2736

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 5, MAY 2021

LiveObj: Object Semantics-based Viewport Prediction for Live
Mobile Virtual Reality Streaming

Xianglong Feng, Student Member, IEEE, Zeyang Bao, Student Member, IEEE, and Sheng Wei, Member, IEEE

Abstract— Virtual reality (VR) video streaming (a.k.a., 360-degree video streaming) has been gaining popularity recently as a new
form of multimedia providing the users with immersive viewing experience. However, the high volume of data for the 360-degree video
frames creates significant bandwidth challenges. Research efforts have been made to reduce the bandwidth consumption by predicting
and selectively streaming the user’s viewports. However, the existing approaches require historical user or video data and cannot be
applied to live streaming, the most attractive VR streaming scenario. We develop a live viewport prediction mechanism, namely LiveObj,
by detecting the objects in the video based on their semantics. The detected objects are then tracked to infer the user’s viewport in real
time by employing a reinforcement learning algorithm. Our evaluations based on 48 users watching 10 VR videos demonstrate high
prediction accuracy and significant bandwidth savings obtained by LiveObj. Also, LiveObj achieves real-time performance with low

processing delays, meeting the requirement of live VR streaming.

1 INTRODUCTION

Mobile head mounted display (HMD) devices for virtual reality (VR)
applications have become increasingly popular recently. Major indus-
try vendors, such as Facebook, HTC, and Microsoft, have released a
variety of VR/AR headsets [1,4,5]. Thanks to the growing trend in
adopting these VR headsets in the consumer market, the immersive VR
videos have started to gain traction in many mobile video streaming
scenarios. For example, many sports events have been broadcast via
VR videos [2,6]. YouTube has a huge number of 360-degree videos
spanning documentary, sports, and performance shows [7]. In addition,
news media, such as CNN, have also entered the VR era broadcasting
news stories in the form of VR streaming [3]. VR streaming provides
the users with a unique immersive viewing experience, in which one
can freely select the intended viewport out of the 360-degree frames by
conducting natural head movements, similar to what one would do in
the physical world.

Despite the immersive experience provided to the end users, the
wider deployment of VR videos still faces significant technical chal-
lenges, among which the escalated bandwidth consumption is the pri-
mary cause of concern. For example, a typical 720p (1280 x 720) VR
video would be approximately equivalent to a traditional 2D video with
3840 x 1920 resolution. Considering the H.264 compression and 30
FPS frame rate, the 720p 360-degree video would consume around
45 Mbps of bandwidth. This would further translate to 500 Mbps
of bandwidth if the video resolution is 4K (4096 x 2160), i.e., the
state-of-the-art high definition video that end users would expect to
have in an immersive experience, which is hardly achievable in house-
hold networks. The huge bandwidth consumption would overwhelm
the capacity of the mobile VR headset and result in intolerable video
buffering delays compromising the user’s experience.

Furthermore, the bandwidth/delay issues would be significantly
worsened in the highly desirable scenario of live VR streaming, which
is the most attractive VR use case for live events such as sports games
and breaking news. The reason behind this deficiency lies in the fact
that live streaming poses strict real-time requirement on top of the
already challenging bandwidth/delay issues in VR streaming. In par-
ticular, one must address two major challenges to achieve a viable
live VR streaming solution: (1) the bandwidth challenge: An effective

e Xianglong Feng, Rutgers University. E-mail: xianglong.feng @ rutgers.edu.
e Zeyang Bao, Rutgers University. E-mail: zb95@scarletmail.rutgers.edu
e Sheng Wei, Rutgers University. E-mail: sheng.wei@ rutgers.edu.

Manuscript received 9 Sept. 2020, revised 15 Dec. 2020, accepted 8 Jan. 2021.
Date of publication 1 Apr. 2021, date of current version 7 Apr. 2021.
Digital Object Identifier no. 10.1109/TVCG.2021.3067686

bandwidth optimization mechanism is required to fit the bandwidth
requirement of VR streaming to the mobile network capacity; and (2)
the live challenge: The bandwidth optimization mechanism must be
real-time and compatible with live streaming, where the video content
is not available in advance but generated on the fly with the live event.

To address the bandwidth challenge, the state-of-the-art VR stream-
ing research has mainly focused on viewport prediction [8,9, 12,17,
21,22,29-31], which aims to save the bandwidth consumption in VR
streaming by predicting the user’s viewport of interest and only stream-
ing the portion of the video that is likely to be watched by the user
with high quality. Since the user can only watch one viewport at a
single point of time, an accurate viewport prediction could technically
reduce the bandwidth consumption down to the level of traditional
non-VR video streaming. However, most of the existing viewport pre-
diction methods, such as video content-based [8,12,17,29, 30] and
user trajectory-based [9,21,22,31], either rely on historical user or
video data or hard to achieve sufficient prediction accuracy. Therefore,
they cannot meet the aforementioned bandwidth challenge and live
challenge to support live VR streaming.

To eftectively address both the bandwidth challenge and the live chal-
lenge in live VR streaming, we propose a user/video hybrid viewport
prediction approach that employs both real-time video content and user
feedback in achieving accurate and live compliant viewport prediction.
Our exploration of such a viewport prediction mechanism begins with
a comprehensive analysis (in Section 4) on the user viewing behavior
drawn from a public user head movement dataset [27], involving 48
real world users watching 10 representative 360-degree videos. Our
analysis reveals that the user’s viewports of interest follow traceable
patterns that are correlated with the semantics of the objects presented
in the video, instead of the physical locations of the viewports.

Based on the comprehensive analysis and observation, we develop
an object semantics-based live viewport prediction framework, namely
LiveObj, which tracks the identifiable and meaningful objects in the 360-
degree video and converts the object semantics into well-inferred user
viewing behavior. In particular, LiveObj involves two major technical
components: (1) an object tracker, which detects and tracks all the
objects that may be of the user’s interest by employing real-time object
detection; and (2) a viewport predictor, which combines the object
semantics and the real-time user feedback into the viewport prediction
results using reinforcement learning. We evaluate LiveObj using a
public dataset [27], which justifies its superior performance.

2 BACKGROUND: LIVE VR STREAMING

Figure 1 illustrates the overall workflow of a typical live VR streaming
system. The workflow begins with a 360-degree camera capturing the
360-degree panoramic scene. The collected 360-degree frames are then
partitioned into small segments by the video packager and delivered to
the content distribution network (CDN) for broader distributions to the

Authorized licensed usg)mﬁ?t%zt? 1%:2 d@é‘é‘?@ﬁﬁ{i&éb&iﬁ% %r{;'ﬁ%ﬁ%&&gﬁfﬁéﬁ%ﬁ?ﬁ%&%ﬁ%ﬁ&%ﬁEié?"3?p|ore Restrictions apply.

FENG ET AL.: LIVEOBJ: OBJECT SEMANTICS-BASED VIEWPORT PREDICTION FOR LIVE MOBILE VIRTUAL REALITY STREAMING

clients. On the client side, the user wears the HMD to request the video
segments and display the corresponding viewports determined by the
head movement information obtained from the sensors on the HMD.

Viewport e
______________ =Y

Packager

Live Source Web Server |1
1
S . ..o .. S -
(="
I o'
I Mobile HMD :
1 i
-~ —— _..Ehfnlﬁﬂg _____ /7

Fig. 1. Overall workflow of live VR streaming.

The viewport prediction module can be deployed at the server end
as part of the live packager, as shown in Figure 1, where the video
segments are generated corresponding to the predicted viewports and
delivered to the CDN for content distribution. In particular, the portion
of the video within the predicted viewport can be encoded with high
bitrate/resolution to ensure premium quality, and the portion outside
the predicted viewport can be delivered with low quality to reduce
bandwidth consumption. In the worst case scenario where the viewport
prediction is incorrect, the user can still watch the low quality version
of the video to avoid interruptions in the video streaming experience.

3 RELATED WORK

There are two categories of viewport prediction methods that have been
developed. First, video content-based approaches focus on statistical
analysis on the VR video and the user viewing history. For exam-
ple, several approaches collect a group of users’ viewport information
watching a video and generate a heat-map to predict another group
of users’ viewports watching the same video [8, 17]. Other methods
employ machine learning-based techniques to model the relationship
between the video content and the user viewing behavior [12,29,30].
Second, user trajectory-based approaches predict the future viewport
by either modeling the user’s head movement trajectory in the current
video session [9,22,31] or by clustering the trajectories of other users
who have watched the target video in the past [21].

Although the existing solutions are effective in their specific scenar-
i0s, they are not yet sufficient to address either the bandwidth challenge
or the live challenge in bringing 360-degree video to the front of live
streaming and meeting the real-time requirement. First, the existing
video content-based methods cannot be applied to the live challenge, as
they rely on historical data related to the users past viewing behavior of
the target video, which does not exist for live streamed videos. Second,
the existing user trajectory-based methods have the potential to be
adopted in live streaming, as they only require real-time data from the
current video session. However, it is hard to achieve an acceptable
prediction accuracy by leveraging only the user trajectory, especially
for a long time span of a few seconds (i.e., the video buffer length),
as it is highly likely that the users would change their head movement
patterns during this time. As a result, the existing user trajectory-based
methods cannot address the bandwidth challenge due to the potential
retransmissions caused by erroneous predictions.

To date, there are only two viewport prediction methods that at-
tempted to address both challenges to support live VR streaming,
namely the motion-based method (i.e., Motion) [15] and the online
deep learning-based method (i.e., LiveDeep). The Motion approach
leverages motion tracking and dynamic user interest modeling to pre-
dict the user viewport. Thanks to the real-time performance of Gaussian
Mixture Model (GMM) [34] and the feature mapping method, Motion
could predict the user viewport by analyzing the video content and the

2737

user feedback while meeting the real-time requirement in live stream-
ing. However, it is limited by the motion detection technique that
only applies to the videos with static background. For the videos with
complicated background or captured by moving cameras, which appear
in many live VR videos, the dynamic background would introduce
huge noise and cause the failure of the motion detection algorithm in
identifying the user’s viewport of interest. As a result, the bandwidth
usage for such scenarios would be high, as we verify experimentally in
Section 6.2.3. The LiveDeep approach [14] employs deep learning to
abstract the deep features from the video content and associate them
with the user preference for viewport prediction. However, to achieve
a high prediction accuracy, the backbone neural network adopted in
LiveDeep has a deep structure involving a huge number of weights. As
a result, it incurs long delays for the model to update and adapt to new
features and user preferences during video scene changes, which fre-
quently occur in live VR streaming as we demonstrate in Section 6.2.2.
In LiveObj, we overcome the limitations in the existing approaches
by conducting real-time semantics-based detection and tracking at the
object level, which is able to achieve high accuracy and low bandwidth
consumption to warrant an effective live viewport prediction approach.

4 USER VIEWING BEHAVIOR ANALYSIS

In live VR streaming, no historical user data is available for viewport
prediction. In other words, we cannot obtain a specific user’s viewport
of interest by analyzing the behavior of other users who have watched
the same video in the past. Therefore, we predict the user viewport
by analyzing the video content, with the hypothesis that users tend
to watch the meaningful objects in the video that they are interested
in. To validate the hypothesis, we design an experiment to analyze
the user viewing behavior using an empirical user head movement
dataset [27]. In particular, we choose two test videos “Anitta” and
“Cooking” from the dataset and detect the objects in the videos to
uncover the relationship between the viewports and the video content.

(b) Screenshot of Video “Cooking”

(a) Screenshot of Video “Anitta”

Fig. 2. User behavior analysis for videos “Anitta” and “Cooking” from
the dataset [27]. The red boxes label the areas of detected objects. (a)
The screenshot of video “Anitta”: “A”,“B”,“C” indicate the dancers A, B
and C, and “D” indicates the other people. (b) The screenshot of video
“Cooking”: “A”,“B”,“C” indicate the players A, B and C.

To analyze the user viewing behavior, we first deploy the YOLOv3
object detection algorithm [24] to detect the objects in each video frame.
Then, we implement the tracking algorithm from Collins et al. [10]
combined with location-based verification to match the objects between
frames. After that, we parse the user head movement data and draw the
conclusion on which objects the user has been watching during the live
streaming session.

In our analysis we mainly focus on two metrics regarding the rela-
tionship between the target object and the video watched by the user,
spanning both the spatial and temporal domains. In the spatial domain,
we analyze the average spatial portion of the target object in the entire
video, which is calculated as the size of the target object divided by
the size of the frame, averaging over all the frames. In the temporal
domain, we analyze the average temporal portion of the target object
watched by the user, which is calculated as the time duration that the
user’s viewport fully covers the target object divided by the total time
duration of the entire video. For both the spatial and temporal metrics,
we define a special object named “surroundings”, which indicates the
portion of the video that is not identified as any object by the object
detection algorithm.

Authorized licensed use limited to: Rutgers University. Downloaded on July 30,2021 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

2738

Table 1. Analysis of the spatial and temporal metrics in Videos "Anitta”
and "Cooking” from the dataset [27].

(a) | Video “Anitta”
Object | Spatial Portion (%) | Temporal Portion (%)
Dancer A 3.3 9.7
Dancer B 9.8 51.8
Dancer C 6.5 11.7
Other people 8.1 11.6
Surroundings 72.3 15.2
(b) | Video “Cooking”
Object | Spatial Portion (%) | Temporal Portion (%)
Player A 5.2 19.2
Player B 52 19.6
Player C 5.2 42.6
Surroundings 84.4 18.6

Figure 2(a) shows the annotated screenshot for video “Anitta” (with
the detected objects), and Table 1(a) lists our analysis results with the
spatial and temporal metrics for each object. We observe that the three
dancers A, B, and C take very small spatial portions of the video (3.3%,
9.8%, and 6.5%, respectively) but significantly larger temporal portions
of the user’s viewport (9.7%, 51.8%, and 11.7%, respectively). On the
other hand, the “surroundings” that takes a large spatial portion of the
video (72.3%) takes only a small temporal portion of the user’s viewport
(15.2%). To confirm our findings, we conduct the same analysis on the
video “Cooking”, as shown in Figure 2(b) and Table 1(b). The results
are consistent with our observations in the “Anitta” video, in that the
spatially small objects (e.g., Player C, 5.2%) would take large temporal
portion of the user viewport (e.g., Player C, 42.1%), while the spatially
large objects (e.g., Surroundings, 84.4%) would occupy small temporal
portions of the user viewport (e.g., Surroundings, 18.6%).

The analysis of the above two videos reveal an important observation
that the user’s viewport of interest (indicated by the temporal metric) is

not correlated with the size of the object (indicated by the spatial metric).

Instead, the user’s viewport is heavily dependent upon the semantics
of the objects (i.e., the degree of importance or attractiveness) in the
video, which validates our hypothesis that the users tend to watch the
meaningful objects that they are interested in. The validated hypothesis
provides us with the intuition of conducting viewport prediction based
on detecting meaningful objects in the video, which further involves
the following two observations: (1) Observation #1: We could achieve
high prediction accuracy (i.e., more than 80% in both “Anitta” and
“Cooking”) if we detect all the objects in the video frames and generate
the user viewports accordingly; and (2) Observation #2: We should
also explore a method to predict the user’s potential interest in the
“surroundings” to further improve the viewport prediction accuracy, as
it still takes around 15% to 20% temporal portion of the video. The two
observations provide us with a guideline in developing the live viewport
prediction mechanism in LiveObj. In reference to Observation #1,
we develop an object detection-based method for viewport prediction.
In reference to Observation #2, we further develop a reinforcement
learning-based approach to infer the user behavior based on real time
user feedback.

5 LIVE VIEWPORT PREDICTION

In this section we discuss the design of LiveObj by comparing it with
three baseline methods (i.e., Basic, Velocity and Over-Cover). We
analyze the limitations of the baseline methods and gradually switch to
the discussion of our proposed method — LiveObj.

5.1 Baseline Methods
5.1.1 The Velocity Method

One existing approach that could be implemented to support live VR
streaming is the velocity-based method [9]. It employs the actual user

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 5, MAY 2021

viewport information obtained from the the previous segments to model
the velocity of the user head movement and estimate the viewport
in the future segments. Assuming a user viewport location vector:
f = [l},1a,13.....,1n], where [; represents the user viewport location
in the " frame from the previous video segments, and M represents
the number of frames in the video playback buffer, the velocity of the
viewport can be calculated as:

vl tBob)t .t —ly-1) _ (m—h) 0
B M—1 M1

Then, the predicted viewport location in the next frame, /y; 1, can be
calculated as:
it =lu+V @

5.1.2 The Basic Method

Based on the analysis in Section 4, the Basic method detects all the
objects in the video and uses their center as the center of the pre-

dicted viewport. Given the list of k objects in each frame, O =
[01,02,03.....,0(], where each 0; (i = 1...k) represents the coordinates of

the center of the object 0; =< ogx) , ol(y) >. Then, the center coordinates
of the predicted viewport (Cy, Cy) can be calculated as:

k 1
cx:_zo("); G, =
= =

5.1.3 The Over-Cover Method

Inspired by the Motion method [15], which creates an irregular pre-
dicted viewport to cover more potential regions, the Over-Cover method
predicts viewports to cover all the regions that contain objects. We
leverage a multi-object detection algorithm [24] to process the frames
and detect the objects. Then, each detected object generates a pre-
dicted sub-view that shares the same center with the object, and the
aggregation of all the sub-views forms the final predicted viewport.

Ol()’) 3)

=1
M»-

5.1.4 Summary of the Baseline Methods

The baseline methods adopt intuitive strategies to predict viewport by
tracking either the user trajectory or the video content, all of which
would lead to sub-optimal outcomes that we aim to improve and com-
pare with in this work. The Velocity method leverages the user trajectory
to predict the viewport. It can adapt to the user preference changes
quickly, but the prediction accuracy may significantly worsen when
predicting for a longer period of time (e.g., a few seconds). The Basic
method, although focusing on the video content, may fail to select the
correct object under a multi-object scenario. The Over-Cover method
covers all the potential objects to maintain a high prediction accuracy
but would incur a relatively high bandwidth consumption.

5.2 Proposed Method: LiveObj

-

Frames Object
_ Video Detection — Predicted
e 9 Viewport

learning-based Web S
modeling eb Server

Feedback | User View
Previous | | Estimation

View

-

Fig. 3. Workflow of LiveObj deployed at the server end.

The Over-Cover method is subject to a redundancy problem by
incorporating all the detected objects in the predicted viewport while
the user could only watch few of them at a time. To address the
redundancy problem, we propose to select the most attractive objects
based on the user feedback, i.e., the user’s current viewport of interest,

Authorized licensed use limited to: Rutgers University. Downloaded on July 30,2021 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

FENG ET AL.: LIVEOBJ: OBJECT SEMANTICS-BASED VIEWPORT PREDICTION FOR LIVE MOBILE VIRTUAL REALITY STREAMING

to form the predicted viewport. Based on this thought, we develop
LiveObj, a tracking-based viewport prediction method, which shrinks
the predicted viewport from the Over-Cover method by filtering out the
objects that are less likely to be watched by the user.

Figure 3 illustrates the overall workflow of the LiveObj method.
LiveObj takes two inputs, including the video frames and the user
feedback (i.e., the user’s head orientations while watching the past
video segment). The output of LiveObj is the predicted viewport,
which includes the selected tiles. The workflow contains four technical
steps, namely object detection, user view estimation, object tracking,
and reinforcement learning-based modeling. The object detection
step processes the video frames and detects the objects. The user
view estimation step analyzes the user feedback and estimates the
viewport using the Velocity method. Then, the object tracking step
tracks the objects watched by the user. Finally, the tracking results and
the estimated user view are fed into the reinforcement learning-based
modeling step, which updates the status of each tile (i.e., selected or
not selected in the predicted viewport). The next subsections describe
the technical details of each step.

5.3 Object Detection and Tracking
5.3.1 Object Detection

The accuracy of object detection has been improved dramatically with
the invention of convolutional neural network (CNN) [18]. In LiveObj,
we use the YOLOV3 algorithm [16,24] to process the video and detect
the objects. We employ the pre-trained model [23] capable of recogniz-
ing 100 classes of objects, which is sufficient for the prototype system
and test benchmarks adopted in this work. For other types of videos
that contain objects outside the 100 classes, one can employ additional
training dataset and fine-tune the pre-trained model [11].

5.3.2 Object Tracking

The Over-Cover method introduces huge redundancy due to covering
all the objects. To reduce the bandwidth consumption we need to select
the objects that are most likely to be watched by the user from all the
detected objects. The intuition behind this objective is that, if the users
are currently watching certain objects, it is likely that they will still
watch the same objects for a period of time. Therefore, we could select
the target objects by tracking the ones that are currently watched.
Different from the object tracking for user analysis in Section 4,
the tracking task in the LiveObj framework works for live video sys-
tem and, therefore, the processing must be completed in real time.
However, the state-of-the-art multi-object tracking methods, such as
feature-mapping [20], mean-shift [33], the Bayesian-based method [32],
and the Markov Decision Process (MDP)-based method [28] cannot
achieve a real-time performance along with the object detection. Re-
cently, Li et al. [19] proposed a Siamese network-based real-time single
object tracking method, which shows the potential of being leveraged
for viewport prediction in live streaming system. However, it only
supports single object while multi-object scenes are prevalent in VR
videos. Besides, in VR videos, we only need to track the objects for a
few seconds (i.e., the segment duration), rather than minutes, since the
tracking results can be updated by the user feedback periodically. In
other words, in every few seconds, we collect the user feedback (i.e.,
the user head orientations) and further infer which objects the user was
previously watching, based on which we update the tracking target.
This procedure corrects the tracking failures and adapts to the latest
user preference on the video content. Therefore, the tracking errors will
not be accumulated but corrected. Also, the periodical user feedback
can help with the common scenario in VR streaming where the user
switches to a new object due to the change of interest or video scene.
Based on the aforementioned unique VR streaming features and
requirements, we develop a fast object tracking method based on the
object detection results for short-term multi-object tracking collaborat-
ing with the estimated view. Pseudocode 1 shows the tracking algorithm
following the object detection in the new frame. Given the object list
in the previous user view OL[K] and the detected objects OLNew[N],
we calculate the distance between each object in OL[K] and that in
OLNewI|N] to find the matched objects, which is stored to D[N]. Then,

2739

Pseudocode 1 Fast tracking based on object detection.
1: procedure IN EACH FRAME(OL[K])

> Object list

2 OLNew < N > Detected N objects
3 for each o[i] € OL do
4: for each oNew[j] € OLNew do
5: DIj] + distance(oli],oNew][j])
6 end for
7 Pairs(i,m) < m = min(D[N])
8: end for
9: for each oNew|j] € OLNew do
10: if oNew][j] in Esti then
11: T[j] < oNewl[}]
12: end if
13: end for

14: end procedure

we find the minimum distance in D[N] as a match for the two objects in
different frames, considering that the object would not move by a sig-
nificantly long distance in a short period of time. The matched objects,
represented by their center location, are stored in a pair < i,/m > and
inserted in the array Pairs. Once all the iterations are completed, Pairs
would contain all the matched objects in the two frames. To further
leverage the user trace feedback, we use the estimated user trace to se-
lect other candidate objects. Suppose Esti indicates the estimated user
view obtained by user view estimation, each new object that appears
in the predicted viewport, i.e., OLNewli] € Esti, will be added to the
prediction list 7'[j]. Note that in crowded video scenes, a cluster of
objects can be treated in the entirety as watched by the user, and our
final predicted viewport is generated by the tracked objects and new
objects from the estimated view.

5.4 User View Estimation

In the user view estimation step, we analyze the user feedback for
two purposes: (1) to estimate the user viewport in the future, and
(2) to calibrate the current user viewport along with the objects to be
tracked. Given the user feedback (i.e., the actual viewport in the past
video segment), we first update the latest user viewport and analyze
the user head movement pattern, with which we calculate the expected
user velocity in the coming frames following Equation (2). Then, we
identify the objects that are within the updated user viewport, which
are recognized as the objects of interests. These updates are then used
by the object tracking step for the future segments to improve the
prediction accuracy.

5.5 Reinforcement Learning-based Modeling

We note that there are potential errors in the viewport prediction due to
object detection failures, as shown in Figure 4.Once the target object
is missing from the object detection results in one of the intermediate
frames, the object tracking chain would terminate and, consequently,
the prediction algorithm would fail to function. Besides, the video scene
may change because of the moving camera or the switched views from
multiple cameras. As a result, the objects in the previous video scene
may disappear in the new scene. Therefore, even a perfect tracking
algorithm may fail to predict the user viewport. As a solution, we
develop a reinforcement learning-based method to build a user behavior
model for each video tile, aiming to minimize the prediction errors.

Our intuition is that different tiles have different probabilities of
containing meaningful objects, and the tiles that are more likely to con-
tain meaningful objects are typically more sensitive to object detection
errors. We formulate this observation into a policy learning process
M presented in Equation (4), where S and A represent the state and
action, respectively. Py, ¢ is the probability of choosing action a, given
the current state s and the transfer to the new state s’. R represents the
reward, also known as the real feedback after the decision has been
made, which is used to update F; , ¢ online.

M=< SvAvps.a.x’vR > 4)

Authorized licensed use limited to: Rutgers University. Downloaded on July 30,2021 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

2740

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 5, MAY 2021

Table 2. Test videos from public dataset [27].

No. Video Name Category Content Cameras Background Scenery
1 Cooking Performance Cooking Show 1 Static No
2 Front Sport Skiing 1 86% Included
3 Falluja Documentary The Fight for Falluja 1 76% Included
4 Football Sport Football Match 1 45% No
5 Rhinos Documentary The Last of the Rhinos 2 66% Included
6 Korean Performance Weekly Idol-Dancing 2 11% No
7 RioVR Talk Show Interview 1 Static No
8 FemaleBasketball Sport Female Basketball Match 1 Static No
9 Fighting Sport SHOWTIME Boxing 2 22% No
10 Anitta Performance Dancing 1 Static No

Frame: t+1 Frame: t+2

Frame: t

Fig. 4. Error caused by the failure of object detection. Each frame
is divided into i x j tiles indicated by the red edge net. The yellow
rectangle indicates the detected object, and the yellow dotted rectangle
indicates the failure of detecting the same object in a different frame.
The yellow arrow shows the object tracking flow of ground truth. The
missing detection in the intermediate frame (i.e., Frame t+1) would break
the tracking chain and thus compromise the prediction accuracy.

The goal of the system is to learn the different sensitivity of each
tile to the object detection failure by setting different values of Py, ¢.
The state-value function is formulated in Equation (5), which indicates
the expectation of using different action a given the actual state S; at
time 7. The action-value function is formulated in Equation (6), which
estimates the value when choosing the action a for all possible states
s € S, where 7 is a parameter in reward. Then, the final goal is to find
the max(Q;.4) by calculating each Py , ¢

v = E[QsalS = 5] s)
Qs,a = R? +7 Z Ps.a,s’V (6)
s'es

Solving max(Q;,4) and calculating P, , ¢ require many iterations and
are thus highly time consuming. To address this problem, we employ a
modified Q-learning process [26] to solve the optimization problem in a
greedy manner. The Q-learning process in this live viewport prediction
scenario is unique and different from its traditional applications. First,
the predictions are based on both the current input information (i.e.,
object tracking and view estimation results) and the previous state (i.e.,
selected or not). Second, the reward is collected online based on the
user feedback, and it is changing throughout the video session instead
of a pre-set reward matrix R. Third, instead of going through the whole
video and calculating the Q values by finding the maximum of the
expectation, we must update the Q table for each prediction, due to the
unavailability of the video content under the live streaming scenario.
In particular, we create a Q table for each tile. For each Q table,
there are four cases, namely “objects only”, “objects and viewport”,
“viewport only”, and “no objects or viewport”. Combining them with
the two previous states “selected” and “not selected”, we obtain 8 com-
binations of options for the state s in each table. For each state, there
are two actions (i.e., a), namely “select” and “not select”. Therefore, in
each table we have 8 states and 2 actions. The reward for each table is
updated based on whether the user watched the tile or not. The selec-
tion of action a based on s can be turned into the problem of finding

max(Q(s,s’)) under the same input, where s is the current state and s’
is the next state.

Pseudocode 2 Update Q table.

1: procedure IN EACH FRAME(Q[N])

2 i+ N

3 while i # 0 do

4 Update s in Q[i] based on the previous state and input frame
5: Choose a by max(Q[i](s,s))

6: Update R based on the user feedback
7

8

9

0

Oli](s,s') = Qli](s,s") + aR]i]
i<i—1
end while

10: end procedure

We initialize the Q table to make every tile as selected by assigning
a maximum score to the “select” action. Consequently, in the first few
frames all the tiles are labeled as “predicted”. Then, the Q table is
updated following Pseudocode 2 and the chosen action a. In particular,
we assign the reward with different values for success and failure (i.e., 3
for success and -2 for failure). Also, we set the maximum and minimum
values (i.e., 5 and -3) for the Q table and reset the score to the maximum
and minimum if it is out of the range. The learning rate « is set to 0.5.

6 EVALUATION RESULTS
6.1 Experimental setup

In the experiments, we use a Dell workstation with two Intel Xeon
E5-2623 CPU, one GPU of Titan X and 32GB RAM. We employ the
pre-trained YOLOvV3 model [23] for object detection and OpenCV
for video processing. To evaluate LiveObj, we employ 10 VR videos
watched by 48 users from a public user head movement dataset [27].
The 10 videos cover multiple types of content, as described in Table 2,
including sports, performance, talk show, and documentary videos.
Some of the videos are captured by multiple cameras (i.e., Videos 5,
6, and 9) where the video content is switched between the cameras
during playback, while the rest of the videos are shot by a single camera.
The background in Videos 1, 7, 8 and 10 is static, and the dynamic
background in the rest of the videos is caused by either the movement of
the camera or the switching between multiple cameras. The estimated
portion of video duration with dynamic background over the entire
video session is shown in the “Background” column.

6.2 Prediction Accuracy and Bandwidth
6.2.1 Accuracy evaluation metric

We employ a binary metric “match or not match” to evaluate the predic-
tion accuracy for each individual frame, i.e., “match” if the predicted
viewport covers the user’s actual view and “not match” if otherwise.
Then, the overall prediction accuracy of the whole video is defined as
the percentage of the frames for which the prediction algorithm achieve
a “match” result. In our experiment, the prediction algorithm generates
the predicted user view for each frame. Next, we compare it with the

Authorized licensed use limited to: Rutgers University. Downloaded on July 30,2021 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

FENG ET AL.: LIVEOBJ: OBJECT SEMANTICS-BASED VIEWPORT PREDICTION FOR LIVE MOBILE VIRTUAL REALITY STREAMING

2741

B B B B
v v v v v
oc oc oc oc ocC
Lo Lo Lo Lo Lo
M M M M M
LD LD LD LD LD
0 20 40 60 80 100 6 Zb 40 60 80 100 0 20 40 Gb 8'0 100 (’J 2b 42) Gb 8‘0 100 (’) 2‘0 42) 6’0 E‘O 100
1 2 4 5
B B B B B
v v v v v
oc oc oc oc ocC
Lo Lo Lo Lo Lo
M M M M M
LD LD LD LD LD
o 20 40 60 80 100 (I) Zb 40 60 80 100 o 20 40 Gb 80 160 o Zb 40 Gb 80 100 (I] Zb 42) 6’0 8‘0 100
6 i 9 10

Fig. 5. Prediction accuracy for 48 users watching 10 videos. The X-axis is the prediction accuracy (%), and the Y-axis represents the viewport
prediction methods for comparison: “B” — Basic, “V” — Velocity, “OC” — Over-Cover, “LO” — LiveObj, “M” — Motion, “LD” — LiveDeep.

140 4 250 175

200 150
100 125
80 1501 o 100
6042 100 7
40 4 50
2049 * 8 @ 25

ol 8 8
v v ¢ M VvV 1w

a

150 x0
o
I 160 200 4
o
o
50 100 {
8 o
8 3 =
o
M VvV m VvV w 10

400

bO(D

1 2

k4

3] 4 5

120
200 4
150 100 4

150 + 80

100
100 601 ?
C_ A
s 50
201

200

150

100 1 100 !
i N 1.
©
0l 8 = 12
M M

v D Lo

Fig. 6. Comparison of error duration with the 4 methods, Motion (M), Velocity (V), LiveDeep (LD), and LiveObj (LO) over the 10 test videos, where
the Y-axis indicates the number of consecutive frames that the error lasts for.

ground truth (i.e., the actual user view for this frame) obtained from the
dataset to draw a conclusion of either “match” or “not match”. After
processing all the frames in the video, we count the number of frames
that have a “match” result and calculate its percentage over the total
number of frames as the prediction accuracy.

6.2.2 Accuracy Evaluation Results

We evaluate the prediction accuracy of LiveObj in comparison with the
three baseline methods discussed in Section 5.1, namely Velocity, Basic,
and Over-Cover, plus the two state-of-the-art live viewport prediction
approaches Motion [15] and LiveDeep [14].

Average Prediction Accuracy. Figure 5 shows the average predic-
tion accuracy results for all the frames in the test videos. In a nutshell,
Over-Cover (OC), LiveDeep (LD) and Motion (M) achieve the high-
est prediction accuracy, which is around 90%. Our LiveObj achieves
similar accuracy in Videos 1, 3, 6 and 9. For the other videos, the
accuracy of LiveObj is all higher than 70% with most cases higher than
80%. Although the Velocity (V) method could achieve a high prediction
accuracy in Videos 1, 3 and 6, the performance is not stable, varying
from 60% to 80% in the rest of the videos. The accuracy for the Basic
(B) method is lower than 50% for all the test videos.

We further analyze the content of videos 2 and 5, for which LiveObj
achieves a lower prediction accuracy, and we observe that the two
videos are mostly outdoor that contain natural scenes. In such cases,
the object detection may fail to capture the mountains, houses, and
several other objects due to the limitation of the prediction model. In

addition, users tend to watch the surroundings more often as the scene
is constantly changing. Although Video 3 is also outdoor, it contains
the urban battlefield that the users are more likely to focus on for a
longer duration. As a result, the prediction accuracy for Video 3 is
higher than Videos 2 and 5. Another factor that affects the prediction
accuracy is the distortion in the original video frames, which could
make the object detection algorithm fail to generate accurate results.
For example, in Video 5, the 360-degree camera is mounted on the
back of the target animal, which makes the view of the animal itself
distorted in the original video frames and thus hard to be detected.
Videos 6 and 10 both contain multiple interesting objects. However, the
objects in Video 10 are located in different orientations, while those in
Video 6 are rather concentrated. As a result, the users are more likely to
switch among these objects in Video 10 during the video session, which
reduces the prediction accuracy. Video 4 also achieves a lower accuracy
because the scene changes between indoor and outdoor frequently, and
the users would look around when it changes. Despite the various
complexities and challenges, LiveObj still stays above 80% of accuracy
for most of the videos given the real-time user feedback mechanism
we adopted to compensate for the potential prediction errors. Also, the
major advantage of LiveObj, as compared to Over-Cover and Motion,
lies in its premium bandwidth usage (discussed in Section 6.2.3) while
still maintaining acceptable prediction accuracy. In addition, the minor
difference in prediction accuracy can be compensated by the error
recovery strategies as discussed in Section 6.3.

Authorized licensed use limited to: Rutgers University. Downloaded on July 30,2021 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

2742

Error Duration. The average accuracy results presented in Figure 5
only show the overall macro-prediction performance. Since the individ-
ual prediction errors may compromise the instant user experience, we
further analyze the micro-prediction performance by checking how fast
each method could recover from the individual errors. More specifically,
we count the number of consecutive frames with wrong predictions as
the error duration, which indicates the time duration that the prediction
error lasts for. Figure 6 shows the error duration results of LiveObj
(LO) in comparison with Motion (M), Velocity (V), and LiveDeep (LD)
over all the frames in the 10 test videos, where the Y axis indicates the
error duration, and the X axis indicates the different viewport prediction
methods. The results indicate that Motion and LiveObj achieve much
lower error durations than LiveDeep and Velocity. It is because (1)
LiveDeep involves large-size and computation-intensive deep learning
models, while Motion and LiveObj only require lightweight computer
vision or user preference models; and (2) Velocity is challenged by the
frequent and arbitrary user head movement patterns that are hard to be
accurately modeled by the velocity. In LiveObj, the object detection and
training are based on pre-trained, lightweight models and thus adaptive
to the scene switches. Therefore, LiveObj demonstrates superior error
duration compared to LiveDeep and Velocity. On the other hand, the
error duration of LiveObj is higher than Motion, indicating that Motion
is even more adaptive to prediction errors; however, the simplicity
of Motion would result in lower bandwidth savings, as discussed in
Section 6.2.3.

100
13
&'80—
%)
[o)]
& 60 =
>
i, — o
S 40
=
=)
c 20
17
m
01— ; ; ; ; ;
B v oc Lo M LD

Fig. 7. Average bandwidth usage over the 10 test videos. The X-axis
represents the viewport prediction methods for comparison: “B” — Basic,
“V” — Velocity, “OC” — Over-Cover, “LO” — LiveObj, “M” — Motion, “LD” —
LiveDeep.

6.2.3 Bandwidth Evaluation Results

We evaluate the average bandwidth usage for all the methods, over the
48 users and 10 videos with 2-second buffer length, in comparison to
the original bandwidth usage. The results are shown in Figure 7. We
observe that the Over-Cover (OC) and Motion (M) methods introduce
high bandwidth consumption with wide distributions (40% to 80%).
On the other hand, the bandwidth usage of LiveObj is below 50% in
most cases. The Basic (B) and Velocity (V) methods consume 50% of
bandwidth, which is around the upper bound of LiveObj (LO). LiveDeep
(LD) consumes around 60% of bandwidth. The results indicate that
LiveObj could achieve a relatively high accuracy with a relatively low
bandwidth consumption, well balancing the requirements for accuracy
and bandwidth in live VR streaming.

Furthermore, we conduct a micro-bandwidth evaluation of the predic-
tion size for each frame to further analyze the bandwidth consumption
of LiveObj over time, in comparison with Motion. Figure 8 shows the
results of 4 representative videos (i.e., Video 1, 3, 6 and 8 watched by
User 2). The Videos 1 and 3 are the most representative cases, where
Motion consumes higher or similar bandwidth compared to LiveObj. In
Video 1, the prediction size of Motion in each frame is around 60%,
and it is around 40% for LiveObj. In Video 3, both methods have round

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 5, MAY 2021

——Pp— LiveObj Motion
100 100
80 80
60 'U’L’h 60 f
WJ‘” 2 v it
40 40
20 20
0
200 400 600 800 1000 1200 1400 1600 0O 200 400 600 800 1000 1200 1400 1600
Video 1 Video 3
100 100
80 80 /"(’M[/Ll,
60 60
40 i xpe hiarl w04
. % 0
0
200 400 600 800 1000 1200 1400 1600 0O 200 400 600 800 1000 1200 1400 1600
Video 6 Video 8

Fig. 8. Micro-bandwidth usage of LiveObj and Motion over 4 test videos.
The X-axis shows the frame number in the video, and the Y-axis shows
the bandwidth usage (%).

50% prediction size of the original frame. Video 6 shows one extreme
case where LiveObj incurs larger prediction size than that of Motion.
However, in this case, the prediction size by LiveObj is still lower than
60% for most of the time. Video 8 shows another extreme case where
Motion results in large prediction size even close to 100% for some
periods, which is not acceptable considering the goal of saving band-
width. On the contrary, LiveObj maintains a low bandwidth usage and
is consist with the results shown in Figure 7 with a narrow distribution.

6.2.4 Summary of Accuracy and Bandwidth Evaluations

Descriptive Statistical Analysis. We observe that the Over-Cover and
Motion methods have large variations in bandwidth, and the peak band-
width consumption is higher than 70%, which is not acceptable given
that the original goal of viewport prediction is to reduce bandwidth
consumption. For prediction accuracy, the Basic and Velocity methods
obtain the lowest accuracy of 24% and 64%, respectively, while the ac-
curacy of the other methods is all higher than 70%. When looking into
the error duration, LiveDeep often takes 3 seconds to recover from the
prediction errors due to the large model weight. In summary, LiveObj
achieves a low and narrow distribution of bandwidth consumption com-
pared to Over-Cover and Motion. Also, the prediction accuracy of
LiveObj is high and stable compared to the Basic and Velocity methods.
In addition, benefiting from the lightweight user preference model, the
error duration of LiveObj is much smaller than LiveDeep. Overall,
LiveObj achieves premium performance in all the three evaluation met-
rics. Even though it may not be the best one under each individual
metric, it is the only live viewport prediction approach that achieves
well acceptable performance in all the three metrics combined, which
is critical for the performance and quality of live VR streaming.

Inferential Statistical Analysis. We further conduct inferential
statistical analysis by calculating the confidence interval for the mean
values of the prediction accuracy, bandwidth consumption, and error
duration results. The detailed results are shown in Table 3. With a
confidence level of 0.95, the estimated average prediction accuracy of
LiveObj ranges from 78% to 87%, which is much better than that of
Basic and Velocity. The estimated average values of bandwidth usage
for LiveObj are in the range of 43% to 48%, which is the lowest among
all the methods. The estimated average error duration of LiveObj is
between 21 to 40 frames, which indicates that the prediction errors
would be corrected in a timely manner. The inferential statistics further
confirm our observations in the descriptive statistics that LiveObj is the
only live viewport prediction approach that achieves well acceptable
performance in all the three metrics combined.

6.3 Error Recovery Strategies

There are three recovery strategies when the prediction is incorrect:
(1) Selective streaming [25], which delivers a low resolution video for
the regions outside the predicted region; (2) Re-transmission, which

Authorized licensed use limited to: Rutgers University. Downloaded on July 30,2021 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

FENG ET AL.: LIVEOBJ: OBJECT SEMANTICS-BASED VIEWPORT PREDICTION FOR LIVE MOBILE VIRTUAL REALITY STREAMING

Table 3. Inferential statistics: Confidence intervals of the mean values
of accuracy, bandwidth usage, and error duration, corresponding to the
descriptive statistics in Figures 5, 6, and 7. The significance level is 0.05,
and the confidence level is 0.95.

Method Accuracy Bandwidth Usage Error Duration
(%) (%) (frames)
Basic [20, 31] [50,50] [79, 125]
Velocity [70, 81] [50,50] [49, 65]
Over-Cover [90, 95] [63, 73] [11,20]
LiveObj [78, 87] [43, 48] [21, 40]

Motion [92, 94] [51, 63] [7, 11]

LiveDeep [90, 96] [60, 61] [71, 113]

re-transmits the correct viewport from the server to the client; and (3)
No recovery, which takes no actions to recover the prediction error. Ob-
viously, Strategy (2) would cause video freezes and eventually increase
the bandwidth usage. Note that Strategy (1) is a common practice for
the viewport prediction approaches (e.g., Velocity, Motion, LiveObj, and
LiveDeep) to handle erroneous predictions that would pose significant
impact to the user experience. Specifically, this strategy further benefits
the performance of LiveObj by reducing the actual impact caused by
the slight accuracy disadvantage of LiveObj as compared to Motion.

No recovery No recovery
100 100
80 80
40 40
20 20
0 0

500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500

20% down-resolution 20% down-resolution

500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500

60% down-resolution 60% down-resolution

100 100
- W—WLTMWMAJ\M 80]I ' l

60 60
40 40
20 20

0 0

o 500 1000 1500 2000 2500 3000 3500 o 500 1000 1500 2000 2500 3000 3500

(a) Whole frame (b) User view

Fig. 9. The bit rate ratio (%) for (a) the whole frame and (b) the actual
user view under different error recovery strategies. The X-axis is the
frame number, and the Y-axis is the bit rate ratio (%) compared to the
original bit rate.

To further demonstrate the difference in performance between Strate-
gies (1) and (3), we analyze the bit rates of the whole frame and the
actual user view delivered by LiveObj. The results are shown in Fig-
ure 9, where the X-axis represents the video frame number, and the
Y-axis represents the ratio (%) of the bit rate compared to the original
ground-truth version without prediction errors. In particular, Figure 9(a)
and (b) show the bit rate results corresponding to the whole 360-degree
frame and the actual user’s viewport, respectively. In each case, there
are 3 sub-figures representing Strategy (3), Strategy (1) with down-
resolution rate of 20%, and Strategy (1) with down-resolution rate of
60%. In Figure 9(b), the bit rate ratio of the user view is 100% when the
prediction is correct, and the abrupt drops of the bit rate ratio indicate

2743

prediction errors. When using Strategy (3), the user could have a blank
view where the ratio is almost 0%. When using Strategy (1) with a
down-resolution rate of 20%, the user could get a ratio of 20% instead
of 0% in the worst case. It is obvious that, increasing the resolution
for the non-selected area in a frame could improve the user experience
when errors occur. However, the the overall bandwidth savings for
the whole frame also decrease as shown in Figure 9(a). The results
suggest that, given the high accuracy of LiveObj, we can adopt Strategy
(3) or Strategy (1) with a low resolution (e.g., 20% of the original).
Moreover, in real cases we could adopt different low resolutions for
different network capacities to balance the user experience and the
bandwidth savings.

1.01

0.8

Cooking

0.6 1 Front
L .
) Falluja
o 04 Football
: Rhinos
Korean
0.2 RioVR
Female Basketball
Fighting
—4¢— Anitta

0.0

0 50 100 150 200 250 300 350
Processing time (ms)

Fig. 10. Cumulative distribution of the average per-frame video pro-
cessing time over the 10 test videos by using the LiveObj method. The
X-axis represents the processing time (ms), and the Y-axis represents
the cumulative distribution of the processing time values.

6.4 Processing Delay

We further evaluate and analyze the processing delay caused by LiveObj.
Figure 10 shows the cumulative distribution of the average per-frame
video processing time over the 10 test videos by using the LiveObj
method. For each video, we collect the processing time values in the
form of 3750 sample points and generate the distribution. We can
observe that the processing time for all the frames is less than 350
ms, and it ranges between 75 ms and 200 ms for most of the frames.
To achieve real-time performance, we could sample two frames per
second from all the original video frames for viewport prediction using
LiveObj. Then, we leverage the prediction results from these two frames
to predict the user viewport for the one second of video. Therefore,
the overall processing delay for viewport prediction is around 700
ms per second of video, which means that the viewport prediction
can be completed during the video playback of the current segment
without delaying the next segment, supporting a smooth streaming
experience. Note that the previous accuracy and bandwidth evaluations
(i.e., Section 6.2) were carried out on all the frames in the test videos.
Now with processing only 2 frames/second for viewport prediction, we
re-evaluate the accuracy, error duration, and bandwidth and compare
them to the original all-frame case, the average results of which (over
10 test videos) are shown in Table 4. The results reveal that the 2
frames/second case, while meeting the real-time requirement, performs
almost equally well in the three evaluation metrics as compared to the
all-frame case.

6.5 Impact of Internal Parameter Settings

In this subsection, we conduct further experiments to evaluate the im-
pact of internal algorithms (e.g., the reinforcement learning algorithm)
and parameter settings (e.g., learning rate and number of tiles) on the
performance of LiveObj.

Authorized licensed use limited to: Rutgers University. Downloaded on July 30,2021 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

2744

Table 4. Comparison of average viewport prediction performance (over
the 10 test videos) in the all-frame and 2 frames/sec cases.

Framerate Accuracy Error Duration Bandwidth
(%) (frames) Consumption (%)
All frames 82.84 30.52 45.51
2 frames/sec 81.63 30.48 45.49
B With RL ® Advanced Tracking ® Without RL
100
= 80 7|
X
> 60
&
3 40 & 4
Q . »
< 20 I I : Iﬁ I F b
0) - N | | =3) -
1 2 3 4 5 6 7 8 9 10

Test Video

Fig. 11. Comparison of viewport prediction accuracy with/without rein-
forcement learning and with advanced tracking for the 10 test videos.

6.5.1

Figure 11 shows the viewport prediction accuracy results of the three
methods (1) with reinforcement learning (RL); (2) without RL but with
Kalman filtering to improve the tracking algorithm (i.e., Advanced
Tracking); and (3) without RL. It is obvious that using RL helps achieve
significantly higher accuracy than the other two approaches. Our deci-
sion to adopt RL did not come right in the beginning but was following
exactly this series of attempts and experiments on related approaches
without RL (i.e., without RL and Advanced Tracking). In particular, our
LiveObj first started with a basic object detection and tracking based
prediction method (i.e., without RL). In this version, we observed the
issue of failing to detect the same object in all the frames, which further
induces the failure of tracking the object. Therefore, we improved
our method with Kalman filtering to reduce the noise (i.e., Advanced
Tracking). Then, we further noticed the errors caused by failing to
cover the viewports that do not contain any objects, which motivated
us to develop a tile-based RL method (i.e., with RL).

Impact of Reinforcement Learning

6.5.2

Figure 12 shows the impact of learning rate (i.e., &t = 0.1, 0.3, 0.5, 0.7
and 0.9) on prediction accuracy and bandwidth. A higher learning rate
could update the tile more often and reduce the bandwidth consumption.
However, due to the user’s non-smooth movement, more movement
noise will be turned into errors, which reduces the prediction accuracy.
Overall, the results indicate that the impact of learning rate is not
significant on accuracy and bandwidth. In LiveObj, we adopt learning
rate 0.5, which achieves best results in bandwidth savings and accuracy.
Figure 13 shows the impact of the number of tiles (i.e., N X N). It
can be observed that changing the number of tiles does not obviously
impact the LiveObj performance, especially between N=10 and N=20.
In LiveObj, we adopt N=10.

Impact of Learning Rate and Number of Tiles

7 LIMITATIONS AND FUTURE WORK

There are still limitations in the current version of LiveObj that can be
further improved in the future work. First, it is challenging to predict
the user’s view switching between objects within one video segment
duration, which has not been fully addressed in LiveObj and thus it
impacts the prediction accuracy. The potential future solution could
be leveraging other cues, such as the audio/speech in the videos, to

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 5, MAY 2021

Prediction Accuracy Bandwidth

100 100
— —

E\O, 80 &\‘: 80

§ 60 % 60

5 40 T 40
o el
Q 20 c

< 'g 20

0 0

a=0.9 a=0.7 a=0.5 a=0.3 a=0.1 a=0.9 a=0.7 a=0.5 a=0.3 a=0.1

Learning Rate (a)

Fig. 12. Average performance of LiveObj using different learning rates.

Prediction Accuracy Bandwidth
100 100
— _
X 80 X 80
< <
& 60 £ 60
8 k<)
5 40 = 40
< 20 g
0 0
N=5 N=10 N=20 N=5 N=10 N=20

Number of Tiles (NxN)

Fig. 13. Average performance of LiveObj using different numbers of tiles.

Qa

predict the user preference change within one video segment. Secondly,
the distortions in the video also impact the prediction accuracy by
failing the object detection. This limitation could be addressed by using
other projection methods (i.e., cubic projection [13]) or using computer
vision-based techniques to tune the camera view. Third, we have not
investigated the scalability issue, which may prevent LiveObj from
serving a large number of users. We plan to explore the scalability issue
in the future work by developing an end-to-end VR streaming system
incorporating LiveObj. Last but not least, the new generation of wireless
communication technologies (e.g., 5G) are expected to improve the
bandwidth capacity significantly. It is worth exploring how the viewport
prediction technique, the advanced wireless communication technology,
and the popular VR streaming systems could be integrated to jointly
address the bandwidth challenge and meet the quality requirement.

8 CONCLUSION

This paper targets the bandwidth optimization problem in live VR
streaming via viewport prediction. We for the first time analyzed the
relationship between the user viewing behavior and the video content
in live VR streaming. Our findings reveal the fact that the users spend
most of the time watching the meaningful video objects, based on
which we proposed a new object semantics-based live viewport predic-
tion framework, namely LiveObyj, to optimize the bandwidth. LiveObj
detects and tracks the identifiable and meaningful objects in the VR
video and converts the object semantics into well-inferred user viewing
behavior based on the user feedback. We evaluated LiveObj using 10
VR videos watched by 48 users from a public head movement dataset.
The results show that LiveObj could obtain a high prediction accuracy
while only consuming around half of the original bandwidth. More
importantly, the processing delay of LiveObj can be kept at an accept-
able range suitable for live video streaming. The project repository of
LiveObj is located at https://github.com/hwsel/LiveObj.

ACKNOWLEDGMENT

We appreciate the constructive review comments provided by the anony-
mous reviewers. This work was partially supported by the National
Science Foundation under award CNS-1910085.

Authorized licensed use limited to: Rutgers University. Downloaded on July 30,2021 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

FENG ET AL.: LIVEOBJ: OBJECT SEMANTICS-BASED VIEWPORT PREDICTION FOR LIVE MOBILE VIRTUAL REALITY STREAMING

REFERENCES

(1]
(2]

(3]
(4]

(5]
(6]

(71
(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Microsoft Hololens 2. 2019. https://www.microsoft.com/en-us/
hololens.

NBA 2019-20 games available in Oculus Venues and NextVR. 2019.
https://uploadvr.com/nba-games-oculus-nextvr/.

CNNVR. 2020. https://www.cnn.com/vr.

HTC Vive Cosmos Elite. 2020. https://www.vive.com/us/product/
vive-cosmos-elite/overview/.

Oculus Quest 2. 2020. https://www.oculus.com/quest-2/.

Sky Worlds to show Premier League matches live in virtual reality. 2020.
https://www.skysports.com/football/news/11095/12158210/
sky-worlds-to-show-premier-league-matches-live-in-
virtual-reality.

YouTube virtual reality channel. 2020. https://www.youtube.com/
channel /UCzughhs6NWbgTzMuMO®9WKDQ.

Y. Ban, L. Xie, Z. Xu, X. Zhang, Z. Guo, and Y. Wang. Cub360: Exploit-
ing cross-users behaviors for viewport prediction in 360 video adaptive
streaming. In /EEE International Conference on Multimedia and Expo
(ICME), pages 1-6, 2018.

Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu. Shooting a moving
target: Motion-prediction-based transmission for 360-degree videos. In
IEEE International Conference on Big Data (BigData), pages 1161-1170,
2016.

R. T. Collins. Mean-shift blob tracking through scale space. In /EEE
conference on Computer Vision and Pattern Recognition (CVPR), pages
234-240, 2003.

D. Curro. Borrowing weights from a pretrained network. 2016.
https://github.com/BVLC/caffe/wiki/Borrowing-Weights-
from-a-Pretrained-Network.

C.-L. Fan, J. Lee, W.-C. Lo, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu.
Fixation prediction for 360° video streaming in head-mounted virtual
reality. In ACM Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV), pages 67-72, 2017.

Y. Fan, Y. Jin, Z. Meng, and X. Zeng. Pixels and panoramas: An enhanced
cubic mapping scheme for video/image-based virtual-reality scenes. /[EEE
Consumer Electronics Magazine, 8(2):44-49, 2019.

X. Feng, Y. Liu, and S. Wei. LiveDeep: Online viewport prediction
for live virtual reality streaming using lifelong deep learning. In /IEEE
International Conference on Virtual Reality and 3D User Interfaces (VR),
pages 800-808, 2020.

X. Feng, V. Swaminathan, and S. Wei. Viewport prediction for live 360-
degree mobile video streaming using user-content hybrid motion tracking.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies (IMWUT), 3(2), 2019.

A. Kathuria. A pytorch implementation of the YOLO v3 object detection
algorithm. 2018. https://github.com/ayooshkathuria/pytorch-
yolo-v3.

E. Kuzyakov, S. Chen, and R. Peng. Enhancing high-resolution 360
streaming with view prediction. Facebook Inc., 2017. https://
engineering.fb.com/2017/04/19/virtual-reality/enhancing-
high-resolution-360-streaming-with-view-prediction/.

Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E.
Hubbard, and L. D. Jackel. Handwritten digit recognition with a back-
propagation network. In Advances in Neural Information Processing
Systems (NeurIPS), pages 396404, 1990.

B.Li, J. Yan, W. Wu, Z. Zhu, and X. Hu. High performance visual tracking
with siamese region proposal network. In /EEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8971-8980, 2018.

C. Liu, J. Yuen, and A. Torralba. SIFT Flow: Dense correspondence across
scenes and its applications. /EEE transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 33(5):978-994, 2011.

S. Petrangeli, G. Simon, and V. Swaminathan. Trajectory-based viewport
prediction for 360-degree virtual reality videos. In IEEE International
Conference on Artificial Intelligence and Virtual Reality (AIVR), pages
157-160, 2018.

F. Qian, L. Ji, B. Han, and V. Gopalakrishnan. Optimizing 360 video
delivery over cellular networks. In ACM Workshop on All Things Cellular:
Operations, Applications and Challenges, pages 1-6, 2016.

J. Redmon and A. Farhadi. YOLO: Real-time object detection. 2017.
https://pjreddie.com/darknet/yolo/.

J. Redmon and A. Farhadi. YOLOvV3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

2745

J. Son, D. Jang, and E.-S. Ryu. Implementing 360 video tiled streaming
system. In ACM Multimedia Systems Conference (MMSys), pages 521—
524,2018.

C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279—
292, 1992.

C. Wu, Z. Tan, Z. Wang, and S. Yang. A dataset for exploring user
behaviors in vr spherical video streaming. In ACM Multimedia Systems
Conference (MMSys), pages 193-198, 2017.

Y. Xiang, A. Alahi, and S. Savarese. Learning to track: Online multi-
object tracking by decision making. In IEEE International Conference on
Computer Vision (ICCV), pages 47054713, 2015.

M. Xu, Y. Song, J. Wang, M. Qiao, L. Huo, and Z. Wang. Predicting head
movement in panoramic video: A deep reinforcement learning approach.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
41(11):2693-2708, 2018.

Y. Xu, Y. Dong, J. Wu, Z. Sun, Z. Shi, J. Yu, and S. Gao. Gaze prediction
in dynamic 360 immersive videos. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5333-5342, 2018.

Z. Xu, X. Zhang, K. Zhang, and Z. Guo. Probabilistic viewport adaptive
streaming for 360-degree videos. In IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1-5, 2018.

J. H. Yoon, M.-H. Yang, J. Lim, and K.-J. Yoon. Bayesian multi-object
tracking using motion context from multiple objects. In IEEE Winter
Conference on Applications of Computer Vision (WACV), pages 33-40,
2015.

H. Zhou, Y. Yuan, and C. Shi. Object tracking using SIFT features and
mean shift. Computer Vision and Image Understanding, 113(3):345-352,
2009.

Z. Zivkovic. Improved adaptive Gaussian mixture model for background
subtraction. In International Conference on Pattern Recognition (ICPR),
volume 2, pages 28-31, 2004.

Authorized licensed use limited to: Rutgers University. Downloaded on July 30,2021 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

