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Abstract

In multi-type resource allocation (MTRA) problems, there are d > 2 types of items, and n
agents who each demand one unit of items of each type and have strict linear preferences
over bundles consisting of one item of each type. For MTRAs with indivisible items, our
first result is an impossibility theorem that is in direct contrast to the single type (d = 1)
setting: no mechanism, the output of which is always decomposable into a probability dis-
tribution over discrete assignments (where no item is split between agents), can satisfy both
sd-efficiency and sd-envy-freeness. We show that this impossibility result is circumvented
under the natural assumption of lexicographic preferences. We provide lexicographic
probabilistic serial (LexiPS) as an extension of the probabilistic serial (PS) mechanism for
MTRAs with lexicographic preferences, and prove that LexiPS satisfies sd-efficiency and
sd-envy-freeness, retaining the desirable properties of PS. Moreover, LexiPS satisfies sd-
weak-strategyproofness when agents are not allowed to misreport their importance orders.
For MTRAs with divisible items, we show that the existing multi-type probabilistic serial
(MPS) mechanism satisfies the stronger efficiency notion of lexi-efficiency, and is sd-envy-
free under strict linear preferences and sd-weak-strategyproof under lexicographic prefer-
ences. We also prove that MPS can be characterized both by leximin-optimality and by
item-wise ordinal fairness, and the family of eating algorithms which MPS belongs to can
be characterized by lexi-efficiency.

Keywords Multi-type resource allocation - Probabilistic serial - LexiPS - MPS - Fractional
assignment - sd-efficiency - sd-envy-freeness

1 Introduction

In this paper, we focus on extensions of the celebrated probabilistic serial (PS) mecha-
nism [9] for the classical resource allocation problem [2, 9, 15, 33], to the multi-type
resource allocation problem (MTRA) [32]. An MTRA involves n agents, d > 2 types
of items which are not interchangeable, and one unit each of n items of each type. Each
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agent demands a bundle consisting of one item of each type and has strict preferences
over all bundles. MTRAs may involve divisible items, like land and water resources
[38], and computational resources such as CPU, memory, and storage in cloud comput-
ing [18-22]. Items may also be indivisible, where each item must be assigned fully to a
single agent, like houses and cars [39, 40], and research papers and time slots in a semi-
nar class [32].

Efficient and fair resource allocation for a single type of items (d = 1) has been well
studied [1, 9, 34, 46]. Our work follows the line of research initiated by Bogomolnaia
and Moulin [9], who proposed the probabilistic serial (PS) mechanism. The PS mecha-
nism outputs a fractional assignment in multiple rounds by having all agents simultane-
ously “eat” shares of their favorite remaining items at a uniform and equal rate until
some of the items are exhausted in each round. The remarkable properties of PS has
encouraged several extensions: to the full preference domain, allowing indifferences
[26, 28], to multi-unit demands [25], and to housing markets [3, 44].

PS is a popular prototype for mechanism designers due to the following reasons. (i)
Decomposability: PS can be applied to allocating both divisible and indivisible items,
since fractional assignments are always decomposable when d = 1, due to the Birkhoff-
von Neumann theorem [6, 41]. In other words, a fractional assignment can be repre-
sented as a probability distribution over “discrete” assignments, where no item is split
among agents. (ii) Efficiency and fairness: PS satisfies sd-efficiency and sd-envy-free-
ness which are desirable efficiency and fairness properties, respectively. They are based
on the notion of stochastic dominance [9, 16]: given a strict preference relation over
the items, an allocation p weakly stochastically dominates q, if at every item o, the total
shares of item o and items strictly preferred to o in p, are at least the total shares of the
same items in gq.

Unfortunately, designing efficient and fair mechanisms for MTRAs with d > 2 types is
more challenging, especially because direct applications of PS to MTRAs fail to simultane-
ously satisfy the two desirable properties of efficiency and fairness discussed above.

First, decomposability (property (i) above) does not always hold for fractional assign-
ments in MTRAS as we show in the following example.

Example 1 Consider the MTRA with two agents, 1 and 2, two types of items, food (F) and
beverages (B), and two items of each type { 15,25} and { 15,25}, respectively. We show that
the fractional assignment P below, where agent 1 gets a share of 0.5 units of 1,1, and a
share of of 0.5 units of 2,2, is not decomposable.

Agent P Agent P
1l 1,25 20l 2;2, 1l 1,25 20l 2,2
0.5 0 0 0.5 1 1 0 0 0

2 0 0.5 0.5 0 2 0 0 0 1

It is easy to see that the assignment P’ above is the only assignment where 1,1, is allo-
cated fully to agent 1. Since agent 1 has a share of 0.5 units of 1,1, in P, the probability for
P’ ought to be 0.5. Therefore, agent 2 should be allocated a share of 0.5 units of 2.2, in P.
However, agent 2 is not allocated 2,2 in assignment P. Thus, P is not decomposable.

O
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A natural idea is to decompose MTRA into d single-type instances, one for each type
of items, and then apply PS or other mechanisms separately to each of them. Unfortu-
nately, this does not work because it is unclear how to decompose agents’ combinatorial
preferences over bundles into separable preferences over items of the same type. More
importantly, even when there is a natural way to do so, e.g. when agents’ preferences
are lexicographic and separable, meaning that every agent has an importance order over
types to compare bundles and their preferences over a type do not depend on the items
of other types, the following example shows that the fairness and efficiency properties
(ii) above do not hold anymore.

Example 2 We continue to use the MTRA above and assume that agents’ preferences over
{1p, 25} X {1,225} are the following:

Agent Preferences
1 el > 15225 > 20l > 2525
2 1plg >y 25l >y 1525 >, 2125

We note that both agents prefer 1 to 2, and 1 to 2. Agent 1 considers F to be more
important than B, while agent 2 considers B to be more important. In this way, we can
decompose this MTRA into two single type resource allocation problems for F and B,
respectively. It is easy to see that for each single type the only sd-efficient and sd-envy-free
assignment is to give both agents 0.5 units of each item, yielding the decomposable frac-
tional assignment Q by the mutual independence of each type. We show the assignments Q
and Q' in the following:

Agent 0 Agent o
el 1,25 20l 2;2, 1l 1,25 201y 2,2
0.25 0.25 0.25 0.25 1 0.25 0.5 0 0.25
2 0.25 0.25 0.25 0.25 2 0.25 0 0.5 0.25

However, Q is inefficient as the decomposable assignment Q' stochastically dominates Q
from both agents’ perspectives. a

As we have observed, the two desirable properties of PS for single type resource
allocation no longer obviously hold for MTRAs. Recently, Wang et al. [42] proposed
multi-type probabilistic serial (MPS) mechanism as an extension of PS for MTRAs
with divisible items, and proved that MPS is sd-efficient for general partial preferences,
sd-envy-free for CP-net preferences [12], and sd-weak-strategyproof for CP-net prefer-
ences with a trivial dependency structure where all the types are independent. How-
ever, MPS does not satisfy decomposability and it is unclear whether similar extensions
of the PS mechanism can be applied to the efficient and fair allocation of indivisible
items because the outcome may not be decomposable. This leaves the following natural
question:
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How to design efficient and fair mechanisms for MTRAs with indivisible or divisible
items ?!

Our contributions For MTRAs with indivisible items, unfortunately, our impossibility
theorem (Theorem 1) shows that no mechanism which satisfies sd-efficiency and sd-envy-
freeness is guaranteed to always output decomposable assignments, if agents’ preferences
are allowed to be any strict linear orders over bundles. We also provide a tightened version
of the impossibility result (Proposition 1). Fortunately, when agents’ preferences are lexi-
cographic, the impossibility theorem can be circumvented. To this end, we propose lexi-
cographic probabilistic serial mechanism (LexiPS) and prove that it satisfies many of the
desirable properties of PS: it is guaranteed to output a decomposable assignment, satisfy
sd-efficiency and sd-envy-freeness (Theorem 2), and satisfy sd-weak-strategyproofness
when agents do not lie about their importance orders over types (Theorem 3).

For MTRAs with divisible items, we show that when agents’ preferences are linear
orders over all bundles of items, the MPS mechanism proposed by Wang et al. [42] satis-
fies lexi-efficiency (Theorem 4) which is a stronger notion of efficiency than sd-efficiency.
Indeed, we show that lexi-efficiency is characterized by the no-generalized-cycle condition,
which is a sufficient condition for sd-efficiency but not a necessary one (Proposition 2). We
also prove that every lexi-efficient assignment can be computed by some algorithm in the
family of eating algorithms (Theorem 5), of which MPS is a member. Importantly, MPS
retains sd-envy-freeness (Proposition 3), and when agents’ preferences are further assumed
to be lexicographic, MPS satisfies sd-weak-strategyproofness (Theorem 6). Finally, we
characterize MPS both by leximin-optimality and by item-wise ordinal fairness (Theo-
rem 7). However, the output of MPS is not always decomposable (Remark 4) even under
lexicographic preferences, making it unsuitable for MTRAs with indivisible items.

Related work and discussions To the best of our knowledge, our paper provides the
first results on designing efficient and fair mechanisms based on stochastic dominance
for MTRASs with indivisible items. Budish et al. [13] considered the multi-unit demand
resource allocation problem with constraints and provided a condition which guarantees
that a constraint structure is universally implementable, but this result does not apply to
MTRAS because their setting is different from ours as discussed below. Wang et al. [42]
considered MTRAs and Chatterji and Liu [14] and Nguyen et al. [35] considered a related
problem of assigning bundles of multiple items of a single type, but they did not provide
a decomposable mechanism that is both sd-efficient and sd-envy-free. Despite our impos-
sibility result for general MTRAs (Theorem 1), the LexiPS mechanism we provide and
its properties allows us to deliver the following positive message: it is possible to design
efficient and fair mechanisms for indivisible items under the natural domain restriction of
lexicographic preferences.

MTRASs were introduced by Moulin [33], and were more recently explicitly formulated
in the form presented in the paper by Mackin and Xia [32], who provided a characteriza-
tion of serial dictatorships satisfying strategyproofness, neutrality, and non-bossiness for
MTRAS. In a similar vein, Sikdar et al. [39, 40] considered multi-type housing markets
[33].

Wang et al. [42] studied fractional mechanisms for MTRAs when agents’ preferences
may be partial orders. In that paper, MPS, MRP, and MGD are proposed as extensions
of the famous probabilistic serial (PS) [9] and random priority (RP) [1] mechanisms for

! Note that for indivisible items, the (fractional) output of a mechanism must be decomposable.
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allocating items of a single type to MTRAs. Our results which describe the properties of
MPS for MTRAs with strict linear preferences complement the results in [42] for partial
preferences in the following aspects:

(i) MPS satisfies sd-efficiency for the unrestricted domain of partial orders [42], while
we prove that MPS satisfies lexi-efficiency, which is a stronger notion of efficiency
than sd-efficiency, for the unrestricted domain of linear orders.

(i) MPS satisfies sd-weak-strategyproofness when agents’ preferences are CP-nets with
a trivial dependency structure such that all the types are independent [42], while we
prove the result when agents’ preferences are lexicographic with possibly different
importance orders on types.

(iii)) We provide characterizations of MPS, which are not considered in [42].

Moreover, we show that no mechanism satisfies sd-efficiency, sd-envy-freeness, and
decomposability simultaneously, even under strict linear preferences. Therefore, MPS,
MRP, and MGD [42] also fail to satisfy all the three properties simultaneously. We prove
that this impossibility result can be circumvented under the natural restriction of lexico-
graphic preferences by providing LexiPS as a mechanism for MTRAs with lexicographic
preferences that satisfies all the three properties. To the best of our knowledge, the design
of mechanisms satisfying all the three properties of efficiency, fairness, and decomposabil-
ity for MTRAs is not considered in [42] or other previous works.

Chatterji and Liu [14] and Nguyen et al. [35] considered a problem closely related to
the MTRA. In their setting, every item must be allocated to some agent, and agents may
be allocated bundles consisting of multiple items and have strict preferences over bundles
where the empty allocation may be preferred to some subset of possible bundles. We refer
to the problem in their setting as the bundle assignment problem. Due to the fact that in
MTRAS, agents have strict linear preferences over bundles consisting of one item of each
type and prefer the empty allocation to all the other bundles, the MTRA is a special case
of the bundle assignment problem. Chatterji and Liu [14] and Nguyen et al. [35] proposed
the probabilistic serial rule for bundles (PSB) and bundled probabilistic serial (BPS) mech-
anisms respectively for the bundle assignment problem. When applied to MTRAs, MPS
[42] is similar to PSB and BPS because all the three mechanisms have agents consume
their current most preferred bundles till the bundles are unavailable before turning to other
bundles. Although MTRA is a special case of the bundle assignment problem, and the
MPS mechanism is similar to the PSB and BPS mechanisms, our results are complemen-
tary and not directly comparable to the results in these previous works:

(i) Chatterji and Liu [14] and Nguyen et al. [35] proved that PSB and BPS satisfy sd-
efficiency for the bundle assignment problem, respectively, whereas we prove that
MPS satisfies lexi-efficiency for MTRASs which is a stronger notion of efficiency than
sd-efficiency.

(i1) Technically, the stronger efficiency guarantee of MPS is due to our characterization
of lexi-efficiency by the no-generalized-cycle condition which is similar to the strong
unbalancedness condition [14], but strong unbalancedness does not have a similar
characterization.

(iii) Chatterji and Liu [14] considered the domain restriction of essentially mononotonic
preferences, which is incomparable to lexicographic preferences considered in our
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work. Therefore, their results for the essentially monotonic domain of preferences do
not directly apply to our setting.

(iv) Additionally, while PSB is not sd-weak-strategyproof for the bundle assignment prob-
lem [14], we prove that MPS is sd-weak-strategyproof for MTRAs when restricted to
lexicographic preferences.

(v) Nguyen et al. [35] considered the implementation of the output of BPS for indivisible
items in the relaxed economy where there are extra copies of items with free disposal.
This is not comparable with decomposability of an assignment in our setting, where
we do not have either free disposal or extra copies of items. Further, we prove that for
general MTRAs, it is impossible to design an sd-efficient and sd-envy-free mechanism
whose output is guaranteed to be decomposable.

Another related problem setting considered in Aziz and Kasajima [4], Kojima [29], and
Budish et al. [13], is the one where items are of a single type and agents may demand
multiple units of items. We call it the multi-unit demand resource allocation problem.
These works considered fractional assignments that consist of shares of items, which
are fundamentally different from our work where we consider fractional assignments
composed of shares of bundles for MTRAs. Specifically, a fractional assignment on
items may imply different fractional assignments on bundles, each with possibly dif-
ferent properties. Importantly, the extension of the notion of stochastic dominance in
terms of shares of items in these works is also fundamentally different from the notion
of stochastic dominance for bundles in our paper, and they are not comparable. There-
fore, their results on notions of efficiency and fairness based on the stochastic domi-
nance do not apply to our setting. Kojima [29] provided an extension of PS which is
sd-efficient and sd-envy-free but not sd-weak-strategyproof, and an impossibility result
that no mechanism can satisfy these three properties simultaneously in the multi-unit
demand resource allocation problem. Aziz and Kasajima [4] provided impossibility
results involving sd-efficiency and sd-weak-strategyproofness for the problem. Bud-
ish et al. [13] considered the multi-unit demand resource allocation problem with con-
straints and provide two mechanisms, including an extension of PS named generalized
probabilistic serial (GPS) which generalizes the one in Kojima [29]. The MTRA with
divisible items may also be viewed as a version of the cake-cutting problem with mul-
tiple cakes [18, 27, 31, 36] and agents having ordinal preferences over combinations of
pieces from each cake.

The lexicographic preference is a natural restriction on preference domain in resource
allocation [19, 39, 40] and combinatorial voting [11, 30, 43]. Saban and Sethura-
man [37] showed that PS is efficient, envy-free, and strategy-proof under lexicographic
preferences on allocations. Fujita et al. [19] considered the allocation problem which
allows agents to receive multiple items and agents rank the groups of items lexicograph-
ically. Our work follows in this research agenda of natural domain restrictions on agents’
preferences to circumvent impossibility results in guaranteeing efficiency and fairness.

Structure of the paper The rest of the paper is organized as follows. In Sect. 2, we
define the MTRA problem, and provide definitions of desirable efficiency and fairness
properties. Section 3 is the impossibility result for MTRAs with indivisible items. In
Sect. 4, we propose LexiPS for MTRAs with indivisible items under lexicographic pref-
erences, which satisfies sd-efficiency and sd-envy-freeness, and it is sd-weak-strategy-
proof when agents do not lie about importance orders. In Sect. 5, we show the proper-
ties of MPS for MTRAs with divisible items under strict linear preferences and provide
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two characterizations for MPS. In Sect. 6, we summarize the contributions of our paper
and discuss directions for future work.

2 Preliminaries

An MTRA is given by a tuple (N, M) with a preference profile R. Let N = {1, ...,n} be the
set of agents and M = D, U --- U D, be the set of all the items where D, is the set of n items
of type i for each i < d. For all h # i, we have D; N D, = §J. There is one unit of supply of
each item in M. We use Z = D, X --- X D, to denote the set of bundles. Each bundle x € &
is a d-vector and each component refers to an item of each type. We use o € x to indicate
that bundle x contains item o. In an MTRA, each agent demands one unit of item of each
type.

A preference profile is denoted by R = (>));.,,, where >; represents agent j’s preference
as a strict linear preference, i.e. the strict linear order over Z. Let Z be the set of all the
preference profiles.

A fractional allocation is a |Z|-vector, describing the fractional share of each bundle
allocated to an agent. Let IT be the set of all the possible fractional allocations. For any
p€eIl, x € P, we use p, to denote the share of x assigned by p. A fractional assign-
ment is a n X |YFmatrix P = [Pjx)i<nxeo, Where @) Pix €10,1] is the fractional share
of x allocated to agent j for each j <n,x € &, (ii) er@pj,x = 1, fulfilling the demand
of each agent j < n, (iii) Zan,XEZO Pjx = 1, respecting the unit supply of each o € M and
Z, = {x € Yo € x}. For each j < n, the j-th row of P, denoted by P;, represents agent
J’s fractional allocation in P. We use & to denote the set of all possible fractional assign-
ments. A discrete assignment A, is an assignment where each agent is assigned a share of
one unit of a bundle, and each item is fully allocated to some agent’. It follows that a dis-
crete assignment is represented by a matrix where each element is either 0 or 1. We use .o/
to denote the set of all the discrete assignment matrices.

A mechanism fis a mapping from preference profiles to fractional assignments. For any
profile R € Z#, we use f(R) to refer to the fractional assignment output by f and f (R); refer
to agent j’s fractional allocation in f{R) for any agent j < n accordingly.

2.1 Desirable properties

We use the notion of stochastic dominance to compare fractional assignments and recall
the desirable notions of efficiency and fairness in [42] for MTRAs.

Definition 1 (stochastic dominance [42]) Given a preference relation > over 2, the sto-
chastic dominance relation associated with >, denoted by >*?, is a partial ordering over
IT such that for any pair of fractional allocations p,q € II, p (weakly) stochastically
dominates ¢q, denoted by p >*¢ q, if for any y € 2, ety Px 2 Lev-y) dx Where
UC-y)={xe ZIx>y}u{y}

2 For for indivisible items, discrete assignments refer to deterministic assignments in the papers about ran-
domization.
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We also define }$*¢: p #*¢ q if p >*¢ ¢ is not true. The stochastic dominance order
can also be extended to fractional assignments. For P,Q € & and j < n, we assume
that agent j only cares about her own allocations P; and Q;. If P, >j“’ 0;, agent j weakly
prefers P to Q, i.e. P >;d Q. Therefore, we say that P weakly stochastlcally dominates
0, denoted by P >*? Q, if P z;d Q for any j < n. We also extend }*¢ to assignments:
P # Qif P >* Qis not true. It is easy to prove that P zjd Qand Q zjd P if and only if
P, =0,

Definition 2 (sd-efficiency [42]) Given an MTRA (N, M) and a preference profile R, a
fractional assignment P is sd-efficient if there is no other fractional assignment Q # P such
that Q z;.‘d P for any j < n. Correspondingly, if for any R € Z, f(R) is sd-efficient, then we
say that mechanism f'satisfies sd-efficiency.

Definition 3 (sd-envy-freeness [42]) Given an MTRA (N, M) and a preference profile
R, a fractional assignment P is sd-envy-free if P; >4 P, for any two agents j,k < n. Cor-
respondingly, if for any R € Z, f(R) is sd-envy-free, then we say that mechanism f satisfies
sd-envy-freeness.

Definition 4 (sd-weak-strategyproofness [42]) Given an MTRA (N, M) and a preference
profile R, a mechanism f satisfies sd-weak-strategyproofness if for any profile R € % and
agent j < n, it holds that

FR) = f(R) = f(R); = f(R),

for any R’ € #Z where R’ = (> >_;) and >_; denotes the preferences of agents in the

set N\ {j}.

Besides stochastic dominance, we introduce the lexicographic dominance relation
[37] to compare pairs of fractional allocations, by comparing the components of their
respective vector representations one by one according to the agent’s preference.

Definition 5 (lexicographic dominance) Given a preference relation > and a pair of allo-
cations p and g, the lexicographic dominance relation associated with >, denoted by >/,
is a strict ordering over IT such that p lexicographically dominates g, denoted by p >/ g,
if there exist a bundle y such that p, > gy, and for any X >y, p, > ¢y.

Given assignments P and Q, we say Q > P if there exists a set of agents N’ C N
and N’ # @ such that O, >1”’ P, (Q >lw P for short) for any agent k € N’ and Q; = P,
for any agent j € N\ N'. Note that for two different assignments, stochastic domlnance
implies lexicographic dominance, but the converse does not hold.

Definition 6 (lexi-efficiency) Given a preference profile R, the fractional assignment P is
lexi-efficient if there is no Q € & such that Q >/* P. A fractional assignment algorithm f
satisfies lexi-efficiency if f{R) is lexi-efficient for any R € Z.

Example 3 To compare lexicographic dominance with stochastic dominance, we revisit the
MTRA in Example 2 and consider the relation of the following assignment Q and Q”:
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Agent 0 Agent Q"

lplp 152 2ply 2p2g lplp 152 2ply 2p2g
1 0.25 0.25 0.25 0.25 1 0.5 0 0 0.5
2 0.25 0.25 0.25 0.25 2 0.5 0 0 0.5

According to R in Example 2, we have that Q" does not stochastically dominate Q,
— — " 1" lexi
because z/:,er(thlR) q1x =075>05=3 ye 5.1, ], However, we have Q" > Q

because ¢, | =0.5>025=g¢,,,, and qlzl,lpl,; =05>025=¢q,,,,,, where 11 is the

most preferred bundle for both agents. a

3 Efficiency and fairness for MTRAs with indivisible items

In this section, we show an impossibility result in Theorem 1 that no mechanism satisfy-
ing sd-envy-freeness and sd-efficiency is guaranteed to output decomposable assignments.
This is unlike the case of resource allocation problems with a single type of items, where
by sd-envy-freeness of PS, every fractional assignment is decomposable, i.e. every frac-
tional assignment P can be decomposed into a probability distribution over the set of dis-
crete assignments <7 as follows:

P= Z at A

Aed

Here, each A is a discrete assignment that assigns each item wholly to some agent. We note
that Y, a* = 1. It follows that such a decomposable assignment can be applied to the
problem of allocating indivisible items as a lottery over .o/ where a discrete assignment
A is selected with probability e*. This result does not necessarily hold in MTRAs, which
leads to the impossibility result.

Theorem 1 For any MTRAs with d > 2 where agents are allowed to submit any strict
linear orders over bundles, no mechanism that satisfies sd-efficiency and sd-envy-freeness
always outputs decomposable assignments.

Proof Suppose for the sake of contradiction that there exists a mechanism f satisfying
sd-efficiency and sd-envy-freeness and f(R) is always decomposable for any R € %Z. We
first provide a proof for MTRAs where there are d = 2 types and |N| = 2 agents, and then
extend it to the general case. Let R be the following preference profile and Q = f(R).

Agent Preferences
1 1plg > 1525 > 2525 > 2515
2 1525 >, 2plp > 1plp >, 2,2,

We show that if Q is sd-envy-free and decomposable, it fails to satisfy sd-efficiency.
There are only four discrete assignments which assign 1,15, 1,25,2515,2525 to agent 1,
respectively. Since Q is decomposable, it can be represented as the following assignment.
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We also provide an assignment P which is not decomposable since it does not satisfy the
constraints for Q.

Agent P Agent 0]
1p1, 1525 251, 2525 1p1, 1525 251, 2525
0.5 0 0 0.5 v w y z

2 0 0.5 0.5 0 2 z y w v

Here v, w, y and z are probabilities of these four discrete assignments which satisfy
v+w+y+z=1 Wetrivially have that 3 ;. > 1 ) q1x = 1= Xyepy 2,1, 92 In addi-
tion, we have the following inequalities by sd-envy-freeness in terms of agent 1:

ql,x =V Z = Z qZ,X
XEUG>,1plp) XEUG-, 1 1p)
Ga=vtw2z+y= D g
XeU(>,152p) xeU(>,152p)
gix=v+twt+z2z+y+v= Z 9 x
XeU(>,2;2p) xeU(>,2;2p)

Similarly, we have that y > wand y +w + z > w + y + v for agent 2. Thus w = y,v = z and
v+w=y+z=05. Because Q is sd-efficient, P #*¢ Q. Suppose that P j:;d Q. Therefore,
at least one of the following inequalities is true:

ql,x =v > 05 = 2 pl,x
xeU(C~,1p1p) xeU(>,1p1p)
qix =v+w>05= Z Pix
xeU(>,1525) xeU(>,152p)
ey
qix =v+w+z>1= Z Plx
xeU(>,2;25) xeU(>,2;25)
Gix=vtwtzty>1= Z Pix
xeU(>,2p1p) xeU(>2¢p1p)

Since v=z<v+w=y+z=0.5, none of the inequalities in (1) hold, which means that
P 2§d Q. With a similar analysis, we can also obtain that P z;" Q. Together we have the
fact that P >*¢ Q and P # Q, which is contradictory to the assumption.

Now, we prove the theorem for the general case of MTRAs where d > 2 and |[N| > 2 by
constructing a profile R’ for arbitrary numbers of types d and agents n, by extending the
profile R for the case of d =2 and |N| = 2 we constructed above. We use i which ranges
from 1 to d to refer to the types in the problem. W.l.o.g. we use F and B to denote types 1
and 2, respectively. Let o; be an arbitrary item of type 7, and o (i, in.... )} D the partial bundle
containing o, , 0;, and other o, with h in brackets. For convenience, we define that oy, ;
refers to the partial bundle which contains 0,0, , ..., 0; for some type h < i.

In R', agent k prefers the bundle k;; 4 to all the other bundles for any k > 3. For agents 1
and 2, their preferences in R’ are as follows:
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Agent Preferences

Lelpliz g >0 1252540 ™1 27252340 >1 27151 13.4) > Others
2 152525300 ™2 2e g3 =2 1rlplisag =2 212823,4) > Others

It follows from our construction that in any sd-efficient and sd-envy-free assignment,
agent k always gets the bundle k; ,, for any k > 3.
Now, let us consider the assignment Q' = f(R’). It suffices to consider the partial assign-

ment Q’{1 2) which only contains the allocations of agents 1 and 2 in the rest of the proof:
Agent ’(1,2)
1plpls g 15252154 2p1pl 54 2525203 41 others
v w y z
2 z y w v

It is easy to see that agents 1 and 2 can only get shares of the bundles containing 1; or 2;
for type i. Moreover, we claim that, in the assignment Q’, both agents do not have shares
of any bundles that are not in the set 7' = {11513 41, 12520301 27 2823.a1 27 L 51 3.1}
because Q' is sd-efficient. Suppose w.l.o.g. that agent 1 obtains s units of some bun-
dle x ¢ Z in Q. Observe that x must contain one of the following partial bundles:
1plg, 125,215 0r 2,2,

We first consider the case the x contains 115 but X # 11513 4. It means that agent 1
obtains s units of x = 1 lBl{h1 o hw|}2(11 o) for H={h,h,,... }and [ = {i},i,,... }
with HNI=@, HUl={3,4,...,d}, and | # (. Then, by decomposability of Q’, we can
infer that agent 2 obtains s units of the bundle y = 2,252, hlvhzw-,hw}l{ gy ) However,
agents 1 and 2 can obtain preferable allocations if they trade their shares of some par-
tial bundles in x and y. One specific way to achieve this is that agent 1 trades s units of
2 i) inx withagent2 forl; ; n iny. In this way, agents 1 gets s units of 11515 4
instead of x and 2 get s units of 2,2 2[3 « instead of y, and from their preferences in R, we
know 11515 5 > X and 2;2 2[341 >, y. This is a contradiction to our assumption that f
and therefore Q' = f(R') is sd—efﬁcient.

It is easy to see that this argument can be extended to the other cases when x
contains 1;25,2515 or 2,2, This proves that the partial assignment Q; 2 of the
assignments to agents 1 and 2 only involves positive shares of the four bundles in
7 = {(1plgls gy 1p25203. 41 252523 4 27 113,41} and O share of any bundles outside the
set

Then, by a similar argument to the case with d = 2 types and n = 2 agents above, we
have a contradiction to our assumption that Q’ is sd-efficient, sd-envy-free, and decom-
posable simultaneously, which also means that f ails to satisfy all the three properties.

O

In Proposition 1 below, we provide a tighter version of the impossibility result in Theo-
rem 1, by showing that even under LP-tree preferences [11] which is a restriction on the
domain of strict linear preferences, no mechanism that is guaranteed to output decompos-
able assignments can simultaneously satisfy sd-weak-efficiency [8, 23] and sd-weak-envy-
freeness [9] which are weaker notions of efficiency and fairness than sd-efficiency and
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sd-envy-freeness, respectively. We define each of these notions formally below before stat-
ing Proposition 1. We use D;(x) to denotes the item of type 7 in bundle x.

LP-tree preference: a strict preference relation > over 2 = D, X --- X D,; is an LP-tree
preference if there exists a rooted directed tree (V, E) where (i) the node v € V is labeled
by a type i with a strict linear order over D; attached to it, (ii) each type occurs only once
on each branch, and (iii) each outgoing edge from v is labeled by an item of type i, such
that for any two bundles X,y € Z, x >y if there exists a node v with type i which satisfies
that o, = D,(x) = D,(y) occurs on the path from root to node v for any type g labeling an
ancestor of node v in the tree and D;(x) >' D,(y) where >' is the strict linear order over D,
attached to node v.

sd-weak-efficiency: a mechanism f satisfies sd-weak-efficiency if for any profile R € Z,
there is no fractional assignment P such that for any agent j < n, it holds that P z;d f(R)
and | {k < n|P; # f(R)}| = 2.

sd-weak-envy-freeness: a mechanism f satisfies sd-weak-envy-freeness if for any
profile R € #, and for any two agents j,k <n, it holds that f(R), =f (R); whenever

FRY = fR),

Proposition 1 For MTRAs with LP-tree preferences, no mechanism that satisfies sd-
weak-efficiency and sd-weak-envy-freeness always outputs decomposable assignments.

The full proof of Proposition 1 is provided in “Proof of Proposition 1” in Appendix.

Remark 1 We note that all the three properties in Theorem 1, sd-efficiency, sd-envy-free-
ness, and decomposability, are necessary, i.e. there exist mechanisms satisfying any two of
them. We show the example for each combination below:

(i) sd-efficiency and sd-envy-freeness: Wang et al. [42] and Section 5 of the paper show
that MPS is sd-efficient and sd-envy-free.

(ii) sd-efficiency and decomposability: The extension of serial dictatorship [32] for
MTRAS outputs a Pareto-optimal discrete assignment for any preference profile.
Such an assignment is sd-efficient and trivially decomposable.

(iii) sd-envy-freeness and decomposability: Let f be the mechanism which outputs the
same assignment P where every agent gets 1 /| 2| units of each bundle for any prefer-
ence profile. It is easy to check that P can be represented as a uniform distribution
over all the possible discrete assignments. O

4 MTRAs with indivisible items and lexicographic preferences

Faced with the impossibility results of Theorem 1 and Proposition 1, a natural question
to ask is whether it can be circumvented under a reasonable restriction on the problem
domain. In this section, we show that the natural domain restriction of lexicographic pref-
erences provides one such avenue. We develop LexiPS as a specialized mechanism for
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MTRAs when agents’ preferences are lexicographic, and prove that LexiPS retains the
desirable properties of PS, namely sd-efficiency and sd-envy-freeness, and is guaranteed to
output decomposable assignments meaning that it can be applied to MTRAs with indivis-
ible items. An agent with a lexicographic preference over & has an importance order over
the types and preferences over items of each type, and she compares two bundles by com-
paring the items of each type in the two bundles one by one according to her importance
order on types, and prefers the bundle with the preferable item of the most important type
at which the two bundles have different items. We define the lexicographic preference rela-
tion formally below. Before we begin, we note that we use the following notation through-
out: D,(x) refers to the item of type i in the bundle x for any x € Z and i < d.

Definition 7 (lexicographic preference relation) A strict preference relation > over
9 =D, X --- X D, is lexicographic if there exist (i) an importance order, i.e. a strict linear
order > over types { 1, ..., d} and (ii) for each type i < d, a strict linear order >’ over D; such
that for any two bundles x,y € Z, x >y if there exists a type i satisfying D;(x) >’ D;(y)
and D, (x) = D, (y) for any h > i.

We note that although lexicographic preference relation and lexicographic dominance
look similar, a lexicographic preference relation is used to compare bundles and repre-
sent agents’ preferences, while lexicographic dominance is used to compare allocations or
assignments consisting of shares of bundles. For any agent j < n, her preference >; is lexi-
cographic if there exists an importance order B>; and strict linear orders > similar to Defini-
tion 7. For example, the preference 125 > 1515 > 2725 > 215 is lexicographic with the
importance order F > B and strict linear orders 1 > 2, and 25 =% 1, over the types F
and B, respectively. If every agent has a lexicographic preference in an MTRA, then we say
that it is an MTRA with lexicographic preferences.

4.1 The LexiPS mechanism

Before going any further with LexiPS, we introduce some notations for ease of exposition.
We use P! to denote the fractional assignment of items of type i w.r.t. P. The assignment
Plis a |N| x |D;| matrix with p]’:ﬂ = Zoex’xey Pix Tepresenting the total shares of bundles
containing items o of type i and consumed by agent j. To distinguish from single type frac-
tional assignments, we refer to the fractional assignments for MTRAs as multi-type frac-
tional assignments. Besides, for o € D;, we overload the notation of the upper contour set
U(>', 0) to refer to the items of type i that are either strictly preferred or equal to 0 w.r.t. >'.
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Algorithm 1 LexiPS

1: Input: An MTRA (N, M), a lexicographic preference profile R.
2: For each o € M, supply(o) < 1. For each i < d, P' < 0", P« 0"*I7I,
3: loop for d phases
4:  Identify top type i; for each agent j < n.
/[For the kth phase, i; is the kth most important type w.r.t. > ;.
5. fori<ddo
6 t 0.
7. ‘= {j<nlij=i}.
8: while s < 1 do
9
0

Identify top item rop’( ) in type i for each agent j € N'.
Consume.
10.1: For each o € Dj,consumers(o) < |{j € N'|top'(j) = 0}|.
. supply!
102 p ¢ mingep, i,
i
10.3: For each j € N, p/ opi(j) Plsopi(j) +p.

10.4: For each o € D;, supply(o) < supply(o) — p - consumers(0).
10.5: 1< 14p.

11: Foreach j <n,x € Z.pjx = o=p,(x).i<d P o
12: return P

In the LexiPS mechanism, agent j always consumes her most preferred item o; with pos-
itive supply in the current most important type. Agent j consumes o; until one of the fol-
lowing occurs:

(i) There is no supply of o; left, after which agent j stops consuming o; and starts to
consume her most preferred item according to >; that is currently with positive sup-
ply. _

(i1) ZOGD[_ p]’.,a = 1,0; € D;, after which agent j turns to her next most important type
according to I>; and starts consumes her favorite item that is with positive supply of
that type.

After consumption, we obtain P’ for each type i < d. By the construction, the allocation
for each type is made independently, and therefore we construct the assignment matrix P
by computing each element as follows:

rx= 1 7o @)
0=D;(x),i<d

LexiPS runs in d phases. In each phase, each agent j identifies current most important type
i; and only consumes items of type i;. The time 7 for each phase is one unit. At the begin-
ning of each phase, we set the timer ¢t = 0. During the consumption, agent j € N;, where N,
is set of agents whose current most importance type is i, first decides her most preferred
unexhausted item top'(j) of type i according to >’ Here we say that an item o is exhausted
if the supply supply(o) = 0. Agent j consumes the item fop'(j) at a uniform rate of one unit
per unit of time. The consumption pauses whenever one of the items being consumed
becomes exhausted. That means agent j’s share of top(j) is increased by p, the duration
since last pause, and the supply of item o, i.e. supply(o) is computed by subtracting p for
consumers(o) times, the number of agents j such that top’(j) = o. In Algorithm 1, p is com-
puted as min,,, % After this, we increase the timer ¢ by p, identify top/(j) for each
agent, and continue the consumption. The current phase ends when the timer ¢ reaches 1,
and the algorithm starts the next phase.
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Fig. 1 Execution of LexiPS in Example 4

Phase 1

Phase 2

We demonstrate how LexiPS outputs decomposable assignments that also satisfy sd-
efficiency and sd-envy-freeness using a simple example first, by describing the execution
of LexiPS on the MTRA from Example 2 where agents have lexicographic preferences. In
the first phase, agent 1 picks her most preferred item 1, of her most important type F, and
agent 2 picks 1, of her most important type B. In the second phase, agents 1 and 2 can only
pick the remaining items to meet their demand of one bundle consisting of one unit of each
type, i.e. 25 and 2, respectively. Therefore, LexiPS outputs the following assignment:

Agent 1,1, 1,2, 2,1, 2,2,
0 1 0 0
2 0 0 1 0

It is easy to check that the output of LexiPS for this MTRA is decomposable, sd-effi-
cient, and sd-envy-free. In Theorem 2, we show that LexiPS always outputs decomposable
assignments that satisfy sd-efficiency and sd-envy-freeness R € Z.

We illustrate the execution of LexiPS further in Example 4.

Example 4 Consider an MTRA (N, M) where N =1{1,2,3},
M =Dy X Dg,Dp = {15,2;,3r}, Dg = {15, 25,33}, and the profile R = {>,,>,,>3}. The
preferences >, >,, >; are as follows:

Agent Preferences

Foy By > 2, >0 3,1, 582,583,
2 FryB 1y >l 2, >0 3,,1,>83, 582,
3 By Flp >4 2 >0 30,2, 83, 58 1,

The execution of LexiPS is shown in Fig. 1. In Phase 1, agents 1 and 2 consume items in
Dy, while agent 3 consumes alone in Dj. Therefore, agent 3 gets her most preferred items
25 in Dy fully, and 15 and 3 are left. Since agents 1 and 2 have the same preference for Dy,
each of them obtains 0.5 units of 1 and 0.5 units of 2, and 3 is left. Similarly in Phase 2,
agents 1 and 2 prefer type B while agent 3 prefers F. Then agent 3 gets the remaining item
3, and agents 1 and 2 divide 1, and 3 uniformly according to their preferences. The fol-
lowing table shows agents’ allocations of items after each phase:
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Agent Phase 1 Phase 2

0.50f1,,0.50f 2, 0.5 0f 15, 0.5 0f 3,
2 0.5 of 1, 0.5 of 2, 0.5 of 15, 0.5 of 3
3 1 of 2, 1 of 3

According to line 11 of Algorithm 1, the output is the multi-type assignment P below (To
save space, from here on, we omit columns corresponding to bundles for which every agent
receives O share.):

Agent P
151, 1,35 201, 2:35 3,2,
0.25 0.25 0.25 0.25 0
0.25 0.25 0.25 0.25 0

3 0 0 0 0

It is easy to check that P is decomposable. a

4.2 Properties of LexiPS

In this subsection, we show in Theorem 2 that similarly to PS, LexiPS satisfies properties
of efficiency and envyfreeness based on our extension of stochastic dominance for MTRAs
under lexicographic preferences, and additionally, the output of LexiPS is always decom-
posable and therefore can be applied to MTRAs with indivisible items.

Before we begin, we introduce some notations for convenience. Given a fractional allo-
cation p, we define p' to be the fractional allocation of items of type i as an n-vector with
each component corresponding to an item o € D;, whose value is pfj = Zoex,xeg Dy repre-
senting the total shares of bundles containing 0. We also define a partial bundle containing
a single item of each type in any set of types H C {i|i < d} to be the vector w € [],c;; D;.
For any (partial) bundle w, we use w; = D,(w) to denote the item of type i in the bundle w.
For any partial bundle w € [],., D;, we define Z,, as the set of bundles which contain all
the items in w, i.e. Z, = {x € Y|forall i € H,x; = w;}. We use o; to refer to an item o of
type i to make the type of the item clear in the exposition. To show the items in a (partial)
bundle with items from the types in H directly, we use (0,),cy to denote the bundle contain-
ing items o; of each type i € H. W.l.o.g. let Z, = 2, where () is the partial bundle which
does not contain any items.

Before proving Theorem 2, we provide Lemma 1 which is useful for comparing two
allocations over an upper contour set. The full proof of Lemma 1 is in “Proof of Lemma 1”
in Appendix.

Lemma 1 Ler > be any lexicographic preference relation with importance order
1> 2> d, and p be a fractional allocation where p, = [],<, pi‘,. Let g be a factional

allocation which satisfies one of the following conditions:
1) g4 = Hhsd qﬁh, and there exists a type i < d such that pg = qﬁfor any h < i.
(ii) there exists a type i <d such that ZXEZW Py = erzw gy for any h<i and
W ED| X XD,
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Then, for any bundle 'y, it holds that

Z pX Z Z qX’ (3)

XEUC-YINZy,, 0y XEUC-YINZ iy

if and only ifzer(>,y)Px 2 erU(>,y) 9x:

Example 5 We illustrate Lemma 1 with the allocation ¢ which satisfies the condition (ii) of
Lemma 1. Given an MTRA with Dy = {15,225} and Dy = {15, 25}, let > satisfy the condi-
tions F > B, 1 >F 25, and 15 >8 2,. Suppose that for type F, the allocations p and ¢ sat-

isfy that erz = erz(,F) gy and erz(zp) Py = erz(m gy Lety = 2,15 and we have

that {xlDF(x) > 2,1 = Za, and Zo,1yNUCy) = {y} Then, if
Yxet-y) Px 2 2ixev-y) o it holds that py > g, because

D Px= D PxAPy= D GHpyZ ), Gty = ) 4y

xeU(>.y) XEZ( XEZ ) XEZ () xeU(>.y)
With this, we can also prove that 3 /. Px = Dxcpy) dx if Py = 4y ]

With Lemma 1, we show the three properties of LexiPS in the following Theorem 2.

Theorem 2 For MTRAs with lexicographic preferences, LexiPS satisfies sd-efficiency and
sd-envy-freeness. Especially, LexiPS outputs decomposable assignments.

Proof Given an MTRA (N, M) and profile R of lexicographic preferences, let
P = LexiPS(R). For ease of exposition, we divide the proof into three parts, one each to
show that LexiPS satisfies sd-efficiency, sd-envy-freeness, and is guaranteed to output
decomposable assignments respectively.

Part 1 [sd-efficiency] Suppose for the sake of contradiction, we suppose that there exists
an assignment Q # P such that O >4 P Then, for any agent k € N, O zid P, and there
exists an agent j who strictly prefers her allocation in Q to the one in P, i.e. Q; zjs.d P; and
Q; # P;. W.l.o.g, let the types be labeled according to>;as 1 >; 2 >; -+ >, d.

We show that Q; = P; by proving the following equatlon by mathematlcal induction on
the types: for any i < dandol, cs 0

Z Pix = Z 9jx- 4)

xez(“h%g; xez(f’h)hs;

Base case We prove the Eq. (4) for i = 1, which is equivalent to Q; = P.. First we show
that Q' > P!. Suppose it is false, and then there must exist an item y, and the least pre-
ferred bundle y containing y, w.r.t. >, such that

Z Pix = Z Pjo > Z 9jo = Z 9jx-

X€U(>;.y) (JEU(>; Y1) 06U(>; 1) XeU(>.y)

This is a contradiction to our assumption that Q >*¢ P. Having shown that Q' >*¢ P!, our
claim that Q! = P! follows from Claim 1 below. We provide the proof of Claim 1'in “Proof
of Claim 1 in Theorem 2” in Appendix.

@ Springer



15 Page 18 0f48 Autonomous Agents and Multi-Agent Systems (2021) 35:15

Claim 1 Given an MTRA (N, M) and a lexicographic preference profile R, let
P = LexiPS(R) and Q be an assignment such that there exists i < d such that Q J P J
for any i <i and agent j with the importance order 1; >; 2; >; -+ I>; d;. Then, Q’ = P’ if
Q' z;‘d P’ for any agent ;.

Inductive step Now, we prove the Eq. (4) for type 1 < i < d using Lemma 1 and Claim 1.
Assume that for any /& < i and items o, ..., 0, the total shares of bundles containing these

items are equal in P and Q:
Z p]x = Z q]x (5)

XEZ(0g) g X€Z 0y g

First we show that Q' >% P!, For any & < i, let y, be an arbitrary item of type . W.Lo.g,
let y be the least preferred bundle in Z(y Yoy WL > LetS={x € Z(wh |x; € U(>;., )}
Then, for any x € S, we have thatx € U (> Y), Wthh also means that '

PR YR YN WA S YR ©

XeS erQ‘h)hS__] nUC-.y) xes XEZO‘Mhsz—] nUC-;.y)

By the assumption that Q zfd P, we have that ery(> »Pix < erz/(> v 9ix- With this and

the Eq. (5), we have that ers Pix £ Xyes 9jx by Lemma 1. Recall that vy, is an arbitrarily
chosen item in D,. By summing up each side over all the possible choices of y,, ...,y

we have that
DIEEDINDN NI I I I )

V€D yi €D, XES V€D yi €D xeS

After simplifying, the inequality (7) means that for any y; € D,

> p,= Y b < Y ax= ) 4.,

0€U(-Ly) xe{x|;eUC-Ly)) xe{x|;eUC-Ly)) 0€U(~1y)

which implies that Q' >%¢ P’

Then by Claim 1, we have that Q) = P!. We have already shown that 3 ¢ p;y < ¥ csdjx
for y with an arbitrary choice of y, for each h<i, and we now claim that
DxesPix = 2xes 9jx- Otherwise, if 37 cp; < X ¢ g, for some y with a certain choice
of y, for each h<i, then by the inequality (7) we must have that
Y 0€U-) p;O <y 0€U) q]".,a, a contradiction to Q; = P]’ Therefore, we have that

YesPix = Lxes 9ix> Which is equivalent to the Eq. (4) for type i.

By mathematical induction, we show that the Eq. (4) holds true for any i < d, which
means that p;, = g;, a contradiction to our assumption that Q; # P;. This completes the
proof.

Part 2 [sd-envy-freeness] The following proof involves tracking the execution of LexiPS
phase by phase one after the other. In each phase, every agent spends one unit of time con-
suming items of one type in LexiPS. We first prove that no agent j envies another agent
who has the same importance order. For convenience, we label the types according to b>;.
Let N, be the set of agents who consume items of types i in Phase i. The execution of Lex—
iPS in Phase i can be viewed as PS for the single type allocation problem with agents in N;
and available items left in D, in Phase i. By [9], we know that PS satisfies sd-envy-freeness.
Therefore, we have that for any agent k € N,, ZO’EU(>-/’:,0) p/i',o’ > ZO,GU@}O) P, for any
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0 € Dy, ie. P> Pj. With this, it follows from Claim 2 that P; > P;. We provide the
proof of Claim 2 in “Proof of Claim 2 in Theorem 2” in Appendix

Claim 2 Given a lexicographic preference relation > and two factional allocations pand g

which satisfy Px = [li<do-p P, and g, = [ 0=D,(0) g’ respectively, if p' >** ¢ for type
i and p" = ¢ for any h # i, then we have that p >*/ .

Now, we prove that agent j does not envy agents who have different importance orders.
Assume for the sake of contradiction that there exists such an agent k and P }_“‘ P, ie.
there exists y € Z which satisfies

2 pj,x< 2 pk,x’ (8)

XeU(>y) X€U(>;y)

Because agent k has a different importance order from agent j, by construction of LexiPS,
there must be a Phase in LexiPS where agents j and k£ consume items of different types. We
show that this contradicts the assumption (8). W.l.o.g. let Phase i be the earliest phase in
the execution of LexiPS(R) where j and k consume items of different types. It follows that
k & N,, and by the selection of i, it must hold that kK € N,, for any h < i. Then, by sd-envy-
freeness of PS, P]h >]Sd PZ for any h < i. With this and Claim 2, given an allocation g with
qy = Hl<dq where ¢ = Ph >‘d Ph for h<i and ¢¢ = Pg for any g > i, we have that
>“’ P,. Therefore we see that if P >Sd g, then P, >“’ Pk We show that P; >Sd q in the
followmg
By the selection of i, it must hold that agent k consumes items of type i in a phase that
comes strictly after phase i where agent j consumes items of type i. Then, for any pair of
items y; and z; such that pi > 0 and qi = pi > 0 respectively, it must hold that either
Yi >; z; or y; = z; because the unexhausted items of type i at the end of Phase i are not pre-
ferred to those consumed by agent j in Phase i w.r.t. >,
Case (i) Suppose that y, >; z; for any y; and z; with p > 0 and q > 0, respectively.
W.lo.g. let Yi be the least preferred item w.r.t. >’ with p . > 0, and therefore it follows that

Yoe Ui, )P}, =1. Due to the fact that Ph =4 for h < i, we know that for any bundle w,

2 Fu=]lr=Ild = X o

er(“'h)hsi—l h<i xez(‘“h)hsi—]

Then, for w with w; € U(>’:,y,~), we have that ¢, = 0. For w with y; >; Wi

Pix H/W; 2 p;,0= Z Pix2 Z 9x-
XEZ,

omngio " UG>;,w) h<i 0€U(>y;) XE€Z00im1 XEZy, Ih<i-1 NUC-;.w)

Together, they imply that for any w € 2,

pj,x 2 2 9dx (9)
Xezwh)/,gq nU(>/»,w) er(wh)hgi1 nU(>,»,w)
It follows from the inequality (9), the fact that P;’ = ¢" for every h < i, and Lemma 1 that
zer(%w) Pix 2 D UGy 9x for any w, a contradiction to the assnmption in Eq. (8).
Case (ii) Suppose that there exist y; such that p}y» > 0 and q’y} > 0. It is easy to see
from the construction of LexiPS that y; is the least preferred item consumed by agent j
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according to >/, and also the most preferred item consumed by agent k according to >;

Then we have that
2P, = Pjy, 2 4, = 2 4 (10)

o> Vi ()EU(>;,yI)

Let y be an arbitrary bundle containing y,;. Then, from the Eq. (2) which computes the
shares of bundles assigned by LexiPS, we define a = [],_; p /vh =L qi,l and it follows

that

Y paza-Yp,za Y 4= Y g an

XEZy, NUG;y) 0>;}’1 =Y (>;-yi) XEZ, dhgi-1 NUGy)

dhgi-1
By the inequality (11), the fact that P" = ¢" for every h < i, and Lemma 1, we have that
2xetimy) Pix = Lixev».y) dx- For any other bundle w such that w; # y;, by using a similar
argument to Case (i), we have that ¢,=0 if w;€ U(>j’:,yi) and
> P, > erzWK veywdx if o yi>=iw;, and it holds - that

er(“,h)hSiilmU(h,w) X =
erU(>j,w)pj,x 2 erU(>j,w) dx-

Together, we have that P; >sd g and therefore P; z;d P, which is a contradiction to
the assumption in Eq. (8). This means that agent j does not envy any other agent who
has a different importance order. Together with our earlier conclusion that agent j does
not envy any other agents who has the same importance order, we conclude that agent j
does not envy any other agent.

Part 3 [decomposable output] Let A = (4;4)jenxeo be a multi-type discrete assign-
ment in &/, and we use Al = (a oJjen.oep, to refer to the single type discrete assignment
for each i < d where a 0 = ZU ex Gix for each 0; € D;. Before we begin the proof, we
show the fact that any collectlon of d discrete assignments (A),., determines a unique
multi-type discrete assignment A, because for any j < n and x € Z, agent j is assigned
the bundle x if she is assigned all the items in X, i.e.

Gix = H“_;:x,' (12)

i<d

We provide Example 6 to show this relation between (A'),, and A.

Recall that P = LexiPS(R) and P’ refers to the single type discrete assignment for each
i <d. Let o be the set of all the discrete assignments of the n items of type i to n
agents. Then by the Birkhoff-Von Neumann theorem, P’ describes a probability distribu-
tion over <. Consider an arbitrary fixed distribution over .o/ described by P! where a?'
is the probability associated with A’. It follows that P' = Y Aicos at - Al for any i < d.

Then from the Eq. (2) which computes the shares of bundles assigned by LexiPS, it

holds that for any x € 2,
— i Al
= =T X o« a, (13)

i<d i<d picof

The result of the Eq. (13) is a product of d polynomials, and we can rewrite it as one poly-
nomial as follows:
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Pix = 2 [Te"-q,)

Aled A2edf,.. Aleds i<d

I T1<.)

Aled Aled?,.. Aled < i<d i<d

Let A be the unique multi-type discrete assignment determined by any collection of (A%,

and a* = [],., &*. Recall that o' is the probability of A’ which follows the distribution
described by P. With the Eq. (12) we further have that

Px= D "

Aed

It is easy to see that a® can be viewed as the probability of A following some distribution
over &/ which can be described by P. It means that P = Y, a* - A and therefore P is
decomposable. |

Example 6 Given an MTRA with types F and B and agents 1 and 2, we show the collection
of the following single type discrete assignments A" and A® corresponds to a unique multi-
type discrete assignment A:

Agent AF AB Agent A

lp 2 1y 2 lply 1324 2ply 2p2
1 1 0 0 1 1 0 1 0 0
2 0 0 2 0 0 1 0

For example, we see that agent 1 obtains item 1 in AF and item 25 in A3, and therefore
she obtains the bundle 1,2 in assignment A accordingly, i.e. a;; , = ai e af,z,; =1
O

Remark 2 LexiPS does not satisfy lexi-efficiency. To show this, we revisit Example 4 and
compare the assignment P in Example 4 with the assignment Q below.

Agent 0
1p1p 1235 2ply 2735 352
0.5 0 0 0.5 0

2 0.25 0.25 0.25 0.25 0

3 0 0 0 0 1

For agent 1, her allocation in P is lexicographically dominated by the one in Q. We also
note that in Q, agents 2 and 3 obtain the same allocations as in P. Therefore, we have that
Q > p. O

As we show in Remark 3, LexiPS is not sd-weak-strategyproof, similarly to other
extensions of PS [3, 25, 28, 45] which also do not satisfy sd-weak-strategyproofness.
Theorem 3 shows an exception that LexiPS is able to satisfy sd-weak-strategyproofness
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if we add the restriction that agents cannot misreport their importance orders over the
types.

Theorem 3 For MTRAs with lexicographic preferences, LexiPS satisfies sd-weak-strate-
gyproofness when agents report importance orders truthfully.

Proof Suppose that agent j misreports her preference for some types and obtains a bet-
ter allocation. Let >/ be her new preference after misreporting and R’ = (>, >_;) be the
resulting preference profile. Let P = LexiPS(R) and Q = LexiPS(R’). From the executlon of
LexiPS, we observe that each single type assignment generated only depends on the prefer-
ences of all of the agents over items of the corresponding type. Therefore, for any type i
where agent j does not misreport her preference, her allocation remains unchanged in Q',
ie. Q‘ P’ It means that if Q' # P!, then agent j must misreport her preference of type i.
For convenlence let the types be labeled according to i>;. Let i be the most important
type where j has a different allocation in Q, i.e. Q' # P]’ Then by our assumption of the
mlsreport being beneficial for agent j, we have that Q > >Sd P, O # P and that for any h < i,
= Q". The phase when agent j consumes items in D can be viewed as executing PS
on type i. From [9], we know that PS satisfies sd- weak—strategyproofness, which means
Q} = Pj if 0! z}d P'. Because Q} # PJl we have that Q' 5&;" P!, which also means that there

exists y; such that
i i
Z Pjo > Z Bjo: (14)

0€U(~Ly) 0€U(=}y)

Let y be the bundle with such an item y; and for 4 < i, y, is an item of type & satisfying
;é 0, which also means qh = ph # 0. W.lo.g. let y be the least preferred bundle in

Z<yh>,,<, Let S={x€e Z(mh< llx S U(> ¥, }. By the inequality (14) and our observation
that P = Qh for any h < i, we have that

2 PN | DY

XE(XEZy, ), . l|x,eU(>j',,y)} X€ES 0€U(-1.y)
i (15)
H Dy, Z B0 = Z 9jx = Z » 9jx:
0€UC-L.y) XES XE(XEZy,), . INEU(-Ly))

With the assumption that P! = Q” for any /4 < i and the inequality (15), by Lemma 1, we
have that zer(> »Pix > Z‘,er(> ) 4jx» Which means agent j does not obtain a better allo-
cation in Q, a contradiction. Therefore, we have that LexiPS is sd-weak-strategyproof when
agents report importance order truthfully. a

Remark 3 When applying LexiPS to MTRAs with lexicographic preferences, an agent may
get a better allocation by misreporting her importance order. Consider an MTRA with lexi-
cographic preferences where there are agents 1 and 2 and types F, B and T. Both agents
prefer 1; to 2; for i € {F, B, T}, but their preferences over bundle are different due to their
importance orders as follows:
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Agent Importance Order
1 Fp>y B> T
2 T>,F>,B

LexiPS gives the fractional assignment denoted by P. If agent 2 misreports her importance
order as >, : F >, T >} B, LexiPS gives another fractional assignment denoted by P’. Both
P and P’ are shown as follows:

Agent P Agent P’
1,142, 2,251y 1,152, 1,251, 2,152, 22517
0 1 0.5 0 0.5
2 0 1 2 0 0.5 0 0.5

We observe that compared with P, agent 2 loses 0.5 shares of 22,1, but acquires 0.5
shares of 1,241, in P'. Since 1,241, >, 2,241, we obtain that P’ =5 P, but P =3¢ P’ is
false, which means that LexiPS does not satisfy sd-weak-strategyproofness when an agent
can misreport her importance order. a

5 MPS for MTRAs with divisible items

In this section we consider MTRAs with divisible items under the unrestricted domain of
strict linear preferences. We present a simplified version of the MPS mechanism proposed
by [42] in Algorithm 2, since we do not need to deal with partial preferences. At a high
level, in MPS agents consume bundles consisting of d items, one of each type, in contrast
with PS where agents consume items directly. We prove in Theorem 4 that under strict lin-
ear preferences, MPS satisfies lexi-efficiency, which is a stronger notion of efficiency, and
implies sd-efficiency, and prove in Proposition 3 that MPS also satisfies sd-envy-freeness
under strict linear preferences. In Theorem 6, we show that MPS also satisfies sd-weak-
strategyproofness under the domain restriction of lexicographic preferences. In addition,
we also provide two separate characterizations of MPS involving leximin-optimality and
item-wise ordinal fairness in Theorem 7.

5.1 The MPS mechanism

Given an MTRA (N, M) and a preference profile R = (>;);.,, MPS proceeds in multiple
rounds as follows: At the beginning of each round, M’ contains all the items that are unex-
hausted. Each agent j first decides her most preferred available bundle top(j) according to
>;. A bundle x is available so long as every item o € x is unexhausted. Then, each agent
consumes their most preferred available bundle by consuming all of the items in it at a uni-
form rate of one unit per unit of time. The round ends whenever one of the bundles being
consumed becomes unavailable because an item being consumed has been exhausted. The
algorithm terminates when all the items are exhausted.
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& @M

Fig.2 An example of the execution of MPS

Algorithm 2 MPS for MTRAs under strict linear preferences.

1: Input: An MTRA (N, M) and a preference profile R.
2: For each 0 € M, supply(0) < 1. M’ < M. P + 0”171,
3: while M’ # 0 do
4:  Identify top bundle rop () for each agent j < n.
5:  Consume.
5.1: For any o € M', consumers(o) < |{j € N|o € top(j)}|.

5.2: P < min,eyy consumers(0) *

5.3t Foreach j <n, pjop(j) ¢ Pjiop(j) tP-
5.4: Foreacho € M', s;dpply(o) « supply(o) — p - consumers (o).
6: B < argmin,cyy M, M« M'\B

0eM" consumers (0)

7: return P

Example 7 The execution of MPS for the following instance of MTRA is shown in Fig. 2.

Agent Preferences Agent P

lplp 1324 2ply 2p2
1 Lplpg > 1525 > 2525 >, 251, 1 0.5 0 0 0.5
2 1p25 > 2plp >y 1ply >, 2,2, 2 0 0.5 0.5 0

At round 1, agent 1’s top bundle is 11, and agent 2’s top bundle is 1,2;. Notice that
both agents wish to consume 1,. Therefore, round 1 ends as 1, gets exhausted with both
agents getting a share of 0.5 units of 1. Agents 1 and 2 also consume 1; and 2, respec-
tively at the same rate during round 1. At the end of round 1, agents 1 and 2 are assigned
0.5 units of 1,15 and 12, respectively.

At the beginning of round 2, there is a supply of 1 unit of 2 and 0.5 units each of 1, and
2. Agent 1’s top available bundle is 2,2, since 1,2, is unavailable for the exhausted item
15, and agent 2’s top available bundle is 2,1, accordingly. The agents consume the items
of each type from their top bundles at a uniform rate. At the end of the round, all items
are exhausted, and agents 1 and 2 have consumed 0.5 units each of 2,2, and 21, respec-
tively. This results in the final assignment as shown in Fig. 2.
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Note that this output is the undecomposable assignment P in Example 1. Further, we
show in Remark 4 that even under lexicographic preferences, the output of MPS is not
always decomposable. This means that MPS is only applicable to MTRAs with divisible
items. |

Remark 4 The output of MPS is not always a decomposable assignment under the restric-
tion of lexicographic preferences. For the MTRA in Example 4, MPS outputs the following
fractional assignment, denoted by P:

Agent P
1plg 125 2p1g 252g 2:3g 3725 3:3g
173 0 1/6 1/6 0 1/12 1/4
173 0 1/6 0 1/6 0 1/3
3 0 173 0 1/3 0 1/12 1/4

When items are indivisible, if agent 2 gets 2,3, then agent 1 gets 1,1, and agent 3
gets 352 as P indicates. However, p; ; =1/3, py, 3, = 1/6,and p35 , = 1/12 are not
equal, a contradiction. O

5.2 Properties of MPS

Under the unrestricted domain of strict linear preferences, Theorem 2 in Wang et al. [42]
implies that MPS satisfies sd-efficiency. We prove in Theorem 4 below that MPS satisfies
lexi-efficiency, which is a stronger notion of efficiency than sd-efficiency, as we show in
Proposition 2.

Theorem 4 MPS satisfies lexi-efficiency for MTRAs with strict linear preferences.

Proof Given an MTRA (N, M) and preference profile R, let P = MPS(R), and suppose that
there is another assignment Q satisfying Q >/* P. Let N’ be the set of agents which have
different allocations in Q. By our assumption on Q and strict preferences for any agent
j € N', there exists a bundle y/ such that 4;yi > Djy and for every X > ¥, q;, = Pix- Let

4= Zx>,y/ Djx be the time agent j takes to consume bundles strictly preferred to y/. Now,

consider the agent k = arg min jen' 1; with the smallest such time 7, = Zx>kyk Prx However
when MPS executes till time f,, y* 1s unavailable, which means that at least one item in y*

is exhausted and p, . cannot be increased anymore. Therefore, if agent k gains a greater
share of y* in Q, there is another agent who loses the shares obtained before t,, which is a
contradiction and completes the proof. O

Now, we establish a relationship between lexi-efficiency and sd-efficiency in Propo-

sition 2 through the no-generalized-cycle condition (Definition 9), by showing that
sd-efficiency is implied by the no-generalized-cycle condition which is equivalent to
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lexi-efficiency. We begin by borrowing the tool of generalized cycles from [42], which is
based on the relation = and the notion of improvable tuples defined below.

Definition 8 (improvable tuples [42]) Given a fractional assignment P and a profile
R = (>j)j5n, we define 7 as a relation for bundles such that for any x,y € &, xry if x >y
and p;, > 0 for some agent j < n. If xry, then we say that (x,y) is an improvable tuple.
Imp(P, R) is the set of all the improvable tuples admitted by assignment P w.r.t. the prefer-
ence profile R.

For ease of exposition, we use Imp(P) to refer to the set of all the improvable tuples
admitted by the fractional assignment P when the profile is clear from the context. We are
now ready to formally introduce the no-generalized-cycle condition.

Definition 9 (no-generalized-cycle [42]) Given an MTRA (N, M) with preference profile
R and a fractional assignment P, a set C C Imp(P, R) is called a generalized cycle if for
every improvable tuple (x!,y') € C, where x!,y!' € 2, it holds that for every item o0 € x!,
there exists an improvable tuple (xz,yz) € C, where x2, y2 € 9, such that o € yz. We say
that P satisfies the no-generalized-cycle condition, if it admits no generalized cycles.

When d = 1, Bogomolnaia and Moulin [9] proved that an assignment is sd-efficient if
and only if the relation 7 on it is acyclic, i.e. there does not exist x' rx? 2
and other bundles in . However, this condition fails for MTRAs. Example 8 shows that an
assignment which is not sd-efficient satisfies the acyclicity of z, but admits a generalized
cycle. This suggests that the generalized cycle is more reliable in identifying sd-efficient
assignments.

7 - 7x! for x!,x

Example 8 We illustrate generalized cycles with the following assignment Q for the
MTRA in Example 7. Note that Q is not sd-efficient because the assignment P in Exam-
ple 7 stochastically dominates Q.

Agent 0 Agent Improvable Tuples

1p1g 1725 2p1p 2725

0.4 0 0 0.6 1 (115, 2525), (1525, 2525)
2 0.2 0.4 0.4 0 2 (1725, 2515), (1525, 1p1p),

(zFlB’ lFlB)

It is easy to see that 7 is acyclic on Q. However, there is a generalized cycle on Q:
{(1p15,2525), (1525, 2515), 2rly, 1515)}. We illustrate this further in Fig. 3 where there
is a row for each improvable tuples, and the “Left” and “Right” columns contain the bun-
dles which appear as the left and right component of the improvable tuples respectively. A
solid outgoing edge from a bundle x in the “Left” column to a bundle y in the “Right” col-
umn is used to represent the case where an item of type F in x is contained in y. Similarly,
a dotted edge is used to represent the case where an item of type B in bundle x in the “Left”
column is contained in bundle y in the “Right” column. We note that such an edge is not
unique because one item in the left component may be contained in the right components
of several tuples. We do not present all such possible edges for the sake of simplicity and
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Fig.3 A generalized cycle for Q Left R| ght

in Example 8

...... 1FlB\ f2F2B<'"§"§
f] 1F2B\X 251 g6

clarity. We also note that such a cycle is not unique. Consider for example the items of type
B: the item 1 in the bundle 2,1, which is the left component of (2,15, 1,15) is present
in 1,15 which is the right component of the same tuple, and 2 in the bundle 1,2, which
is the left component of (1;25,2,15) is present in 2,2, which is the right component of
(1715,2525). A similar correspondence can also be found for each item of type F. a

The proposition below reveals a relationship between lexi-efficiency and sd-efficiency
vis-a-vis the no-generalized-cycle condition. Unlike Bogomolnaia [7] who pointed out
that lexi-efficiency and sd-efficiency are equivalent in their setting with d = 1, we show
that this is no longer true for MTRAs. Proposition 2 shows that the no-generalized-cycle
condition is equivalent to lexi-efficiency, and they both imply sd-efficiency. After the
proposition, we also provide Remark 5 which shows that sd-efficiency does not imply
the no-generalized-cycle condition. It also means that sd-efficiency does not imply
lexi-efficiency.

Proposition 2 Given a preference profile R and a fractional assignment P,

(1) P is sd-efficient w.r.t. R if P admits no generalized cycle.
(2) P is lexi-efficient w.r.t. R if and only if P admits no generalized cycle.

Proof (1) The idea of proof is similar to the proof of Theorem 5, Claim (1) in [42]. A full
proof is provided in “Proof of Proposition 2 (1)” in Appendix for completeness.

(2) Sufficiency Suppose by contradiction that P admits no generalized
cycle but there exists an assignment Q > P. Let N' CN be the set of agents
{j e NIO >l“’ P}. For jeN\N', we have Q;=P;, For each agent j€ N, let
x' be the bundle such that Gixi > Pjx and ;5 = p;x for x> x/. For each ¥/, there
must exist y such that x/ >y and p;, > 0. Otherwise by construction we have
er/ q/,x = q_/,x/ + 2x>x! qj,X - q],x/ + Zx>x! p_/,x > H/,x/ + Zx>xf p/,}( p/,x/ + 2x>x! p_],x + bex p_/,x = 1’
a contradiction. Then we can build Cy = {(¥,y)|j € N/, %/ > X,pjy > 0}. For convenience,
we define 7 g and Zy ¢ to be the set of left and right components in improvable tuple set S,
respectively. By construction, we know & ¢ = {¥/|j € N'}. The set C,, is not necessarily a
generalized cycle since there may exist items in some bundles X/ € 9, o) which are not in
any bundle in Zg (.
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To build a generalized cycle, first we provide the following claim, and its proof is
provided in “Proof of Claim 3 of Proposition 2” in Appendix.

Claim 3 For any j € N’ and o € ¥/, there exist an agent k € N’ and a bundle y such that
xk > y,0€y,and Pry > 0.

Let j be an arbitrary agent in N’. For any o € X/, by Claim 3, we can find an agent
k € N’, and a bundle y such that x* >, Yy,0 €yand Dry > 0. Note that (x¥, y) is an improv-
able tuple. Let
C = {(x*,y)|k € N' and there exists item 0 € X/ such that o €y, xk > ¥:Pry > 0}. Then, it
is easy to see that .@L,C/ € 9, and any item o € ¥’ must exist in some bundles in @R’q .

Let C = Uje_N, C; U C,. Then we have that 7, - = 7, ,, and for any agent j € N" and
any item 0 in X’ € @L,C,. C 9, ¢ item o is also in some bundles in @R,C/ C g c- Then, by
Definition 9, C is a generalized cycle, which is a contradiction to the assumption that P
admits no generalized cycle.

Necessity Suppose for the sake of contradiction that there is a lexi-efficient assignment
P which admits a generalized cycle C. We say that an agent j is involved in the tuple (X, y)
if x>; yand p;, > 0. Let No C N be the set of agents who are involved in the tuples in C.
The proof involves constructing an assignment Q by applying Steps 1-4 below for each
agent j. For an arbitrary agent j € N, let (x,y) € C be one of the tuples in which she is
involved, and w.l.0.g. let x be top ranked bundle according to >; among all the bundles in
tuples involving agent j. We apply the following steps for agent j:

Step 1 For each item o; € x of type i, we can find an agent k € N which satisfies that
there exists a tuple (x*,y*) € C such that x*,y* € 2, 0 € y* and p; ,« > 0 by the defi-
nition of generalized cycle. For each agent k, we take out her share of y* by a small
enough value €.

Step 2 We make e units of x by only extracting the share of each o; from each y* in
Step 1 such that D, (i) = o, for eachi < d, and we allocate the share of x to agent j.

Step 3 To keep the supply of bundle not beyond agent j’s demand, agent j should give
out € units of y.

Step 4 We make e units of z* € 2 by combining the share of y* without o, and the share
of item D,(y), i.e. D;(z¥) = D,(y) and D,,(zX) = D,,(y*) for any h # i, and we allocate the
share of e units of z* to agent k.

Let O be the new assignment after we take the steps above for every agent j € N.
We note that Q; exactly meets the demand of agent j for any j € N, and € is chosen
to be small enough so that the shares of bundles above are not used up, and therefore
they can be reused for other agents. We also note that given the bundle w which is
top ranked according to >, among all the bundles in tuples involving k, we have that
w >, y¥, because agent k is involved in (x*,y¥) € C and by the selection of w we have
that x* >, y*, and w = x* or w >, x*. Therefore, when we take these steps for agent
J € N, agent k’s shares over U(w, >;) do not decrease. In this way, for any agent j with
the selected tuple (x,y) where X is top ranked among bundles in all the tuples in which
she is involved, we have that: (1) After taking these steps for agent j with the selected
tuple (x,y), agent j obtains e units of x and loses e units of y. (2) After taking these steps
for other agents in N, where agent j donates some bundles just like agent k in Step 1,
agent j loses shares of some bundles in {z|x >; z} and obtains shares of some bundles
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which we do not care about. It follows that Q;, > P; + ¢ > P, and for any j € N and
z >; X, we have that Q;, > P, ,, because agent j does not lose but may gain the shares of
these bundles, and therefore O >j’e’” P. We also have that Q, = P, for k € N \ N because
agents not in N, do not take part in the share transferring. Together they imply that

Q > P_which is a contradiction to the assumption that P is lexi-efficient. a

Remark 5 The no-generalized-cycle condition is not a necessary condition of sd-
efficiency. Consider an MTRA with two agents where >, and >, are the same as
1p1g > 125 > 215 > 2525. Consider the following sd-efficient assignment P.

Agent P
1plg 125 2p1g 2p2g
0.5 0 0 0.5
2 0 0.5 0.5 0

We see that P admits a generalized cycle {(1715, 1725), (1725, 2515), 215, 2525)}. O

Theorem 5 below characterizes the set of all lexi-efficient assignments by the family
of eating algorithms for MTRAs (Algorithm 3), which is a natural extension of the fam-
ily of eating algorithms introduced by Bogomolnaia and Moulin [9] for the single type
setting. Each eating algorithm is specified by a collection of exogenous eating speed
Junctions o = (w;);,. An eating speed function w; specifies the instantaneous rate at
which agent j consumes bundles at each instant ¢ € [O 1] such that the integral / ](z)
is 1. In each round of an eating algorithm, each agent j consumes her most preferred
available bundle at the rate specified by her eating speed function w;, until the supply
of one of the items in one of the bundles being consumed is exhausted Note that MPS
is a special case of the family of eating algorithms, with w;(#) = 1 for any 7 € [0, 1] and
JEN.

Algorithm 3 Eating Algorithms

1: Input: An MTRA (N, M) and a preference profile R.

2: Parameters: Eating speed functions ® = (®;) j<x-

3: For each o € M, supply(o) < 1. M «— M. P « 0"*|7] 1 0.

4: while M’ #0and? < 1 do

5:  Identify top bundle rop(j) for each agent j < n.

6:  Consume.
5.1: Foreacho e M’, consumers(o) «— |{j€Nloectop(j)}|
52: p min{p‘z.feconrumers (0) Jrl wj = Yuppl)( ),0 € M’}'
5.3: Foreach j <n, Pjop(j) < Pjaop(j) + j[
5.4: For each 0 € M', supply(0) Supply( ) — Z icconsumers(o) i P @j.

70 M M \{o€ M |supply(o) =0}.1 < t+p.

8: return P

Theorem 5 Given an MTRA, an assignment is lexi-efficient if and only if it is the output
of an eating algorithm (Algorithm 3).
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By Proposition 2, we see that the lexi-efficient assignments are also the ones satisfy-
ing the no-generalized-cycle condition. Therefore, we consider the assignments satis-
fying the no-generalized-cycle condition instead in the proof of Theorem 5 which is
provided in “Proof of Theorem 5” in Appendix.

For MTRAs with CP-net preferences, Theorem 5 in [42] showed that MPS satisfies
sd-envy-freeness. Here CP-net determines the dependence among preferences of types,
which also reflects the importance of each type. Since the domain of CP-net preferences
and strict linear preferences are not totally overlapping, we provide Proposition 3 as a
complement and the proof of the proposition is in “Proof of Proposition 3” in Appendix.

Proposition 3 MPS satisfies sd-envy-freeness for MTRAs with strict linear preferences.

As we show in Remark 6, MPS does not satisfy sd-weak-strategyproofness. Fortu-
nately, as we prove in Theorem 6, MPS does satisfy sd-weak-strategyproofness under
lexicographic preferences. Importantly, this is true even when agents may have different
importance orders. This is in contrast with the result in Wang et al. [42], who show that
under the domain of CP-net preferences, MPS satisfies sd-weak-strategyproof only if
all agents’ preferences share a trivial dependency structure where all the types are inde-
pendent, meaning that all the types are of equal importance.

Remark 6 MPS does not satisfy sd-weak-strategyproofness for MTRAs with strict linear
preferences. Consider an MTRA with two agents where >, and >, are in the following:

Agent Preferences

1p2g >y 1plp >y 2plp > 272
2 1plg >y 2plp >, 2525 >, 1525

MPS outputs P for this preference profile. If agent 1 misreports >, as
>0 2plp > 1plpg > 1.2, > 2,2, then MPS outputs P. Both P and P’ are shown as
below:

Agent P Agent P

Iplg 1r2 2plg 2p2p Iplg 1r2g 2plp 2p2p
1 0 0.5 0.25 0.25 1 0 0.5 0.5 0
2 0.5 0 0.25 0.25 2 0.5 0 0 0.5

We have the fact that P’ zsld P and P’ # P, which does not satisfy the requirement of sd-
weak-strategyproofness i.e. P = P, if P’ 25]‘1 P. O

Theorem 6 MPS satisfies sd-weak-strategyproofness for MTRAs with lexicographic
preferences.

Proof Consider an arbitrary MTRA (N, M) and an arbitrary lexicographic preference pro-
file R. Suppose for the sake of contradiction that an agent j can obtain a better allocation
by misreporting her preference as another lexicographic preference >jf. Throughout, we set
P = MPS(R) and Q = MPS(R’), where R’ = (>Jf, >_;). W.lo.g. let the types be labeled such
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that 1 >; -+ >; d. By the assumption of beneficial misreporting, we have Q zjd P and we
need to prove that Q; = P;.

We show that Q’ P’ for any type i < d where Q' and P’ are agent j’s single type alloca-
tions of type i in Q and P respectively. In fact, we only need to show Q' >“1 P! due to follow-
ing claim:

Claim 4 Under lexicographic preferences, (MPS(R))' = PS(R'), where R = (>;)j5,l.

The claim is obtained by comparing the execution of MPS with PS in each type. The
full proof of the claim is in “Proof of Claim 4 in Theorem 6” in Appendix. Since PS satis-
fies sd-weak-strategyproofness [9], we deduce from Claim 4 that Q; P’ if Q! >‘d P! for
each type i. Therefore, we can prove Q’ P’ by showing Q' >“’ P 1nstead We prove it by
mathematical induction on type i.

In the following discussion, we recall the notations used in Sect. 4.2. For
the (partial) bundle w e [[,.,D; where H C {i|li<d}, we use w;=D;(w) and

w={x€ Yforalli € H,x; = w;}. We also use (0,),cy to refer to an bundle containing
items o; of each type i € H.

Base case First, we prove that Q! zjd P! Assume Q' #¢ P'. It means that there exists

¥, such that Zer(> ) p ZOEU(>]’:,y,) q},o. Let y be the least preferred bundle containing

¥;- It follows that

Z ,,,— Z Pjx > E 9jx = 2 %

er(>' ) X€U(>;.y) xeU(>;.y) an(>l'ﬁ,y,)

which is a contradiction to our assumption. Thus @/ >*¢ P/ i.e. Q! = P}.

Inductive step Next, consider any type i such that 1 < i < d and suppose that for every
h < i, it holds that Qh P". We show that Q' > P'. Let y be the bundle having y, as an
item of type h for any h <i. W.Lo.g. let y be the least preferred bundle in Ziy e Lot
S, ={x€ Z(y;m lx; € U(>’ Y} Because 0> >“d P, we have that
erU(>,,y) Pix = 2er(> 9 q, x- We split the shares over the upper contour set as follows:

2 Dix = Z Pix + Z Dixt

x€U(>.y) xe{x|x, >}y1 } xe{xez(yl)|x2>§y2}

+ z pj,x + ij,x

Xe{x€Z, B >j’:—‘y,._I } XES;

(16)

YWh<i-2

Claim 5 below is obtained from the observation that agents consume bundles until they are
unavailable in MPS. The full proof of the claim is in “Proof of Claim 5 in Theorem 6” in
Appendix.

Claim 5 For P = MPS(R) and type i, if Q satisfies that Qh Ph forany h <iand Q > >Sd P,
then ers Pix = ersi gjxforany y,,...,y;_;,y;and §; = {x € Z()h)h< X € U(>t yl)}

By our assumption that Qh P;’ for any h<i, by Claim 5 we have that
2xes, Pix = Zxes, dix  fOr h'<i,” and therefore due to the fact that

St Pix < Snction, ) G a0d the Eq. (16), we have that ¥ ¢ py. < ¥ g By
summing up each side over all the possible choices of y,, ..., y;_;, we have that
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PIDIEDIDN D IDNEDIPIN

i M Vi1 XES; yio»n Vi1 XES;

Then, after simplifying we have that

2 Pjx < Z 9jx-

(xIx,€UC-1Ly)) xe{xlyeUC-Ly))

It means that Zan(> y)p Zer(>,’} ) q . This also implies that O’ >5d Piie. Q’ P’

This proves that Q’ P’ foranyi <d by induction. By Claim 5 for type i=d, we have
that ers,P]x = ersl q‘]’X It also means that p; = g4, i.e. Q; = P; which completes the
proof. a

5.3 Characterizations of MPS

In Theorem 7 we provide two characterizations of MPS. Before we show the theorem, we
introduce the two properties involved in the characterizations. Leximin-optimality requires
that the assignment leximin maximizes the vector describing cumulative shares at each
bundle [5, 7, 10], which reflects the egalitarian nature of the mechanism in attempting to
equalize agents’ shares of their top ranked choices. The definition uses the following nota-
tion: for any vector u of length k, u* = (”T’ u; e u;f) is its transformation into the k-vector
of u’s components sorted in ascending order.

Definition 10 (leximin-optimality) Let L be the leximin relation, where for any two vec-
tors u, v, we say that (u, v) € L if there exists k such that u* > v* and uf = V;* for [ < k. For
any fractional assignment P, let u” = (] )<, veo where MJP v = ZXEU(},.,y) p;x for each
agent j<n and bundle y € . A fractional assignment P is leximin-optimal, if
(u”,u?) € L for any other assignment Q € . A mechanism f satisfies leximin-optimality

if f(R) is leximin-optimal for any R € Z%.

Example 9 For the MTRA and the two assignments Q and Q' in Example 2, the elements
of u? and u? are listed in the following table:

Agent u? Agent u?
(o] (o] Q/ Q’ Q’ Q/
Uy, Ui, Uy 1, U2, Uy, Uy,a, U1, U2,
0.25 0.5 0.75 1 1 0.25 0.75 0.75 1
2 0.25 0.75 0.5 1 2 0.25 0.75 0.75 1

We use u=u? and v=u? for short. We rearrange them in the ascend-
ing order and have that u* = (0.25,0.25,0.5,0.5,0.75,0.75,1, 1) and
=(0.25,0.25,0.75,0.75,0.75,0.75,1,1). Then we have that vi =uj, v; =u;, and

v3 > u}, which means that u?,u?) € L by definition. O

Hashimoto et al. [24] provided a characterization of PS with a single property named

ordinal fairness which involves the comparison of the cumulative shares of items. We
extend ordinal fairness to MTRAs as item-wise ordinal fairness and provide a similar
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characterization of MPS. In contrast to sd-envy-freeness, the upper contour sets in item-
wise ordinal fairness depend on the different preferences, and the bundles to determine the
sets only need to share a certain item. We note that item-wise ordinal fairness involves the
cumulative shares over bundles containing a certain item, different from the version in [42]
which involves the share of each bundle.

Definition 11 (item-wise ordinal fairness) A fractional assignment P is item-wise ordinal
fair if P satisfies the condition that for any agent j and bundle y with p;, > 0, there exists
an item o € y such that erU(>k,z) Pix < erU(>j’y) Pjx for any agent k and bundle z with
o €z and p;, > 0. A mechanism f satisfies item-wise ordinal fairness if f(R) is item-wise
ordinal fair for any R € Z.

Example 10 We revisit the MTRA in Example 2 and show that the assignment Q' in it is
not item-wise ordinal fair. In the following table, we list the share of each bundle and the
accumulated share at that bundle for each agent in Q’. We note that the order of bundles in
the table are rearranged according to each agent’s preference.

Shares
X 11, 1,2, 2,1, 2,2,
7 0.25 0.5 0 0.25
Soction 0.25 0.75 0.75 1
X 11, 2,1, 1,2, 2,2,
7, 0.25 0.5 0 0.25
Yot ¢, 0.25 0.75 0.75 1

We use 1515 of which agent 1 has positive shares as an example to show that no item o
in 1,1, satisfying that quy > 0 and Z"EU(%Y) 4y < 2xet 1,1, 91  for any agent j and y
containing o. For item 1, in 1,15, we can find out the bundle 1,25 containing 1, and
q/l,l,.zg = 0.5 > 0 for agent 1, but erU(>,,1F2H) q’LX =0.75>025= ZXEU(>I~1I~1R) q’l’x. Sim-
ilarly foritem15in1,1,, we can find out the bundle 21, containing 1 ; and q/2,2p13 =05>0

for agent 2, but ZXEU(>2,2FIB) q/Z,X =075>025= ZXEU(>1»1FIB) q/l,x' O

Theorem 7 Under the domain of strict linear preferences,

(I)  MPS is the unique mechanism which satisfies leximin-optimality, and
(Il)  MPS is the unique mechanism which satisfies item-wise ordinal fairness.

Proof (1) leximin-optimality Given an MTRA (N, M) with any profile of strict linear pref-
erences R, let P=MPS(R) and u = (4;4);c,xe- For j<n and bundle x € &, let

Uy = Eye UG Pry: Let Q be an arbitrary fractional assignment which is leximin-optimal

w.r.t. the vector v = (v;y);c,xey Where v, =3 In the following proof, we

yeUe=;x) Ly
show that v* = u* which means that P is leximin-optimal (satisfaction), and the assign-
ments P and Q are identical which means that P is the unique leximin-optimal assignment
.(uniqu.eness). We prove that v = u; and if u;, = u, then g;, = p; for any agent j by
induction on k.
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Base case We prove that u = vy and if u;, = u], then q;, = p;, for any agent j. By the

selection of O, we know that u} < v{. Suppose for the sake of contradiction that u} < vy.
We use the tuple (j,X) as the index of the component u; for any agent j < n and bundle
X € 7. Let S, be the set of indices such that for each (j,x) € S, u;, = uj.

We consider the corresponding elements of v indicated by the set S,. We note that for

each (j,x) € S, there are two possible cases:

Case (i) x is the most preferred bundle w.r.t. >;. Then, p;, = ZyeU(/x)pjy

and p; =u; <V <)

Pix < 4jx

Case (ii) x is not the most preferred bundle w.r.t. >;. Then, for the most pre-

ferred bundle z w.r.t. >is there must exist Djz = uT as in Case 1, since
< YyevinPiy < Zyevix Piy = ;- This implies that p;, =0 < g;.

1,

veuix) 4y = 4jx- The assumptlon that u} < v} implies that

From the execution of MPS, x must be unavailable at time u’;‘ because some items in it
are exhausted at that time. Let B| denote the set of the items exhausted at time . For
any o € B|, we have that Z(u,y)eS = 1. With the inequalities in Cases (i) and (ii)
we have that Z(a,y)eSl,oEy Qay > 2axes, oey Pay = 1 for some o € By, which is a contra-
diction. Therefore, we have that u] = v} and p;, = g;, for any (j,X) € §,, i.e. u; = uj.
We also have that u; = u} = v} for all k < |5, | trivially.

Inductive step For any k > 1 with uy > u;_,, suppose that u; = v} for any / < k and
Djx = gjx for any (j,x) € S, with [ < k. We prove thatu; =vyand g, = p;yifu;x = u}, i.e.
(. X) € S;. By the selection of Q, we know that u; < v}. Suppose for the sake of contradic-
tion that u < v;. For any (j,X) € S, let y be the least preferred bundle in {z|z >; x} W.I.L.
>; and its correspondmg index is (j, y). Then, we have that p;, = u; —u; . Letu; y- BY
the initial assumption that (v, u) € L, we have that p;, < g, for any (j, x) € S;, because

LOEY pa,y

Case (i’) if (j,y) € S;, then we have that / <k and u; > uj =v], and therefore
Pjx = U —u; <Vi — v} = g, The assumption that u < v} imphes that Pix <jx
Case (ii’) if (j,y) € Sy, then uj = w and p;, =0 < g;4.

W.lLo.g. let x satisfy p;, < g;. We know X is unavailable at time u in the execution of

MPS because of exhausted items in it. Let B, be the set of items exhausted at time u;.
For any o € B;, we have that
pa,z = Z qa,z’

(a,2)€EV,S).0€2 (a,z)eV,,;S,.0€2
8 (17)
Z Pazt Z Paz =1
(a,2)€V, . S;,0€2 (a,2)ES;,0€2

Thus we see that Zw’z)eu’g s0ex daz > 2 2)eU,, S 0ex Paz = 1 fOr some o € By, which is a
contradiction. Therefore, it follows that u; = v; and p;, = g; for any (j,x) € S by Cases
(i) and (ii’). We also know that u} = u; = v} for any [ with k <1 <k + [S;|.

By induction, we have that v;: = ”Z for any k, i.e. u=v, and 9ix =Pjx for any j €N
and x € 7, i.e. P = Q. Together we have that P is the unique leximin-optimal assignment
for the given MTRA, which means that MPS is the unique mechanism which satisfies
leximin-optimality.

@ Springer



Autonomous Agents and Multi-Agent Systems (2021) 35:15 Page350f48 15

(II) item-wise ordinal fairness We use the relationship between time and consump-
tion during the execution of MPS in the proof and to show uniqueness. Given any MTRA
(N, M) and the preference profile R, let P = MPS(R) in the following proof.

Satisfaction For an arbitrary agent j and bundle x, letr, = ), UG Pia: Assume for the

sake of contradiction that for every o € x, there exists an agent k and a bundle y such that
0EY, Pry > 0, and ty = zzeum,y) Prz > ty. From the relation of time and consumption,
we know that at time 7, X is unavailable and therefore the supply of some item in X is
exhausted.

Now, let us fix o’ € x to be an item that is exhausted at time #, when x is unavailable.
By our assumption, we know that there exist a bundle w and an agent [ such that o’ € w,
Py >0,andr, =3 o U-,w Piz > Ix- By the assumption, we know that w is available dur-
ing [0, ¢,] and £, > t,, which also means that o’ € w is not exhausted after 7, a contradic-
tion to o is exhausted at time ¢,.

Uniqueness Suppose that Q # P is an item-wise ordinal fair assignment for the sake of
contradiction. Let #; be the smaller quantity among ZZGU(%X) pj, and Zzeu(%x) q;,, for any
agent j and bundle x. Let ¢ be the smallest among the set
T={txljeEN,xe P, Zzey(%x) Piz # Zzey(%x) gj,}- We note T is not empty because P
and Q are different.

Now, w.l.o.g. let agent j and x satisfy that 7;, =7, and we have that p;, # g;5 and
pk,y = Qk,y for (k’ Y) ES= {(k’ Y)| ZzEU(>k,y).qj,z < t}'

We first consider the case that p;; < g;,i.e.1= Y which means that agent j

2€UG;x) P>
gets a greater share of x in O and therefore demands moré supply of item contained in x.
We also know that in P there exists an item o € x exhausted at ¢ which makes x unavaila-
ble. It means that the supply of o is also used up in Q by assigning bundle y to agent k for
some (k,y) € S. Therefore, the extra demand of o for agent j on bundle x comes from the
share of some bundle y with o € y held by agent k such that (k,y) € S, which means that
iy < Dyy- & contradiction.

Then we consider p;, > g;yie. t=3,. UG, 4.2 DOW,s which means that agent j gives
up some shares of x in Q, and thus for any o € x, we can find some agent k and bundle y
containing o such that k gains a greater share of y in Q, i.e. ¢y, > p;y = 0. By the selection
of j and x, we have that .. \ g, > 1= ZZE(%X) q;,- We claim that 3, g, > 1.
Otherwise, if ¥, \ ;, =1=t;,, then we have that 3, | g;, <t for w>,y ie.
(k,w)€ S, and therefore pyy =¢qy. With gy >pg,, it follows that
Ycm iz > Lae(-,.w Pia» Which contradicts the selection of 7 ,,. Therefore, we have
that 2 e v) 9z > EAZE(>PX) q;,- a contradiction to the assumption that Q is item-wise ordi-

nal fair.
Together, we have that 7 = p;, = q;4, which contradicts the fact that 7 is the smallest
among the set 7 and completes the proof. O

6 Conclusion and future work

In this paper, we have showed that it is impossible to design sd-efficient and sd-envy-free
mechanisms with decomposable outputs for MTRAs with indivisible items under the unre-
stricted domain of strict preferences over bundles. Fortunately, under the natural assump-
tion that agents’ preferences are lexicographic, this impossibility result is circumvented,
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as we have showed by proposing the LexiPS mechanism and proving that it is able to deal
with indivisible items while satisfying the desirable efficiency and fairness properties of
sd-efficiency and sd-envy-freeness.

For divisible items, we have showed that the existing MPS mechanism satisfies the
stronger efficiency notion of lexi-efficiency in addition to sd-envy-freeness under the unre-
stricted domain of linear preferences, and is sd-weak-strategyproof under lexicographic
preferences, which complement the results in Wang et al. [42]. In addition, we have pro-
vided two characterizations of MPS with leximin-optimality and item-wise ordinal fair-
ness, respectively.

Characterizing the domain of preferences under which it is possible to design mecha-
nisms for MTRAs with indivisible items that are simultaneously fair, efficient, and strat-
egyproof is an exciting topic for future research. Another interesting direction is character-
izing mechanisms satisfying sd-efficiency and sd-envy-freeness with other combinations of
desirable properties [17] for MTRAs with divisible items. In addition, it is also an exciting
avenue for future research to develop efficient and fair mechanisms for natural extensions
of the MTRA problem such as settings where there are demands for multiple units of each
type, or initial endowments.

Appendix
Proof of Proposition 1

To prove the tightened impossibility result for MTRAs, we construct a profile R of LP-tree
preferences below.

First, we provide >, as an example of LP-tree preferences in the form of a rooted
directed tree. Notice that the node labeled by F has a preference 1, >f 2 attached to it
and the outgoing edges from this node are labeled by items 1 and 2, respectively. We also
note that the types F and B occur once on each branch.

1 B
Agent Preferences 1 >4 25 E G 1p>1 25
1 1rlp =112 =1 2F2p =1 2r 1B 0
2 1p2p =2 1plp =2 2plp =2 2F2p
2 e 25 8 1,

Now, we proceed with the proof. Suppose that f satisfies sd-weak-efficiency and sd-
weak-envy-freeness, and let Q = f(R). Suppose for the sake of contradiction that Q is
decomposable. Then, it must be possible to represent Q in the form below.

Agent o

Iplg 125 2p1p 2p2g
1 v w y b4
2 z y w v

We now show that such an assignment does not exist. We observe that by our
assumption of sd-weak-efficiency and agent 1’s preference, it is not possible for agent 1
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to get shares of 12, and 251, simultaneously, i.e. either y or w is O, or they are both 0.
Otherwise, she can improve her allocation by getting shares of 11, and 2,25 which she
prefers to 1,25 and 21, by swapping the items 25 and 15 in 1525 and 2515, respectively
with agent 2. From agent 2’s preferences, we observe that this swap is also preferred by
agent 2. By the same token, agent 2 does not get shares of 1,1 and 2,2, simultaneously,
i.e. either v or z is 0, or they are both 0.

Due to v+w+y+z=1, we see that not all of them are 0. Hence, we consider
the cases where three of them are 0, which mean that Q is a discrete assignment. The
assignments that assign any agent with her least preferable bundle, i.e. 2,1, to agent 1
or 225 to agent 2, are excluded because it violates sd-weak-envy-freeness, which means
y =v = 0. The other possible cases are: If w # 0, i.e. Q assigns 125 to agent 1 and 251,
to agent 2, then agent 2 envies agent 1 due to 1,25 >, 215. If z# 0, i.e. Q assigns 2,2,
to agent 1 and 11, to agent 2, then agent 1 envies agent 2 due to 1,15 >, 2525. Both
cases violate sd-weak-envy-freeness.

Then we consider the cases with the restriction that two of v, w, y, z are 0, and we list
all the cases with possible combination of them as follows and briefly explain why they
fail to meet the restriction.

v # 0,y # 0: there exists a generalized cycle {(2525,271p), 2plg, 2:25)}.

v # 0,w # 0: agent 1 envies agent 2 due to the fact that Q; # Q, and Q, zg’ 0,.

y # 0,z # 0: agent 2 envies agent 1 due to the fact that 0, # Q, and O, >} 0.

w # 0,z # 0: there exists a generalized cycle {(1,15, 1525), (1525, 1515)}.

By Proposition 2 (1), the existence of generalized cycle means violating sd-effi-
ciency, which is also sd-weak-efficiency in the MTRA here because there are only two
agents. Similar to Theorem 1, we can extend this case with contradiction to the one with
d > 2 types and n > 2 agents. Therefore, we can conclude that such a mechanism f does
not exist. O

Proof of Lemma 1

Proof First we show that if g satisfies the condition (i), it also satisfies the condition (ii)
because from the Eq. (2) which computes the shares of bundles assigned by LexiPS, we
have that forany 2 <iandw € D| X --- X D,

Y s =Hp§,g =Hqig =Y 4

XEZ,, g<h g<h X€EZ,,

Then we prove the lemma when ¢ satisfies the condition (ii). By the condition, we have

that for any 2 < i,
> =2 D P

N e x>y X€2y, 1
(18)
= E E qx = E qx
- h
x>y X€Zy, vy XEKXEZ@A’%SIH Fe "3}

Besides, since > is a lexicographic preference, we can take apart the upper contour set
U(>,y) and have that:
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DI XE D Y D Y N

xeU(>.y) xe{x|x; >y, } xe{er(yl)|x2>2y2}

ot > Y

XE(XEZ,,), ., =1y ) X€Z,, NUC-y)

19)
dh<i-1

We can derive a similar equation for ¢ similar to the Eq. (19). Let S = Z(}/)/< N Uc,y).
With Eq. (18), we see that if ), _¢p, > X\ ¢y, ie. the inequality (3), then we have

Yxet-y) Px 2 Dixet>y) 9x- In the same way, if Yo o o Py > Dicpyy) 9xo then we have
Dces Px = Dxes 9x by the Egs. (18) and (19). Together we prove the lemma. O

Proof of Claim 1 in Theorem 2

Proof We prove the claim for each individual agent j. For ease of exposition, we label the
types as 1 &; 2 &; --- >; d. Then we need to prove that Q’ P’ if Q! >5d P! for agent j. Sup-
pose for the sake of contradlctlon that Q' # P; Let N, denote the set of agents who con-
sume items of type i in Phase i and N denote agents consume items of type i after Phase i.
It is easy to see that j € N,. Given P‘ we use P’ = (P! )JeN to denote the partial assignment
for agents in N;. Now, we try to construct Q‘ from P’ by transferring shares of bundles
among agents. Notice that agent k € N \ (N; U N}) who obtains items of type i before Phase
i does not trade shares with agents in N; U N because it means that i &> i, and we have that
Q’ = P’ by the condition. Therefore, in order to make Q’ # P’ we just consider the share
transferring among agents in N; U N/ ! containing j. Then we show that any possible way of
share transferring leads to a contradictlon

(1) If the share transferring only involves agents in »,, then we have Q’ >sd P’ How-
ever, from Algorithm 1, we learn that agents in V, obey the rule of PS when consum-
ing the items of type i left in Phase i, and therefore we have that P’ is sd-efficient
with the available items of type i in Phase i. With this and iji > P’ we have that
Q;\,i = Piv,- where j € N,, a contradiction to Q]’. # P]’..

(ii) Suppose that the share transferring also involves agents in N. Let o/ be the least
preferred item agent j gets in P! according to >'. Then the best items of type i w.r.t.
> that agents in N' may have in P! is 0 because from Algorithm 1, we learn that
agents in N’ consume items of type i after agent j. By Q' >* Piand the assumption
Qj’ # Pi there exists 0; such that p; < qj,a, and Z(»/Ui o = ZU> o @ip 1 0; > 0,

then the extra share of o, in ¢/ comes from agents in N, which is a contradlctlon to
sd- eff1c1ency of P’ as in the case (i). If 0, = 0 or o > o0;, then we see that

zer(> o)q Zer(> o)p = ZoeDi pj’o =1, Wthh isa contradiction.

Proof of Claim 2 in Theorem 2

Proof Lety = (¥¢)g<q be an arbitrary bundle. We define some notations with the condition
that p" = g"forh #i. Leta = H}Kipg = [1<i ¢’ Fori < h < d, we define
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p=T1r- 2=l 2 d

i<g<h  oxhy, i<g<h o>"y,
Specially for type d,
= g . d — g . d
po=1lr- 2 r=1la- X @
i<g<d oeU(>y,) i<g<d o0eU(>y,)
Since > is  lexicographic, we can deconstruct the shares over

7 ={xe Zy,),..,1x € UG-y} as follows:

Y b= > Pyt

xes xe{er@g)ySkl |x;>y; }
(20)
+ > et > Px-
XE{XEZ ), gy Wam1 >V} XE{XEZy, _,_ HEUC-43))

From the Eq. (2) which computes the shares of bundles assigned by LexiPS, we have that

for type i,
— i i
S | LA AL A
XE{XGZU‘OKH o>y, } g<i o>y, o>y,
fori<h<d,
— ho_ i
Px= Hpﬁg Y ph=api By
XE(XEZ ) 0y X000} g<h o>y,
and for type d,
— g d _ i
Px=]11Py- pa—a~py‘~ﬁd.
XE{XEZy,) K€Uy} g<d 0eU(>4,y,)

It is easy to see that we can derive similar equations for g to the ones above. Then, we can
rewrite the Eq. (20) as ngg Py =0 (oo, Ph+ P, Tichea fy), and it follows that
Yner dx = (X iy, 4+ q, - Yich<a By) similarly for g. Because p' >* ¢, which means

Zo>[yi PZ 2 Zo>"y,- l]; and Zer(>',y,~)pi) 2 Zer(>",y,-) qlu’ we have that ZXGQ/ Px 2 ZXE.@’ 4x-
1.€.

Rz 4

xEZ(y nUC-y) erb,g nUC-y)

¢g<i-1 Je<i-1

By Lemma 1, we have that 3 /. Px 2 Xcpi g 9x forany y, ice. p = g. O

Proof of Proposition 2 (1)

Proof The proof involves showing that any fractional assignment which is not sd-efficient
admits a generalized cycle. Let P be such a fractional assignment for a given MTRA. Then,
there exists another fractional assignment Q # P such that Q >*¢ P. We show that the set of
tuples which shows the differences between P and Q is a generalized cycle on P.
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Let N' = {j € N|P; # Q;} C N, and it follows that O > >‘d P and Q; # P, for any j € N'.
Let C be the set of tuples {(x,y)| For some j € N’,x > y 9ix > Pix> iy <pjy} At a high
level, we can learn all of the differences in shares of bundles between the assignments P
and Q from C. First we prove the following claim:

Claim 6 For every agent j € N/, there exists a bundle ¥ such that g;; > p; ; and for any y
with g, < p;y, ¥ > .

We prove it for an arbitrary agent j. Suppose for the sake of contradiction that there
exists a bundle y such that ¢;, <p;, and for any z >;y, g;, <p;,. This implies that
erU(%y) gjx < erU(%y) Pjx» Which is a contradiction to our assumption that O >* P.

Then we show that C is not empty. Consider an agent j € N". If g; > p;, and any
X € 7, then P; = Q;, a contradiction to the fact that j € N’. Thus there exists y with
gy < Pjy: Wthh means that there is a tuple (¥/,y) € C according to Claim 6. Therefore,
C # @ since P # Q. For any (x,y) € C, we have that (x,y) € Imp(P), due to the fact that
Djy > q;y = 0 by our construction of C, which implies that C C Imp(P).

Suppose for sake of contradiction that C is not a generalized cycle. Then we can
find an item o € w where w is the left component of some tuple in C such that o is
never in the right component of any tuple in C. Then, we have that g;,, > p;,, for any
j €N'. Otherwise, if for some agent k € N, p, , > ¢, >0, then we have that there
exists y¥ >, w by Claim 6, and therefore (y*, w) € C due to Prw > 0, which is a contra-
diction. Specifically, for any (w,z) € C, there exists some / € N’ such that g,,, > p;,,.
because otherwise we have that g;,, = p;,, for any j € N’ and therefore the tuple (w, z)
is not in C. We also have that g;,, = p;, trivially for j € N" by the assumption. We note
that the conclusions above about w also works for other bundles containing o which are
left components of some tuples in C. For any bundle y with o € y which does not occur
in any tuple in C, we have that ¢;, = p;  trivially for j € N by our construction of C.

Together, we have that Z/EN» vex Aix > Z/EN» vexPix = 1, a contradiction to our
assumption that Q is a fractional assignment. Thus C is a generalized cycle on P which
is not sd-efficient. a

Proof of Claim 3 of Proposition 2

Proof Recall that for each agent j € N’, the bundle ¥’ satisfies the condition that dixi > Pjx
and g;, = p; for x >; x/. Suppose for the sake of contradiction that the claim i 1s not true
for some agent j and 1tem o0 € ¥/, which means that for any k € N’ and y with x* >, y and
o €y, we have p; . = 0. We note that j and k here may refer to the same agent. We split the
set of bundles containing o into four parts, and we have that:

Z Pix = Z Prx + Z Pix + Z P xk + z Pixx

oex,keN 0€X.keN\N’ 0€EX kEN' x> XK oexk keN’ 0€X kEN' xk> x

A similar equation can be derived for }} . iy Gix- The first part is the bundles containing
o held by agents not in N’, the shares of which are equal in P and Q. The remaining parts
are the bundles containing o hold by N’. For each agent k € N’, we split bundles containing
o into three parts and compare their shares below:
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(i) The bundles which are preferred over x* by k, i.e. {x|x > x*}: Due to the fact that x
satisfies x >, x¥, we have g, , = p;, by the selection of x.
(ii) The bundle x* that contains o, if it exists: We note that not all the bundles x* with
k € N’ contains o. However, at least for agent j, we have that x/ contains o and
dixi > Pjxi
(iii) The bundles to which x* is preferred by £, i.e. {x|x* >, x}. Due to the fact that x
satisfies x* >, x, we have that drx = Prx = 0 by our assumption.

Therefore, we have that 1 = 3 oy Prx < Xoexien dhx = 1, Which is a contradlctlon It
means that for any agent j and item o € X/, there exist k € N’ and y such that x* >, y,0 € y
and p;, > 0. O

Proof of Proposition 3

Proof Consider an MTRA (N, M) and any preference profile R. Throughout, we use P to
refer to MPS(R). We first give a few observations about MPS which are helpful for under-
standing the following proof. We know that MPS executes multiple rounds which come to
an end when some items are exhausted and we label all the rounds by the time at which
they end. Let j be an arbitrary agent. Here we consider the set of rounds {r , 7y , ... } such
that at the end of each round %, in it, agent j stops consuming a bundle. We note that these
rounds are not necessarily continuous because agent j may not change her current most pre-
ferred bundles at the end of some rounds. W.l.o.g. letr, <7, ifb <b'.

Let x denote the bundle consumed by j at round ry, of MPS. Let f, = 0, and for any
round ry, let ;, be the units of time elapsed from the start of the mechanism till the end of
round r; . Then, by construction of MPS, we have that p;, =1, —1f, for any round r,
with b > 1. Specially, when b = 1, p; .« = 1 — 1, trivially. This implies that

b
I, =T, —Igy = b/z‘,l(’k,,, Iy, )= Z Djx- (21)

XeU(>;xkb)

For any round r; and y such that xks >y > xb+1, y is not consumed by j, i.e. Py =0.
Therefore, it must hold that y is unavailable by the end of round r; . Let ¢ denote the time at
which y becomes unavailable. Then,

1<, = Z Pix = Z Pjx- (22)

XeU(>;x*) x€U(>;.y)

With these observations we begin the proof. Suppose for the sake of contradiction that
there is a pair of agents j and k such P; zt“’ P,. Then, there exists a bundle y which satisfies
that erU(> y)pkx > erU(> y)pjx

Lett = ZXEU(>j,y) pixand? = eru(>j’y) Prx- It is easy to see that # < ¢/ by the assump-
tion. The rest of the proof involves showing that due to the construction of MPS, ¢ < ¢,
contradicting our assumption.

Now, let z be the least preferred bundle in the set {x € U(>;,y)|p;x > 0} for agent k.
Such a bundle z must exist. Otherwise, p,, = 0 for any x € U(>j, y), which implies that

= (0 < t, a contradiction.

Let ¢, be the time at which z becomes unavailable. Due to U(>j, z) C U(>j,y), we can
deduce that 1, < Eer(%Z) Pix < erU(>,.y) pix =t by the inequality (22). Also, we have
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that tzzzer(>k’z) Prx by the Eq. (21). By the selection of z, we have that
{x e U(>j,y)|pk,X > 0} € U(>,z). Therefore, we can deduce that

! = Z Prx < Z Prx = Iy

XE{XEU(>,.y)Ipix>0} xeU(>;.2)

This implies ' < t, < t, which is a contradiction to the assumption. Therefore we have that
P; z;d P, for any agents j and k, which completes the proof. O

Proof of Theorem 5

Proof Since in Proposition 2 we show that lexi-efficiency is equivalent to no-generalized-
cycle condition, we can prove the theorem by showing that an assignment satisfies no-gen-
eralized-cycle if and only if the assignment is the output of an eating algorithm.

Sufficiency This proof is similar to the idea of proof for Theorem 5 in [42]. Let P be
the output of an eating algorithm given a preference profile R. Suppose for the sake of
contradiction that P admits a generalized cycle C. We use #(0) to stand for the time when o
is exhausted in the eating algorithm and use Seq to denote a partial order on M such that o
Seq o' if 1(0) < t(o’) for any pair of items o and o'.

Let M' = {0 € M|o € x,(X,y) € C}and o’ € M’ be the item satisfying o’ Seq o for any
0 € M'. By the definition of generalized cycles, there is an improvable tuple (x,y) € C
such that o’ € y. It means that there exists an agent j € N such that x >;y and p;, > 0.
Hence, when agent j starts to consume y, the bundle x is unavailable with an item o € x
which is exhausted. We note that o € M’ due to the fact that (x,y) € C. Then, we have that
t(0) < t(0") and therefore o Seq o', a contradiction to the selection of o'.

Necessity Let R be an arbitrary preference profile and P be any assignment satisfying
the no-generalized-cycle condition w.r.t. R. For convenience, we define some quantities to
represent the state during the execution of a member of the family of eating algorithms
at each round. For ease of exposition, we use s to denote a round and s = () represents
the initial state before the start of execution. Let M® = M and 2° = 2. We define recur-
sively that B* = {o € M*!|there are no x,y € 7! witho € y and (x,y) € Imp(P)},
M* =M*"\ B°, and 7' = {x € D|for every 0 € X,0 € M*} be the available bundles in
M?. We note that B® # @ for any s with M*~! # . Otherwise, for any o € M~ there exists
(x,y) € Imp(P) with x,y € "' and 0 € y. We note that for any x € ' and 0 € x, it
follows that o € M*~!, and therefore Imp(P) is a generalized cycle, a contradiction. We use
u = min{s|M* = @} to denote the round where every item is exhausted and N(x, Z°) to refer
to the set of agents who prefer x best in the available bundles Z°. We have the following
claim with these new notations.

Claim 7 For an assignment P satisfying the no-generalized-cycle condition and any

0 € B,
Z Z Pixt 2 ij,x= Z ij,le-

oexxe? ! jeNx,2"™") oexxg¢ 2~ JEN 0€x,xe jeN

We can prove the claim with the fact that for any o € B’,
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2 Y Pat X XhaS X Xp=l

oexxe?! jeNx,7'™") oexxg 7'~ JEN 0EX.XEY JEN

and the equality must hold. Otherwise, there exist X,y € P2 landk e N (x, QH) such that
X >, y,0€yand Py > 0, which implies that o & B*, a contradiction.

With the observation in Claim 7, we specify an instance of Algorithm 3 with the fol-
lowing eating speed functions w;: for any s < u and % <t< i,

o L 1 P oex,o€B andjeNx, 2,
T o, otherwise.

From the design of algorithm, we know that items in B* decide which bundles in 2°~" are
consumed in the round s, and these items are not consumed after the round s. Note that
jeNx, 27" impliesx € 2L

We claim that the algorithm specified by the eating speed functions & = (®));, above
outputs P for the MTRA with preference profile R. Let Q be the output of the eating
algorithm. We prove that p;, = g; for any agent j and the bundle x € 27! containing
an item o € B° by induction on the round s.

Base case We prove that p;, =g, for any jEN, 0 € B! and bundle x with o € x.
For j € N(x, 2P) where x contains an item o € B!, we know that agent j consumes bun-
dle x which is available during the period [0, i], and therefore g;, > i U Dix =Djx-
By Claim 7, we have that

2 Z Pix < Z Z gix <1

0EX xeﬂo_zeN(x 90) 0EX xe?fj_/eN(x ]O)

which means that Y . o» ZJGN(X ) pr =Y exxed ZJGN(X o 4x- With g; > p;, for
any j € N(x, 2°) where x contains o € B!, the equation implies that Pjx = q;x> and we also

have that ¢, , = 0 for k & N(x, ) by Cla1m 7. Together they means that p;, = g;, for any
agent j € N, o € B! and bundle x with o € x.

Inductive step Assume p;, = g, for any j€ N, 0 € |J,.,B" and x € Z with 0 € x.
We prove that p;, = ¢;, forany j€N, 0 € B*' and x € 7' witho e x. If x & 7', then
there is an item o’ € x satisfying o’ € | J,, B, and therefore we have that p;, = ¢q;, by
the assumption. Then we show that pj,X =q;x for any j € N(x,Z'), 0 € B*landx e &
with o € x. By the assumption, any o' € M* is available with the supply of at least
Yoeyyes ZjeMyj@‘gf . at time r =3 Fromlthe algorithm, we know that agent j con-
sumes X durmg[ ] and therefore dix = = - Uu-p;x =P, Hence,

2 X Pt X ijx= 2 X Pt Y D4

0exxeZ' jEN(x,7") oexxg?’ jeN 0eXXED' JEN(X,7") oexxg?’ jEN
S X X dnt X Xansl
0eX,XED’ JEN(X,Z") oexxg?’ jeN

Then, by Claim 7, we have that

DD gt D D=1

0eXXEZ' jJEN(X,7") oexxg P’ jeN
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With g; > p; for any j € N(x, 9’) where x contains o0 € B**!, the equation implies that
Djx = gjx» and we also have that ¢, , = 0 for k & N(x, 2°) by Claim 7. Together they means
that p;, = ¢;, forany j € N,0 € B*'andx € 7’ witho € x.

By induction, we have that p;, =g¢;, for any jEN, 0 € Urs“ B" and x € Z with
o € x. This also means that P = Q, and it follows that the eating algorithm specified by
the eating speed functions @ = (@;),, exactly outputs the assignment P for the given
MTRA with R. O

Proof of Claim 4 in Theorem 6

Proof We know that each agent performs the following step repeatedly in PS: consuming
her most preferred and unexhausted item till it is exhausted. To prove the claim, we show
that agents in MPS performs the same step in each type i as they do in PS applied to just
the type i, i.e. for any i < d,j < n, agent j consumes her most preferred and unexhausted
item in type i while consuming her most preferred and available bundle. In the following
discussion, we use (0’, x\0) to denote the bundle replacing o with o’ in x.

W.Lo.g. we consider what agent j does in MPS for type i. At the beginning of MPS, the
bundle consumed by agent j, denoted by x', is her most preferred bundle w.r.t. >;. By Defi-
nition 7, the most preferred bundle contains agent j’s most preferred item in type i w.r.t.
>, This means that when agent j consumes x', she also consumes her most preferred item
0; = D,(x!). When the consumption of x! pauses, agent j turns to the bundle consumed
after x!, denoted by x>. We note that x> does not need to be the second preferred bundle
w.r.t. >;. There are two kinds of cases before consuming x2: (i) Dh(xl) is exhausted, & # i,
(ii) 0, is exhausted.

We claim that D,(x?) is the most preferred and unexhausted item in type i just after x'
is unavailable for both cases. For the case (i), the agent j°’s most preferred item in type i is
still 0,. We claim that 0, € x>. Otherwise, suppose that 0, = D;(x?) # 0,. Then o, >; 0.
Because D, ((0,,X*\0,)) = D,;,(x*) for h 1>; i and 0, = D;((0,,x'\0,)) >; D,(x?) = 0,, it fol-
lows that (0,,x*\0,) >; X*, which is a contradiction to the fact that x* is the most preferred
and available bundle for agent j after x! is unavailable. For the case (ii), let M, be the set of
unexhausted items just after x! is unavailable in MPS, and 0, € M, ) D; be agent j’s most
preferred and unexhausted item in D, w.r.t. >. We also note that 0, does not need to be the
second preferred item w.r.t. >I. By Algorithm 2, we know that 0, = D;(x?), and we can
obtain that x* >; (0},x*\0,) if 0}, € M, (] D; and 0}, # o,.

The claim in the previous paragraph can be applied to the general case when x* is una-
vailable and turns to x**!, and we have that D,(x**!) is always the most preferred and unex-
hausted item in type i just after x* is unavailable. We note again that x* does not need to be
the k-th preferred item w.r.t. >;, and x*1 only refers to the bundle consumed after x*. From
the argument above, we can observe that agent j consumes the bundle containing the most
preferred and unexhausted item in type i. This is exactly what agent j does in PS of type i.
This argument can be extended to any agent and any type. Thus, each single type fractional
assignment w.r.t. P which is the output of MPS is the same as the one produced by PS of
that type. O
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Proof of Claim 5 in Theorem 6

Proof Whenh <i=li.e. P} = le, the claim means that for S, = {x|x, € U(>},y1)},

DYoo= 2 = Y a,= 4

XES) 0€U(1y) 0eU(>] yy) X€S)

which is trivially true.
Suppose that the claim is true for # < i with i > 1. Given the conditions that P" = Q" for
h<iandQ zjs.d P, we have the following by the assumption: for any / < i,

Pix = Z 9jx:

hy, hy,
XE(XEZ, o>l XE(XEZ o>l

(23)

Then we prove the claim for i. Let y denote the least preferred bundle containing y,, ..., ;.

We can take apart erU(%y) Djx 1.€. agent j’s shares over U(>;,y) in P as:

DI D Y N 2 Pixt ,%,pf* (24)

1y o2y -1
XE{X|X|>j}| } XE{XEZ@])UP‘jh} xe{x€Zy,) ., |xi71>; Yiet}

We have a similar equation for erU(> 9 9ix We see that w >; z for any w € U(>;, y) \S;
and z € S;. W.l.o.g. let w denote the least preferred bundle in U(>;,y) \ S;. By the Egs. (23)
and (24), we have that X ;o o Pix=Dicuo.wx With  this  and

2er(>j,y) Pix < erU(%y) q;x implied by Q 2;‘1 P, we have that ersi Pix < ersi g;x- By

summing up each side over all the possible choices of y,, ..., y,_;, we have that
el l l = ces .
PIDEIDI DI NP I TR DI ISP
yio»n Vi1 XES; 5EUC-LY) XEUC-Ly) yio»n Vi1 XES;

With the condition that P; = 0/, we have that 2 U P, = ZXI_GU(%},[) g, With this

and ersi Pix < ersi gjx- it follows that ZXGS,- Pix = erSi gjx for S; with any y,, ..., ;.
O
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