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ABSTRACT

Designers make information acquisition decisions, such as
where to search and when to stop the search. Such decisions
are typically made sequentially, such that at every search step
designers gain information by learning about the design space.
However, when designers begin acquiring information, their
decisions are primarily based on their prior knowledge. Prior
knowledge influences the initial set of assumptions that designers
use to learn about the design space. These assumptions are
collectively termed as inductive biases. Identifying such biases
can help us better understand how designers use their prior
knowledge to solve problems in the light of uncertainty. Thus, in
this study, we identify inductive biases in humans in sequential
information acquisition tasks. To do so, we analyze experimental
data from a set of behavioral experiments conducted in the
past [1-5]. All of these experiments were designed to study
various factors that influence sequential information acquisition
behaviors. Across these studies, we identify similar decision
making behaviors in the participants in their very first decision
to “choose x”. We find that their choices of “x” are not uniformly
distributed in the design space. Since such experiments are
abstractions of real design scenarios, it implies that further
contextualization of such experiments would only increase the
influence of these biases. Thus, we highlight the need to
study the influence of such biases to better understand designer
behaviors. We conclude that in the context of Bayesian modeling
of designers’ behaviors, utilizing the identified inductive biases
would enable us to better model designer’s priors for design
search contexts as compared to using non-informative priors.

Keywords: Inductive Biases, Information Acquisition,
Decision-Making, Engineering Design

1 Introduction

Designers engage in information acquisition activities, such
as deciding what information to acquire and how to acquire
that information while solving engineering design problems [1,
6]. Such activities are typical in design decision making
scenarios, where designers need to acquire information about
various design alternatives before choosing the best alternative.
Moreover, designers need to make inferences based on their
information acquisition activities. For example, designers use
simplified models and prototypes to make inferences about
the expected performance of final designs under true operating
conditions. The underlying cognitive activity of generalization,
which is pervasive in problem solving and design, is called
inductive reasoning [7, 8].

The act of engaging in information acquisition activities
itself requires inductive reasoning. For example, deciding the
appropriate point in the design space to conduct an experiment
for acquiring information requires making inferences. Designers
may project the values of the design parameters from previously
conducted experiments to make predictions about novel
experimental conditions in the face of uncertainty. Moreover,
when there is a lack of available experimental evidence in
scenarios, such as the very beginning of an information
acquisition activity, then designers’ decisions are primarily based
on their prior knowledge. In other words, when the available
evidence is not enough for designers to make a decision,
inductive reasoning enables designers to choose the “most
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probable” alternative [9] and what constitutes as “most probable”
is dependent on the prior experiences of an individual.

Prior knowledge influences the initial set of assumptions
that designers use to learn about the design space. Such
set of assumptions are termed as inductive biases [10, 11].
Bias in design literature is typically associated with negative
connotations with a focus on “reducing” [12], “overcoming” [13,
14], or “mitigating” [15] their influence. However, for inductive
problems, that is, problems where solutions cannot be identified
solely based on the available evidence, inductive biases are
required to achieve solutions [16]. For example, when the design
team members can understand teleconference conversations
despite frequent audio interruptions, they are using inductive bias
to “fill” the interrupted words by making informed guesses about
what sentences the speaker may have uttered.

Existing literature on inductive biases has emphasized
the positive implications of identifying inductive biases for
developing computational models of cognition [11, 17-21].
For engineering design, understanding inductive biases in
designers can enable us to develop descriptive models of
engineering design processes. Such models can be developed
computationally such that they provide decision support to
designers in highly uncertain design situations as well as in the
early stages of a design process towards supporting creativity and
innovation. However, there is a lack of studies in engineering
design contexts for understanding inductive biases in designers.

In this study, we identify inductive biases in humans in
sequential information acquisition tasks. Such tasks are relevant
for engineering design scenarios as designers rarely make artifact
decisions based solely on the available information in the
design brief. Instead, they make several information acquisition
decisions such as what information to acquire and when to
acquire that information. Such decisions are influenced by a
designer’s prior knowledge [1, 22]. Thus, designers engage
in inductive reasoning while making information acquisition
decisions. To identify inductive biases in information acquisition
scenarios, we analyze experimental data from a set of behavioral
experiments conducted in the past [1-5]. All of these
experiments were designed to study various factors that influence
sequential information acquisition behaviors of designers in
engineering design contexts.

We describe the information acquisition scenario as follows.
Consider a design problem where a designer optimizes a design
objective f(x). They control a set of design variables x in a
design space 2. However, the designer does not explicitly
know the mathematical relationship between the design variables
x and the design objective f(x). The designer needs to acquire
information about the impact of design variables x on the design
outcome f(x). Such information can be acquired by sequentially
making decisions such as choosing a value of x and conducting
experiments (at that x), which incur a certain cost. We assume
that the designer updates their state of knowledge of the design

space after executing each experiment. Such a scenario is termed
as a sequential information acquisition and decision making
(SIADM) scenario. In Section 2.1, we summarize previous
experiments where human subjects were required to participate
in various SIADM scenarios with a specific focus on parametric
optimization tasks.

For the very first experiment in a SIADM scenario,
a designer needs to decide at what x they should acquire
information with insufficient information of the design space.
The designer does not know the mapping between design
variables x and the design performance f(x). Thus, the designer
needs to rely on their prior knowledge and use inductive
reasoning to instantiate the first experiment by choosing design
variables x from a range of possible values in a design space.

Without any prior knowledge, a rational strategy to choose
the first set of design variables x would be to pick them from
a uniform distribution and conduct the experiment in the design
space. Thus, a non-informative prior to model such a decision
would seem reasonable [23]. However, in order to model
designer behaviors, there lies a need to investigate how designers
choose the values of their design variables. Do they assign
equal probabilities (use a non-informative prior), or do they
use inductive biases to preferentially choose among various
alternatives? Moreover, there lies a need to investigate whether
these decisions are similar across a group of participants or not.
Thus, we analyze the very first decisions of the human subjects in
our previously conducted behavioral experiments in the context
of SIADM scenarios.

The remainder of this paper is organized as follows. In
Section 2, we describe the experimental data and the analysis
procedure used to identify inductive biases. In Section 3, we
report our observations from the experimental data analysis. In
Section 4, we use inductive reasoning to hypothesize about the
inductive biases that designers use in sequential information
acquisition and decision making based on the observations
described in Section 3. We conclude in Section 5 by discussing
the future work to test the formulated hypotheses towards
incorporating inductive biases in computational models of
designer behaviors.

2 The Study

In this section, we summarize the past SIADM
experimental studies, their similarities and differences in
experimental design, the experimental data sets, and the data
analysis procedure utilized for identifying inductive biases.

2.1 Summary of Previously Conducted Sequential
Information Acquisition Experiments

Table 1 lists the various experimental studies analyzed in this
paper to identify inductive biases. These studies are summarized
in the following.
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TABLE 1: List of Experiments, Design Space Range, Experimental Notes, and Corresponding Labels

Number Labels
Number | Name of Unique | Design Space Range Experimental Notes for the
Participants experiment

The research objective was to study the influence

Experiment [1] that of TDE)

Function Minimization
1 Y CtAO ato 44 —100 <X <100 of cost on SIADM. Participants’ objective was to | FMinE
Experiment [2] s . .
minimize the function.
- The research objective was to study the influence of
The Fidelity . .. s .
2 . 63 -10<X <10 model fidelity on SIADM. Participants’ objective was | FDE
Experiment [4] . . .
to maximize the function.
. The research objective was to study the influence
3 The . Track Design 44 0<X <o of domain knowledge on SIADM. Participants’ | TDE
Experiment [1] .. . .
objective was to maximize the function.
The Function The research objective was to study the influence
L 0 (Same pool as . .. S
4 Maximization 0<X<e of domain knowledge on SIADM. Participants FMaxE

objective was to maximize the function.

The Opponent-specific
5 Information 36
Experiment [3]

350 <X <1000

The research objective was to study the influence
of opponents on Strategic SIADM. Participants’ | OppE
objective was to maximize the function.

The Function Complexity
Experiment [5]

28 -10<X <10

The research objective was to study the influence
of function complexity and cost on SIADM. | FCE
Participants’ objective was to minimize the function.

2.1.1 The Function Minimization Experiment The
Function Minimization Experiment [2] was designed to study the
influence of the cost of information acquisition on a participant’s
SIADM process. Participants made sequential decisions to
find the minimum of a randomly generated convex function.
The design space range was 2 = [—100,100]. The function
minimum was designed to lie in range of —70 < x;,;, < 70.

2.1.2 The Fidelity Experiment The Fidelity
Experiment [4] was designed to study the influence of budget
and uncertainty of information sources during information
acquisition on a participant’s SIADM process. Participants made
sequential decisions to find the maximum of a randomly sampled
function from a Gaussian Process [24] with the hyperparameters,
lengthscale ! = 2 and variance ¢ = 600. The design space range
was 2~ = [—10, 10]. The function maximum could lie anywhere
in the design space.

2.1.3 The Track Design Experiment The Track
Design Experiment [1] was designed to study the influence
of domain knowledge and problem framing on a participant’s
SIADM process. Participants made sequential decisions to find
the maximum of a randomly generated convex function. The
design space range was 2 = [0,00). The feasible function
maximum could lie in the range 2" = [280,480].

2.1.4 The Function Maximization Experiment
The Function Maximization Experiment [1] was designed to
study the influence of domain knowledge and problem framing
on a participant’s STADM process. It is mathematically the same
optimization problem as that in the Track Design Experiment.

Participants made sequential decisions to find the maximum of
a randomly generated convex function. The design space range
was 2 = [0,0). The feasible function maximum could lie in the
range 2" = [280,480].

215 The Opponent-specific Information
Experiment The Opponent-specific Information
Experiment [3] was designed to study the influence of the
opponent’s historical performance information on a participant’s
SIADM process. Participants not only made sequential decisions
to find the maximum of a randomly generated convex function
but also decided when to stop. The problem statement is the
same as that of the track design experiment. The difference
is that individuals competed against an opponent to win, as
opposed to winning based on their sole performance. The design
space range was 2 = [350,1000]. The function maximum
could lie anywhere in the design space.

2.1.6 The Function Complexity Experiment The
Function Complexity Experiment [5] was designed to study the
influence of information acquisition cost and task complexity
on a participant’s SIADM process. Participants not only made
sequential decisions to find the minimum of a randomly sampled
polynomial function (degree 2,3, or 4), but also decided when to
stop. The design space range was £ = [—10, 10]. The function
maximum could lie anywhere in the design space.

2.1.7 Similarities and Differences Across the
Experiments Concerning similarities, all the experiments are
controlled behavioral experiments. All the experiments were
conducted in context of a STADM design scenario.
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Concerning major differences across the experiments, we
list them in the following.

1. Participants were aware of the design space range in all
the experiments except the Track Design and the Function
Maximization Experiments.

2. Participants were able to visualize their search history
graphically and textually in all the experiments except the
Track Design and the Function Maximization Experiments.

3. Only the Track Design Experiment was conducted in a
domain-dependent context, whereas the other experiments
were domain-independent STADM problems.

4. The Fidelity Experiment provided participants with a
visualization of the uncertainty of the objective function
based on a Gaussian Process formulation of the objective
functions.

5. The Fidelity Experiment, the Function Minimization
Experiment, the Function Complexity Experiment, and
the Opponent-specific Information Experiment had a cost
associated with the information acquisition search step such
that the participants had to decide when to stop their search.
Whereas, the other experiments, namely, the track design
experiment, and the function maximization experiment,
were designed such that participants’ efforts were fixed.

6. The Track Design Experiment, the Function Maximization
Experiment, and the Opponent-specific Information
Experiment were designed such that participants were
provided with an initial search data at a fixed point in the
design space. The rest of the experiments did not provide
an initial data point to the participants.

2.1.8 The Datasets All the experimental datasets are
comprised of ordered pairs (x;,y;) of participant’s search
decisions x at each search step i and the corresponding objective
function achievement y at that step for every design search
problem. The datasets also consist of the details of the function
optimum, the best performance of the participants, and the
control condition for every SIADM problem presented to the
participants.

2.2 Data Analysis

The goal of the data analysis procedure is to identify patterns
of search behaviors across various experimental datasets towards
understanding inductive biases. To do so, we analyze the
first (x1,y1), and second (x2,y2) search step decisions of the
participants in the datasets. We plot histograms of the first
search point x; across all the participants in a given experimental
condition to identify whether participants explore the design
space uniformly or not. To understand their information
processing behaviors, we also plot participants’ second search
point (x;) relative to their first search data (x;,y;).

For some experiments initial data (xp,yq) for every SIADM
problem at some fixed point in the design space was provided

(refer to Section 2.1.7). For those experiments, we plot the first
search point (x;) the participants choose relative to the initial
data (xg,yo) in the design space. Such plots were compared
across all the experiments, including the experiments where
an initial data point was not provided. For comparisons with
experiments without an initial data point, we considered the
first chosen search point (x;) as if it were the initial data point
provided to the participants. To choose a fixed value of x;
(considered as xp), we chose the point in the sub-range of the
design space that had the highest frequency based on the decision
data of the participants. Then, the second search point (x7)
was plotted relative to the highest frequency first search point to
investigate whether the search behaviors are similar across these
experiments.

3 Observations

By plotting the search decision data (x,y) of the participants
across various experiments, we observe the following.

3.1 Observation 1: Bisection

Sequential Search

Approach for

From experimental data, we find that participants
predominantly follow a bisection approach for their first
decision to “choose x” in SIADM problems when information
about the design space is given. Figure 1 illustrates the
histograms of the first search point x; for all the experiments.
None of the histograms illustrate a uniform distribution.

We observe that the first search point x; is chosen
around the midpoint of the design space range in the Fidelity
Experiment (midpoint= 0), Function Minimization Experiment
(midpoint= 0), Function Complexity Experiment (midpoint=
0), and Opponent-specific Information Experiment (midpoint=
675). In these experiments, participants were aware of the design
space range. Moreover, we observe that for the Track Design
Experiment and the Function Maximization Experiment, where
participants were not aware of the design space range, their
decisions are not uniformly distributed.

Since the design space range for TDE and FMaxE are
0 < X < oo, a theoretical midpoint for the range does not
exist. However, we note that participants’ decisions are
anchored around 401, which was the initial data point given to
the participants in both the experiments. We further discuss
anchoring effects in Section 3.2. We also checked for the
influence of the experimental interface design on the search
behaviors. Specifically, we investigated the possibility that
perhaps participants were only able to observe arange of 0 <X <
800 in TDE and FMaxE experimental interface screen such that
they searched around the midpoint= 400. However, participants
were able to observe a range of 0 < X < 1000 on the screen.
This range is used to plot Figure 1d and Figure le. We also had
a couple of data points at x > 20000, which are omitted in the
FMaxE histogram for clarity in the Figure le. Such searches
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FIGURE 1: Histograms of the frequency of the first search point x; chosen by the participants in the experiments.

highlight that participants were able to explore in the design
space range such that x > 1000. However, their search patterns
were not at a perceived “midpoint” neither were they uniformly
distributed. Thus, we concluded that participants were anchored
to the initial data point for the FMaxE and TDE experiments.

3.2 Observation 2:
Exploration

Exploitation instead of

As discussed in Section 2.1.7, in some of the experiments,
the participants were provided with an initial data point.
These experiments are the Track Design Experiment, the
Function Maximization Experiment, and the Opponent-specific
Information Experiment. For these experiments, we plot the
scatter plots, as shown in Figure 2. We plot all the first search
decisions (x;) with the observed initial function value (yg)

pairwise (x1,y0). We do so to investigate whether participants
search decision at x; was influenced by the value of the objective
function yq for the initial data point xo.

We find that as the yp value increases, the first search
decisions x; are closer to the xo position of the initial data
point (given that participants were required to maximize the
objective). In other words, the plot highlights the anchoring
of the first decision point with respect to the initial data point
as the initial data point’s objective function value increases.
We note that the participants were not aware of the maximum
achievable value of the function objective. Thus, there is not
sufficient evidence from the initial data point that they are close
to the maximum or not. Consider Figure 2b, where we observe
that the participants search closer to xyp = 850 when function
value is greater than 100. This implies that participants tend to
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FIGURE 2: Plots of the experimental data where initial data (xp,yo) was provided. We plot a scatter plot all the first search decisions
(x1) with the observed initial function value (yo) pairwise (x1,yo). We do so to highlight that as the yy value increases, the first search

decision x; is closer to the x( position of the initial data point. In other words, the plot highlights the anchoring of the first decision point
with respect to the initial data point.
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(b) Function Complexity Experiment: Plot of the x, value sampled after observing data at
x1 = 0. Each (xp,y;) data point corresponds to the x, value sampled after observing function
value y; at x; = 0. We do not observe anchoring to the initial data point.

FIGURE 3: Plots of the experimental data that do not suggest anchoring bias of the second search decision x, with respect to the first

search point data (xj,y).

believe that an objective function value of 100 or above is “close
enough” to the function optimal such that they tend to exploit
around the initial data point xp = 850. Such an observation is
counter-intuitive when compared to the exploration-exploitation
strategies where it is assumed that initially when an individual
is not aware of the design space, they tend to explore the design
space to sequentially acquire information and then in the later
stages they tend to exploit the available information to search
locally within the design space.

We also compare the experimental data where the initial
search point was provided, with the experimental data where
initial data was not provided, as discussed in Section 2.2. We
find similar anchoring tendencies for the Function Minimization
Experiment (where initial data was not provided), as illustrated

in Figure 4. We observe that if the function objective value at
x = 0 is closer to 0, then participants tend to exploit near x = 0.
This implies that participants believe the function minimum is
close to 0. Again, we note that the participants were not aware
of the minimum achievable function objective value. Moreover,
the function minimum was experimentally designed to assume
negative values.

We do not find anchoring tendencies in the Function
Complexity and the Fidelity experiment (where initial data was
not provided). Figure 3 illustrates the plots of the second search
data x, with respect to the highest frequency first search point
(for frequencies, refer to Figure 1f and Figure la). We note
that the Function Complexity and the Fidelity experiments were
designed with objective functions of higher complexity than the
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FIGURE 4: Plots of the experimental data that suggest anchoring bias of the second search decision with respect to the first search point

data.

other experiments where the objective functions were convex.
Such knowledge about the nature of the function complexity may
have influenced participant behaviors to avoid anchoring early
in the design search. This suggests that the problem context
and function complexity can influence participants’ anchoring
behaviors and nudge them to explore further before exploiting.

3.3 Observation 3: Influence of Information about
Uncertainty in the Design Space on the Search
Decisions

We observe that the histogram from the Fidelity Experiment,
as seen in Figure la, is different from the rest of the plots in
Figure 1, such that participants search at the boundary (x = —10)
comparably to the midpoint x = 0. The Fidelity Experiment was
the only experiment where participants were able to visualize
a Gaussian Process for the unknown objective function with
uncertainty bounds for the predictive function mean. Such visual
information stimuli may have nudged participants to explore the
design space boundaries where uncertainty is typically high once
the midpoint value has been sampled. Such information may
have resulted in learning behaviors over repeated game-play such
that participants decided to explore at the boundaries in their
successive first search decisions. Such an observation suggests
that participants’ search behaviors are influenced by providing
them visual statistics about the function uncertainty.

3.4 Observation 4: Searching Left Half vs. Right Half
of a Design Space Range

From the histogram plots in Figure 1, we observed that
when the experimental objective was to maximize a given
function objective, the first search decisions across all the

participants dominated the left half of a known design space
range. We also observe that the first search decisions across all
the participants dominated the right half of a known design space
range when the experimental objective was to minimize a given
function objective. For example, in the Fidelity Experiment and
the Opponent-Specific Information Experiment, the participants
were supposed to maximize the unknown function. We observe
that in Figures la and Ic participants searched greater to left
of the midpoints 0 and 675 respectively as compared to the
right. Similarly, for the Function Minimization and the Function
Complexity experiments, the participants were supposed to
minimize the unknown function. We observe that in Figures 1b
and 1f participants searched greater to right of the midpoint O as
compared to the left.

We conjecture a directionality effect where participants’
search behaviors sequentially traverse in the positive (or
negative) direction of an axis in the design space depending on
whether they minimize or maximize a given objective. We do
not consider the Function Maximization or the Track Design
Experiment as the participants did not know the design space
range. Consequently, they were not sharing common knowledge
of the design range. Moreover, the experimental problem did not
have a theoretical midpoint. We could not compare participants’
directionality with respect to their perceived midpoint.

3.5 Observation 5: Choosing Whole Numbers

Across all the experimental data, we also observe that
participants prefer searching for the design parameters in whole
numbers.  Such an observation is consistent with existing
literature on bounded rationality [25] that can explain people’s
preferences towards whole numbers due to the following reasons.
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First, it requires a lower effort to not input a decimal point
and further digits. Second, participants are not aware of the
sensitivity (slope) of the objective function to the variation in
the design parameters. Thus, they do not have an incentive to
conduct a “fine-grained” search. Third, numbers divisible by 2,
5, and 10 are preferred due to their historical and mathematical
context.

4 Hypotheses Generation and Discussion

Based on the Observations 1 through 5, we formulate
hypotheses about the inductive biases, that is, the set of
assumptions or rules, that individuals may use to acquire
information in a design space. Such hypotheses are
operationalized in a design search context and presented as H1
through HS.

HI1 In a design search activity, designers acquire information at

the midpoint of a known design space range.
Based on Observation 1, we hypothesize that humans can
cognitively divide a given range into equal halves easier than
dividing it unequally. Such an aspect of cognition results in
an inductive bias for design search activities where designers
may be biased to search by bisecting a design range. For
design scenarios, such a bias may nudge designers to
choose the mean values for the design parameter ranges
while conducting experiments to acquire information. Such
systematic behaviors can influence the diversity of solutions
generated by the participants of a crowdsourcing contest for
engineering design scenarios.

H2 In a design search activity, designers anchor themselves to

the prior data about the mapping of the design variables
and the design quality, irrespective of the uncertainty of
knowledge of the design range or the optimality of the
design quality.
Based on Observation 2, we hypothesize that humans
develop a prior belief about the target values they wish to
achieve for a given objective while acquiring information
via experimentation. Such beliefs result in an inductive
bias such that higher the similarity of the initial experiment
outcome to their own belief about the objective achievement,
the closer is the next experiment to the initial experiment.
In a design context, such a bias has implications for how
designers choose to explore the design space. Designers
may not be able to produce radical innovations due to the
tendency of experimenting incrementally.

H3 Designer’s search behaviors can be nudged by providing a
visual representation of the design parameter statistics.
Existing literature on information stimuli for decision
making discusses how designers’ decisions are influenced
by the visual representation of information [26]. From
Observation 3, we hypothesize that the visual information
stimulus provides additional evidence that overcomes

H4

H5

designer’s inductive bias, such as using a bisection approach
(observation 1) by nudging them to search for other
alternatives.  Such knowledge can enable designers of
a crowdsourcing contest to deliberately and purposefully
influence the diversity of solutions they can expect by
providing the appropriate information stimuli for the design
problem.

Designers are biased to explore a design space
“directionally” based on whether they are required to
maximize or minimize a given objective.

Based on Observation 4, we hypothesize that humans have
an inherent directionality while acquiring information which
is dependent on the optimization context. If the null of such
a hypothesis is rejected, it would have serious implications
on the way we computationally model cognition. Currently,
a computational optimization algorithm can be used either
in a minimization or maximization context by simply
switching the mathematical sign. However, from a cognitive
standpoint, it may not be trivial. For example, consider the
mathematical equation for calculating the expected payoff
& (1) for searching for a solution that yields a reward 7. The
equation is given as, &(I1) = 7 * Psearch — C. Where Picarch
is the probability of searching the solution, and C is the cost
of searching. For such an equation, humans may optimize
the expected payoff differently by maximizing the gross pay
T % Psearen @and minimizing the costs C differently.

We note that the implication of Hypothesis 4 is not the same
as corroborating existing literature on reward maximization
and punishment minimization [27]. For example, Prospect
theory [28] discusses how humans assess their losses and
gains asymmetrically. The theory focuses on modeling the
utility functions of individuals asymmetrically such that it
can capture the effect of human behavior towards reward
maximization and punishment minimization. However,
Hypothesis 4 implies that even if designers have the
same utility toward maximizing or minimizing a given
objective, the process that humans adopt is different
towards optimization in maximization versus minimization
scenarios.

Designers have an inductive bias to select whole numbers
for design parameters in a design search activity.

From Observation 5, we hypothesize that when humans
initially explore a search space, they do not conduct
a fine-grained search unless they receive additional
information or have prior knowledge of the design space.
This observation is consistent with existing literature on
bounded rationality [25] that explains human decision
making based on the limited cognitive resources of
individuals. In a design context, such a hypothesis has
implications for computational modeling of a designer’s
information acquisition activity. Computational models may
have the resources to conduct a fine-grained search without

Copyright (© 2020 by ASME



prior information. However, to make better predictions
about how designers influence the design outcomes, such
a bias needs to be accounted for while computationally
modeling designer behaviors.

5 Future Work

In this study, we observed the very first decision of
human subjects in a SIADM scenario. We investigate such
a decision because designers use inductive reasoning to make
such a decision. We made five observations about similarities
in the first search decision of the participants across various
SIADM experimental studies. Based on the observations, we
hypothesize the inductive biases that designers use to make their
search decisions. The formulated hypotheses need to be tested by
conducting design experiments where participants would make
decisions on the basis of insufficient data. By testing such
hypotheses, we can validate the influences of the inductive biases
identified in this study. Such biases need to be incorporated in
computational models of designer behaviors to automate design
behaviors while solving complex design problems.
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