis and it extends to the infinity at the angle e@ in one direction and at the angle e T

in another direction. We denote this contour by I't. The other contours extend to infinity at the angle
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Figure 9: This picture is for d = 4. The dashed contour has a self-intersection which is —d~1. The part of the contour on the
left of the self-intersection is I'r,. The part on the right of the self-intersection is I'g. The interiors of these two contours are
Qp, and Qg respectively. The union of the solid contours is the set (9.24). The solid contour which passes the self-intersection
point of the dashed contour is I'+. Tt divides the complex plane to two regions. The region on the right side is Q4. Note that
Q4 contains QR inside.

W, 1 <k <d—2. They lie on the left of I'*. We set the upper part of I'* to be Fip, and the lower

half to be Fj‘own. We let €2, be the region on the right hand side of I'-. See Figure 9. We remark that from

the definitions,
Or € Qy C {w e C:Re(w) > —d'}. (9.25)

Proof of Lemma 9.11. Above definitions imply (i), (ii), and (iv). To verify (iii), we note that the map
w — w(w+ 1) from Q4 to C\ (—oo, —(rff)?] is analytic and has no critical point. Moreover, it maps the
boundary of €, which is I'*, to the boundary of C \ (—oo, —(rg)4], which is (—oo, —(r§f)¥]. Thus it is a
bijection. We now check (v). It is sufficiently to show that T+ = Fip UT4 . intersects any horizontal line at
exactly one point. Using the fact that w(w+1)41 is strictly increasing on (—d~!, 00), we know I'" intersects
the real axis at exactly one point w = —d~'. Thus we obtain the result if we show that the derivative of
w(w + 1)?! is not a real number for all w in I'* except w = —d~!. The derivative of w(w + 1)1 at

w=2z+iyis

1 d-1
<w+w+1)w(w+ )

x (d—1)(z+1) a1 . . 1 d—1 de1
= 1 1 .
(x2+y2+(x+1)2+y2 w(w + 1) 41y x2+y2+(x+1)2+y2 w(w + 1)

For w € T, w(w + 1)4~! is a nonzero real number. Hence, the imaginary part of the above expression is
non-zero when y # 0. This completes the proof. O

The previous lemma is a property depending only on the integer d > 2. We now consider the sets £, and
R. which depend on the parameters L and N, and how these sets are related to the contours and regions
considered in the previous lemma. We assume the assumptions for Theorem 7.1 (ii): Recall that

L=dN + L,, where Ly=pvd—1LY?+0(1)
for fixed pn > 0 and 2L = (—1)Nrfz with |z staying in a compact subset of (0, 1). Define the contours

AL ={weC:|w(w+ DN =rlz, Re(w)< —p},
Ar ={w e C: |V (w+ )" N =rf|z], Re(w)> —p},

which were introduced in (8.1). The set £, of the left Bethe roots is a discrete subset of Ay, and the set R,
of the right Bethe roots is a discrete subset of Ag. The contours A, and Agr are disjoint and are separated
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Figure 10: The solid contours are I't, and I'g when d = 4. The regions 1, and Qr are the interiors of these contours. Note
that the contours I't, and I'g intersect at the point —d—!. The dashed contours are Ay, and Ag when e—H2/2 < |z| < 1; in this
case, the point —d~1! is inside Ay,. The dotted contours are A;, and Ar when |z] < e‘“z/z; in this case, the point —d~! is
outside Ay,.

by a distance greater than ¢L~'/2 for some positive constant ¢. The following lemma states relationships
between Ar, Ag and I'y,, I'g defined in (9.23). See Figure 10.

Lemma 9.12. We have the following properties.
(i) The contour AR is in the interior of T'r. As a consequence, Ag C Qr C Q.
(i) The property (i) also hold even if |z| = 1.

(1) If /2 < |z| < 1, then the point —d~" is inside Ay, for all large enough L. In this case, the contour
Ay, intersects I'r at two points and does not intersects I'r,.

(i) If |z| < e=#/2 then the point —d~! is outside A1, for all large enough L. In this case, the contour Ay,
intersect I'y, at at most two points, but it does not intersect I'r.

Proof. We first prove (i). By (9.3), we have —d~! < —p for all large enough L. Hence, the contour I'g
encloses —p. It also encloses the point 0. On the other hand, Ag encloses the point 0 but not —p. Therefore,
the property (i) is obtained if we show that Ag NT'g = (). We prove it by contradiction. Suppose that there
exists a point w € Ag NI'g. By the definitions of Ag and I'r, w satisfies

[ (w+ )P N =gzl and  Jw(w+ 1) = @F)T=d7H (1 -dH)T
Recall that v§ = p™ (1 — p)L=N. Since L = dN + Ly, we have L — N = (d — 1)N + L,. Hence, we find that

L, _ Jw™ (w + 1)F N

[N (w + 1)@ DN

N(| _ \(d-1)N
- p (1 P) L,
T @ HN(1 = d-))[@DN (1=7)

|w+1

7] < (1—p)*

7|

since the function z(1 — z)9~! is monotone in (0,d™!) and p < d~!. Since |z| < 1, the above inequality
implies that |w + 1| < 1 — p. Hence, Re(w) < —p and this contradicts the definition of Ag. Therefore, we
obtain the property (i).

For the part (ii), we note that in the above argument, |w+1|Fs < (1—p)&s
even if |z| = 1. Hence, we obtain the same property even when |z| = 1.

z| still implies that |w+1] < 1—p
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Figure 11: The dotted curves, from outside to inside, are I't = 9Q4, {w € C : Re(w) > —p, |w|V|w+1|E=N =}, and Ag.
The solid contour is Cout and it lies between ' = Q4 and Ar. The part Cé” is the union of two line segments and the rest

ut
is Céi)t Two black points are Q and Q. The corner point of Céi)t is —p.

The properties (iii) and (iv) are not used in the paper. We only provide a sketch of the proof. We first
show that the system of equations

¥ (w+ 1PN = rflz] and  |w(w+ 1) = (x5) (9.26)

have at most two solutions. Indeed, regarding (9.26) as a systems of two equations of two variables x = |w|
and y = |w + 1], one can check that there is a unique solution since L > dN. Since there are at most two
values of w with given |w| and |w + 1] values, we find that the equations (9.26) have at most two solutions.
Therefore, the contour Ay, intersects the contour I';, UTR at at most two points. The properties (iii) and
(iv) follow by analyzing whether the point —d~!, which is the intersection point of I'y, and I'g, lies outside
or inside Ay,. This computation is tedious and we skip the details. O

9.5.3 Proof of Lemma 9.1

Let v € R,. By Lemma 9.12 (i), R, which is a discrete subset of AR, is a subset of Qg. Hence, by the
definition of Qg, we find that |v(v+1)971| < rff. Now, by the structure of the Bethe roots mentioned before
the equation (3.4), if |z| < r§f, then the equation w(w + 1)9~! = z has d distinct roots, one of which is in
the region Qg and the rest d — 1 are in the region Q. Hence, the equation w(w + 1)?~! = v(v +1)4~! of w
has d — 1 distinct solutions in €y, and the remaining one solution is w = v. Therefore, the elements of U(v)
are the d — 1 distinct solutions of w(w + 1)?~! = v(v + 1)?~! in Q. This proves Lemma 9.1.

9.5.4 Proof of Lemma 9.4

To prove Lemma 9.4, we first use Lemma 8.1 to express the left-hand side of (9.12) as a double integral
and then take the limit. In this computation, the contour for the integral needs to be outside Ar but inside
the region Q. Such a contour exists by Lemma 9.12 (i). In this proof, we explicitly construct the contour,
which we denote Cyy,t below, to make the asymptotic analysis concrete. The same contour Cyy will also be
used in the next subsections.

Fix 0 < € < 1/8. Consider the contour

A ={weC:|wY(w+1)FN| =el vk} (9.27)

Since eX*|z| > 1, the contour is a simple closed curve and it encloses the line segment [—1,0]. We will
choose two points @ and its conjugation Q on A’. These two points will be given in explicit formulas
below (see (9.29)). Then we define the contour Coy as follows. It consists of two parts 't and 2

out out*
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Cout = ey o® where

out out’

Cht =)+ (1= NQ: 0 <A< TIUA(—p) + (1= N)Q: 0 < A< 1},
C2 = fweC:|wh(w+ 12N = el vz, Re(w) > Re(Q)}.

ou

(9.28)

In other words, C(S}l)t is a union of two line segments which have a shared endpoint —p and the other endpoint
is either Q or @, and C(Ei)t is a subset of A’. They are both symmetric about the real axis. See Figure 11 for
an illustration.

Now we make the choice of () explicit. Let

Q=—p+"/p(1—p)L™Y? with ¢ = L9/? +1\/3L¢ + 2log |z| + O(L°/>~1/2), (9.29)
In the following lemma, we prove the existence of such a point on A’ and some properties of the contour
C’éi)t which will be used in the asymptotic analysis.

Lemma 9.13. There exists a point Q with the form (9.29) on A’. Moreover, with this @, the contour
Cout = CN U C) s within Q, and dist (C}),T+) > O(L=1/2), dist (C'2), TL) > O(L{=D/2). Here

It =00,.

Proof of Lemma 9.13. Since 0 < e < 1/8, there exists a constant € satisfying e < ¢ < 1/8. We fix this €
and define the following disk centered at —p:

D' ={weC:|w+p| <p(l—pL /Y.

We note that D’ is defined in the same way as D in (9.5), except that we use ¢’ here but € in (9.5). To prove
the lemma, we first show the following statements.

(a) There exists a point @ with the form (9.29) on A’ ND’. This implies the existence of @ and hence the

contours Coyt, Cc(,,ll)t, and C,Si)t are all well defined.

C D’. Moreover, dist (C(l) 'Y > O0(L~1?).

out’

(b) oW

out

Moreover, dist (C, )

(¢) D’ contains a part of c®? 2 ND,TL) > oLl D/?),

out*

(d) dist (C2)

out

\D/,FJ‘) > O(L(efl)/Q).

The first three statements need to be verified within the disk D’, hence we write down the explicit formulas
of T+ and A’ within D’. For any w = —p + \/p(1 — p)CL~'/2 € D’ with |[¢| < L¢, we have

M - 6742/2(1 +O(ICPL™?)) (9.30)
o
and 1yd-1 1
m =1 o (G = )L+ O ), (9.31)

Therefore, the equations for the contours A’ and Tt = 9Q (see (9.27) and (9.24)) in D’ can be written as
Re(—(*/2) = L +log || + O(|¢]PL™'/?) (9.32)
and

Im((¢ + p)?) = O(L* ~1/2), Re((C + p)?) < O(L>* ~1/2) (9.33)
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respectively. From these two equations, we find that the intersection points of A’ and 9, satisfy w =

—p+¢'\/p(1 = p) with

(' = —p£iy/2Le + 2log |z] + p2 4+ O(L> ~(<+1/2),

We now set @ and ¢” as in (9.29). It is straightforward to check that ¢” satisfies (9.32). Hence, we can
choose the O(L%¢/271/2) term so that Q € A’. Hence Q is on the contour A’. This proves (a).

For the first part of (b), we realize that —p is the center of the disk D’, and dist (Q, —p) = O(L{¢~1/?)
which is far less than O(L€ ~%/2), the radius of D’. Therefore the upper half of C(E}}t,
with end points —p and @, lies in D’. By symmetry, the lower half also lies in the same disk. Thus
C((Nll)t C D’. To show the second part of (b), we need to further analyze (9.33). It could be rewritten as

IRe(¢ + w)| - [Im(¢)| = O(L* ~1/2) and [Im(¢)|? > |Re(C + w)|? — O(L3<'~1/2). Therefore we have

the line segment

Re(¢ + p)] < O(LP ~2) for w=—p+C/p(1—p)L /2 eTtND. (9.34)

Recall the definition of C’élll)t For any point w’ € 'V we have Re(w’) > —p. Thus by using (9.34) we have

out?

dist (w’, T+ ND’) > in Re(—p—
8 (U} )711)€r1£1i11’r17D’ e( p 'LU)

> p/p(L = p) L7V = O(L¥ ) > O(L7'/?).
On the other hand, by using the definition of D’ and @, we have

dist (w', T+ \ D')) > dist (w’,dD’)
2 M(Le’—l/Q — L(efl)/Z) Z O(L5'71/2)'

The above two inequalities imply dist (Céi)t, I'Y) > O(L~'/?). We finish the proof of (b).

Now we proceed to prove (c¢). We note that the above estimates (9.30), (9.31), (9.32), (9.33) and (9.34)
still hold for w € D” := {w € C : |w+ p| < /p(1 — p)L"}, with ¢ replaced by €” in the error bounds.
Here ¢ is a constant satisfying €’ < € < 1/8. We will prove (c) by splitting I'* to '+ N D” and I'+ \ D”
and then proceeding in the same way as we did for (b). Note that if w’ € Céi)t N D’, we have Re(w’) >

—p+/p(1 = p)L=D/2 L O(L5/273/2) by the definition of Q and the formula (9.32) of A’ in D’. Therefore
by using (9.34) with ¢/, D’ replaced by € and D" respectively, we obtain

dist (w', T+ ND")
> min  Re(y/p(1—p)LEY/2 — p—w) — O(L>/?73/2)

wel+nND"

"

> p(l — p)L(e—l)/2 + 1 p(l _ p)L_1/2 _ O(L3s —1) _ O(L5e/2—3/2)
> O(L(E_l)/Q).

On the other hand, since w’ € D’, we also have
dist (w’, T\ D”) > dist (9D, 9Q") = O(LF ~1/2) > O(L\«~1/?).

2 ND,TH) > O(L~1/2). We complete the proof of (c).

Finally we show (d). We will prove that C’éi)t \ D’ lies in QR, and hence in Qg \ D’. Note that I'y is a
contour independent of L, and only intersects I't at the point —d~!, see Figure 9 for an illustration. The
two contours have different angles at —d~! by a direction calculation: I'* is vertical while 'y = 0Qy has
angle +7/4 at —d~'. On the other hand D’ is a disk centered at —p with radius O(L¢ ~'/2). Therefore,

dist (Qr \ D', T4) > O(L€~1/2). This implies dist (C2) \ D', TL) > O(L¢~1/2) and hence the statement (d).

out

The above two inequalities imply that dist (C, (2)
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out \ D' C Qgr. Note this also implies
C’éi)t \ D’ C Q since Qr C Q4. Suppose w € Céi)t \ D’. Since C’éi)t C A’ with A’ defined in (9.27), we have

¥ (w+ 15N = pN (1= )P N eF o] = (p(1 = p) )V (1= )bt o
< (@M= a1 - p)lel = @) (1 - et

The lemma is complete except that we still have to show that c?

On the other hand, by solving (9.32) at |¢| = L¢ we find that the leftmost endpoints of C(gi)t \ D’ have real
parts at least —p + %«/p(l — p)L 12 4 O(Le=<~1/2). We therefore have

L.
1 ’ ’ s e
w+ 1|5 > (1 —pt 72V p(1—p)L° 24 O(L _1/2)> > (1= p)leect

for some positive constant ¢4, where we used the inequality (14 z~)*T! > e for all # > 0, and the fact that
L, = O(L'?). Note that ¢ > e. The above two inequalities imply

1/N

N L—N
1 e e e —
w (w+1) < (E%f)de(—C4L +L)/N < (r%f)de—csL 1

i+ 1)) = [ 5

for some positive constant cs and large enough L. Together with the fact that C’éi)t lies in the right half
plane Re(w) > —p > —d ™!, we conclude that w € Qr. We complete the proof. O

Now we proceed to prove Lemma 9.4. Recall the definition of U(w) in (9.4). By Lemma 9.11, for every
w' € Q4, the only solution of the equation w(w + 1)1 = w'(w’ 4+ 1)471 of w in the set QL UT is w = w'.
Hence for w’ € €, the set U(w’) consists of d — 1 points and these points are outside Q4 UT'-. We now
define
fet(w,w') = Z log(w — u) for w e Qp UTT and w' € Q. (9.35)
ueU(w’)
The log is the principal branch of the logarithm function. The above function is well-defined since w — u
does not lie in R<y by Lemma 9.11(v). This function is analytic in w’ € Q4 and it satisfies

g(w,w') = efsr (W) for w € Q, UT and w' € Q. (9.36)
Note that since U(0) consists of d — 1 copies of the point —1, we have
fst(w,0) = (d — 1) log(w + 1). (9.37)

We now express the logarithm of the left-hand side of the equation in Lemma 9.4 as an integral. For
fixed u € U,, we apply Lemma 8.1 (a) with p(w) = log(w — u) and obtain

Lzt log(w — u)(w + p)

log(v — u) — N log(—u) = _
27; og(v — u) — Nlog(—u) = 5 fc e el

Taking the sum of the the above formula over all u € U,

Za sf (W, V w
S Y loglw—u)— 3 log(—u) = = ?{C (Coem. felw,0) (wtp)

wEU, VER , ueU, 2mi w(w + 1)(]z (w)

Applying Lemma 8.1 (a) for the sum in the integrand, we find for each w € Ciyt,

Lz fe(w, w)(w' +p) .,
27 Jo,,, w(w +1)g.(w')

Z fst(w,v) = N fse(w,0) +

VER

54



We insert this equation to the previous identity. The integral involving fs(w,0) becomes, using fs(w,0) =
(d —1)log(w + 1) and the residue theorem,

Nsz fur(w,0)(w + p)
dw=(d—-1)N log(w + 1
o 0l Do) 0= 7DV 3 loglw+ )

Hence, we find that

Z Z log(v —u) — N Z log(—u) — (d —1)N Z log(v + 1)

ueU, vER uEU., vER .

(9.38)
LB B
7T1 ¢ 4 Cout

w(w + 1)g: (w)w'(w’ + 1)g. (w')

If we repeat the above calculations with the function p(w) = log(w — v) replaced by a constant function, we
find that the last double integral with fs(w,w’) replaced by a constant is zero. Hence, we may rewrite the
right hand side of (9.38) as

L2 2L fgf w, ’LU C/)(’LUer)(w er)
j{?{ w(w + 1)g, (w)w' (w' + 1)g, (w’ )d wdw’ (9.39)

for any constant C’. We choose C’' = Ef:_f log(—p — ¢;) + log (L_l/2 p(1 — p)), where c¢; are the points
defined in Lemma 9.2.

Now we evaluate the limit of (9.39).

Recall that C2) C A’ with A’ defined in (9.27). We have that |g.(w)| > |2/ (X" — 1) for all w € C'2).
The same equation (9.27) also implies |w|"[w+1[*=N < CL for some positive constant C. Hence the contour
Céi)t, and further Cyyt, is uniformly bounded. On the other hand, fy(w,w’) is analytic for w,w’ in Q.
Thus it is uniformly bounded for w,w’ € Coyt. These discussions imply that the part of the integral (9.39)
when both w and w’ are 1n Coi)t gives an O(e~1") term.

c 2 but w' € 0V by Lemma 9.2, we have

out out»
fot(w, w") Zlog —¢;(w") + log(w — @").

Using the fact that Re(w’) > —p for all w’ € C’éut, we have Re(w') < —p. We also have Re(¢;(w')) < —p, and
Re(w) > —p + O(L~1/2). These inequalities imply that |log(w — ¢;(w’))| and |log(w — @')| are bounded
by O(log L). Thus |fs(w,w’)| < O(log L). On the other hand, qz( N2k x e /2,70 1 4 O(LB<1/2)
for w' = —p+¢'\/p(1 = p)L71/2 ¢ Célll)t By the definition of C t, ¢’ is on the union of two line segments
starting from the origin. By (9.29), the slopes of the two line segments are approximately ++/3. This
implies |e=(¢)*/2] > 1 for all ¢/. Thus |g.(w')/z%| > |z=| — 1 > 0 for sufficiently large L. Combining the
above estimates, and recalling that |qz( )\ > |z| (e — 1) for all w € Cou)t, we obtain that the double

integral (9. 39) when w € Coi)t but w’ € C ot contributes an O(e™ ") term. By symmetry, the contribution
when w € C’Out and w' € Cgut in this integral is also at most of order O(e=").
Consider the part when both variables are in C From the definition of the end point @, for w =

o CVPT—p) LV and W = —p+ ¢ /ol = p)L- 2 on 'V we have |¢| = O(L¢) and || = O(LF).
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For such w and w’, we have (cf. Lemma 9.2)

qu(w w')
= Zlog — ci(w')) + log(w — ')

- Zlog —¢;) +log(C+ ¢+ 2p) + log ( 4”@) + O(L1/?).
Inserting this formula to (9.39), the double integral becomes

CC/lOg C+C’+2’u) / e—1/2
27'('1 /C(l) /C(l) e —C¢2/2 _ )(6 c2/2 _ )dCdC +O(L )7

where the contour CM) = {¢ = LY2(w + p)/+/p(1 —p) : w € Cc(nll)t} Extending the contours vertically and
then deforming the contours to the imaginary axis, we obtain

Z Z log(v —u) — N Z log(—u) — (d = 1)N Z log(v+1)

uEU, UE’R u€EU, VER .

¢¢"log(¢ +¢" +2 / e
271’1 / / 6 CQ/QO_gZ 6 2 /5)—Z)d<d< +O(L 1/2).

This completes the proof of Lemma 9.4.

9.5.5 Proof of Lemma 9.8 and Lemma 9.9

We first prove the following lemma from which we prove the two lemmas. Recall the region Q. and T = 99,
discussed in Lemma (9.11).

Lemma 9.14. For every subset A of 0y UTL that is uniformly bounded (with respect to L), there are postive
constants ¢ and C such that
_ [Mer. 9(w,v)

S fw+pav | =€

for all w € A and all sufficiently large L.

Proof. By (9.36) and (9.37), we have

HUERZ g(](w,)v) _ eZvERz fse(w,v)—N fs¢(w,0)
(w + )@ DN

for the function fs defined in (9.35). Hence, the lemma is proved if we show that there is a constant C' > 0
such that

> feelw,v) = Nfo(w,0)| < C

VER

for all w € A and sufficiently large L.
We use a similar computation of the previous subsection; we write the sum as an integral and use the
method of steepest-descent. As before, Lemma 8.1 implies

Lzt (v +p) fst(w, v)
EZR far(w,v) = Nfse(w, 0) = 7 7{, oo+ Dao(o)
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We note that the integral is zero if we replace fy(v,w) by a constant and change the integral to

Lzt (v +p) (fot(w,v) — fst(w, —p))
27 f{c . v(v+1)g:(v) ‘

v

without changing the value. The contour is Cyyy = C’ U C(2

out out*

Con51der the integral over Céut We show that this part converges to zero. Since |q,(v)| > |z|“ (e — 1)
for v e C

Out (see (9.27) and (9.28) above), it is enough to show that there is C’ > 0 such that
| fst(w, v)| + | fst(w, —p)| < C'log L.~ forallw € A and v € C’Out (9.40)

Recall that fsg(w,v) = fs(v,w) is the sum of log(v — u) over v € U(w). By Lemma 9.11, for every
w e AC QUL all solutions of u(u + 1)1 = w(w + 1)4~1, except for u = w, are outside Q. Hence, all
elements of U(w) are outside 2. The union of U(w) over w € A is a bounded set since A is bounded. By
Lemma 9.13, dist (C’éa,rl) > O(L~1/?). Therefore lv —u| > O(L=?) for all v € C'(()ut and v € U(w) with
w € A. On the other hand, a point v € C2) satisfies [v™ (v + 1)E=N| = €L rE|z|. From this, we find that
v remains in a bounded set for all large enough L. Hence, C’Ou)t is in bounded set for all L. Thus |v — u] is
bounded above by O(1). Combining the above discussions, we find that there are positive constants Co and
(3 such that

CyL™Y2 < dist (v, U(w)) < Cs

for all v € ¢

Out and w € A. Since there are d — 1 elements in the set U(w), there is a constant C’ > 0 such
that

falw,0)] < 3 [loglv— )] < C'log L

ueU(w)

for all v € C t and w € A if L is sufficiently large. The above estimate also holds for v = —p € 1 since
—p> —d~" 4+ C4L~Y? and it has at least O(L~'/?) distance to T'-. This completes the proof of (9.40).
It remains to show that there is a constant C' > 0 such that

Lz* (v+ p) (fet(w,v) = fe(w, —p))
2mi /C(l> v(v + 1)g.(v) dv| < C. (9.41)

By the definition, C'Y) lies in the disk D, which was defined in (9.5). We use the change of variables from v

out

to & by v=—p+&/p(1—p)L~ 1/2_ Under this change of variables, we have

+r) 3 _

L L(Uid =2———(1+O(LV?)d

z oo+ Dg.(0) L=y —z( +O( )dg,

where the error term is uniform in §. Since fs¢(w, w’) = 3_,/ ¢y () 10g(w — u'), we find from Lemma 9.2 that
the integral (9.41) is equal to

d—2
Z 2im / ¢ (log(w — ¢;(v)) — log(w — ¢;(—p))) (1+ O(L€_1/2))d§

e—§%/2 g
- (9.42)
/5 10g - gz/lzog( ( p))) (1+O(L€_1/2))d§,

where v = v(€) = —p + &y/p(1 — p)L~/2. Since C’(()ut is the union of two line segment, so is the contour of
the above integrals. By (9.29), the slopes of the two line segments are approximately ++/3. This fact has
the implication that e=€/2 _y grows super-exponentially as |{| — oo along the direction of the contour.
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For the first term of (9.42), we note that the points ¢;(v) in Lemma 9.2 satisfy ¢;(v) = ¢;4+O(L?*¢71). Hence
w in A has finite distance between ¢;(v) uniformly in both w and v. Therefore, we see that |log(w — ¢;(v))|
is uniformly bounded. The same holds for |log(w — ¢;(—p))|. Hence, considering the growth of e=¢/2 — 7,
we see that the first term in (9.42) is O(1).

Now consider the second term of (9.42). By Lemma 9.2,

b=—p+(-2n—Vp(1—p)L7 >+ O(L* 1)

and

—

(=p) = —p—2u/p(1 — p) L2+ O(L* ).

Since |log(a) — log(8)| < 27 + |log(2)] for all a, 8 € C\ (—00, 0], we have

§vp(l—p) 2¢—1/2
lo O(L .
g<1+L1/2(w+p)+2u\/,0(1—,0)+ ( ))‘

Since w € A C 4, we have from (9.25) that Re(w) > —d~!. Using (9.3) for the formula of d=!, we find
that

a
B

log(w — ) — log(w — (i?))’ <2m+

Re(L'(w + p) + 2u\/p(1 — p))
> Re(LM2(—d ™" + p) + 2/p(1 = p) (9.43)
> p/p(1 = p) + O(L71?).

This shows in particular that arg(L'/2(w + p) + 2u\/p(1 — p)) € [-7/2,7/2]. We also observe that ¢ is
on the union of line segments whose slopes converge to +v/3 as L — co. If two complex numbers satisfy
arg(a) € [-n/3 — §,7/3 4+ 0] for a sufficiently small § > 0 and arg(8) € [-n/2,7/2], then arg(a/8) €
[-57/6 — 6,57 /6 + d]. Since there are positive constants Cg, Cg such that |log(1 — z)| < Cg|z| + Cy for all z
in arg(z) € [-117/12,,117/12], we conclude that

Csl¢lv/p(1 — p) + O(L25_1/2).
|LY2(w + p) + 24/ p(1 = p)|

Now, the inequality (9.43) shows that the absolute value |LY/2(w 4 p) + 2u+/p(1 — p)| is bounded below
uniformly for w. Hence, we find that there are positive constants C1g, C1; such that

log(w — v) — log(w — (/—F))‘ <274 Co +

‘log(w — ) — log(w — (/—;))‘ < Colél + Cn1

uniformly in w € A and &, for all large enough L. Hence, considering the growth of the function e=€/2 Z,
we find that the second term of (9.42) is O(1).
We thus conclude that (9.42) is O(1) and we obtain the proof of (9.41). O

We now prove Lemma 9.8 and Lemma 9.9.

Proof of Lemma 9.8. By Lemma 9.12, we have R, C Qg. Furthermore, R, is uniformly bounded for all L.
Hence, Lemma 9.14 implies the lemma. O

Proof of Lemma 9.9. The points u € L, satisfies Re(u) < —p. Hence, |u| > p. Using this fact and the Bethe
equation, |[u™ (u+1)L=N| = rf|z| = pN (1 - p)E~N|z|, we find that [u+ 1|1 < (1—p)LN|z| < (1—-p)L—N.
Hence

[u+1]<1-—p forue L,. (9.44)
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By Lemma 9.11, for every u € L,, there is a unique @ € 24 U I%p such that

(a4 1) = u(u+ 1)1, (9.45)

=3}

The estimate |u 4+ 1| < 1 — p for u € £, implies that @ stays in a bounded subset of Q, UT'*. Thus, by
Lemma 9.14, there is C' > 0 such that

, u, v’
(i + 1)(d-1N
forallue L,.
Now we consider three different cases and show that in each case we have
, u, v’
yer. 90w, ) ‘ <C. (9.47)

(u+ 1)(@-DN

(a) Case 1: @ = u. In this case, we clearly obtain (9.47) from (9.46). We remark that this case occurs
when Lemma 9.12 (iii) holds.

(b) Case 2: @ # u and Re(@) < —p. From the definition of g and (9.45), we have g(u,v’) = g(ﬂ,v’)Z:Z:.
Hence,

Hv’eRz g(u7 UI) HU’ERZ g(a, U/) U — 'U/

(u+ 1)d=DN — (4 4+ 1)(d=DN w—

v ER

Using (9.45) one more time,

- (9.48)

[lyer. 9(uw,v) _ {vaenzg(a,v’)] [H u ] {Hv/enz(a—v’q

(u+ 1)@DN @+ )@ DN | T o (u—0') iN

Note that we did not use the condition Re(@) < —p in deriving the above formula. The first factor is bounded
by (9.46). Noting that Re(u) < —p, Lemma 8.2 (the second equation of (i) and (ii)) and Lemma 6.8 (f)
imply that the second factor is bounded. Since we assume that Re(u) < —p, the third factor is also bounded
by the same lemmas, Thus, we obtain (9.47).

(c) Case 3: @ # u and Re(@) > —p. Since £, UR, is the set of the roots of the Bethe equation, we
have w™ (w + )P — 28 =T e, (w — /) [I e, (w —v'). We use this identity to replace the product
[[,er_ (@ —2") to the product [[,c, (@ —u') in the formula (9.48). We have

Moer. 9(u.v) [HR g(@v/)} lH u ]

(u+ 1)(d=DN (@ + 1)(d=DN wer, (U =)

(@+ 1)L~ L
Hu’gﬁz('ﬁ—u/)‘| (1_ ﬂN(ﬂ—i—l)LN)' (949)

As in the case (b), the first factor is bounded by (9.46) and the second factor is bounded by Lemma 8.2 and

Lemma 6.8 (f). In this case, we have Re(@) > —p. Thus, the third factor is bounded by the first equation of

(i) and (ii) of Lemma 8.2, and Lemma 6.8 (f). We show that the last factor is bounded by 2. By the Bethe

equation, we have 2% = u¥ (u + 1)L=V. Using L = dN + L, with L, > 0 and the identity (9.45), we have
2L uN(u+DEN (u+ 1)L

N (i + 1IN T aN(a+ )N T (a+ I

Since Re(u) > —p, we have |+ 1| > 1 — p. On the other hand, we have |u+ 1] <1 — p from (9.44). Hence,
we have |u + 1| < |@ + 1|, and therefore, the last factor of (9.49) is bounded (by 2.) Hence, we obtain (9.47)
in this case, too. O]
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10 Proof of Theorem 7.1 (i)

Even though the flat initial condition is a special case of the step-flat initial condition, we present the proof
of the limit theorem separately since the analysis becomes much simpler. The simplification is due to the
fact that L = dN implies that the Bethe equation w” (w + 1)~ = 2L can be factored and the solutions
satisfy w(w + 1)1 = 2%e>™*/N for some 1 < k < N. See Lemma 10.1 below for the structure of the Bethe
roots in the flat case.

We show that the flat initial condition satisfies Assumption 6.3. Recall Ygay = (—(N—1)d,--- , —2d,—d,0)
and

)‘(Yﬂat) = (07 _(d - 1), _2(d - 1)7 T _(N - 1)(d - 1))

They are the same as Yy and A(Ys¢) for the step-flat initial condition. Thus, Gy (y;,,.) (W) is same as Gy(y.) (W)
for the step-flat case;

N
gk(}/flac)(W) = H(’LUZ =+ 1)_(N_1)(d—1)

i=1 1<i<j<N

1 wi(w; + 1) —wj(w; + 1)1 (10.1)

w; — Wy

Therefore, the global energy function and the characteristic function have the same formulas as the step-flat
case given in Lemma 9.3 and equation (9.13). These formulas can be further simplified in the flat case by
the following lemma.

Lemma 10.1. Let L = dN and let 0 < |z| < ro. Then, the set L, can be partitioned to N subsets Eg),
1 <i< N, ofd—1 elements such that there is a map M : L, — R satisfying M(u) = M(u") for u and v’
in the same subset LY and, furthermore, v = M (u) satisfies v(v + 1)1 = u(u+ 1)471.

Proof. Fix v € R,. Then, vV (v+1)¥=N = 2L, Since L = dN, we have |v(v + 1)1 = |2¢|. Thus, from the
structure of the Bethe roots (when N = 1 and L = d case), the equation w(w +1)4~! = v(v+1)?~! of w has
d—1 distinct solutions satisfying Re(w) < —p and one solution is given by w = v, which satisfies Re(w) > —p.
Since the polynomial w(w+1)4~1 —v(v+1)?~! of w is a factor of the polynomial w’ (w-+1)¥=N —uN (v+1)E—N,
we find that the d—1 solutions satisfying Re(w) < —p are subsets of £,. Thus, for each v € R, there are d—1
distinct u € £, such that u(u+1)?"! = v(v+1)¢~1. The lemma is proved if we show that the sets of such u
associated to two different points v and v’ in R, are disjoint. Note that if v and v’ are two different points in
R., then v(v+1)4~1 # o' (v/+1)4~1 since otherwise, then the equation w(w+1)4"1 = v(v+1)4~! has two roots
satisfying Re(w) > —p, which is a contradiction. Therefore, if u,u’ € £, satisfy u(u + 1)1 = v(v + 1)4-1
and v/ (u' + 1)1 = /(v/ +1)471, then u and u’ cannot be equal. This completes the proof. O

Recall the polynomial

1d—1_ 7w ld—l
gty = D@D W@ £ )T
w—w

In the previous section, for v € R,, we denoted by U(v) the set of the roots of g(w,v), and we set U, =
Uyer.U(v). The above lemma implies that U, = £, in the flat case. Replacing U, by £, in Lemma 9.3, we
obtain the following formula.

Lemma 10.2 (Global energy function for flat initial condition). We have

HUGRZ (\/m>d H’UGR; HuGE; \/m

& at(2) =
! ( ) HUE'RZ m H’UERZ (\/m) (d_l)N Hueﬁz (\/ju)N

Here the notation /w here denotes the standard square root function with cut R<g.
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The formula (9.13) of The characteristic function can also be simplified in the flat case.

Lemma 10.3 (Characteristic function for flat initial condition). Forv € R, and u € L,

¢ g (v)u" (u+ 1) ‘ 4o
: — 1
Chﬁat(v; u; Z) = QZ,R(U)UN(U + 1)d_1 ('Ll, U)7 Zf U(U + )

0, otherwise,

=o(w+ 1)t

where we remind that ¢, r(w) = [[,cr. (W —v).

Proof. From the definition (3.9) of the characteristic function and the equation (10.1), we have the formula,
which is same as the step-flat case (9.13),

v+ )NV g0, g

o (0:16:2) = D@ Vg, 0

v'ER

Fix v € R, and u € £,. By Lemma 10.1, there is a unique vy € R such that u(u + 1)1 = vy (v + 1)471,
ie. g(u,vg) = 0. If vg # v, then one of the terms in the product is zero, and hence, chgat(v,u;z) = 0.
Note that vy # v is same condition as u(u + 1)4~1 # v(v + 1)4~1. On other hand, if vy = v, then
u(u + 1)1 = v(v +1)471. In this case, we see from the formula of g that

v—w

u,w') = g(v,w’
o) = glou) =

for all w’. Inserting this formula in the product and noting the factors g(v,v) and g(u,v), we obtain

(1) + 1)(N—1)(d—1) v—1
chiae (v, u; 2) = N-1)(d—-1 H /
(U+1)( ) ) U’ERZ,U’#UU_U
in this case. The last product is equal to %)EZ)_“) and we obtain the lemma. O

Note that from the definitions, we have w™ (w + 1)E=N — 2L = ¢, 1 (w)g, r(w). Taking the derivative
and evaluating at w = v € R, we find that L(v + p)oN "' (v 4+ 1)""N"1 = ¢, 1,(v)¢, g (v). The characteristic
function can also be written as

chaat (v, u; 2) =

(v+1)E-NyN (u + 1)d_1 L(v+

p)
¢:1(0)g:r(u) \v+1 =) (10.2)

when u(u + 1)1 = (v + 1)41

10.1 Condition (A)

We check that the condition (A) of Assumption 6.3 holds. Fix 0 < € < 1/2. Noting that p = 1/d, the second
equation of Lemma 8.2 (ii) with ¢ = 0 implies that

[I Vav+1=e2"C001 4 0L12)).

vER,
The other factors can be evaluated similarly using Lemma 8.2 and we find that

Enar(2) = 72O (14 O(LY?)),
From Lemma 6.8 (b), we have h(0,z) = %log(1 — z). Hence, Eqgag(2) = (1 — )~ VAe=BE) (1 4 O(Le1/2)),

and the condition (A) is satisfied.
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10.2 Conditions (B) and (C)

Fix 0 < e < 1/8. Let 0 < |z| < 1 and 2F = (=1)Nrfz as usual. Consider (v,u) € R, x L, satisfying
uw(u+ 1)1 =o(v+1)471 Set

L1/2 L1/2
e Cl ) RV e e )} (10.3)
p(1—p) p(1—p)
Lemma 8.2 (ii) implies that
q:1.(v) _ h(np,z de—1/2 qzr(u) _ h(én,z de—1/2
N = eI AHOELET) and | TR = MO (L4 0L
for all sufficiently large L if |nz|,|¢r] < L€ and Re(nr) > 0, Re(§r) < 0. Hence, (10.2) is equal to
e MELA RO (g, — €1) (1 + O(L4E_1/2)> :

Thus, we find that for v and v satisfy u(u + 1)471 = v(v + 1)41,

chfar (v, u; 2) = e MEDTOE () — &) 4 O(L*1?) (10.4)

for (v,u) € R. x L, satisfying |v + p| = O(L"Y/?) and |u + p| = O(L<~/?). Here £ = M 1ot (u) € L, and
7 = M right(v) € Ry. Recall Lemma 6.2, both £, — &| and |5, — n| are of order O(L~1/2+3¢log L). Since
with (10.3), the equation u(u + 1)~ = v(v 4+ 1)?~! becomes

L 2p(=p)(&)?

DY oqeuypn-n) =1 - BUZDOEE 4 oo (10.5)

pL
which implies £€2 = n? and further £ = —7. Hence, (10.4) can be written as
chyat (v, u; 2) = e "EDTRODy(n — )5, (=€) + O(L'1/2). (10.6)

On the other hand, suppose that u(u + 1)471 # v(v + 1)1, Then, chga:(u,v; 2) = 0. By the computation
(10.5), we have € # —n in this case, and hence the leading term of the right-hand side of (10.6) is zero. Thus,
(10.6) also holds in this case. Therefore, we proved that Assumption (B) holds for the flat initial condition.

For Assumption (C), recalling the estimates in Lemma 8.2, we observe that each factor except i((::f))
in the formula (10.2) is bounded by O(1). Thus |chaat (v, u; 2)] < O(L). This implies (6.7) and Assumption
(©).

11 Two random initial conditions

We consider the PTASEP which starts with a random initial condition. Note that there are only a finitely
many possible initial configurations since the system is periodic. If the number of particles is random, then
there are 27 possible initial configurations. If the number of particles is fixed, then there are (%) initial
configurations. All random initial conditions are weighted combinations of these possible configurations, and
the multi-point distribution of PTASEP with a random initial condition could be expressed as a weighted
sum of the formula (3.2) in Theorem 3.1 over possible Y’s. This weighted sum can be simplified for two
specific random initial conditions. We discuss the finite-time formulas of the multi-point distributions for
these two cases in this section. The limit theorem will be presented in the next section.
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11.1 Uniform initial condition

Definition 11.1. The PTASEP(L, N) is said to have the uniform (random) initial condition if
(i) (z1(0),--- ,zn(0)) is uniformly chosen from {(z1, -+ ,an) €ZN : =L+ 1<z <--- <2y <0}, and
(11) zj1n(0) = z;(0) + L for all j € Z.

In other words, each of the ( ]f,) possible initial configurations in one period can be chosen equally likely.
We have the following finite-time formula for the multi-point distributions. The proof is in Subsection 11.3.

Theorem 11.2 (Uniform initial condition). Consider the PTASEP (L, N) with the uniform initial condition.
Fiz a positive integer m. Let (ki,t1), -, (km,tm) be m distinct points in Z x [0,00) satisfying 0 < t; <
o+ < ty. Then, for arbitrary integers ai,- -+ , am,

(71)N+1

P <ﬂ {zk, (te) > af}) = (L)
=1 N

where Ay, is the difference operator defined by

dz; dzo dz,,
2mizy 2mize  2mWizy,

1
%. . ?Ak (Gstep (25 k) Dstep (23 k))

Apf(k) = f(kT) — f(k), where k = (ki,--- k) and kT = (ky + 1, kp + 1).

The contours are nested circles satisfying 0 < |zpm| < --- < |z1] < ro and the functions Gsiep (2;k) and
Dstep (2; k) are defined in Subsection 3.4; here we emphasize the dependence on k.

When m = 1, this formula was obtained in [Liul8, Theorem 3.1].

11.2 Partially uniform initial condition

The second random initial condition the following.

Definition 11.3 (Partially uniform initial condition). Consider the process PTASEP(L, N) with N = Ny +
Ny where Ny >0 and No > 1. Let Y = (y1,--- ,yn,) € ZN? satisfy

—L+Ni+1<y1 <ya<---<yn, =0.
We say that the PTASEP has a partially uniform initial condition if

(i) (z1(0),--- ,zn,(0)) is uniformly chosen from {(z1, -+ ,xn,) € ZN : =L+ 1 < 21 < --- < 2N, <
n _1};

(it) (xn,+1(0),--- ,zn(0)) =Y, and
(i11) xj1n(0) = z;(0) + L for all j € Z.

Hence, a part of the period is uniformly random but the other part is deterministic. In the above, we
impose that the “last site” in the period {—L +1,--- ,0} is occupied, i.e., yn, = 0. This condition is put in
place in order to make the final formula simple. However, this condition is not restrictive since if the site 0
is not occupied, then we may change holes to particles and study the PTASEP with L — N particles where
the particles are moving to the left direction.

The multi-point distribution involves Y. We use a new symmetric function which generalizes G (W)
in (3.6).
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Definition 11.4 (Another symmetric function). Let Ny and N be two integers such that 1 < Ny < N. For
A= (A1, AN,) € ZN? satisfying Ay > --- > An,, we define the symmetric function

Ga(W) = GA(W; N)
det |:1j§N2sz_j(wi + I)Aj + 1j>N2sz_j_1(wi + 1)>\N2+1:|

= 1<i,j<N (11.1)
det [wfv_j}

)

1<ij<N
where W = (wy, -+ ,wn).

Since G»(W) is a symmetric function of (wy,--- ,wy), we can regard W as a set W = {wy,--- ,wx}
instead of a vector. We use W for either a set or a vector, and interchange the meaning freely. The above
function is equal to G»(W) when No = N. Note that when Ny < N, it has a pole at w; = 0.

Compare the next definition with Definition 3.7.

Definition 11.5. ForY = (y1, - ,yn,) € 72 satisfying —L+ N1 +1<y1 <ya <--- <yn, =0, set
)\(Y) = (yN27yN2—1 + 1a R + N2 - 1)

Assume that z € C satisfies |z| < ro. Define

Ey (Z) = g)\(Y) (Rz)

When _C';A(y)(Rz) # 0, define

Gy (R: U {u} \ {o})
g/\(Y)(RZ)

We have the following finite-time formula. Its proof is given in Subsection 11.4. We remind the restrictions

chy (v, u; 2) = forveR, andu e L,. (11.2)

Ny > 1 and yn, = 0 in our definition of partial uniform initial condition. Thus this result does not cover
the statement of Theorem 11.2.

Theorem 11.6. (Partially uniform initial condition) Consider the process PTASEP(L, N) with N = N1+Ns

and the partial uniform initial condition described above. Fizx a positive integer m. Let (ki,t1), -+, (km,tm)
be m distinct points in Z x [0,00) satisfying 0 < t; < --- <t,,. Then, for arbitrary integers ay,--- ,apm,
m
1 ~ ~ dz; dzm,
P ty) > R — S X7 17 ,
(ﬂ {an, (te) = a4}> (A j{ j{ v(2) Y(z)gwizl 27z,
(=1 Ny
where the contours are nested circles satisfying 0 < |zm| < --- < |z1] < ro. The functions €y (z) and

Dy (2) are defined by the same formulas as Gy (z) in (3.10) and Dy (z) in (3.13), respectively, except that
the functions Ey (z) and chy (v, u; z) are replaced by Ey(z) and chy (v, u; z).
11.3 Proof of Theorem 11.2

Define the set
INL) ={(y1,--,yn) : —L+1<y; <--- <yny <0}

Since the initial condition Y is uniformly chosen from Yy (L), we have

P (ﬁ{xmm > ae}> - X By (ﬁ{%w) > ae}>.
N (L) =1

{=1 YeVn
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We use the Toeplitz-like formula, Theorem 5.1, and take the sum over Y. The formula involves C(z; k) and
Dy (z; k). Since the first term does not depend on the initial condtion, we have

- dz,, dz;
P te) > k) D -k )
(ﬂ{xk(( 0) > ae}) ]{ % z; < vy (2; )> omie 2mio (11.3)

=1 YeYn (L)
The next lemma simplifies the sum.
Lemma 11.7. We have

> Dy(zik) = Daep(z: k™) — (~1)N 2y “Dytep (21 k),
YeYn (L)

where kT = (k1 +1,--- ,km + 1) and Dsiep s Dy with the step initial condition, Y = (-N +1,---,—-1,0).

Proof. The identity was proved in [Liul8] when m = 1. The proof extends to general m easily. Applying
the Cauchy-Binet identity m times, the formula of Dy (z; k) given in (5.2) becomes

m—1
w® i—j 1
Dy (2 k) = >0 det [y P + 1] TT det [M]
(e)esz =1 % 7

1<i<N
1<4<m

(11.4)

xdet{ } H Ge(w!")

1<i<N
1<203m

where every determinant is a determinant of an N x N matrix. Note that Y appears only in the first
determinant. The sum over Y of this determinant was computed in Lemma 3.1 of [Liul8]:

Z det[ J( 1)+1)y, J}
YeYn(L
= det [<w§”>ﬂ—1<w§” + 1)V = ()Y E det () () +1) 7] (11.5)
(WNg (0, (1) -N - w§1)+1 N-1_-L (g (1) _N
= det (") (" + 1) T] “= = (~D)V 2 E det [Py (P +1)77].
w.,

i=1 %

The last two determinants are the same as the first determinant in (11.4) when y; = j — N, i.e. when Y is
the step initial condition. Recalling the formula (5.3),

w(w +1) wke (w + 1)—ae+kzet2w
L(w + p) w—ke—1 (w+ 1)—a271+kz716tz71w ’

gg(w) =

w®
with kg = ag = tg = 0, the extra factor HZ 1 (1) ! times the product of g,g( ) is equal to the product of
gg(w@)) with k, changed to k; + 1. Hence, we obtaln the result. O

(3

From the formula (5.1) of C(z; k), it is easy to see that

Clz; k™) = (—D)N12le(z; k).
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Thus,

Z Dy (z; k)

YeYn(L)
= C(z; k) (Dstep(z: k™) — (1) 127 " Dyyep (23 k)
= (_1)N7121_L (C(z; k+)Dstep(z; k+) - C(z; k)Dstep(z§ k)) .

We thus obtain the result after inserting this formula in (11.3) and applying Proposition 5.2.

11.4 Proof of Theorem 11.6

We denote the initial condition by ¥ LY where Y = (y1,- -+ ,yn,) is the deterministic part of the initial
condition and Y = (g1, - ,¥n, ) is the random part. By the assumption,

—L+Ni+1<y1<---<yn,=0
and Y is uniformly chosen from the set
I (Liyn) = {(G1, - Gn,) €EZM : —L+1< G < - < Gn, < o1 — 1}

Using the Toeplitz-like formula, Theorem 5.1, and taking the sum over Y,
~ 1 ~ dz,, dzy
P ty) > =—— __d---dC(2)D .
<ﬂ{$’w( 0= aé}) (yﬁvail) j{ % (=)Dy () 2z, 2mizy
= 1

Dy(z)= Y.  Dy,y(2).

YeVn, (Liyr)

where

Lemma 11.8. We have

N
m
Dy (z) = det w; sz :U;qu Z’Z 5 1:[ o(we) ; (11.6)

where
pi(w) = w " (w + VYNt N T (w4 1) N2,

The functions q; and hy are the same as (5.5) and (5.6). This determinant is same as Dy (2z) in (5.8) with
pi changed to p;.

Proof. The proof is same as that of Lemma 11.7 except that instead of the identity (11.5), we use Lemma 11.9
below. O

Lemma 11.9. Forw GSzl, =1,---,N, we have

) _ . . N
> det [y + )BT e, + @MY P+ Ty
Yi€Dn, (Liyr) . (11.7)

— det [(wg”)ﬂ—l(wf” F 1PNy 4+ (D) () + 1) ‘Jlj>m} .

z)
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Proof. Let
A(i,g) = (MY () + 151, + (M) (w4 1)1y
and
B(i,j) = (w Y (w + 1) N e, + (V) (i + 1% T s,

be the entries of the matrices appearing in the lemma. Note that for j < Ny, the entry A(4,j) depends on
g; but not on g, with k # j. We evaluate the left-hand side of (11.7) by the following repeated sums:

y1—N1 y1—Ni+1 y1—1

S Y det[AG )N

g1=—L+1 g2=71+1 YNy =GNy —1+1

Since
> w (w4 1)%77 = w? M w + 1)1V — I (w4 1)%i-1= D),
Fi—1+1<g; <y1—N1+j—1
we find that

> A(i,§) = B(i, j) — A(i,j — 1)

Uj—1+1<g;<y1—N1+j—1

for 2 < j < Nj. On the other hand, since

> we+ ) = @) — (w17
—L+1<g:1<y1—N1

we have

> A(i,1) = B(i,1) — 2~ A(i, N).

—L+1<g1<y1—MN1

The lemma follows from these formulas by taking the sum over §; in the jth column and using the linearity
of determinant on the columns. O

The formula (11.6) of Dy (2) has the same structure as Dy (z) in (5.8), except that p; needs to be replaced
by p;. This change does not alter the proof of Proposition 5.2 and we obtain

C(2)Dy(z) = ?y(z)ﬁy(z),
where €y (z) and Py (z) are same as €y (z) and Py (z) except for the functions €y (z) and chy (u,v; z)
replaced by Ey (z) and chy (u, v; 2), respectively. This implies Theorem 11.6.
12 Limit theorems for random initial conditions

We discuss the large time limit of the multi-point distribution for two random initial conditions. We use the
same notations as Theorem 6.4. Recall that e; = (1,0) and e, = (1 — 2p, 1) are vectors in the space-time
coordinates R x R>q and the set Ry, defined by (6.8).

12.1 Uniform initial condition

Consider the uniform (random) initial condition in Definition 11.1.
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Theorem 12.1 (Large time limit for uniform initial condition)). Consider a sequence of PTASEP(L, N)
with the uniform initial condition. Assume that p = N/L stays in a compact subset of (0,1). Fix a positive
integer m. Let p; = (v;,7;) be m points in the region R = [0, 1] x Rsq satisfying 1 < 7o < -+ < Tp,. Then,

for pj = s;e; +tje. € Ry given by
L3/2
p(1—p)

Sj :’YjL, tj:Tj

and for every x1,---xXmym € R, we have

lim P ( ™ {h(pj) —(1=2p)s; — (1 =2p+2p°)t

J S $3}> :Funiform(xl7"' y XmsyP1y e apm)a (121)

L5500 —2p1/2(1 — p)1/2L1/2
where
o _ d d21 dZm
IE‘uniform(xla o Xmy Py 7pm) = - 27—‘—% : '%Zl 1& (Cstep(z§x)Dstep(z§X)) m e 27TiZm .

The contours are nested circles satisfying 0 < |z,,| < --- < |z1| < 1 and the derivative denotes the directional

L (100 = i LEFITC) - pore sep e = (1 4o o+ 0).

derivative

The convergence of (12.1) is locally uniform in x;,7;, and v;. If 7, = 741 for some i > 2, then (12.1) still
holds if we assume that x; < X;41.

The above result when m = 1 was obtained previously in Theorem 1.1 in [Liul8]. We prove the general
m case in Subsection 12.3 below.

12.2 Uniform-step initial condition

Definition 12.2 (Uniform-step initial condition). Consider the PTASEP(L, N) with N = Ny + N2 where
Ny > 1. We say that the PTASEP has a uniform-step initial condition if

(i) (z1(0),--- ,xn,(0)) is uniformly chosen from {(x1,- -+ ,xn,) €ZN 1 —L+1 <1 < --- < 2y, < —No};
(ii) (N, 41(0),- -+, 2N -1(0), 28 (0)) = (=Na +1,---, —1,0);
(i11) xj1n(0) = z;(0) + L for all j € Z.

The uniform-step initial condition is a special case of partially uniform initial condition discussed in
Section 11 when y; = ¢ — No. We have the following limit theorem. See Subsection 12.4 for the proof.

Theorem 12.3 (Large time limit for uniform-step initial condition). Consider a sequence of PTASEP(L, N)
with the uniform-step initial condition where N = N1+ Ny and p = N/L stays in a compact subset of (0,1).
Assume that

Ny = ap'/?(1 — p)~1/2L1/2 (12.2)

for a positive constant o > 0. With the same conditions and notations as Theorem 12.1, we have

lim P ﬁ {h(pj) — (1—2p)s; — (1 —2p+ 2p°)t;

—2p1/2(1 — p)1/2L1/2 = x]} =Fus(X1, " ,XmiP1s s Pm)- (12.3)

L—oo ]
Jj=1

The limiting function is given by

dz,, d
Fus(X1, -+ s X3 Pls - » Prm) = 7{-~-7{C£‘;)(Z)Dg‘§)(z)z—~ 7

2M1Zy, 2mizy

68



where the contours are nested circles satisfying 0 < |z,,| < --- < |z1|] < 1. The functions clw (z) and D
are same as Cic(z) in (6.14) and Di.(z) in (6.15), respectively, with E;. replaced by

d¢
B () — / o—h(CHaz)+¢2/2
wle) = o iv2r

and xic(n, &;21) replaced by

c+ioco
gm) = g — [ eermicitazt g

B (21) Je—ioo C+a—niver

forn € R,, and £ € L,,, where ¢ in the integration contour is any real constant satisfying c+ a > Re(n) > 0.
The convergence of (12.3) is locally uniform in x;,7;, and v;. If 7, = 741 for some i > 2, then (12.1) still
holds if we assume that x; < X;41.

By Lemma 6.8 (f), the function h(¢,z1) = O((™!) as ( — oo in {¢ € C : [Re(¢)| > ¢’} for any given
constant ¢ > 0. Thus both B (z;) and v\ (1, €;21) are well defined.

The parameter « in (12.2) measures the relative amount of the uniform part and the step part of the
uniform-step initial condition. Hence, we expect that the limiting distribution converges to that of the step
initial condition as @ — oo and that of the uniform initial condition as o — 0. As a — oo, we have
h(¢ + @, 21) — 0 by Lemma 6.8 (f) again. Since $7°=% — 1, we find that both B (z1) and Xl(g)(f,n;zl)

(ta—n
both converge to 1 as « — oo. Therefore, Fys(x1, - ;Xm;P1s s Pm) — Fstep(X1s- - s Xm; D1y s Pm) a8
a — 00. On the other hand, we expect that Fus(x1, - ,Xm:P1,°* , Pm) — Funiform (X1, " sXm; D1, ** » Pm)

as o — 0, but it is not clear how to see this from the formula directly yet.

12.3 Proof of Theorem 12.1

Using the formula, Theorem 11.2, for the finite-time multi-point distributions and translating the particle
description for the PTASEP to the height function description (see, for example, (3.15) in [Liul8g]), it is
enough to show the pointwise convergence of

_1\N+1 p
) e E)L) ZiLAk (Cstep (23 k) Dstep (21 k)) — —\/ZT%(Cstep(z;X)Dstep(z;x)) (12.4)
N 1 1

and also to show that the integral involving these terms converges when the parameters k, a,t are scaled as
in the proof of Theorem 6.4. It was shown in [BL19] that

%tep (25; k) — Cstep (Z) and -@step (z; k) — Dstep(z)'

as L — oco. On the other hand, from the scaling (6.20) on the parameters « and 7 fixed, we have

_ _ _ d
Ag =~ p I/Q(I—p) /27, 1/2&,

and by the Stirling’s formula,

(*1)Ni _V2rm 1/2/1 _ N\1/271/2
L L~ P (1 p) L .
(N) A1 1

These were also shown in (4.80) of [Liul8]. These considerations imply the pointwise convergence of (12.4).
To complete the proof, we need a uniform upper bound on the left-hand side of (12.4) in order to use the
dominated convergence theorem to prove the convergence of the integral. Such estimates were obtained in
[Liul8] when m = 1. The case when m > 2 is similar but tedious. Since this computation does not add any
new insight, we omit the details.
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12.4 Proof of Theorem 12.3

The proof is similar to the proof of Theorem 6.4. Considering the difference of the finite-time formulas,
Theorem 11.6 and Theorem 3.1, it is enough to prove the following lemma. Compare this lemma with
Assumption 6.3.

Lemma 12.4. Assume the same conditions on L, Ny, No as Theorem 12.3. Set z* = (=1)Nvfz. Then,
there are 0 < ro < 11 < 1 such that the following hold.
(i) For every e € (0,1/2), we have

(LNlNz)guS(Z) = Eus(z)(1+ O(L€_1/2))

uniformly for |z| < ry for all sufficiently large L.

(11) For any fized € € (0,1/8), we have

chys (v, 13 2) = Yus(1, & 2) (1 + O(L*71/2))

uniform forry < |z| <ry, v € R,(f) and u € .CS) for all sufficiently large L, where we use the notations
from Lemma 6.2 and we set 1 = My vight(v) and & = M er ().

(iii) There are constants € € (0,1/8) and €/,C > 0 such that for all sufficiently large L and for all vy <
|z <71,
(s (v, s )| < €€ max{lnllgl}

for either v € R, \Rie) oru€ L, \ L‘,S) where

M sighe (V) forv e R,
n=\ L)

forue R, \ R,
p(1—p)

and
MLvlcft (u) fO?" u e ﬁ(;),

§=4q LY*(u+p)

Vp(1=p)

forue £\ LY.

12.4.1 Proof of Lemma 12.4 (i)

Since y; = j — Na, we have A(Y) = (0,0,---,0). When A =0=(0,0,---,0), the symmetric function (11.1)
becomes

. . N
R det {1j§N2’LU£V_J + 1j>N2wZN_J_1(wi + 1)] N
gO(W) _ — - )=
det {wz _J}
ij=1
N

det [wévfj + 1j>N2w1N7j71]

N
det [wfv_q
ij=1
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By the linearity of determinants,

N N

N
Z det [ljgkw?{_J + 1j>kw5\/—]—1]
k=N3>

1 N1 1N
S LS e fu s
wy - “ ij=1

The last determinant divided by the Vandermonde determinant is the Schur function Sl 1 (w1, ,wWN).

det [wfv_j + 1j>N2wN_j_1}

)

i,j=1 t,5=1

k
This particular Schur function is equal to the elementary symmetric function ey (ws, - ,wy). Hence,

N

N
- 1 1
GolW) = Gy 2o exlwn o ww) = s 30 30w

k=N k=Ny i1 <+ <ip,
The last sum can be written as an integral and we obtain

N

W) = G 2 Y f [H@ - w»] o

k=Ns 0
N (12.5)

_ (=
= oWy - W 7€ [H(ﬁ—wz‘)

i=1

N

ds (=D~
(s 4 1)sM+1 + 2wy - - wy 7€ [H(S —wi)

i=1

ds
s+ 1

)

where the contours are small circles around the origin.
Consider £,5(2) = Go(R.). When W = R, the product Hilil(ﬁ — w;) becomes ¢, r(s), and hence (12.5)

becomes ( )N N ) )
5 (=D q:R(S 1 q: R(S
Eus(2) = 27iq. r(0) jé (s + 1)5N1+1d5 + 27ig, r(0) jg s+1 ds.

The integrand of the second integral is analytic at § = 0. Thus the second integral is zero. Using the identity
¢:Rr(5)q:1(s) = sV (s + 1)E=N — 2L and the fact that N = N; + Na, the first integral is equal to

f* Qz,R(s) ds — % 5N:.»—l(5 + 1)L—N—1d5 B zL% 1 ds
o (5 +1)sM+1"  Jy 0z L(5) 0 @z, L(8)(s + 1)sNtl

The first integral is zero since its integrand is analytic at the origin. Therefore, we find that

5 (_1>N7N2+1ZL 1
Eus(2) = - ds. 12.6
&) = im0 fgqm,ms)(s T (12.6)

We evaluate the asymptotics of the integral. We deform the contour to the circle |s| = p—¢'/p(1 — p)L~=1/2
for a small fixed constant ¢’ > 0. We show that the main contribution to the integral comes from the part of
the circle which is of distance of order L~1/2 to the point s = —p. For s satisfying s = —p++/p(1 — p)¢(L~1/2
with [¢| < L4, Lemma 8.2 (ii) implies that

(5 + 1)L—N

_ —h(¢,2) e—1/2
=e 1+ O(L log L
(o) ( ( g ))

and a direct calculation using Ny = N — Ny = N — ap/?(1 — p)~'/2LY/? implies that

(s + 1)L—N+15N1+1 =(1- p)L—N+1(_p)N1+1e—<2/2+a<(1 + O(Le—l/Q log L)).
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Together, we obtain the asymptotic formula of the integrand for the part of the contour in a neighborhood
of the point —p. On the other hand, for the part of the contour satisfying |s + p| > L¢/*~1/2, we use Lemma

8.2 (iii) to find that
1 1

<C .
qz,1.(8) (s + 1)sNHt s+ 1[5V g Nt
Note s lies on a circle centered at 0 with radius p — €/y/p(1 — p)L~1/2, we have

ls| = p—¢'\/p(1—p)L™'/2,

s+10 2 Vs 4 P+ [T = pl? = (1 - p)(1+ C'L/412)

(12.7)

for some positive constant C’. Recall that N; = O(L). We insert the above estimates in (12.7) and have
e*C//L(E+1)/2

(1 — p)L=N+1(—p)Ni+1

1
Gz 1(8) (s + 1)sNiH!

<

for some positive constant C”.
Therefore, we obtain

1
ds
}é Gz,L(8)(s +1)sM1H!
ol = V12 €' +ioco )
_ P( p) </ efh(C,zl)JrC /QaCdC> (1 +O(L671/2 logL)) (12.8)

(= )PV ()N

—2mi _ e—a2/2
- \/FLQU \/fml(p)Nlﬂ Bus(#)(1+ O(L?log L))

€/ —ioco

for all sufficiently large L. Here we used the following identity for El(g)(zl):

6/+iOO dC
B (5) = / e hCatc-ayr/z ¢
( 1) €/ —ioco iv2r
which follows from a simple deformation of contour and change of variable.
Note that setting s = 0 in the identity ¢. r(8)g. .(s) = sV (s + 1)~ — 2L we find that

oL

a QZ,R(O)

where we used the first equation of Lemma 8.2 (i) with w = 0.
Finally, the Stirling’s formula implies

L—=No e/ ~1/2
( N > - Ata 7P)L7NH/QPN1H/2(1 + L7V, (12.10)

Therefore, we obtain Lemma 12.4 (i) from the formula (12.6) using estimates (12.8), (12.9) and (12.10).

=q.(0) =1+ O0(LY?), (12.9)

12.4.2 Proof of Lemma 12.4 (ii) and (iii)

When W = R, U {u} \ {v} for v € £, and v € R,, the product Hilil(s —w;) is equal to £=rq. r.(5).
Following the calculation that lead to the formula (12.6), in which we change ¢, . (s) to ¢, .(s), we find
that the formula (11.2) becomes

~ (—1)N=NaFl Ly §—u
chys(v,u; 2) = = ~—7ds,
2miug. r (0)E(2) Jo (5 — v)qzy L(s)(s + 1)sM1+
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where the contour is a small circle, which satisfies, in particular, |s| < |v].
To prove Lemma 12.4 (ii), we consider

v=—p+v/p(l—p)L7Y? and wu=—p+uy/p(l—p)L~/?

for v,u satisfying Re(v) > 0, Re(u) < 0, and |ul, |v] < L¢. Using the similar calculations as the previous
subsubsection, we obtain

~ 1 c+ioco C —u ' . dC
hus ; = — > 7 o—h(Gz)+((—a)?/2 1 4+ O(LA4—1/2 12.11
C (Uaua 21) Eus(zl) /c—ioo C—Ve 1\/%( + ( )) ( )

for any constant ¢ > Re(v). By Lemma 6.2, we may replace u and v by §{ = M, e (u) and 7 = M ;ight (v)
respectively and the error is still bounded by O(L*~/2). Finally note the identity

1 c+ioo 5 C o € dC
(@) . — —h(¢,21)+(¢—a)”/2

Xus (1,8571) = / e =
! ( 1) E(a)(Zl) c—ioco C_nl 2

for n € R,, and £ € L,, by deforming the integral contour and changing the variable. Thus Lemma 12.4 (ii)
follows immediately.

Lemma 12.4 (iii) is obtained by modifying the proof of (12.11) by first showing that ch(v, u; z) is bounded
by an exponential growth. This computation is tedious and we skip the details.

A Probabilistic argument for the step-flat case when L, = O(L)

In the step-flat initial condition, the parameters satisfy L = dN + L, for 0 < Ly < N. We evaluated the
limit when L, = O(v/L) in Section 7. In this section, we discuss the case when L, = O(L) and provide a
probabilistic argument that the large time limit should be same as the step initial condition. It should be
possible to make this argument rigorous but we content to discuss heuristically since this is not a main part
of this paper.

We discuss in terms of the periodic directed last passage percolation (DLPP) model which is well-known
to be related to the TASEP. Assume that each lattice point (i,7) € Z? is assigned an exponential random
variable w(%, j) with parameter 1. These w(i,j)’s are all independent except for the following periodicity
condition

w(i,j) =w(+L—N,j—N), 1,] € Z.

Let A be a lattice path; A consists of connected unit horizontal or vertical line segments with vertices in Z?2,
and A does not intersect any line y — & =constant twice. We define the last passage time from A to a lattice
point p as
Lalp) = max > wi,j),
(i,5)ell

where the maximum is over all possible up/right lattice path starting from any lattice point in A and ending
at p. We assume that £, (p) = —oo if no such path exists. Similarly, one can define £4(p) if the lattice path
is restricted to start from a given point q.

Now we consider the step-flat and step initial conditions of the PTASEP. These two initial conditions in
the language of periodic DLPP, correspond to the lattice paths

Asf
={(67):—(d-1)j<i<~(d-1)(—1),1<i<N}U{(3,0):0<i< Lg}) +(N,~L+ N)Z
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B

Figure 12: Illustration of periodic DLPP from Agf to p. In the figure on the left, the stair-shape path is Astep, the dotted line
is Anat with particle density p, and Agr lies between between Agtep and Agae; It is the path between the white region above
Afat and the black region below Agtep. The figure on the right is a detailed view of the maximal path.

and
Astep = ({(0,5) : 0<j < NYU{(i,0): 0<i < L — N}) + (N,—L + N)Z,

respectively. From the well-known connection between the TASEP and the DLPP, the convergence of the
PTASEP with the step-flat initial condition to the step flat initial condition in the large L limit with
Ls = O(L) is translated into the following question on the periodic DLPP: Our goal is to show that when
(1) p is far enough, more precisely,

dist (p, Agr) = O(L%/?),

which corresponds to the relaxation time scale in PTASEP, and (2) Ly = O(L), then
L1.:(P) = Li, (0) + o(L?) as L — co. (A1)

It is known that in the relaxation time scale, both £4_, (p) and £L4.,., (p) have O(VL) fluctuations. The above
estimate implies L (p) and Ly, (p) have the same limiting fluctuation. In other words, if L, = O(L),
these two initial conditions yield to the same limiting fluctuations in the relaxation time scale.

See Figure 12 for an illustration of Agep and Ag. From the definition, Ayt lies on the lower left side of
Agtep. Hence, the last passage time from Ayt is larger than or equal to the time from Agep. This implies that

LA:(P) Z L, (P)-
Thus, (A.1) follows is we show that
Lp,;(P) < L., (P) + 0(L1/2) as L — oo. (A.2)

Let
Agay = {(z,y) eR* 1y = (1 — p~ "z}

We remark that Ag, is not necessary a lattice path. See Figure 12 for Agay.

The inequality (A.2) heuristically follows from the slow decorrelation of (periodic) directed last passage
percolation, which was discussed in [CFP12]. We point out that although this paper was for the DLPP, the
same argument extends to the periodic DLPP. The slow decorrelation implies, if the starting point q € Ag¢
is not on Agtep, say q is between two corners A and B as shown in Figure 12, then

Lq(p) = —c-dist (q,q) + Lq(p) + o((dist (p,q))'/?) = —c - dist (q,q) + L4(p) + o(L'/?), (A.3)

where ¢ > 0 is some constant independent of L, and q is the intersection of the line pq and Ag,g.
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Note that
La(p) < Lapa(P) = L, (p) + O(L?),

where the last equality follows from Theorem 6.4 (the one point distribution case) and the case we proved
for step and flat initial conditions (Theorem 7.1)3. We assume that q is within an O(L) interval where
the maximum path from Ag.; to p is obtained. Otherwise, L4(p) < La,,.,(p) for far enough q. And
Lq(p) < Lq(p)+0(LY?) < La,,.,(p)+0(LY?) holds trivially. This assumption means that L4(p) and Lg(p)
have the same deterministic order terms and they only differ from the fluctuation terms, which is of O(L/?).

We let C' be the other intersection point of the line Bq with Agep. It also lies on Ag. By the definition,
dist (A, C) = Ls has the same order as dist (A, B). Hence dist (q, q) has the same order as dist (B, q).

Now we consider two situations. If dist(q,q) < O(L), then dist (B,q) < O(L). In this case, L4(p) is
asymptotically identical to £p(p) since the two points B and @ are closer than the correlation length O(L).
More precisely, we have

La(p) = L () +o(LV2) < Ly

Together with (A.3) we obtain

iep (P) - O(LY2).

L4(P) < L., (p) +o(L?). (A.4)

The second situation is that dist (q,q) > O(L?). In this case, we use the trivial estimate
Lq(p) < Lp(p) + O(LY?) < L., (p) + O(LY?),

while the term O(L'/2) in this estimate is always dominated by —c - dist (q,q) in (A.3). Hence we still
have (A.4).
Note that q is an arbitrary point on A, the above estimates imply (A.2).
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