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Abstract
In multi-type resource allocation (MTRA) problems, there are d ≥ 2 types of items, and n 
agents who each demand one unit of items of each type and have strict linear preferences 
over bundles consisting of one item of each type. For MTRAs with indivisible items, our 
first result is an impossibility theorem that is in direct contrast to the single type ( d = 1 ) 
setting: no mechanism, the output of which is always decomposable into a probability dis-
tribution over discrete assignments (where no item is split between agents), can satisfy both 
sd-efficiency and sd-envy-freeness. We show that this impossibility result is circumvented 
under the natural assumption of lexicographic preferences. We provide lexicographic 
probabilistic serial (LexiPS) as an extension of the probabilistic serial (PS) mechanism for 
MTRAs with lexicographic preferences, and prove that LexiPS satisfies sd-efficiency and 
sd-envy-freeness, retaining the desirable properties of PS. Moreover, LexiPS satisfies sd-
weak-strategyproofness when agents are not allowed to misreport their importance orders. 
For MTRAs with divisible items, we show that the existing multi-type probabilistic serial 
(MPS) mechanism satisfies the stronger efficiency notion of lexi-efficiency, and is sd-envy-
free under strict linear preferences and sd-weak-strategyproof under lexicographic prefer-
ences. We also prove that MPS can be characterized both by leximin-optimality and by 
item-wise ordinal fairness, and the family of eating algorithms which MPS belongs to can 
be characterized by lexi-efficiency.

Keywords  Multi-type resource allocation · Probabilistic serial · LexiPS · MPS · Fractional 
assignment · sd-efficiency · sd-envy-freeness

1  Introduction

In this paper, we focus on extensions of the celebrated probabilistic serial (PS) mecha-
nism [9] for the classical resource allocation problem [2, 9, 15, 33], to the multi-type 
resource allocation problem (MTRA) [32]. An  MTRA involves n agents, d ≥ 2 types 
of items which are not interchangeable, and one unit each of n items of each type. Each 
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agent demands a bundle consisting of one item of each type and has strict preferences 
over all bundles. MTRAs may involve divisible items, like land and water resources 
[38], and computational resources such as CPU, memory, and storage in cloud comput-
ing [18–22]. Items may also be indivisible, where each item must be assigned fully to a 
single agent, like houses and cars [39, 40], and research papers and time slots in a semi-
nar class [32].

Efficient and fair resource allocation for a single type of items ( d = 1 ) has been well 
studied [1, 9, 34, 46]. Our work follows the line of research initiated by Bogomolnaia 
and Moulin [9], who proposed the probabilistic serial (PS) mechanism. The PS mecha-
nism outputs a fractional assignment in multiple rounds by having all agents simultane-
ously “eat” shares of their favorite remaining items at a uniform and equal rate until 
some of the items are exhausted in each round. The remarkable properties of PS has 
encouraged several extensions: to the full preference domain, allowing indifferences 
[26, 28], to multi-unit demands [25], and to housing markets [3, 44].

PS is a popular prototype for mechanism designers due to the following reasons. (i) 
Decomposability: PS can be applied to allocating both divisible and indivisible items, 
since fractional assignments are always decomposable when d = 1 , due to the Birkhoff-
von Neumann theorem [6, 41]. In other words, a fractional assignment can be repre-
sented as a probability distribution over “discrete” assignments, where no item is split 
among agents. (ii) Efficiency and fairness: PS satisfies sd-efficiency and sd-envy-free-
ness which are desirable efficiency and fairness properties, respectively. They are based 
on the notion of stochastic dominance [9, 16]: given a strict preference relation over 
the items, an allocation p weakly stochastically dominates q, if at every item o, the total 
shares of item o and items strictly preferred to o in p, are at least the total shares of the 
same items in q.

Unfortunately, designing efficient and fair mechanisms for MTRAs with d ≥ 2 types is 
more challenging, especially because direct applications of PS to MTRAs fail to simultane-
ously satisfy the two desirable properties of efficiency and fairness discussed above.

First, decomposability (property (i) above) does not always hold for fractional assign-
ments in MTRAs as we show in the following example.

Example 1  Consider the MTRA with two agents, 1 and 2, two types of items, food (F) and 
beverages (B), and two items of each type {1F , 2F} and {1B, 2B} , respectively. We show that 
the fractional assignment P below, where agent 1 gets a share of 0.5 units of 1F1B and a 
share of of 0.5 units of 2F2B , is not decomposable. 

Agent P Agent P
′

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1 0.5 0 0 0.5 1 1 0 0 0
2 0 0.5 0.5 0 2 0 0 0 1

It is easy to see that the assignment P′ above is the only assignment where 1F1B is allo-
cated fully to agent 1. Since agent 1 has a share of 0.5 units of 1F1B in P, the probability for 
P′ ought to be 0.5. Therefore, agent 2 should be allocated a share of 0.5 units of 2F2B in P. 
However, agent 2 is not allocated 2F2B in assignment P. Thus, P is not decomposable. 	
� ◻
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A natural idea is to decompose MTRA into d single-type instances, one for each type 
of items, and then apply PS or other mechanisms separately to each of them. Unfortu-
nately, this does not work because it is unclear how to decompose agents’ combinatorial 
preferences over bundles into separable preferences over items of the same type. More 
importantly, even when there is a natural way to do so, e.g. when agents’ preferences 
are lexicographic and separable, meaning that every agent has an importance order over 
types to compare bundles and their preferences over a type do not depend on the items 
of other types, the following example shows that the fairness and efficiency properties 
(ii) above do not hold anymore.

Example 2  We continue to use the MTRA above and assume that agents’ preferences over 
{1F , 2F} × {1B, 2B} are the following: 

Agent Preferences

1 1F1B ≻
1
1F2B ≻

1
2F1B ≻

1
2F2B

2 1F1B ≻
2
2F1B ≻

2
1F2B ≻

2
2F2B

We note that both agents prefer 1F to 2F , and 1B to 2B . Agent 1 considers F to be more 
important than B, while agent 2 considers B to be more important. In this way, we can 
decompose this MTRA into two single type resource allocation problems for F and B, 
respectively. It is easy to see that for each single type the only sd-efficient and sd-envy-free 
assignment is to give both agents 0.5 units of each item, yielding the decomposable frac-
tional assignment Q by the mutual independence of each type. We show the assignments Q 
and Q′ in the following: 

Agent Q Agent Q
′

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1 0.25 0.25 0.25 0.25 1 0.25 0.5 0 0.25
2 0.25 0.25 0.25 0.25 2 0.25 0 0.5 0.25

However, Q is inefficient as the decomposable assignment Q′ stochastically dominates Q 
from both agents’ perspectives. 	�  ◻

As we have observed, the two desirable properties of PS for single type resource 
allocation no longer obviously hold for MTRAs. Recently, Wang et  al.  [42] proposed 
multi-type probabilistic serial (MPS) mechanism as an extension of PS for MTRAs 
with divisible items, and proved that MPS is sd-efficient for general partial preferences, 
sd-envy-free for CP-net preferences [12], and sd-weak-strategyproof for CP-net prefer-
ences with a trivial dependency structure where all the types are independent. How-
ever, MPS does not satisfy decomposability and it is unclear whether similar extensions 
of the PS mechanism can be applied to the efficient and fair allocation of indivisible 
items because the outcome may not be decomposable. This leaves the following natural 
question:
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How to design efficient and fair mechanisms for MTRAs with indivisible or divisible 
items?1

Our contributions For MTRAs with indivisible items, unfortunately, our impossibility 
theorem (Theorem 1) shows that no mechanism which satisfies sd-efficiency and sd-envy-
freeness is guaranteed to always output decomposable assignments, if agents’ preferences 
are allowed to be any strict linear orders over bundles. We also provide a tightened version 
of the impossibility result (Proposition 1). Fortunately, when agents’ preferences are lexi-
cographic, the impossibility theorem can be circumvented. To this end, we propose lexi-
cographic probabilistic serial mechanism (LexiPS) and prove that it satisfies many of the 
desirable properties of PS: it is guaranteed to output a decomposable assignment, satisfy 
sd-efficiency and sd-envy-freeness (Theorem  2), and satisfy sd-weak-strategyproofness 
when agents do not lie about their importance orders over types (Theorem 3).

For MTRAs with divisible items, we show that when agents’ preferences are linear 
orders over all bundles of items, the MPS mechanism proposed by Wang et al. [42] satis-
fies lexi-efficiency (Theorem 4) which is a stronger notion of efficiency than sd-efficiency. 
Indeed, we show that lexi-efficiency is characterized by the no-generalized-cycle condition, 
which is a sufficient condition for sd-efficiency but not a necessary one (Proposition 2). We 
also prove that every lexi-efficient assignment can be computed by some algorithm in the 
family of eating algorithms (Theorem 5), of which MPS is a member. Importantly, MPS 
retains sd-envy-freeness (Proposition 3), and when agents’ preferences are further assumed 
to be lexicographic, MPS satisfies sd-weak-strategyproofness (Theorem  6). Finally, we 
characterize MPS both by leximin-optimality and by item-wise ordinal fairness (Theo-
rem 7). However, the output of MPS is not always decomposable (Remark 4) even under 
lexicographic preferences, making it unsuitable for MTRAs with indivisible items.

Related work and discussions To the best of our knowledge, our paper provides the 
first results on designing efficient and fair mechanisms based on stochastic dominance 
for MTRAs with indivisible items. Budish et  al.  [13] considered the multi-unit demand 
resource allocation problem with constraints and provided a condition which guarantees 
that a constraint structure is universally implementable, but this result does not apply to 
MTRAs because their setting is different from ours as discussed below. Wang et al.  [42] 
considered MTRAs and Chatterji and Liu [14] and Nguyen et al. [35] considered a related 
problem of assigning bundles of multiple items of a single type, but they did not provide 
a decomposable mechanism that is both sd-efficient and sd-envy-free. Despite our impos-
sibility result for general MTRAs (Theorem  1), the LexiPS mechanism we provide and 
its properties allows us to deliver the following positive message: it is possible to design 
efficient and fair mechanisms for indivisible items under the natural domain restriction of 
lexicographic preferences.

MTRAs were introduced by Moulin [33], and were more recently explicitly formulated 
in the form presented in the paper by Mackin and Xia [32], who provided a characteriza-
tion of serial dictatorships satisfying strategyproofness, neutrality, and non-bossiness for 
MTRAs. In a similar vein, Sikdar et  al.  [39, 40]  considered multi-type housing markets 
[33].

Wang et al.  [42] studied fractional mechanisms for MTRAs when agents’ preferences 
may be partial orders. In that paper, MPS, MRP, and MGD are proposed as extensions 
of the famous probabilistic serial (PS) [9] and random priority (RP) [1] mechanisms for 

1  Note that for indivisible items, the (fractional) output of a mechanism must be decomposable.
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allocating items of a single type to MTRAs. Our results which describe the properties of 
MPS for MTRAs with strict linear preferences complement the results in [42] for partial 
preferences in the following aspects: 

	 (i)	 MPS satisfies sd-efficiency for the unrestricted domain of partial orders [42], while 
we prove that MPS satisfies lexi-efficiency, which is a stronger notion of efficiency 
than sd-efficiency, for the unrestricted domain of linear orders.

	 (ii)	 MPS satisfies sd-weak-strategyproofness when agents’ preferences are CP-nets with 
a trivial dependency structure such that all the types are independent [42], while we 
prove the result when agents’ preferences are lexicographic with possibly different 
importance orders on types.

	 (iii)	 We provide characterizations of MPS, which are not considered in [42].

Moreover, we show that no mechanism satisfies sd-efficiency, sd-envy-freeness, and 
decomposability simultaneously, even under strict linear preferences. Therefore, MPS, 
MRP, and MGD [42] also fail to satisfy all the three properties simultaneously. We prove 
that this impossibility result can be circumvented under the natural restriction of lexico-
graphic preferences by providing LexiPS as a mechanism for MTRAs with lexicographic 
preferences that satisfies all the three properties. To the best of our knowledge, the design 
of mechanisms satisfying all the three properties of efficiency, fairness, and decomposabil-
ity for MTRAs is not considered in [42] or other previous works.

Chatterji and Liu [14] and Nguyen et al.  [35] considered a problem closely related to 
the MTRA. In their setting, every item must be allocated to some agent, and agents may 
be allocated bundles consisting of multiple items and have strict preferences over bundles 
where the empty allocation may be preferred to some subset of possible bundles. We refer 
to the problem in their setting as the bundle assignment problem. Due to the fact that in 
MTRAs, agents have strict linear preferences over bundles consisting of one item of each 
type and prefer the empty allocation to all the other bundles, the MTRA is a special case 
of the bundle assignment problem. Chatterji and Liu [14] and Nguyen et al. [35] proposed 
the probabilistic serial rule for bundles (PSB) and bundled probabilistic serial (BPS) mech-
anisms respectively for the bundle assignment problem. When applied to MTRAs, MPS 
[42] is similar to PSB and BPS because all the three mechanisms have agents consume 
their current most preferred bundles till the bundles are unavailable before turning to other 
bundles. Although MTRA is a special case of the bundle assignment problem, and the 
MPS mechanism is similar to the PSB and BPS mechanisms, our results are complemen-
tary and not directly comparable to the results in these previous works: 

(i)	 Chatterji and Liu [14] and Nguyen et al. [35] proved that PSB and BPS satisfy sd-
efficiency for the bundle assignment problem, respectively, whereas we prove that 
MPS satisfies lexi-efficiency for MTRAs which is a stronger notion of efficiency than 
sd-efficiency.

(ii)	 Technically, the stronger efficiency guarantee of MPS is due to our characterization 
of lexi-efficiency by the no-generalized-cycle condition which is similar to the strong 
unbalancedness condition [14], but strong unbalancedness does not have a similar 
characterization.

(iii)	 Chatterji and Liu [14] considered the domain restriction of essentially mononotonic 
preferences, which is incomparable to lexicographic preferences considered in our 
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work. Therefore, their results for the essentially monotonic domain of preferences do 
not directly apply to our setting.

(iv)	 Additionally, while PSB is not sd-weak-strategyproof for the bundle assignment prob-
lem [14], we prove that MPS is sd-weak-strategyproof for MTRAs when restricted to 
lexicographic preferences.

(v)	 Nguyen et al. [35] considered the implementation of the output of BPS for indivisible 
items in the relaxed economy where there are extra copies of items with free disposal. 
This is not comparable with decomposability of an assignment in our setting, where 
we do not have either free disposal or extra copies of items. Further, we prove that for 
general MTRAs, it is impossible to design an sd-efficient and sd-envy-free mechanism 
whose output is guaranteed to be decomposable.

Another related problem setting considered in Aziz and Kasajima [4],  Kojima [29], and 
Budish et al. [13], is the one where items are of a single type and agents may demand 
multiple units of items. We call it the multi-unit demand resource allocation problem. 
These works considered fractional assignments that consist of shares of items, which 
are fundamentally different from our work where we consider fractional assignments 
composed of shares of bundles for MTRAs. Specifically, a fractional assignment on 
items may imply different fractional assignments on bundles, each with possibly dif-
ferent properties. Importantly, the extension of the notion of stochastic dominance in 
terms of shares of items in these works is also fundamentally different from the notion 
of stochastic dominance for bundles in our paper, and they are not comparable. There-
fore, their results on notions of efficiency and fairness based on the stochastic domi-
nance do not apply to our setting. Kojima  [29] provided an extension of PS which is 
sd-efficient and sd-envy-free but not sd-weak-strategyproof, and an impossibility result 
that no mechanism can satisfy these three properties simultaneously in the multi-unit 
demand resource allocation problem. Aziz and Kasajima  [4] provided impossibility 
results involving sd-efficiency and sd-weak-strategyproofness for the problem. Bud-
ish et al. [13] considered the multi-unit demand resource allocation problem with con-
straints and provide two mechanisms, including an extension of PS named generalized 
probabilistic serial (GPS) which generalizes the one in Kojima [29]. The MTRA with 
divisible items may also be viewed as a version of the cake-cutting problem with mul-
tiple cakes [18, 27, 31, 36] and agents having ordinal preferences over combinations of 
pieces from each cake.

The lexicographic preference is a natural restriction on preference domain in resource 
allocation [19, 39, 40] and combinatorial voting [11, 30, 43]. Saban and Sethura-
man [37] showed that PS is efficient, envy-free, and strategy-proof under lexicographic 
preferences on allocations. Fujita et  al.  [19] considered the allocation problem which 
allows agents to receive multiple items and agents rank the groups of items lexicograph-
ically. Our work follows in this research agenda of natural domain restrictions on agents’ 
preferences to circumvent impossibility results in guaranteeing efficiency and fairness.

Structure of the paper The rest of the paper is organized as follows. In Sect. 2, we 
define the MTRA problem, and provide definitions of desirable efficiency and fairness 
properties. Section  3 is the impossibility result for MTRAs with indivisible items. In 
Sect. 4, we propose LexiPS for MTRAs with indivisible items under lexicographic pref-
erences, which satisfies sd-efficiency and sd-envy-freeness, and it is sd-weak-strategy-
proof when agents do not lie about importance orders. In Sect. 5, we show the proper-
ties of MPS for MTRAs with divisible items under strict linear preferences and provide 
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two characterizations for MPS. In Sect. 6, we summarize the contributions of our paper 
and discuss directions for future work.

2 � Preliminaries

An MTRA is given by a tuple (N, M) with a preference profile R. Let N = {1,… , n} be the 
set of agents and M = D1 ∪⋯ ∪ Dd be the set of all the items where Di is the set of n items 
of type i for each i ≤ d . For all h ≠ i , we have Di ∩ Dh = � . There is one unit of supply of 
each item in M. We use D = D1 ×⋯ × Dd to denote the set of bundles. Each bundle � ∈ D  
is a d-vector and each component refers to an item of each type. We use o ∈ � to indicate 
that bundle � contains item o. In an MTRA, each agent demands one unit of item of each 
type.

A preference profile is denoted by R = (≻j)j≤n , where ≻j represents agent j’s preference 
as a strict linear preference, i.e. the strict linear order over D . Let R be the set of all the 
preference profiles.

A fractional allocation is a |D|-vector, describing the fractional share of each bundle 
allocated to an agent. Let � be the set of all the possible fractional allocations. For any 
p ∈ � , � ∈ D  , we use p

�
 to denote the share of � assigned by p. A fractional assign-

ment is a n × |D|-matrix P = [pj,�]j≤n,�∈D , where (i) pj,� ∈ [0, 1] is the fractional share 
of � allocated to agent j for each j ≤ n, � ∈ D , (ii) 

∑
�∈D pj,� = 1 , fulfilling the demand 

of each agent j ≤ n , (iii) 
∑

j≤n,�∈Zo
pj,� = 1 , respecting the unit supply of each o ∈ M and 

Zo = {� ∈ D|o ∈ �} . For each j ≤ n , the j-th row of P, denoted by Pj , represents agent 
j’s fractional allocation in P. We use P to denote the set of all possible fractional assign-
ments. A discrete assignment A, is an assignment where each agent is assigned a share of 
one unit of a bundle, and each item is fully allocated to some agent2. It follows that a dis-
crete assignment is represented by a matrix where each element is either 0 or 1. We use A  
to denote the set of all the discrete assignment matrices.

A mechanism f is a mapping from preference profiles to fractional assignments. For any 
profile R ∈ R , we use f(R) to refer to the fractional assignment output by f and f (R)j refer 
to agent j’s fractional allocation in f(R) for any agent j ≤ n accordingly.

2.1 � Desirable properties

We use the notion of stochastic dominance to compare fractional assignments and recall 
the desirable notions of efficiency and fairness in [42] for MTRAs.

Definition 1  (stochastic dominance [42]) Given a preference relation ≻ over D , the sto-
chastic dominance relation associated with ≻ , denoted by ⪰sd , is a partial ordering over 
� such that for any pair of fractional allocations p, q ∈ � , p (weakly) stochastically 
dominates q, denoted by p ⪰sd q , if for any � ∈ D  , 

∑
�∈U(≻,�) p� ≥

∑
�∈U(≻,�) q� , where 

U(≻, �) = {� ∈ D|� ≻ �} ∪ {�}.

2  For for indivisible items, discrete assignments refer to deterministic assignments in the papers about ran-
domization.
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We also define sd : p sd q if p ⪰sd q is not true. The stochastic dominance order 
can also be extended to fractional assignments. For P,Q ∈ P and j ≤ n , we assume 
that agent j only cares about her own allocations Pj and Qj . If Pj ⪰

sd
j
Qj , agent j weakly 

prefers P to Q, i.e. P ⪰sd
j
Q . Therefore, we say that P weakly stochastically dominates 

Q, denoted by P ⪰sd Q , if P ⪰sd
j
Q for any j ≤ n . We also extend sd to assignments: 

P sd Q if P ⪰sd Q is not true. It is easy to prove that P ⪰sd
j
Q and Q ⪰sd

j
P if and only if 

Pj = Qj.

Definition 2  (sd-efficiency [42]) Given an MTRA (N, M) and a preference profile R, a 
fractional assignment P is sd-efficient if there is no other fractional assignment Q ≠ P such 
that Q ⪰sd

j
P for any j ≤ n . Correspondingly, if for any R ∈ R , f(R) is sd-efficient, then we 

say that mechanism f satisfies sd-efficiency.

Definition 3  (sd-envy-freeness [42]) Given an MTRA (N,  M) and a preference profile 
R, a fractional assignment P is sd-envy-free if Pj ⪰

sd
j
Pk for any two agents j, k ≤ n . Cor-

respondingly, if for any R ∈ R , f(R) is sd-envy-free, then we say that mechanism f satisfies 
sd-envy-freeness.

Definition 4  (sd-weak-strategyproofness [42]) Given an MTRA (N, M) and a preference 
profile R, a mechanism f satisfies sd-weak-strategyproofness if for any profile R ∈ R and 
agent j ≤ n , it holds that

for any R� ∈ R where R� = (≻�
j
,≻−j) and ≻−j denotes the preferences of agents in the 

set N ⧵ {j}.

Besides stochastic dominance, we introduce the lexicographic dominance relation 
[37] to compare pairs of fractional allocations, by comparing the components of their 
respective vector representations one by one according to the agent’s preference.

Definition 5  (lexicographic dominance) Given a preference relation ≻ and a pair of allo-
cations p and q, the lexicographic dominance relation associated with ≻ , denoted by ≻lexi , 
is a strict ordering over � such that p lexicographically dominates q, denoted by p ≻

lexi q , 
if there exist a bundle � such that p

�
> q

�
 , and for any � ≻ � , p

�
≥ q

�
.

Given assignments P and Q, we say Q ≻
lexi P if there exists a set of agents N′

⊆ N 
and N′ ≠ ∅ such that Qk ≻

lexi
k

Pk ( Q ≻
lexi
k

P for short) for any agent k ∈ N� and Qj = Pj 
for any agent j ∈ N ⧵ N� . Note that for two different assignments, stochastic dominance 
implies lexicographic dominance, but the converse does not hold.

Definition 6  (lexi-efficiency) Given a preference profile R, the fractional assignment P is 
lexi-efficient if there is no Q ∈ P such that Q ≻

lexi P . A fractional assignment algorithm f 
satisfies lexi-efficiency if f(R) is lexi-efficient for any R ∈ R.

Example 3  To compare lexicographic dominance with stochastic dominance, we revisit the 
MTRA in Example 2 and consider the relation of the following assignment Q and Q′′ : 

f (R�) ⪰sd
j
f (R) ⟹ f (R�)j = f (R)j
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Agent Q Agent Q
′′

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1 0.25 0.25 0.25 0.25 1 0.5 0 0 0.5
2 0.25 0.25 0.25 0.25 2 0.5 0 0 0.5

According to R in  Example  2, we have that Q′′ does not stochastically dominate Q, 
because 

∑
�∈U(≻1,2F1B)

q1,� = 0.75 > 0.5 =
∑

�∈U(≻1,2F1B)
q��
1,�

 . However, we have Q′′
≻
lexi Q 

because q��
1,1F1B

= 0.5 > 0.25 = q1,1F1B and q��
2,1F1B

= 0.5 > 0.25 = q2,1F1B , where 1F1B is the 
most preferred bundle for both agents. 	�  ◻

3 � Efficiency and fairness for MTRAs with indivisible items

In this section, we show an impossibility result in Theorem 1 that no mechanism satisfy-
ing sd-envy-freeness and sd-efficiency is guaranteed to output decomposable assignments. 
This is unlike the case of resource allocation problems with a single type of items, where 
by sd-envy-freeness of PS, every fractional assignment is decomposable, i.e. every frac-
tional assignment P can be decomposed into a probability distribution over the set of dis-
crete assignments A  as follows:

Here, each A is a discrete assignment that assigns each item wholly to some agent. We note 
that 

∑
A∈A �

A = 1 . It follows that such a decomposable assignment can be applied to the 
problem of allocating indivisible items as a lottery over A  where a discrete assignment 
A is selected with probability �A . This result does not necessarily hold in MTRAs, which 
leads to the impossibility result.

Theorem  1  For any MTRAs with d ≥ 2 where agents are allowed to submit any strict 
linear orders over bundles, no mechanism that satisfies sd-efficiency and sd-envy-freeness 
always outputs decomposable assignments.

Proof  Suppose for the sake of contradiction that there exists a mechanism f satisfying 
sd-efficiency and sd-envy-freeness and f(R) is always decomposable for any R ∈ R . We 
first provide a proof for MTRAs where there are d = 2 types and |N| = 2 agents, and then 
extend it to the general case. Let R be the following preference profile and Q = f (R).

Agent Preferences

1 1F1B ≻
1
1F2B ≻

1
2F2B ≻

1
2F1B

2 1F2B ≻
2
2F1B ≻

2
1F1B ≻

2
2F2B

We show that if Q is sd-envy-free and decomposable, it fails to satisfy sd-efficiency. 
There are only four discrete assignments which assign 1F1B, 1F2B, 2F1B, 2F2B to agent 1, 
respectively. Since Q is decomposable, it can be represented as the following assignment. 

P =
∑

A∈A

�
A
⋅ A.
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We also provide an assignment P which is not decomposable since it does not satisfy the 
constraints for Q.

Agent P Agent Q

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1 0.5 0 0 0.5 1 v w y z
2 0 0.5 0.5 0 2 z y w v

Here v,  w,  y and z are probabilities of these four discrete assignments which satisfy 
v + w + y + z = 1 . We trivially have that 

∑
�∈U(≻1,2F1B)

q1,� = 1 =
∑

�∈U(≻1,2F1B)
q2,� . In addi-

tion, we have the following inequalities by sd-envy-freeness in terms of agent 1:

Similarly, we have that y ≥ w and y + w + z ≥ w + y + v for agent 2. Thus w = y, v = z and 
v + w = y + z = 0.5 . Because Q is sd-efficient, P sd Q . Suppose that P sd

1
Q . Therefore, 

at least one of the following inequalities is true:

Since v = z ≤ v + w = y + z = 0.5 , none of the inequalities in (1) hold, which means that 
P ⪰sd

1
Q . With a similar analysis, we can also obtain that P ⪰sd

2
Q . Together we have the 

fact that P ⪰sd Q and P ≠ Q , which is contradictory to the assumption.
Now, we prove the theorem for the general case of MTRAs where d ≥ 2 and |N| ≥ 2 by 

constructing a profile R′ for arbitrary numbers of types d and agents n, by extending the 
profile R for the case of d = 2 and |N| = 2 we constructed above. We use i which ranges 
from 1 to d to refer to the types in the problem. W.l.o.g. we use F and B to denote types 1 
and 2, respectively. Let oi be an arbitrary item of type i, and o{i1,i2,…} be the partial bundle 
containing oi1 , oi2 , and other oh with h in brackets. For convenience, we define that o[h,i] 
refers to the partial bundle which contains oh, oh+1,… , oi for some type h ≤ i.

In R′ , agent k prefers the bundle k[1,d] to all the other bundles for any k ≥ 3 . For agents 1 
and 2, their preferences in R′ are as follows:

∑

�∈U(≻1,1F1B)

q1,� =v ≥ z =
∑

�∈U(≻1,1F1B)

q2,�

∑

�∈U(≻1,1F2B)

q1,� =v + w ≥ z + y =
∑

�∈U(≻1,1F2B)

q2,�

∑

�∈U(≻1,2F2B)

q1,� =v + w + z ≥ z + y + v =
∑

�∈U(≻1,2F2B)

q2,�

(1)

∑

�∈U(≻1,1F1B)

q1,� =v > 0.5 =
∑

�∈U(≻1,1F1B)

p1,�

∑

�∈U(≻1,1F2B)

q1,� =v + w > 0.5 =
∑

�∈U(≻1,1F2B)

p1,�

∑

�∈U(≻1,2F2B)

q1,� =v + w + z > 1 =
∑

�∈U(≻1,2F2B)

p1,�

∑

�∈U(≻1,2F1B)

q1,� =v + w + z + y > 1 =
∑

�∈U(≻1,2F1B)

p1,�
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Agent Preferences

1 1F1B1[3,d] ≻1
1F2B2[3,d] ≻1

2F2B2[3,d] ≻1
2F1B1[3,d] ≻1

 others
2 1F2B2[3,d] ≻2

2F1B1[3,d] ≻2
1F1B1[3,d] ≻2

2F2B2[3,d] ≻2
 others

It follows from our construction that in any sd-efficient and sd-envy-free assignment, 
agent k always gets the bundle k[1,d] for any k ≥ 3.

Now, let us consider the assignment Q� = f (R�) . It suffices to consider the partial assign-
ment Q�

{1,2}
 which only contains the allocations of agents 1 and 2 in the rest of the proof:

Agent Q
�
{1,2}

1
F
1
B
1[3,d] 1

F
2
B
2[3,d] 2

F
1
B
1[3,d] 2

F
2
B
2[3,d] others

1 v w y z 0
2 z y w v 0

It is easy to see that agents 1 and 2 can only get shares of the bundles containing 1i or 2i 
for type i. Moreover, we claim that, in the assignment Q′ , both agents do not have shares 
of any bundles that are not in the set D� = {1F1B1[3,d], 1F2B2[3,d], 2F2B2[3,d], 2F1B1[3,d]} 
because Q′ is sd-efficient. Suppose w.l.o.g. that agent 1 obtains s units of some bun-
dle � ∉ D

� in Q′ . Observe that � must contain one of the following partial bundles: 
1F1B, 1F2B, 2F1B or 2F2B.

We first consider the case the � contains 1F1B but � ≠ 1F1B1[3,d] . It means that agent 1 
obtains s units of � = 1F1B1{h1,h2,…,h|H|}

2{i1,i2,…,i|I|}
 for H = {h1, h2,…} and I = {i1, i2,…} 

with H ∩ I = � , H ∪ I = {3, 4,… , d} , and I ≠ ∅ . Then, by decomposability of Q′ , we can 
infer that agent 2 obtains s units of the bundle � = 2F2B2{h1,h2,…,h|H|}

1{i1,i2,…,i|I|}
 . However, 

agents 1 and 2 can obtain preferable allocations if they trade their shares of some par-
tial bundles in � and � . One specific way to achieve this is that agent 1 trades s units of 
2{i1,i2,…,i|I|}

 in � with agent 2 for 1{i1,i2,…,i|I|}
 in � . In this way, agents 1 gets s units of 1F1B1[3,d] 

instead of � and 2 get s units of 2F2B2[3,d] instead of � , and from their preferences in R′ , we 
know 1F1B1[3,d] ≻1 � and 2F2B2[3,d] ≻2 � . This is a contradiction to our assumption that f 
and therefore Q� = f (R�) is sd-efficient.

It is easy to see that this argument can be extended to the other cases when � 
contains 1F2B, 2F1B or 2F2B . This proves that the partial assignment Q�

{1,2}
 of the 

assignments to agents 1 and 2 only involves positive shares of the four bundles in 
D

� = {1F1B1[3,d], 1F2B2[3,d], 2F2B2[3,d], 2F1B1[3,d]} and 0 share of any bundles outside the 
set D′.

Then, by a similar argument to the case with d = 2 types and n = 2 agents above, we 
have a contradiction to our assumption that Q�

{1,2}
 is sd-efficient, sd-envy-free, and decom-

posable simultaneously, which also means that f fails to satisfy all the three properties. 	
� ◻

In Proposition 1 below, we provide a tighter version of the impossibility result in Theo-
rem 1, by showing that even under LP-tree preferences [11] which is a restriction on the 
domain of strict linear preferences, no mechanism that is guaranteed to output decompos-
able assignments can simultaneously satisfy sd-weak-efficiency [8, 23] and sd-weak-envy-
freeness [9] which are weaker notions of efficiency and fairness than sd-efficiency and 
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sd-envy-freeness, respectively. We define each of these notions formally below before stat-
ing Proposition 1. We use Di(�) to denotes the item of type i in bundle �.

LP-tree preference: a strict preference relation ≻ over D = D1 ×⋯ × Dd is an LP-tree 
preference if there exists a rooted directed tree (V, E) where (i) the node v ∈ V  is labeled 
by a type i with a strict linear order over Di attached to it, (ii) each type occurs only once 
on each branch, and (iii) each outgoing edge from v is labeled by an item of type i, such 
that for any two bundles �, � ∈ D  , � ≻ � if there exists a node v with type i which satisfies 
that og = Dg(�) = Dg(�) occurs on the path from root to node v for any type g labeling an 
ancestor of node v in the tree and Di(�) ≻

i Di(�) where ≻i is the strict linear order over Di 
attached to node v.

sd-weak-efficiency: a mechanism f satisfies sd-weak-efficiency if for any profile R ∈ R , 
there is no fractional assignment P such that for any agent j ≤ n , it holds that P ⪰sd

j
f (R) 

and |{k ≤ n|Pk ≠ f (R)k}| = 2.
sd-weak-envy-freeness: a mechanism f satisfies sd-weak-envy-freeness if for any 

profile R ∈ R , and for any two agents j, k ≤ n , it holds that f (R)k = f (R)j whenever 
f (R)k ⪰

sd
j
f (R)j.

Proposition 1  For MTRAs with LP-tree preferences, no mechanism that satisfies sd-
weak-efficiency and sd-weak-envy-freeness always outputs decomposable assignments.

The full proof of Proposition 1 is provided in “Proof of Proposition 1” in Appendix.

Remark 1  We note that all the three properties in Theorem 1, sd-efficiency, sd-envy-free-
ness, and decomposability, are necessary, i.e. there exist mechanisms satisfying any two of 
them. We show the example for each combination below: 

	 (i)	 sd-efficiency and sd-envy-freeness: Wang et al. [42] and Section 5 of the paper show 
that MPS is sd-efficient and sd-envy-free.

	 (ii)	 sd-efficiency and decomposability: The extension of serial dictatorship [32] for 
MTRAs outputs a Pareto-optimal discrete assignment for any preference profile. 
Such an assignment is sd-efficient and trivially decomposable.

	 (iii)	 sd-envy-freeness and decomposability: Let f be the mechanism which outputs the 
same assignment P where every agent gets 1∕|D| units of each bundle for any prefer-
ence profile. It is easy to check that P can be represented as a uniform distribution 
over all the possible discrete assignments. 	�  ◻

4 � MTRAs with indivisible items and lexicographic preferences

Faced with the impossibility results of Theorem 1 and Proposition 1, a natural question 
to ask is whether it can be circumvented under a reasonable restriction on the problem 
domain. In this section, we show that the natural domain restriction of lexicographic pref-
erences provides one such avenue. We develop LexiPS as a specialized mechanism for 
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MTRAs when agents’ preferences are lexicographic, and prove that LexiPS retains the 
desirable properties of PS, namely sd-efficiency and sd-envy-freeness, and is guaranteed to 
output decomposable assignments meaning that it can be applied to MTRAs with indivis-
ible items. An agent with a lexicographic preference over D has an importance order over 
the types and preferences over items of each type, and she compares two bundles by com-
paring the items of each type in the two bundles one by one according to her importance 
order on types, and prefers the bundle with the preferable item of the most important type 
at which the two bundles have different items. We define the lexicographic preference rela-
tion formally below. Before we begin, we note that we use the following notation through-
out: Di(�) refers to the item of type i in the bundle � for any � ∈ D  and i ≤ d.

Definition 7  (lexicographic preference relation) A strict preference relation ≻ over 
D = D1 ×⋯ × Dd is lexicographic if there exist (i) an importance order, i.e. a strict linear 
order ⊳ over types {1,… , d} and (ii) for each type i ≤ d , a strict linear order ≻i over Di such 
that for any two bundles �, � ∈ D  , � ≻ � if there exists a type i satisfying Di(�) ≻

i Di(�) 
and Dh(�) = Dh(�) for any h ⊳ i.

We note that although lexicographic preference relation and lexicographic dominance 
look similar, a lexicographic preference relation is used to compare bundles and repre-
sent agents’ preferences, while lexicographic dominance is used to compare allocations or 
assignments consisting of shares of bundles. For any agent j ≤ n , her preference ≻j is lexi-
cographic if there exists an importance order ⊳j and strict linear orders ≻i

j
 similar to Defini-

tion 7. For example, the preference 1F2B ≻ 1F1B ≻ 2F2B ≻ 2F1B is lexicographic with the 
importance order F ⊳ B and strict linear orders 1F ≻

F 2F and 2B ≻
B 1B over the types F 

and B, respectively. If every agent has a lexicographic preference in an MTRA, then we say 
that it is an MTRA with lexicographic preferences.

4.1 � The LexiPS mechanism

Before going any further with LexiPS, we introduce some notations for ease of exposition. 
We use Pi to denote the fractional assignment of items of type i w.r.t. P. The assignment 
Pi is a |N| × |Di| matrix with pi

j,o
=
∑

o∈�,�∈D pi,� representing the total shares of bundles 
containing items o of type i and consumed by agent j. To distinguish from single type frac-
tional assignments, we refer to the fractional assignments for MTRAs as multi-type frac-
tional assignments. Besides, for o ∈ Di , we overload the notation of the upper contour set 
U(≻i, o) to refer to the items of type i that are either strictly preferred or equal to o w.r.t. ≻i.
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In the LexiPS mechanism, agent j always consumes her most preferred item oj with pos-
itive supply in the current most important type. Agent j consumes oj until one of the fol-
lowing occurs: 

	 (i)	 There is no supply of oj left, after which agent j stops consuming oj and starts to 
consume her most preferred item according to ≻i

j
 that is currently with positive sup-

ply.
	 (ii)	

∑
o∈Di

pi
j,o

= 1, oj ∈ Di , after which agent j turns to her next most important type 
according to ⊳j and starts consumes her favorite item that is with positive supply of 
that type.

    After consumption, we obtain Pi for each type i ≤ d . By the construction, the allocation 
for each type is made independently, and therefore we construct the assignment matrix P 
by computing each element as follows:

LexiPS runs in d phases. In each phase, each agent j identifies current most important type 
ij and only consumes items of type ij . The time t for each phase is one unit. At the begin-
ning of each phase, we set the timer t = 0 . During the consumption, agent j ∈ Ni , where Ni 
is set of agents whose current most importance type is i, first decides her most preferred 
unexhausted item topi(j) of type i according to ≻i

j
 . Here we say that an item o is exhausted 

if the supply supply(o) = 0 . Agent j consumes the item topi(j) at a uniform rate of one unit 
per unit of time. The consumption pauses whenever one of the items being consumed 
becomes exhausted. That means agent j’s share of topi(j) is increased by � , the duration 
since last pause, and the supply of item o, i.e. supply(o) is computed by subtracting � for 
consumers(o) times, the number of agents j such that topi(j) = o . In Algorithm 1, � is com-
puted as mino∈M

supply(o)

consumers(o)
 . After this, we increase the timer t by � , identify topi(j) for each 

agent, and continue the consumption. The current phase ends when the timer t reaches 1, 
and the algorithm starts the next phase.

(2)pj,� =
∏

o=Di(�),i≤d

pi
j,o
.
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We demonstrate how LexiPS outputs decomposable assignments that also satisfy sd-
efficiency and sd-envy-freeness using a simple example first, by describing the execution 
of LexiPS on the MTRA from Example 2 where agents have lexicographic preferences. In 
the first phase, agent 1 picks her most preferred item 1F of her most important type F, and 
agent 2 picks 1B of her most important type B. In the second phase, agents 1 and 2 can only 
pick the remaining items to meet their demand of one bundle consisting of one unit of each 
type, i.e. 2B and 2F , respectively. Therefore, LexiPS outputs the following assignment: 

Agent 1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1 0 1 0 0
2 0 0 1 0

It is easy to check that the output of LexiPS for this MTRA is decomposable, sd-effi-
cient, and sd-envy-free. In Theorem 2, we show that LexiPS always outputs decomposable 
assignments that satisfy sd-efficiency and sd-envy-freeness R ∈ R.

We illustrate the execution of LexiPS further in Example 4.

Example 4  Consider an MTRA (N,  M) where N = {1, 2, 3} , 
M = DF × DB,DF = {1F , 2F , 3F} , DB = {1B, 2B, 3B} , and the profile R = {≻1,≻2,≻3} . The 
preferences ≻1,≻2,≻3 are as follows: 

Agent Preferences

1 F ⊳
1
B, 1F ≻

F
1
2F ≻

F
1
3F , 1B ≻

B
1
2B ≻

B
1
3B

2 F ⊳
2
B, 1F ≻

F
2
2F ≻

F
2
3F , 1B ≻

B
2
3B ≻

B
2
2B

3 B ⊳
3
F, 1F ≻

F
3
2F ≻

F
3
3F , 2B ≻

B
3
3B ≻

B
3
1B

The execution of LexiPS is shown in Fig. 1. In Phase 1, agents 1 and 2 consume items in 
DF , while agent 3 consumes alone in DB . Therefore, agent 3 gets her most preferred items 
2B in DB fully, and 1B and 3B are left. Since agents 1 and 2 have the same preference for DF , 
each of them obtains 0.5 units of 1F and 0.5 units of 2F , and 3F is left. Similarly in Phase 2, 
agents 1 and 2 prefer type B while agent 3 prefers F. Then agent 3 gets the remaining item 
3F , and agents 1 and 2 divide 1B and 3B uniformly according to their preferences. The fol-
lowing table shows agents’ allocations of items after each phase: 

Fig. 1   Execution of LexiPS in Example 4
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Agent Phase 1 Phase 2

1 0.5 of 1F , 0.5 of 2F 0.5 of 1B , 0.5 of 3B
2 0.5 of 1F , 0.5 of 2F 0.5 of 1B , 0.5 of 3B
3 1 of 2B 1 of 3F

 According to line 11 of Algorithm 1, the output is the multi-type assignment P below (To 
save space, from here on, we omit columns corresponding to bundles for which every agent 
receives 0 share.): 

Agent P

1
F
1
B

1
F
3
B

2
F
1
B

2
F
3
B

3
F
2
B

1 0.25 0.25 0.25 0.25 0
2 0.25 0.25 0.25 0.25 0
3 0 0 0 0 1

 It is easy to check that P is decomposable. 	�  ◻

4.2 � Properties of LexiPS

In this subsection, we show in Theorem 2 that similarly to PS, LexiPS satisfies properties 
of efficiency and envyfreeness based on our extension of stochastic dominance for MTRAs 
under lexicographic preferences, and additionally, the output of LexiPS is always decom-
posable and therefore can be applied to MTRAs with indivisible items.

Before we begin, we introduce some notations for convenience. Given a fractional allo-
cation p, we define pi to be the fractional allocation of items of type i as an n-vector with 
each component corresponding to an item o ∈ Di , whose value is pi

o
=
∑

o∈�,�∈D p
�
 repre-

senting the total shares of bundles containing o. We also define a partial bundle containing 
a single item of each type in any set of types H ⊆ {i|i ≤ d} to be the vector � ∈

∏
i∈H Di . 

For any (partial) bundle � , we use wi = Di(�) to denote the item of type i in the bundle � . 
For any partial bundle � ∈

∏
i∈H Di , we define Z

�
 as the set of bundles which contain all 

the items in � , i.e. Z
�
= {� ∈ D|for all i ∈ H, xi = wi} . We use oi to refer to an item o of 

type i to make the type of the item clear in the exposition. To show the items in a (partial) 
bundle with items from the types in H directly, we use (oi)i∈H to denote the bundle contain-
ing items oi of each type i ∈ H . W.l.o.g. let Z() = D , where () is the partial bundle which 
does not contain any items.

Before proving  Theorem  2, we provide Lemma  1 which is useful for comparing two 
allocations over an upper contour set. The full proof of Lemma 1 is in “Proof of Lemma 1” 
in Appendix.

Lemma 1  Let ≻ be any lexicographic preference relation with importance order 
1 ⊳ 2⋯ ⊳ d , and p be a fractional allocation where p

�
=
∏

h≤d p
h
xh

 . Let q be a factional 
allocation which satisfies one of the following conditions:

	 (i)	 q
�
=
∏

h≤d q
h
xh

 , and there exists a type i ≤ d such that ph
o
= qh

o
 for any h < i.

	 (ii)	 there exists a type i ≤ d such that 
∑

�∈Z
�

p
�
=
∑

�∈Z
�

q
�
 for any h < i and 

� ∈ D1 ×⋯ × Dh.
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Then, for any bundle � , it holds that

if and only if 
∑

�∈U(≻,�) p� ≥
∑

�∈U(≻,�) q�.

Example 5  We illustrate Lemma 1 with the allocation q which satisfies the condition (ii) of 
Lemma 1. Given an MTRA with DF = {1F , 2F} and DB = {1B, 2B} , let ≻ satisfy the condi-
tions F ⊳ B , 1F ≻

F 2F , and 1B ≻
B 2B . Suppose that for type F, the allocations p and q sat-

isfy that 
∑

�∈Z(1F )
p
�
=
∑

�∈Z(1F )
q
�
 and 

∑
�∈Z(2F )

p
�
=
∑

�∈Z(2F )
q
�
 . Let � = 2F1B and we have 

that {�|DF(�) ≻
F 2F} = Z(1F) and Z(2F ,1B) ∩ U(≻, �) = {�} . Then, if ∑

�∈U(≻,�) p� ≥
∑

�∈U(≻,�) q� , it holds that p
�
≥ q

�
 because

With this, we can also prove that 
∑

�∈U(≻,�) p� ≥
∑

�∈U(≻,�) q� if p� ≥ q
�
 . 	�  ◻

With Lemma 1, we show the three properties of LexiPS in the following Theorem 2.

Theorem 2  For MTRAs with lexicographic preferences, LexiPS satisfies sd-efficiency and 
sd-envy-freeness. Especially, LexiPS outputs decomposable assignments.

Proof  Given an MTRA (N,  M) and profile R of lexicographic preferences, let 
P = LexiPS(R) . For ease of exposition, we divide the proof into three parts, one each to 
show that LexiPS satisfies sd-efficiency, sd-envy-freeness, and is guaranteed to output 
decomposable assignments respectively.

Part 1 [sd-efficiency] Suppose for the sake of contradiction, we suppose that there exists 
an assignment Q ≠ P such that Q ⪰sd P . Then, for any agent k ∈ N , Q ⪰sd

k
P , and there 

exists an agent j who strictly prefers her allocation in Q to the one in P, i.e. Qj ⪰
sd
j
Pj and 

Qj ≠ Pj . W.l.o.g, let the types be labeled according to ⊳j as 1 ⊳j 2 ⊳j ⋯ ⊳j d.
We show that Qj = Pj by proving the following equation by mathematical induction on 

the types: for any i ≤ d and o1,… , oi,

Base case We prove the Eq. (4) for i = 1 , which is equivalent to Q1
j
= P1

j
 . First we show 

that Q1 ⪰sd
j
P1 . Suppose it is false, and then there must exist an item y1 and the least pre-

ferred bundle � containing y1 w.r.t. ≻j such that

This is a contradiction to our assumption that Q ⪰sd
j
P . Having shown that Q1 ⪰sd

j
P1 , our 

claim that Q1
j
= P1

j
 follows from Claim 1 below. We provide the proof of Claim 1 in “Proof 

of Claim 1 in Theorem 2” in Appendix.

(3)
∑

�∈U(≻,�)∩Z(yh )h≤i−1

p
�
≥

∑

�∈U(≻,�)∩Z(yh )h≤i−1

q
�
,

∑

�∈U(≻,�)

p
�
=

∑

�∈Z(1F )

p
�
+ p

�
=

∑

�∈Z(1F )

q
�
+ p

�
≥

∑

�∈Z(1F )

q
�
+ q

�
=

∑

�∈U(≻,�)

q
�
.

(4)
∑

�∈Z(oh )h≤i

pj,� =
∑

�∈Z(oh )h≤i

qj,�.

∑

�∈U(≻j ,�)

pj,� =
∑

o∈U(≻1
j
,y1)

pj,o >
∑

o∈U(≻1
j
,y1)

qj,o =
∑

�∈U(≻j ,�)

qj,�.



	 Autonomous Agents and Multi-Agent Systems (2021) 35:15

1 3

15  Page 18 of 48

Claim 1  Given an MTRA (N,  M) and a lexicographic preference profile R, let 
P = LexiPS(R) and Q be an assignment such that there exists i ≤ d such that Qhj

j
= P

hj

j
 

for any h < i and agent j with the importance order 1j ⊳j 2j ⊳j ⋯ ⊳j dj . Then, Qij

j
= P

ij

j
 if 

Qij ⪰sd
j
Pij for any agent j.

Inductive step Now, we prove the Eq. (4) for type 1 < i ≤ d using Lemma 1 and Claim 1. 
Assume that for any h < i and items o1,… , oh , the total shares of bundles containing these 
items are equal in P and Q:

First we show that Qi ⪰sd
j
Pi . For any h ≤ i , let yh be an arbitrary item of type h. W.l.o.g, 

let � be the least preferred bundle in Z(yh)h≤i w.r.t. ≻j . Let S = {� ∈ Z(yh)h≤i−1 |xi ∈ U(≻i
j
, yi)} . 

Then, for any � ∈ S , we have that � ∈ U(≻j, �) , which also means that

By the assumption that Q ⪰sd
j
P , we have that 

∑
�∈U(≻j,�)

pj,� ≤
∑

�∈U(≻j ,�)
qj,� . With this and 

the Eq. (5), we have that 
∑

�∈S pj,� ≤
∑

�∈S qj,� by Lemma 1. Recall that yh is an arbitrarily 
chosen item in Dh . By summing up each side over all the possible choices of y1,… , yi−1 , 
we have that

After simplifying, the inequality (7) means that for any yi ∈ Di,

which implies that Qi ⪰sd
j
Pi.

Then by Claim 1, we have that Qi
j
= Pi

j
 . We have already shown that 

∑
�∈S pj,� ≤

∑
�∈S qj,� 

for � with an arbitrary choice of yh for each h ≤ i , and we now claim that ∑
�∈S pj,� =

∑
�∈S qj,� . Otherwise, if 

∑
�∈S pj,� <

∑
�∈S qj,� for some � with a certain choice 

of yh for each h ≤ i , then by the inequality (7) we must have that ∑
o∈U(≻i

j
,yi)

pi
j,o

<
∑

o∈U(≻i
j
,yi)

qi
j,o

 , a contradiction to Qi
j
= Pi

j
 . Therefore, we have that 

∑
�∈S pj,� =

∑
�∈S qj,� , which is equivalent to the Eq. (4) for type i.

By mathematical induction, we show that the Eq.  (4) holds true for any i ≤ d , which 
means that pj,� = qj,� , a contradiction to our assumption that Qj ≠ Pj . This completes the 
proof.

Part 2 [sd-envy-freeness] The following proof involves tracking the execution of LexiPS 
phase by phase one after the other. In each phase, every agent spends one unit of time con-
suming items of one type in LexiPS. We first prove that no agent j envies another agent 
who has the same importance order. For convenience, we label the types according to ⊳j . 
Let Ni be the set of agents who consume items of types i in Phase i. The execution of Lex-
iPS in Phase i can be viewed as PS for the single type allocation problem with agents in Ni 
and available items left in Di in Phase i. By [9], we know that PS satisfies sd-envy-freeness. 
Therefore, we have that for any agent k ∈ Ni , 

∑
o�∈U(≻i

j
,o) p

i
j,o�

≥
∑

o�∈U(≻i
j
,o) p

i
k,o�

 for any 

(5)
∑

�∈Z(og )g≤h

pj,� =
∑

�∈Z(og )g≤h

qj,�.

(6)
∑

�∈S

pj,� =
∑

�∈Z(yh )h≤i−1∩U(≻j ,�)

pj,�,
∑

�∈S

qj,� =
∑

�∈Z(yh )h≤i−1∩U(≻j ,�)

qj,�.

(7)
∑

y1∈D1

⋯

∑

yi−1∈Di−1

∑

�∈S

pj,� ≤
∑

y1∈D1

⋯

∑

yi−1∈Di−1

∑

�∈S

qj,�.

∑

o∈U(≻i
j
,yi)

pi
j,o

=
∑

�∈{�|xi∈U(≻i
j
,yi)}

pj,� ≤
∑

�∈{�|xi∈U(≻i
j
,yi)}

qj,� =
∑

o∈U(≻i
j
,yi)

qi
j,o
,
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o ∈ Di , i.e. Pi
j
⪰sd
j
Pi
k
 . With this, it follows from Claim 2 that Pj ⪰

sd
j
Pk . We provide the 

proof of Claim 2 in “Proof of Claim 2 in Theorem 2” in Appendix.

Claim 2  Given a lexicographic preference relation ≻ and two factional allocations p and q 
which satisfy p

�
=
∏

i≤d,o=Di(�)
pi
o
 and q

�
=
∏

i≤d,o=Di(�)
qi
o
 respectively, if pi ⪰sd qi for type 

i and ph = qh for any h ≠ i , then we have that p ⪰sd q.

Now, we prove that agent j does not envy agents who have different importance orders. 
Assume for the sake of contradiction that there exists such an agent k and Pj 

sd
j
Pk , i.e. 

there exists � ∈ D  which satisfies

Because agent k has a different importance order from agent j, by construction of LexiPS, 
there must be a Phase in LexiPS where agents j and k consume items of different types. We 
show that this contradicts the assumption (8). W.l.o.g. let Phase i be the earliest phase in 
the execution of LexiPS(R) where j and k consume items of different types. It follows that 
k ∉ Ni , and by the selection of i, it must hold that k ∈ Nh for any h < i . Then, by sd-envy-
freeness of PS, Ph

j
⪰sd
j
Ph
k
 for any h < i . With this and Claim 2, given an allocation q with 

q
�
=
∏

i≤d q
i
xi
 where qh = Ph

j
⪰sd
j
Ph
k
 for h < i and qg = P

g

k
 for any g ≥ i , we have that 

q ⪰sd
j
Pk . Therefore, we see that if Pj ⪰

sd
j
q , then Pj ⪰

sd
j
Pk . We show that Pj ⪰

sd
j
q in the 

following.
By the selection of i, it must hold that agent k consumes items of type i in a phase that 

comes strictly after phase i where agent j consumes items of type i. Then, for any pair of 
items yi and zi such that pi

j,yi
> 0 and qi

zi
= pi

k,zi
> 0 respectively, it must hold that either 

yi ≻j zi or yi = zi because the unexhausted items of type i at the end of Phase i are not pre-
ferred to those consumed by agent j in Phase i w.r.t. ≻i

j
.

Case (i) Suppose that yi ≻j zi for any yi and zi with pi
j,yi

> 0 and qi
zi
> 0 , respectively. 

W.l.o.g. let yi be the least preferred item w.r.t. ≻i
j
 with pi

j,yi
> 0 , and therefore it follows that 

∑
o∈U(≻i

j
,yi)

pi
j,o

=1. Due to the fact that Ph
j
= qh for h < i , we know that for any bundle �,

Then, for � with wi ∈ U(≻i
j
, yi) , we have that q

�
= 0 . For � with yi ≻i

j
wi,

Together, they imply that for any � ∈ D,

It follows from the inequality (9), the fact that Ph
j
= qh for every h < i , and Lemma 1 that ∑

�∈U(≻j,�)
pj,� ≥

∑
�∈U(≻j,�)

q
�
 for any � , a contradiction to the assumption in Eq. (8).

Case (ii) Suppose that there exist yi such that pi
j,yi

> 0 and qi
yi
> 0 . It is easy to see 

from the construction of LexiPS that yi is the least preferred item consumed by agent j 

(8)
∑

�∈U(≻j,�)

pj,� <
∑

�∈U(≻j,�)

pk,�.

∑

�∈Z(wh )h≤i−1

Pj,� =
∏

h<i

ph
j,wh

=
∏

h<i

qh
wh

=
∑

�∈Z(wh )h≤i−1

q
�
.

∑

�∈Z(wh )h≤i−1∩U(≻j ,�)

Pj,� =
∏

h<i

ph
j,wh

⋅

∑

o∈U(≻i
j
,yi)

pi
j,o

=
∑

�∈Z(wh )h≤i−1

Pj,� ≥
∑

�∈Z(wh )h≤i−1∩U(≻j ,�)

q
�
.

(9)
∑

�∈Z(wh )h≤i−1∩U(≻j ,�)

pj,� ≥
∑

�∈Z(wh )h≤i−1∩U(≻j ,�)

q
�
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according to ≻i
j
 , and also the most preferred item consumed by agent k according to ≻i

j
 . 

Then we have that

Let � be an arbitrary bundle containing yi . Then, from the Eq.  (2) which computes the 
shares of bundles assigned by LexiPS, we define 𝛼 =

∏
h<i p

i
j,yh

=
∏

h<i q
i
yh

 and it follows 
that

By the inequality (11), the fact that Ph
j
= qh for every h < i , and Lemma 1, we have that ∑

�∈U(≻j,�)
pj,� ≥

∑
�∈U(≻j ,�)

q
�
 . For any other bundle � such that wi ≠ yi , by using a similar 

argument to Case  (i), we have that q
�
= 0 if wi ∈ U(≻i

j
, yi) and ∑

�∈Z(wh )h≤i−1∩U(≻j ,�)
Pj,� ≥

∑
�∈Z(wh )h≤i−1∩U(≻j ,�)

q
�
 if yi ≻

i
j
wi , and it holds that 

∑
�∈U(≻j,�)

pj,� ≥
∑

�∈U(≻j,�)
q
�
.

Together, we have that Pj ⪰
sd
j
q and therefore Pj ⪰

sd
j
Pk , which is a contradiction to 

the assumption in Eq. (8). This means that agent j does not envy any other agent who 
has a different importance order. Together with our earlier conclusion that agent j does 
not envy any other agents who has the same importance order, we conclude that agent j 
does not envy any other agent.

Part 3 [decomposable output] Let A = (aj,�)j∈N,�∈D be a multi-type discrete assign-
ment in A  , and we use Ai = (ai

j,o
)j∈N,o∈Di

 to refer to the single type discrete assignment 
for each i ≤ d where ai

j,oi
=
∑

oi∈�
aj,� for each oi ∈ Di . Before we begin the proof, we 

show the fact that any collection of d discrete assignments (Ai)i≤d determines a unique 
multi-type discrete assignment A, because for any j ≤ n and � ∈ D  , agent j is assigned 
the bundle � if she is assigned all the items in � , i.e.

We provide Example 6 to show this relation between (Ai)i≤d and A.
Recall that P = LexiPS(R) and Pi refers to the single type discrete assignment for each 

i ≤ d . Let Ai be the set of all the discrete assignments of the n items of type i to n 
agents. Then by the Birkhoff-Von Neumann theorem, Pi describes a probability distribu-
tion over Ai . Consider an arbitrary fixed distribution over Ai described by Pi where �Ai 
is the probability associated with Ai . It follows that Pi =

∑
Ai∈Ai �

Ai

⋅ Ai for any i ≤ d . 
Then from the Eq.  (2) which computes the shares of bundles assigned by LexiPS, it 
holds that for any � ∈ D ,

The result of the Eq. (13) is a product of d polynomials, and we can rewrite it as one poly-
nomial as follows:

(10)
∑

o≻i
j
yi

pi
j,o

= 1 − pi
j,yi

≥ qi
yi
=

∑

o∈U(≻i
j
,yi)

qi
o
.

(11)
∑

�∈Z(yh )h≤i−1∩U(≻j ,�)

pj,� ≥ 𝛼 ⋅

∑

o≻i
j
yi

pi
j,o

≥ 𝛼 ⋅

∑

o∈U(≻i
j
,yi)

qi
o
≥

∑

�∈Z(yh )h≤i−1∩U(≻j ,�)

q
�
.

(12)aj,� =
∏

i≤d

ai
j,xi
.

(13)pj,� =
∏

i≤d

pi
j,xi

=
∏

i≤d

∑

Ai∈Ai

�
Ai

⋅ ai
j,xi
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Let A be the unique multi-type discrete assignment determined by any collection of (Ai)i≤d 
and �A =

∏
i≤d �

Ai . Recall that �Ai is the probability of Ai which follows the distribution 
described by Pi . With the Eq. (12) we further have that

It is easy to see that �A can be viewed as the probability of A following some distribution 
over A  which can be described by P. It means that P =

∑
A∈A �

A
⋅ A and therefore P is 

decomposable. 	�  ◻

Example 6  Given an MTRA with types F and B and agents 1 and 2, we show the collection 
of the following single type discrete assignments AF and AB corresponds to a unique multi-
type discrete assignment A: 

Agent A
F

A
B Agent A

1
F

2
F

1
B

2
B

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1 1 0 0 1 1 0 1 0 0
2 0 1 1 0 2 0 0 1 0

For example, we see that agent 1 obtains item 1F in AF and item 2B in AB , and therefore 
she obtains the bundle 1F2B in assignment A accordingly, i.e. a1,1F2B = aF

1,1F
⋅ aB

1,2B
= 1 . 	

� ◻

Remark 2  LexiPS does not satisfy lexi-efficiency. To show this, we revisit Example 4 and 
compare the assignment P in Example 4 with the assignment Q below. 

Agent Q

1
F
1
B

1
F
3
B

2
F
1
B

2
F
3
B

3
F
2
B

1 0.5 0 0 0.5 0
2 0.25 0.25 0.25 0.25 0
3 0 0 0 0 1

 For agent 1, her allocation in P is lexicographically dominated by the one in Q. We also 
note that in Q, agents 2 and 3 obtain the same allocations as in P. Therefore, we have that 
Q ≻

lexi P . 	�  ◻

As we show in Remark  3, LexiPS is not sd-weak-strategyproof, similarly to other 
extensions of PS [3, 25, 28, 45] which also do not satisfy sd-weak-strategyproofness. 
Theorem 3 shows an exception that LexiPS is able to satisfy sd-weak-strategyproofness 

pj,� =
∑

A1∈A1,A2∈A2,…,Ad∈Ad

∏

i≤d

(�Ai

⋅ ai
j,xi
)

=
∑

A1∈A1,A2∈A2,…,Ad∈Ad

(
∏

i≤d

�
Ai

⋅

∏

i≤d

ai
j,xi

)
.

pj,� =
∑

A∈A

�
A
⋅ aj,�.
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if we add the restriction that agents cannot misreport their importance orders over the 
types.

Theorem 3  For MTRAs with lexicographic preferences, LexiPS satisfies sd-weak-strate-
gyproofness when agents report importance orders truthfully.

Proof  Suppose that agent j misreports her preference for some types and obtains a bet-
ter allocation. Let ≻′

j
 be her new preference after misreporting and R� = (≻�

j
,≻−j) be the 

resulting preference profile. Let P = LexiPS(R) and Q = LexiPS(R�) . From the execution of 
LexiPS, we observe that each single type assignment generated only depends on the prefer-
ences of all of the agents over items of the corresponding type. Therefore, for any type i 
where agent j does not misreport her preference, her allocation remains unchanged in Qi , 
i.e. Qi

j
= Pi

j
 . It means that if Qi

j
≠ Pi

j
 , then agent j must misreport her preference of type i.

For convenience, let the types be labeled according to ⊳j . Let i be the most important 
type where j has a different allocation in Q, i.e. Qi

j
≠ Pi

j
 . Then by our assumption of the 

misreport being beneficial for agent j, we have that Q ⪰sd
j
P , Q ≠ P and that for any h < i , 

Ph
j
= Qh

j
 . The phase when agent j consumes items in Di can be viewed as executing PS 

on type i. From [9], we know that PS satisfies sd-weak-strategyproofness, which means 
Qi

j
= Pi

j
 if Qi ⪰sd

j
Pi . Because Qi

j
≠ Pi

j
 , we have that Qi sd

j
Pi , which also means that there 

exists yi such that

Let � be the bundle with such an item yi and for h < i , yh is an item of type h satisfying 
ph
j,yh

≠ 0 , which also means qh
j,yh

= ph
j,yh

≠ 0 . W.l.o.g. let � be the least preferred bundle in 
Z(yh)h≤i . Let S = {� ∈ Z(yh)h≤i−1 |xi ∈ U(≻i

j
, yi)} . By the inequality (14) and our observation 

that Ph
j
= Qh

j
 for any h < i , we have that

With the assumption that Ph
j
= Qh

j
 for any h < i and the inequality (15), by Lemma 1, we 

have that 
∑

�∈U(≻j,�)
pj,� >

∑
�∈U(≻j ,�)

qj,� , which means agent j does not obtain a better allo-
cation in Q, a contradiction. Therefore, we have that LexiPS is sd-weak-strategyproof when 
agents report importance order truthfully. 	�  ◻

Remark 3  When applying LexiPS to MTRAs with lexicographic preferences, an agent may 
get a better allocation by misreporting her importance order. Consider an MTRA with lexi-
cographic preferences where there are agents 1 and 2 and types F, B and T. Both agents 
prefer 1i to 2i for i ∈ {F,B, T} , but their preferences over bundle are different due to their 
importance orders as follows: 

(14)
∑

o∈U(≻i
j
,yi)

pi
j,o

>

∑

o∈U(≻i
j
,yi)

qi
j,o
.

(15)

∑

�∈{�∈Z(yh )h≤i−1 |xi∈U(≻i
j
,yi)}

pj,� =
∑

�∈S

pj,� =
∏

h<i

ph
j,yh

⋅

∑

o∈U(≻i
j
,yi)

pi
j,o

>

∏

h<i

qh
j,yh

⋅

∑

o∈U(≻i
j
,yi)

qi
j,o

=
∑

�∈S

qj,� =
∑

�∈{�∈Z(yh )h≤i−1 |xi∈U(≻i
j
,yi)}

qj,�.
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Agent Importance Order

1 F ⊳
1
B ⊳

1
T

2 T ⊳
2
F ⊳

2
B

 LexiPS gives the fractional assignment denoted by P. If agent 2 misreports her importance 
order as ⊳�

2
∶ F ⊳

�
2
T ⊳

�
2
B , LexiPS gives another fractional assignment denoted by P′ . Both 

P and P′ are shown as follows: 

Agent P Agent P
′

1
F
1
B
2
T

2
F
2
B
1
T

1
F
1
B
2
T

1
F
2
B
1
T

2
F
1
B
2
T

2
F
2
B
1
T

1 1 0 1 0.5 0 0.5 0
2 0 1 2 0 0.5 0 0.5

We observe that compared with P, agent 2 loses 0.5 shares of 2F2B1T , but acquires 0.5 
shares of 1F2B1T in P′ . Since 1F2B1T ≻2 2F2B1T , we obtain that P� ⪰sd

2
P , but P ⪰sd

2
P� is 

false, which means that LexiPS does not satisfy sd-weak-strategyproofness when an agent 
can misreport her importance order.	�  ◻

5 � MPS for MTRAs with divisible items

In this section we consider MTRAs with divisible items under the unrestricted domain of 
strict linear preferences. We present a simplified version of the MPS mechanism proposed 
by [42] in Algorithm 2, since we do not need to deal with partial preferences. At a high 
level, in MPS agents consume bundles consisting of d items, one of each type, in contrast 
with PS where agents consume items directly. We prove in Theorem 4 that under strict lin-
ear preferences, MPS satisfies lexi-efficiency, which is a stronger notion of efficiency, and 
implies sd-efficiency, and prove in Proposition 3 that MPS also satisfies sd-envy-freeness 
under strict linear preferences. In Theorem 6, we show that MPS also satisfies sd-weak-
strategyproofness under the domain restriction of lexicographic preferences. In addition, 
we also provide two separate characterizations of MPS involving leximin-optimality and 
item-wise ordinal fairness in Theorem 7.

5.1 � The MPS mechanism

Given an MTRA (N, M) and a preference profile R = (≻j)j≤n , MPS proceeds in multiple 
rounds as follows: At the beginning of each round, M′ contains all the items that are unex-
hausted. Each agent j first decides her most preferred available bundle top(j) according to 
≻j . A bundle � is available so long as every item o ∈ � is unexhausted. Then, each agent 
consumes their most preferred available bundle by consuming all of the items in it at a uni-
form rate of one unit per unit of time. The round ends whenever one of the bundles being 
consumed becomes unavailable because an item being consumed has been exhausted. The 
algorithm terminates when all the items are exhausted.
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Example 7  The execution of MPS for the following instance of MTRA is shown in Fig. 2. 

Agent Preferences Agent P

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1 1F1B ≻
1
1F2B ≻

1
2F2B ≻

1
2F1B 1 0.5 0 0 0.5

2 1F2B ≻
2
2F1B ≻

2
1F1B ≻

2
2F2B 2 0 0.5 0.5 0

At round 1, agent 1’s top bundle is 1F1B and agent 2’s top bundle is 1F2B . Notice that 
both agents wish to consume 1F . Therefore, round 1 ends as 1F gets exhausted with both 
agents getting a share of 0.5 units of 1F . Agents 1 and 2 also consume 1B and 2B , respec-
tively at the same rate during round 1. At the end of round 1, agents 1 and 2 are assigned 
0.5 units of 1F1B and 1F2B , respectively.

At the beginning of round 2, there is a supply of 1 unit of 2F and 0.5 units each of 1B and 
2B . Agent 1’s top available bundle is 2F2B since 1F2B is unavailable for the exhausted item 
1F , and agent 2’s top available bundle is 2F1B accordingly. The agents consume the items 
of each type from their top bundles at a uniform rate. At the end of the round, all items 
are exhausted, and agents 1 and 2 have consumed 0.5 units each of 2F2B and 2F1B , respec-
tively. This results in the final assignment as shown in Fig. 2.

Fig. 2   An example of the execution of MPS
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Note that this output is the undecomposable assignment P in Example 1. Further, we 
show in Remark  4 that even under lexicographic preferences, the output of MPS is not 
always decomposable. This means that MPS is only applicable to MTRAs with divisible 
items. 	�  ◻

Remark 4  The output of MPS is not always a decomposable assignment under the restric-
tion of lexicographic preferences. For the MTRA in Example 4, MPS outputs the following 
fractional assignment, denoted by P: 

Agent P

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

2
F
3
B

3
F
2
B

3
F
3
B

1 1/3 0 1/6 1/6 0 1/12 1/4
2 1/3 0 1/6 0 1/6 0 1/3
3 0 1/3 0 1/3 0 1/12 1/4

When items are indivisible, if agent 2 gets 2F3B , then agent 1 gets 1F1B and agent 3 
gets 3F2B as P indicates. However, p1,1F1B = 1∕3 , p2,2F3B = 1∕6 , and p3,3F2B = 1∕12 are not 
equal, a contradiction. 	�  ◻

5.2 � Properties of MPS

Under the unrestricted domain of strict linear preferences, Theorem 2 in Wang et al. [42] 
implies that MPS satisfies sd-efficiency. We prove in Theorem 4 below that MPS satisfies 
lexi-efficiency, which is a stronger notion of efficiency than sd-efficiency, as we show in 
Proposition 2.

Theorem 4  MPS satisfies lexi-efficiency for MTRAs with strict linear preferences.

Proof  Given an MTRA (N, M) and preference profile R, let P = MPS(R) , and suppose that 
there is another assignment Q satisfying Q ≻

lexi P . Let N′ be the set of agents which have 
different allocations in Q. By our assumption on Q and strict preferences, for any agent 
j ∈ N� , there exists a bundle �j such that qj,�j > pj,�j and for every � ≻j �

j , qj,� = pj,� . Let 
tj =

∑
�≻j�

j pj,� be the time agent j takes to consume bundles strictly preferred to �j . Now, 
consider the agent k = argminj∈N� tj with the smallest such time tk =

∑
�≻k�

k pk,� . However, 
when MPS executes till time tk , �k is unavailable, which means that at least one item in �k 
is exhausted and pk,�k cannot be increased anymore. Therefore, if agent k gains a greater 
share of �k in Q, there is another agent who loses the shares obtained before tk , which is a 
contradiction and completes the proof. 	�  ◻

Now, we establish a relationship between lexi-efficiency and sd-efficiency in Propo-
sition  2 through the no-generalized-cycle condition (Definition  9), by showing that 
sd-efficiency is implied by the no-generalized-cycle condition which is equivalent to 



	 Autonomous Agents and Multi-Agent Systems (2021) 35:15

1 3

15  Page 26 of 48

lexi-efficiency. We begin by borrowing the tool of generalized cycles from [42], which is 
based on the relation � and the notion of improvable tuples defined below.

Definition 8  (improvable tuples [42]) Given a fractional assignment P and a profile 
R = (≻j)j≤n , we define � as a relation for bundles such that for any �, � ∈ D  , ��� if � ≻j � 
and pj,� > 0 for some agent j ≤ n . If ��� , then we say that (�, �) is an improvable tuple. 
Imp(P,R) is the set of all the improvable tuples admitted by assignment P w.r.t. the prefer-
ence profile R.

For ease of exposition, we use Imp(P) to refer to the set of all the improvable tuples 
admitted by the fractional assignment P when the profile is clear from the context. We are 
now ready to formally introduce the no-generalized-cycle condition.

Definition 9  (no-generalized-cycle [42]) Given an MTRA (N, M) with preference profile 
R and a fractional assignment P, a set C ⊆ Imp(P,R) is called a generalized cycle if for 
every improvable tuple (�1, �1) ∈ C , where �1, �1 ∈ D  , it holds that for every item o ∈ �

1 , 
there exists an improvable tuple (�2, �2) ∈ C , where �2, �2 ∈ D  , such that o ∈ �

2 . We say 
that P satisfies the no-generalized-cycle condition, if it admits no generalized cycles.

When d = 1 , Bogomolnaia and Moulin [9] proved that an assignment is sd-efficient if 
and only if the relation � on it is acyclic, i.e. there does not exist �1��2�⋯ ��

1 for �1, �2 
and other bundles in D . However, this condition fails for MTRAs. Example 8 shows that an 
assignment which is not sd-efficient satisfies the acyclicity of � , but admits a generalized 
cycle. This suggests that the generalized cycle is more reliable in identifying sd-efficient 
assignments.

Example 8  We illustrate generalized cycles with the following assignment Q for the 
MTRA in Example 7. Note that Q is not sd-efficient because the assignment P in Exam-
ple 7 stochastically dominates Q. 

Agent Q Agent Improvable Tuples

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1 0.4 0 0 0.6 1 (1F1B, 2F2B), (1F2B, 2F2B)

2 0.2 0.4 0.4 0 2 (1F2B, 2F1B), (1F2B, 1F1B), 
(2F1B, 1F1B)

It is easy to see that � is acyclic on Q. However, there is a generalized cycle on Q: 
{(1F1B, 2F2B), (1F2B, 2F1B), (2F1B, 1F1B)} . We illustrate this further in Fig. 3 where there 
is a row for each improvable tuples, and the “Left” and “Right” columns contain the bun-
dles which appear as the left and right component of the improvable tuples respectively. A 
solid outgoing edge from a bundle � in the “Left” column to a bundle � in the “Right” col-
umn is used to represent the case where an item of type F in � is contained in � . Similarly, 
a dotted edge is used to represent the case where an item of type B in bundle � in the “Left” 
column is contained in bundle � in the “Right” column. We note that such an edge is not 
unique because one item in the left component may be contained in the right components 
of several tuples. We do not present all such possible edges for the sake of simplicity and 
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clarity. We also note that such a cycle is not unique. Consider for example the items of type 
B: the item 1B in the bundle 2F1B which is the left component of (2F1B, 1F1B) is present 
in 1F1B which is the right component of the same tuple, and 2B in the bundle 1F2B which 
is the left component of (1F2B, 2F1B) is present in 2F2B which is the right component of 
(1F1B, 2F2B) . A similar correspondence can also be found for each item of type F. 	�  ◻

The proposition below reveals a relationship between lexi-efficiency and sd-efficiency 
vis-à-vis the no-generalized-cycle condition. Unlike Bogomolnaia [7] who pointed out 
that lexi-efficiency and sd-efficiency are equivalent in their setting with d = 1 , we show 
that this is no longer true for MTRAs. Proposition 2 shows that the no-generalized-cycle 
condition is equivalent to lexi-efficiency, and they both imply sd-efficiency. After the 
proposition, we also provide Remark 5 which shows that sd-efficiency does not imply 
the no-generalized-cycle condition. It also means that sd-efficiency does not imply 
lexi-efficiency.

Proposition 2  Given a preference profile R and a fractional assignment P, 

(1)	 P is sd-efficient w.r.t. R if P admits no generalized cycle.
(2)	 P is lexi-efficient w.r.t. R if and only if P admits no generalized cycle.

Proof  (1) The idea of proof is similar to the proof of Theorem 5, Claim (1) in [42]. A full 
proof is provided in “Proof of Proposition 2 (1)” in Appendix for completeness.

(2) Sufficiency  Suppose by contradiction that P admits no generalized 
cycle but there exists an assignment Q ≻

lexi P . Let N′
⊆ N be the set of agents 

{j ∈ N|Q ≻
lexi
j

P} . For j ∈ N ⧵ N� , we have Qj = Pj . For each agent j ∈ N� , let 
�
j be the bundle such that qj,�j > pj,�j and qj,� = pj,� for � ≻j �

j . For each �j , there 
must exist � such that �j ≻j � and pj,� > 0 . Otherwise by construction we have 
∑

�∈D q
j,�

≥ q
j,�j

+
∑

�≻�j
q
j,�

= q
j,�j

+
∑

�≻�j
p
j,�

> p
j,�j

+
∑

�≻�j
p
j,�

= p
j,�j

+
∑

�≻�j
p
j,�

+
∑

�j≻�
p
j,�

= 1 , 
a contradiction. Then we can build C0 = {(�j, �)|j ∈ N�, �j ≻j �, pj,� > 0} . For convenience, 
we define DL,S and DR,S to be the set of left and right components in improvable tuple set S, 
respectively. By construction, we know DL,C0

= {�j|j ∈ N�} . The set C0 is not necessarily a 
generalized cycle since there may exist items in some bundles �j ∈ DL,C0

 which are not in 
any bundle in DR,C0

.

Fig. 3   A generalized cycle for Q 
in Example 8
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To build a generalized cycle, first we provide the following claim, and its proof is 
provided in “Proof of Claim 3 of Proposition 2” in Appendix.

Claim 3  For any j ∈ N� and o ∈ �
j , there exist an agent k ∈ N� and a bundle � such that 

�
k
≻k � , o ∈ � , and pk,� > 0.

Let j be an arbitrary agent in N′ . For any o ∈ �
j , by Claim  3, we can find an agent 

k ∈ N� , and a bundle � such that �k ≻k � , o ∈ � and pk,� > 0 . Note that (�k, �) is an improv-
able tuple. Let 
Cj = {(�k, �)|k ∈ N� and there exists item o ∈ �

j such that o ∈ �, �k ≻ �, pk,� > 0} . Then, it 
is easy to see that DL,Cj

⊆ DL,C0
 , and any item o ∈ �

j must exist in some bundles in DR,Cj
.

Let C =
⋃

j∈N� Cj ∪ C0 . Then we have that DL,C = DL,C0
 , and for any agent j ∈ N� and 

any item o in �j ∈ DL,Cj
⊆ DL,C , item o is also in some bundles in DR,Cj

⊆ DR,C . Then, by 
Definition 9, C is a generalized cycle, which is a contradiction to the assumption that P 
admits no generalized cycle.

Necessity Suppose for the sake of contradiction that there is a lexi-efficient assignment 
P which admits a generalized cycle C. We say that an agent j is involved in the tuple (�, �) 
if � ≻j � and pj,� > 0 . Let NC ⊆ N be the set of agents who are involved in the tuples in C. 
The proof involves constructing an assignment Q by applying Steps 1–4 below for each 
agent j. For an arbitrary agent j ∈ NC , let (�, �) ∈ C be one of the tuples in which she is 
involved, and w.l.o.g. let � be top ranked bundle according to ≻j among all the bundles in 
tuples involving agent j. We apply the following steps for agent j:

Step 1 For each item oi ∈ � of type i, we can find an agent k ∈ NC which satisfies that 
there exists a tuple (�k, �k) ∈ C such that �k, �k ∈ D , o ∈ �

k and pk,�k > 0 by the defi-
nition of generalized cycle. For each agent k, we take out her share of �k by a small 
enough value �.
Step 2 We make � units of � by only extracting the share of each oi from each �k in 
Step 1 such that D

�
(i) = oi for each i ≤ d , and we allocate the share of � to agent j.

Step 3 To keep the supply of bundle not beyond agent j’s demand, agent j should give 
out � units of �.
Step 4 We make � units of �k ∈ D  by combining the share of �k without oi and the share 
of item Di(�) , i.e. Di(�

k) = Di(�) and Dh(�
k) = Dh(�

k) for any h ≠ i , and we allocate the 
share of � units of �k to agent k.

Let Q be the new assignment after we take the steps above for every agent j ∈ NC . 
We note that Qj exactly meets the demand of agent j for any j ∈ N , and � is chosen 
to be small enough so that the shares of bundles above are not used up, and therefore 
they can be reused for other agents. We also note that given the bundle � which is 
top ranked according to ≻k among all the bundles in tuples involving k, we have that 
� ≻k �

k , because agent k is involved in (�k, �k) ∈ C and by the selection of � we have 
that �k ≻k �

k , and � = �
k or � ≻k �

k . Therefore, when we take these steps for agent 
j ∈ NC , agent k’s shares over U(�,≻k) do not decrease. In this way, for any agent j with 
the selected tuple (�, �) where � is top ranked among bundles in all the tuples in which 
she is involved, we have that: (1) After taking these steps for agent j with the selected 
tuple (�, �) , agent j obtains � units of � and loses � units of � . (2) After taking these steps 
for other agents in NC where agent j donates some bundles just like agent k in Step 1, 
agent j loses shares of some bundles in {�|� ≻j �} and obtains shares of some bundles 
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which we do not care about. It follows that Qj,� ≥ Pj,� + 𝜖 > Pj,� and for any j ∈ NC and 
� ≻j � , we have that Qj,� ≥ Pj,� , because agent j does not lose but may gain the shares of 
these bundles, and therefore Q ≻

lexi
j

P . We also have that Qk = Pk for k ∈ N ⧵ NC because 
agents not in NC do not take part in the share transferring. Together they imply that 
Q ≻

lexi P , which is a contradiction to the assumption that P is lexi-efficient.	�  ◻

Remark 5  The no-generalized-cycle condition is not a necessary condition of sd-
efficiency. Consider an MTRA with two agents where ≻1 and ≻2 are the same as 
1F1B ≻1 1F2B ≻1 2F1B ≻1 2F2B . Consider the following sd-efficient assignment P. 

Agent P

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1 0.5 0 0 0.5
2 0 0.5 0.5 0

 We see that P admits a generalized cycle {(1F1B, 1F2B), (1F2B, 2F1B), (2F1B, 2F2B)} . 	� ◻

Theorem 5 below characterizes the set of all lexi-efficient assignments by the family 
of eating algorithms for MTRAs (Algorithm 3), which is a natural extension of the fam-
ily of eating algorithms introduced by Bogomolnaia and Moulin [9] for the single type 
setting. Each eating algorithm is specified by a collection of exogenous eating speed 
functions � = (�j)j≤n . An eating speed function �j specifies the instantaneous rate at 
which agent j consumes bundles at each instant t ∈ [0, 1] such that the integral ∫ 1

t=0
�j(t) 

is 1. In each round of an eating algorithm, each agent j consumes her most preferred 
available bundle at the rate specified by her eating speed function �j , until the supply 
of one of the items in one of the bundles being consumed is exhausted. Note that MPS 
is a special case of the family of eating algorithms, with �j(t) = 1 for any t ∈ [0, 1] and 
j ∈ N.

Theorem 5  Given an MTRA​, an assignment is lexi-efficient if and only if it is the output 
of an eating algorithm (Algorithm 3).
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By Proposition 2, we see that the lexi-efficient assignments are also the ones satisfy-
ing the no-generalized-cycle condition. Therefore, we consider the assignments satis-
fying the no-generalized-cycle condition instead in the proof of Theorem  5 which is 
provided in “Proof of Theorem 5” in Appendix.

For MTRAs with CP-net preferences, Theorem 5 in [42] showed that MPS satisfies 
sd-envy-freeness. Here CP-net determines the dependence among preferences of types, 
which also reflects the importance of each type. Since the domain of CP-net preferences 
and strict linear preferences are not totally overlapping, we provide Proposition 3 as a 
complement and the proof of the proposition is in “Proof of Proposition 3” in Appendix.

Proposition 3  MPS satisfies sd-envy-freeness for MTRAs with strict linear preferences.

As we show in Remark  6, MPS does not satisfy sd-weak-strategyproofness. Fortu-
nately, as we prove in Theorem 6, MPS does satisfy sd-weak-strategyproofness under 
lexicographic preferences. Importantly, this is true even when agents may have different 
importance orders. This is in contrast with the result in Wang et al. [42], who show that 
under the domain of CP-net preferences, MPS satisfies sd-weak-strategyproof only if 
all agents’ preferences share a trivial dependency structure where all the types are inde-
pendent, meaning that all the types are of equal importance.

Remark 6  MPS does not satisfy sd-weak-strategyproofness for MTRAs with strict linear 
preferences. Consider an MTRA with two agents where ≻1 and ≻2 are in the following: 

Agent Preferences

1 1F2B ≻
1
1F1B ≻

1
2F1B ≻

1
2F2B

2 1F1B ≻
2
2F1B ≻

2
2F2B ≻

2
1F2B

 MPS outputs P for this preference profile. If agent 1 misreports ≻1 as 
≻
�
1
∶ 2F1B ≻

�
1
1F1B ≻

�
1
1F2B ≻

�
1
2F2B , then MPS outputs P′ . Both P and P′ are shown as 

below: 

Agent P Agent P
′

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1 0 0.5 0.25 0.25 1 0 0.5 0.5 0
2 0.5 0 0.25 0.25 2 0.5 0 0 0.5

 We have the fact that P� ⪰sd
1
P and P′ ≠ P , which does not satisfy the requirement of sd-

weak-strategyproofness i.e. P�
1
= P1 if P� ⪰sd

1
P . 	�  ◻

Theorem  6  MPS satisfies sd-weak-strategyproofness for MTRAs with lexicographic 
preferences.

Proof  Consider an arbitrary MTRA (N, M) and an arbitrary lexicographic preference pro-
file R. Suppose for the sake of contradiction that an agent j can obtain a better allocation 
by misreporting her preference as another lexicographic preference ≻′

j
 . Throughout, we set 

P = MPS(R) and Q = MPS(R�) , where R� = (≻�
j
,≻−j) . W.l.o.g. let the types be labeled such 
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that 1 ⊳j ⋯ ⊳j d . By the assumption of beneficial misreporting, we have Q ⪰sd
j
P and we 

need to prove that Qj = Pj.

We show that Qi
j
= Pi

j
 for any type i ≤ d where Qi

j
 and Pi

j
 are agent j’s single type alloca-

tions of type i in Q and P, respectively. In fact, we only need to show Qi ⪰sd
j
Pi due to follow-

ing claim:

Claim 4  Under lexicographic preferences, (MPS(R))i = PS(Ri) , where Ri = (≻i
j
)j≤n.

The claim is obtained by comparing the execution of MPS with PS in each type. The 
full proof of the claim is in “Proof of Claim 4 in Theorem 6” in Appendix. Since PS satis-
fies sd-weak-strategyproofness [9], we deduce from Claim 4 that Qi

j
= Pi

j
 if Qi ⪰sd

j
Pi for 

each type i. Therefore, we can prove Qi
j
= Pi

j
 by showing Qi ⪰sd

j
Pi instead. We prove it by 

mathematical induction on type i.
In the following discussion, we recall the notations used in Sect.  4.2. For 

the (partial) bundle � ∈
∏

i∈H Di where H ⊆ {i|i ≤ d} , we use wi = Di(�) and 
Z
�
= {� ∈ D|for all i ∈ H, xi = wi} . We also use (oi)i∈H to refer to an bundle containing 

items oi of each type i ∈ H.
Base case First, we prove that Q1 ⪰sd

j
P1 . Assume Q1 sd

j
P1 . It means that there exists 

y1 such that 
∑

o∈U(≻i
j
,y1)

p1
j,o

>
∑

o∈U(≻i
j
,y1)

q1
j,o

 . Let � be the least preferred bundle containing 
y1 . It follows that

which is a contradiction to our assumption. Thus Qi ⪰sd
j
Pi , i.e. Q1

j
= P1

j
.

Inductive step Next, consider any type i such that 1 < i ≤ d and suppose that for every 
h < i , it holds that Qh

j
= Ph

j
 . We show that Qi ⪰sd

j
Pi . Let � be the bundle having yh as an 

item of type h for any h ≤ i . W.l.o.g. let � be the least preferred bundle in Z(yh)h≤i . Let 
Si = {� ∈ Z(yh)h≤i−1 |xi ∈ U(≻i

j
, yi)} . Because Q ⪰sd

j
P , we have that ∑

�∈U(≻j,�)
pj,� ≤

∑
�∈U(≻j ,�)

qj,� . We split the shares over the upper contour set as follows:

Claim 5 below is obtained from the observation that agents consume bundles until they are 
unavailable in MPS. The full proof of the claim is in “Proof of Claim 5 in Theorem 6” in 
Appendix.

Claim 5  For P = MPS(R) and type i, if Q satisfies that Qh
j
= Ph

j
 for any h ≤ i and Q ⪰sd

j
P , 

then 
∑

�∈Si
pj,� =

∑
�∈Si

qj,� for any y1,… , yi−1, yi and Si = {� ∈ Z(yh)h≤i−1 |xi ∈ U(≻i
j
, yi)}.

By our assumption that Qh
j
= Ph

j
 for any h < i , by Claim  5 we have that ∑

�∈Sh
pj,� =

∑
�∈Sh

qj,� for h < i , and therefore due to the fact that ∑
�∈U(≻j,�)

pj,� ≤
∑

�∈U(≻j ,�)
qj,� and the Eq.  (16), we have that 

∑
�∈Si

pj,� ≤
∑

�∈Si
qj,� . By 

summing up each side over all the possible choices of y1,… , yi−1 , we have that

∑

o∈U(≻i
j
,y1)

p1
j,o

=
∑

�∈U(≻j ,�)

pj,� >
∑

�∈U(≻j ,�)

qj,� =
∑

o∈U(≻i
j
,y1)

q1
j,o
,

(16)

∑

�∈U(≻j,�)

pj,� =
∑

�∈{�|x1≻1
j
y1}

pj,� +
∑

�∈{�∈Z(y1 )|x2≻
2
j
y2}

pj,� +…

+
∑

�∈{�∈Z(yh )h≤i−2 |xi−1≻
i−1
j

yi−1}

pj,� +
∑

�∈Si

pj,�
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Then, after simplifying we have that

It means that 
∑

o∈U(≻i
j
,yi)

pi
j,o

≤
∑

o∈U(≻i
j
,yi)

qi
j,o

 . This also implies that Qi ⪰sd
j
Pi , i.e. Qi

j
= Pi

j
.

This proves that Qi
j
= Pi

j
 for any i ≤ d by induction. By Claim 5 for type i = d , we have 

that 
∑

�∈Sd
pj,� =

∑
�∈Sd

qj,� . It also means that pj,� = qj,� , i.e. Qj = Pj which completes the 
proof. 	�  ◻

5.3 � Characterizations of MPS

In Theorem 7 we provide two characterizations of MPS. Before we show the theorem, we 
introduce the two properties involved in the characterizations. Leximin-optimality requires 
that the assignment leximin maximizes the vector describing cumulative shares at each 
bundle [5, 7, 10], which reflects the egalitarian nature of the mechanism in attempting to 
equalize agents’ shares of their top ranked choices. The definition uses the following nota-
tion: for any vector � of length k, �∗ = (u∗

1
, u∗

2
,… , u∗

k
) is its transformation into the k-vector 

of � ’s components sorted in ascending order.

Definition 10  (leximin-optimality) Let L be the leximin relation, where for any two vec-
tors �, � , we say that (�, �) ∈ L if there exists k such that �∗

k
> �

∗
k
 and �∗

l
= �

∗
l
 for l < k . For 

any fractional assignment P, let �P = (uP
j,�
)j≤n,�∈D , where uP

j,�
=
∑

�∈U(≻j,�)
pj,� for each 

agent j ≤ n and bundle � ∈ D  . A fractional assignment P is leximin-optimal, if 
(�P, �Q) ∈ L for any other assignment Q ∈ P . A mechanism f satisfies leximin-optimality 
if f(R) is leximin-optimal for any R ∈ R.

Example 9  For the MTRA and the two assignments Q and Q′ in Example 2, the elements 
of �Q and �Q′ are listed in the following table: 

Agent �
Q Agent �

Q
′

u
Q

1
F
1
B

u
Q

1
F
2
B

u
Q

2
F
1
B

u
Q

2
F
2
B

u
Q

′

1
F
1
B

u
Q

′

1
F
2
B

u
Q

′

2
F
1
B

u
Q

′

2
F
2
B

1 0.25 0.5 0.75 1 1 0.25 0.75 0.75 1
2 0.25 0.75 0.5 1 2 0.25 0.75 0.75 1

We use � = �
Q and � = �

Q� for short. We rearrange them in the ascend-
ing order and have that �

∗ = (0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1) and 
�
∗ = (0.25, 0.25, 0.75, 0.75, 0.75, 0.75, 1, 1) . Then we have that v∗

1
= u∗

1
 , v∗

2
= u∗

2
 , and 

v∗
3
> u∗

3
 , which means that (�Q�

, �Q) ∈ L by definition. 	�  ◻

Hashimoto et al.  [24] provided a characterization of PS with a single property named 
ordinal fairness which involves the comparison of the cumulative shares of items. We 
extend ordinal fairness to MTRAs as item-wise ordinal fairness and provide a similar 

∑

y1

∑

y2

⋯

∑

yi−1

∑

�∈Si

pj,� ≤
∑

y1

∑

y2

⋯

∑

yi−1

∑

�∈Si

qj,�.

∑

�∈{�|xi∈U(≻i
j
,yi)}

pj,� ≤
∑

�∈{�|xi∈U(≻i
j
,yi)}

qj,�.
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characterization of MPS. In contrast to sd-envy-freeness, the upper contour sets in item-
wise ordinal fairness depend on the different preferences, and the bundles to determine the 
sets only need to share a certain item. We note that item-wise ordinal fairness involves the 
cumulative shares over bundles containing a certain item, different from the version in [42] 
which involves the share of each bundle.

Definition 11  (item-wise ordinal fairness) A fractional assignment P is item-wise ordinal 
fair if P satisfies the condition that for any agent j and bundle � with pj,� > 0 , there exists 
an item o ∈ � such that 

∑
�∈U(≻k ,�)

pk,� ≤
∑

�∈U(≻j,�)
pj,� for any agent k and bundle � with 

o ∈ � and pk,� > 0 . A mechanism f satisfies item-wise ordinal fairness if f(R) is item-wise 
ordinal fair for any R ∈ R.

Example 10  We revisit the MTRA in Example 2 and show that the assignment Q′ in it is 
not item-wise ordinal fair. In the following table, we list the share of each bundle and the 
accumulated share at that bundle for each agent in Q′ . We note that the order of bundles in 
the table are rearranged according to each agent’s preference. 

Shares

� 1F1B 1F2B 2F1B 2F2B

q′
1,�∑
�∈U(≻

1
,�) q

�
1,�

0.25
0.25

0.5
0.75

0
0.75

0.25
1

� 1F1B 2F1B 1F2B 2F2B

q′
2,�∑
�∈U(≻

2
,�) q

�
2,�

0.25
0.25

0.5
0.75

0
0.75

0.25
1

We use 1F1B of which agent 1 has positive shares as an example to show that no item o 
in 1F1B satisfying that q′

j
�

> 0 and 
∑

�∈U(≻j,�)
q�
j,�

≤
∑

�∈U(≻1,1F1B)
q�
1,�

 for any agent j and � 
containing o. For item 1F in 1F1B , we can find out the bundle 1F2B containing 1F and 
q�
1,1F2B

= 0.5 > 0 for agent 1, but 
∑

�∈U(≻1,1F2B)
q�
1,�

= 0.75 > 0.25 =
∑

�∈U(≻1,1F1B)
q�
1,�

 . Sim-
ilarly for item 1B in 1F1B , we can find out the bundle 2F1B containing 1B and q�

2,2F1B
= 0.5 > 0 

for agent 2, but 
∑

�∈U(≻2,2F1B)
q�
2,�

= 0.75 > 0.25 =
∑

�∈U(≻1,1F1B)
q�
1,�

 . 	�  ◻

Theorem 7  Under the domain of strict linear preferences,

	 (I)	 MPS is the unique mechanism which satisfies leximin-optimality, and
	 (II)	 MPS is the unique mechanism which satisfies item-wise ordinal fairness.

Proof  (I) leximin-optimality Given an MTRA (N, M) with any profile of strict linear pref-
erences R, let P = MPS(R) and � = (uj,�)j≤n,�∈D . For j ≤ n and bundle � ∈ D  , let 
uj,� =

∑
�∈U(≻j,�)

pj,� . Let Q be an arbitrary fractional assignment which is leximin-optimal 
w.r.t. the vector � = (vj,�)j≤n,�∈D where vj,� =

∑
�∈U(≻j,�)

qj,� . In the following proof, we 
show that �∗ = �

∗ which means that P is leximin-optimal (satisfaction), and the assign-
ments P and Q are identical which means that P is the unique leximin-optimal assignment 
(uniqueness). We prove that v∗

k
= u∗

k
 and if uj,� = u∗

k
 , then qj,� = pj,� for any agent j by 

induction on k.
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Base case We prove that u∗
1
= v∗

1
 and if uj,� = u∗

1
 , then qj,� = pj,� for any agent j. By the 

selection of Q, we know that u∗
1
≤ v∗

1
 . Suppose for the sake of contradiction that u∗

1
< v∗

1
 . 

We use the tuple (j, �) as the index of the component uj,� for any agent j ≤ n and bundle 
� ∈ D  . Let Sk be the set of indices such that for each (j, �) ∈ Sk , uj,� = u∗

k
.

We consider the corresponding elements of � indicated by the set S1 . We note that for 
each (j, �) ∈ S1 , there are two possible cases:

Case (i) � is the most preferred bundle w.r.t. ≻j . Then, pj,� =
∑

�∈U(j,�) pj,� = u∗
1
 , 

and pj,� = u∗
1
≤ v∗

1
≤
∑

�∈U(j,�) qj,� = qj,� . The assumption that u∗
1
< v∗

1
 implies that 

pj,� < qj,�.
Case (ii) � is not the most preferred bundle w.r.t. ≻j . Then, for the most pre-
ferred bundle � w.r.t. ≻j , there must exist pj,� = u∗

1
 as in Case 1, since 

u∗
1
≤
∑

�∈U(j,�) pj,� ≤
∑

�∈U(j,�) pj,� = u∗
1
 . This implies that pj,� = 0 ≤ qj,�.

From the execution of MPS, � must be unavailable at time u∗
1
 because some items in it 

are exhausted at that time. Let B1 denote the set of the items exhausted at time u∗
1
 . For 

any o ∈ B1 , we have that 
∑

(a,�)∈S1,o∈�
pa,� = 1 . With the inequalities in Cases (i) and (ii) 

we have that 
∑

(a,�)∈S1,o∈�
qa,� >

∑
(a,�)∈S1,o∈�

pa,� = 1 for some o ∈ B1 , which is a contra-
diction. Therefore, we have that u∗

1
= v∗

1
 and pj,� = qj,� for any (j, �) ∈ S1 , i.e. uj,� = u∗

1
 . 

We also have that u∗
k
= u∗

1
= v∗

k
 for all k ≤ |S1| trivially.

Inductive step For any k > 1 with u∗
k
> u∗

k−1
 , suppose that u∗

l
= v∗

l
 for any l < k and 

pj,� = qj,� for any (j, �) ∈ Sl with l < k . We prove that u∗
k
= v∗

k
 and qj,� = pj,� if uj,� = u∗

k
 , i.e. 

(j, �) ∈ Sk . By the selection of Q, we know that u∗
k
≤ v∗

k
 . Suppose for the sake of contradic-

tion that u∗
k
< v∗

k
 . For any (j, �) ∈ Sk , let � be the least preferred bundle in {�|� ≻j �} w.r.t. 

≻j and its corresponding index is (j, �) . Then, we have that pj,� = u∗
k
− uj,� . Let u∗

l
= uj,� . By 

the initial assumption that (�,�) ∈ L , we have that pj,� ≤ qj,� for any (j, �) ∈ Sk , because

Case (i’) if (j, �) ∉ Sk , then we have that l < k and u∗
k
> u∗

l
= v∗

l
 , and therefore 

pj,� = u∗
k
− u∗

l
≤ v∗

k
− v∗

l
= qj,� . The assumption that u∗

k
< v∗

k
 implies that pj,� < qj,�.

Case (ii’) if (j, �) ∈ Sk , then u∗
l
= u∗

k
 and pj,� = 0 ≤ qj,�.

W.l.o.g. let � satisfy pj,� < qj,� . We know � is unavailable at time u∗
k
 in the execution of 

MPS because of exhausted items in it. Let Bk be the set of items exhausted at time u∗
k
 . 

For any o ∈ Bk , we have that

Thus we see that 
∑

(a,�)∈∪l≤kSl,o∈�
qa,� >

∑
(a,�)∈∪l≤kSl ,o∈�

pa,� = 1 for some o ∈ Bk , which is a 
contradiction. Therefore, it follows that u∗

k
= v∗

k
 and pj,� = qj,� for any (j, �) ∈ Sk by Cases 

(i’) and (ii’). We also know that u∗
l
= u∗

k
= v∗

l
 for any l with k ≤ l < k + |Sk|.

By induction, we have that v∗
k
= u∗

k
 for any k, i.e. � = � , and qj,� = pj,� for any j ∈ N 

and � ∈ D  , i.e. P = Q . Together we have that P is the unique leximin-optimal assignment 
for the given MTRA, which means that MPS is the unique mechanism which satisfies 
leximin-optimality.

(17)

∑

(a,�)∈∪l<kSl,o∈�

pa,� =
∑

(a,�)∈∪l<kSl,o∈�

qa,�,

∑

(a,�)∈∪l<kSl,o∈�

pa,� +
∑

(a,�)∈Sk ,o∈�

pa,� = 1.
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(II) item-wise ordinal fairness We use the relationship between time and consump-
tion during the execution of MPS in the proof and to show uniqueness. Given any MTRA 
(N, M) and the preference profile R, let P = MPS(R) in the following proof.

Satisfaction For an arbitrary agent j and bundle � , let t
�
=
∑

�∈U(≻j ,�)
pj,� . Assume for the 

sake of contradiction that for every o ∈ � , there exists an agent k and a bundle � such that 
o ∈ � , pk,� > 0 , and t

�
=
∑

�∈U(≻k ,�)
pk,� > t

�
 . From the relation of time and consumption, 

we know that at time t
�
 , � is unavailable and therefore the supply of some item in � is 

exhausted.
Now, let us fix o� ∈ � to be an item that is exhausted at time t

�
 when � is unavailable. 

By our assumption, we know that there exist a bundle � and an agent l such that o� ∈ � , 
pl,� > 0 , and t

�
=
∑

�∈U(≻l ,�)
pl,� > t

�
 . By the assumption, we know that � is available dur-

ing [0, t
�
] and t

�
> t

�
 , which also means that o� ∈ � is not exhausted after t

�
 , a contradic-

tion to o is exhausted at time t
�
.

Uniqueness Suppose that Q ≠ P is an item-wise ordinal fair assignment for the sake of 
contradiction. Let tj,� be the smaller quantity among 

∑
�∈U(≻j ,�)

pj,� and 
∑

�∈U(≻j ,�)
qj,� for any 

agent j and bundle � . Let t be the smallest among the set 
T = {tj,��j ∈ N, � ∈ D,

∑
�∈U(≻j ,�)

pj,� ≠
∑

�∈U(≻j ,�)
qj,�} . We note T is not empty because P 

and Q are different.
Now, w.l.o.g. let agent j and � satisfy that tj,� = t , and we have that pj,� ≠ qj,� and 

pk,� = qk,� for (k, �) ∈ S = {(k, �)�
∑

�∈U(≻k ,�)
qj,� ≤ t}.

We first consider the case that pj,� < qj,� , i.e. t =
∑

�∈U(≻j ,�)
pj,� , which means that agent j 

gets a greater share of � in Q and therefore demands more supply of item contained in � . 
We also know that in P there exists an item o ∈ � exhausted at t which makes � unavaila-
ble. It means that the supply of o is also used up in Q by assigning bundle � to agent k for 
some (k, �) ∈ S . Therefore, the extra demand of o for agent j on bundle � comes from the 
share of some bundle � with o ∈ � held by agent k such that (k, �) ∈ S , which means that 
qk,� < pk,� , a contradiction.

Then we consider pj,� > qj,� i.e. t =
∑

�∈U(≻j ,�)
qj,� now, which means that agent j gives 

up some shares of � in Q, and thus for any o ∈ � , we can find some agent k and bundle � 
containing o such that k gains a greater share of � in Q, i.e. qk,� > pk,� ≥ 0 . By the selection 
of j and � , we have that 

∑
�∈(≻k ,�)

qj,� ≥ t =
∑

�∈(≻j ,�)
qj,� . We claim that 

∑
�∈(≻k ,�)

qj,� > t . 
Otherwise, if 

∑
�∈(≻k ,�)

qj,� = t = tk,� , then we have that 
∑

�∈(≻k ,�)
qj,� ≤ t for � ≻k � i.e. 

(k,�) ∈ S , and therefore pk,� = qk,� . With qk,� > pk,� , it follows that ∑
�∈(≻k ,�)

qj,� >
∑

�∈(≻k ,�)
pj,� , which contradicts the selection of tk,� . Therefore, we have 

that 
∑

�∈(≻k ,�)
qj,� >

∑
�∈(≻j ,�)

qj,� , a contradiction to the assumption that Q is item-wise ordi-
nal fair.

Together, we have that t = pj,� = qj,� , which contradicts the fact that t is the smallest 
among the set T and completes the proof. 	�  ◻

6 � Conclusion and future work

In this paper, we have showed that it is impossible to design sd-efficient and sd-envy-free 
mechanisms with decomposable outputs for MTRAs with indivisible items under the unre-
stricted domain of strict preferences over bundles. Fortunately, under the natural assump-
tion that agents’ preferences are lexicographic, this impossibility result is circumvented, 
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as we have showed by proposing the LexiPS mechanism and proving that it is able to deal 
with indivisible items while satisfying the desirable efficiency and fairness properties of 
sd-efficiency and sd-envy-freeness.

For divisible items, we have showed that the existing MPS mechanism satisfies the 
stronger efficiency notion of lexi-efficiency in addition to sd-envy-freeness under the unre-
stricted domain of linear preferences, and is sd-weak-strategyproof under lexicographic 
preferences, which complement the results in Wang et al. [42]. In addition, we have pro-
vided two characterizations of MPS with leximin-optimality and item-wise ordinal fair-
ness, respectively.

Characterizing the domain of preferences under which it is possible to design mecha-
nisms for MTRAs with indivisible items that are simultaneously fair, efficient, and strat-
egyproof is an exciting topic for future research. Another interesting direction is character-
izing mechanisms satisfying sd-efficiency and sd-envy-freeness with other combinations of 
desirable properties [17] for MTRAs with divisible items. In addition, it is also an exciting 
avenue for future research to develop efficient and fair mechanisms for natural extensions 
of the MTRA problem such as settings where there are demands for multiple units of each 
type, or initial endowments.

Appendix

Proof of Proposition 1

To prove the tightened impossibility result for MTRAs, we construct a profile R of LP-tree 
preferences below.

First, we provide ≻1 as an example of LP-tree preferences in the form of a rooted 
directed tree. Notice that the node labeled by F has a preference 1F ≻

F
1
2F attached to it 

and the outgoing edges from this node are labeled by items 1F and 2F , respectively. We also 
note that the types F and B occur once on each branch.

Now, we proceed with the proof. Suppose that f satisfies sd-weak-efficiency and sd-
weak-envy-freeness, and let Q = f (R) . Suppose for the sake of contradiction that Q is 
decomposable. Then, it must be possible to represent Q in the form below. 

Agent Q

1
F
1
B

1
F
2
B

2
F
1
B

2
F
2
B

1 v w y z
2 z y w v

We now show that such an assignment does not exist. We observe that by our 
assumption of sd-weak-efficiency and agent 1’s preference, it is not possible for agent 1 
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to get shares of 1F2B and 2F1B simultaneously, i.e. either y or w is 0, or they are both 0. 
Otherwise, she can improve her allocation by getting shares of 1F1B and 2F2B which she 
prefers to 1F2B and 2F1B by swapping the items 2B and 1B in 1F2B and 2F1B , respectively 
with agent 2. From agent 2’s preferences, we observe that this swap is also preferred by 
agent 2. By the same token, agent 2 does not get shares of 1F1B and 2F2B simultaneously, 
i.e. either v or z is 0, or they are both 0.

Due to v + w + y + z = 1 , we see that not all of them are 0. Hence, we consider 
the cases where three of them are 0, which mean that Q is a discrete assignment. The 
assignments that assign any agent with her least preferable bundle, i.e. 2F1B to agent 1 
or 2F2B to agent 2, are excluded because it violates sd-weak-envy-freeness, which means 
y = v = 0 . The other possible cases are: If w ≠ 0 , i.e. Q assigns 1F2B to agent 1 and 2F1B 
to agent 2, then agent 2 envies agent 1 due to 1F2B ≻2 2F1B . If z ≠ 0 , i.e. Q assigns 2F2B 
to agent 1 and 1F1B to agent 2, then agent 1 envies agent 2 due to 1F1B ≻1 2F2B . Both 
cases violate sd-weak-envy-freeness.

Then we consider the cases with the restriction that two of v, w, y, z are 0, and we list 
all the cases with possible combination of them as follows and briefly explain why they 
fail to meet the restriction.

v ≠ 0, y ≠ 0 : there exists a generalized cycle {(2F2B, 2F1B), (2F1B, 2F2B)}.
v ≠ 0,w ≠ 0 : agent 1 envies agent 2 due to the fact that Q1 ≠ Q2 and Q1 ⪰

sd
2
Q2.

y ≠ 0, z ≠ 0 : agent 2 envies agent 1 due to the fact that Q2 ≠ Q1 and Q2 ⪰
sd
1
Q1.

w ≠ 0, z ≠ 0 : there exists a generalized cycle {(1F1B, 1F2B), (1F2B, 1F1B)}.
By Proposition  2 (1), the existence of generalized cycle means violating sd-effi-

ciency, which is also sd-weak-efficiency in the MTRA here because there are only two 
agents. Similar to Theorem 1, we can extend this case with contradiction to the one with 
d ≥ 2 types and n > 2 agents. Therefore, we can conclude that such a mechanism f does 
not exist. 	�  ◻

Proof of Lemma 1

Proof  First we show that if q satisfies the condition (i), it also satisfies the condition (ii) 
because from the Eq.  (2) which computes the shares of bundles assigned by LexiPS, we 
have that for any h < i and � ∈ D1 ×⋯ × Dh,

Then we prove the lemma when q satisfies the condition (ii). By the condition, we have 
that for any h < i,

Besides, since ≻ is a lexicographic preference, we can take apart the upper contour set 
U(≻, �) and have that:

∑

�∈Z
�

p
�
=
∏

g≤h

pg
wg

=
∏

g≤h

qg
wg

=
∑

�∈Z
�

q
�
.

(18)

∑

�∈{�∈Z(yg )g≤h−1 |xh≻
hyh}

p
�
=

∑

xh≻
hyh

∑

�∈Z(y1,…,yh−1,xh )

p
�

=
∑

xh≻
hyh

∑

�∈Z(y1,…,yh−1,xh )

q
�
=

∑

�∈{�∈Z(yg )g≤h−1 |xh≻
hyh}

q
�
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We can derive a similar equation for q similar to the Eq. (19). Let S = Z(yh)h≤i−1 ∩ U(≻, �) . 
With Eq.  (18), we see that if 

∑
�∈S p� ≥

∑
�∈S q� , i.e. the inequality (3), then we have ∑

�∈U(≻,�) p� ≥
∑

�∈U(≻,�) q� . In the same way, if 
∑

�∈U(≻,�) p� ≥
∑

�∈U(≻,�) q� , then we have ∑
�∈S p� ≥

∑
�∈S q� by the Eqs. (18) and (19). Together we prove the lemma. 	�  ◻

Proof of Claim 1 in Theorem 2

Proof  We prove the claim for each individual agent j. For ease of exposition, we label the 
types as 1 ⊳j 2 ⊳j ⋯ ⊳j d . Then we need to prove that Qi

j
= Pi

j
 if Qi ⪰sd

j
Pi for agent j. Sup-

pose for the sake of contradiction that Qi
j
≠ Pi

j
 . Let Ni denote the set of agents who con-

sume items of type i in Phase i and N′
i
 denote agents consume items of type i after Phase i. 

It is easy to see that j ∈ Ni . Given Pi
j
 , we use Pi

Ni
= (Pi

j
)j∈Ni

 to denote the partial assignment 
for agents in Ni . Now, we try to construct Qi

j
 from Pi

j
 by transferring shares of bundles 

among agents. Notice that agent k ∈ N ⧵ (Ni ∪ N�
i
) who obtains items of type i before Phase 

i does not trade shares with agents in Ni ∪ N�
i
 because it means that i ⊳k ik and we have that 

Qi
k
= Pi

k
 by the condition. Therefore, in order to make Qi

j
≠ Pi

j
 , we just consider the share 

transferring among agents in Ni ∪ N�
i
 containing j. Then we show that any possible way of 

share transferring leads to a contradiction: 

	 (i)	 If the share transferring only involves agents in Ni , then we have Qi
Ni
⪰sd Pi

Ni
 . How-

ever, from Algorithm 1, we learn that agents in Ni obey the rule of PS when consum-
ing the items of type i left in Phase i, and therefore we have that Pi

Ni
 is sd-efficient 

with the available items of type i in Phase i. With this and Qi
Ni
⪰sd Pi

Ni
 , we have that 

Qi
Ni
= Pi

Ni
 where j ∈ Ni , a contradiction to Qi

j
≠ Pi

j
.

	 (ii)	 Suppose that the share transferring also involves agents in N′
i
 . Let o′

i
 be the least 

preferred item agent j gets in Pi according to ≻i
j
 . Then the best items of type i w.r.t. 

≻
i
j
 that agents in N′

i
 may have in Pi is o′

i
 because from Algorithm 1, we learn that 

agents in N′
i
 consume items of type i after agent j. By Qi ⪰sd

j
Pi and the assumption 

Qi
j
≠ Pi

j
 , there exists oi such that pi

j,oi
< qi

j,oi
 and 

∑
o≻i

j
oi
pi
j,o

=
∑

o≻i
j
oi
qi
j,o

 . If oi ≻i
j
o′
i
 , 

then the extra share of oi in qi
j
 comes from agents in Ni , which is a contradiction to 

sd-efficiency of Pi
Ni

 as in the case  (i). If oi = o�
i
 or o′

i
≻
i
j
oi , then we see that 

∑
o∈U(≻i

j
,oi)

qi
j,o

>
∑

o∈U(≻i
j
,oi)

pi
j,o

=
∑

o∈Di
pi
j,o

= 1 , which is a contradiction.

	�  ◻

Proof of Claim 2 in Theorem 2

Proof  Let � = (yg)g≤d be an arbitrary bundle. We define some notations with the condition 
that ph = qh for h ≠ i . Let 𝛼 =

∏
h<i p

h
yi
=
∏

h<i q
h
yi
 . For i < h < d , we define

(19)

∑

�∈U(≻,�)

p
�
=

∑

�∈{�|x1≻1y1}

p
�
+

∑

�∈{�∈Z(y1 )|x2≻
2y2}

p
�

+⋯ +
∑

�∈{�∈Z(yh )h≤i−2 |xi−1≻
i−1yi−1}

p
�
+

∑

�∈Z(yh )h≤i−1∩U(≻,�)

p
�
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Specially for type d,

Since ≻ is lexicographic, we can deconstruct the shares over 
D

� = {� ∈ Z(yg)g≤i−1 |� ∈ U(≻, �)} as follows:

From the Eq. (2) which computes the shares of bundles assigned by LexiPS, we have that 
for type i,

for i < h < d,

and for type d,

It is easy to see that we can derive similar equations for q to the ones above. Then, we can 
rewrite the Eq.  (20) as 

∑
�∈D� p

�
= 𝛼 ⋅ (

∑
o≻iyi

pi
o
+ pi

yi
⋅

∑
i<h≤d 𝛽h) , and it follows that ∑

�∈D� q
�
= 𝛼 ⋅ (

∑
o≻iyi

qi
o
+ qi

yi
⋅

∑
i<h≤d 𝛽h) similarly for q. Because pi ⪰sd qi , which means ∑

o≻iyi
pi
o
≥
∑

o≻iyi
qi
o
 and 

∑
o∈U(≻i,yi)

pi
o
≥
∑

o∈U(≻i,yi)
qi
o
 , we have that 

∑
�∈D� p

�
≥
∑

�∈D� q
�
 , 

i.e.

By Lemma 1, we have that 
∑

�∈U(≻,�) p� ≥
∑

�∈U(≻,�) q� for any � , i.e. p ⪰sd q . 	�  ◻

Proof of Proposition 2 (1)

Proof  The proof involves showing that any fractional assignment which is not sd-efficient 
admits a generalized cycle. Let P be such a fractional assignment for a given MTRA. Then, 
there exists another fractional assignment Q ≠ P such that Q ⪰sd P . We show that the set of 
tuples which shows the differences between P and Q is a generalized cycle on P.

𝛽h =
∏

i<g<h

pg
yg
⋅

∑

o≻hyh

ph
o
=

∏

i<g<h

qg
yg
⋅

∑

o≻hyh

qh
o
.

𝛽d =
∏

i<g<d

pg
yg
⋅

∑

o∈U(≻d ,yd)

pd
o
=

∏

i<g<d

qg
yg
⋅

∑

o∈U(≻d ,yd)

qd
o
.

(20)

∑

�∈D�

p
�
=

∑

�∈{�∈Z(yg )g≤i−1 |xi≻
iyi}

p
�
+…

+
∑

�∈{�∈Z(yg )g≤d−2 |xd−1≻
d−1yd−1}

p
�
+

∑

�∈{�∈Z(yg )g≤d−1 |xd∈U(≻d ,yd)}

p
�
.

∑

�∈{�∈Z(yg )g≤i−1 |xi≻
iyi}

p
�
=
∏

g<i

pg
yi
⋅

∑

o≻iyi

pi
o
= 𝛼 ⋅

∑

o≻iyi

pi
o
,

∑

�∈{�∈Z(yg )g≤h−1 |xh≻
hyh}

p
�
=
∏

g<h

pg
yg
⋅

∑

o≻hyh

ph
o
= 𝛼 ⋅ pi

yi
⋅ 𝛽h,

∑

�∈{�∈Z(yg )g≤d−1 |xd∈U(≻d ,yd)}

p
�
=
∏

g<d

pg
yg
⋅

∑

o∈U(≻d ,yd)

pd
o
= 𝛼 ⋅ pi

yi
⋅ 𝛽d.

∑

�∈Z(yg )g≤i−1∩U(≻,�)

p
�
≥

∑

�∈Z(yg )g≤i−1∩U(≻,�)

q
�
.
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Let N� = {j ∈ N|Pj ≠ Qj} ⊆ N , and it follows that Q ⪰sd
j
P and Qj ≠ Pj for any j ∈ N� . 

Let C be the set of tuples {(�, �)| For some j ∈ N�, � ≻j �, qj,� > pj,�, qj,� < pj,�} . At a high 
level, we can learn all of the differences in shares of bundles between the assignments P 
and Q from C. First we prove the following claim:

Claim 6  For every agent j ∈ N� , there exists a bundle �j such that qj,�j > pj,�j and for any � 
with qj,� < pj,� , �j ≻j �.

We prove it for an arbitrary agent j. Suppose for the sake of contradiction that there 
exists a bundle � such that qj,� < pj,� and for any � ≻j � , qj,� ≤ pj,� . This implies that ∑

�∈U(≻j,�)
qj,� <

∑
�∈U(≻j ,�)

pj,� , which is a contradiction to our assumption that Q ⪰sd P.
Then we show that C is not empty. Consider an agent j ∈ N� . If qj,� ≥ pj,� and any 

� ∈ D  , then Pj = Qj , a contradiction to the fact that j ∈ N� . Thus there exists � with 
qj,� < pj,� , which means that there is a tuple (�j, �) ∈ C according to Claim 6. Therefore, 
C ≠ ∅ since P ≠ Q . For any (�, �) ∈ C , we have that (�, �) ∈ Imp(P) , due to the fact that 
pj,� > qj,� ≥ 0 by our construction of C, which implies that C ⊆ Imp(P).

Suppose for sake of contradiction that C is not a generalized cycle. Then we can 
find an item o ∈ � where � is the left component of some tuple in C such that o is 
never in the right component of any tuple in C. Then, we have that qj,� ≥ pj,� for any 
j ∈ N� . Otherwise, if for some agent k ∈ N� , pk,� > qk,� ≥ 0 , then we have that there 
exists �k ≻k � by Claim 6, and therefore (�k,�) ∈ C due to pk,� > 0 , which is a contra-
diction. Specifically, for any (�, �) ∈ C , there exists some l ∈ N� such that ql,� > pl,� , 
because otherwise we have that qj,� = pj,� for any j ∈ N� and therefore the tuple (�, �) 
is not in C. We also have that qj,� = pj,� trivially for j ∉ N� by the assumption. We note 
that the conclusions above about � also works for other bundles containing o which are 
left components of some tuples in C. For any bundle � with o ∈ � which does not occur 
in any tuple in C, we have that qj,� = pj,� trivially for j ∈ N by our construction of C.

Together, we have that 
∑

j∈N,o∈� qj,� >
∑

j∈N,o∈� pj,� = 1 , a contradiction to our 
assumption that Q is a fractional assignment. Thus C is a generalized cycle on P which 
is not sd-efficient.	� ◻

Proof of Claim 3 of Proposition 2

Proof  Recall that for each agent j ∈ N� , the bundle �j satisfies the condition that qj,�j > pj,�j 
and qj,� = pj,� for � ≻j �

j . Suppose for the sake of contradiction that the claim is not true 
for some agent j and item o ∈ �

j , which means that for any k ∈ N� and � with �k ≻k � and 
o ∈ � , we have pk,� = 0 . We note that j and k here may refer to the same agent. We split the 
set of bundles containing o into four parts, and we have that:

A similar equation can be derived for 
∑

o∈�,k∈N qk,� . The first part is the bundles containing 
o held by agents not in N′ , the shares of which are equal in P and Q. The remaining parts 
are the bundles containing o hold by N′ . For each agent k ∈ N� , we split bundles containing 
o into three parts and compare their shares below: 

∑

o∈�,k∈N

pk,� =
∑

o∈�,k∈N⧵N�

pk,� +
∑

o∈�,k∈N� ,�≻k�
k

pk,� +
∑

o∈�k ,k∈N�

pk,�k +
∑

o∈�,k∈N�,�k≻k�

pk,�k
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	 (i)	 The bundles which are preferred over �k by k, i.e. {�|� ≻k �
k} : Due to the fact that � 

satisfies � ≻k �
k , we have qk,� = pk,� by the selection of �k.

	 (ii)	 The bundle �k that contains o, if it exists: We note that not all the bundles �k with 
k ∈ N� contains o. However, at least for agent j, we have that �j contains o and 
qj,�j > pj,�j.

	 (iii)	 The bundles to which �k is preferred by k, i.e. {�|�k ≻k �} . Due to the fact that � 
satisfies �k ≻k � , we have that qk,� ≥ pk,� = 0 by our assumption.

Therefore, we have that 1 =
∑

o∈�,k∈N pk,� <
∑

o∈�,k∈N qk,� = 1 , which is a contradiction. It 
means that for any agent j and item o ∈ �

j , there exist k ∈ N� and � such that �k ≻k � , o ∈ � 
and pk,� > 0 . 	�  ◻

Proof of Proposition 3

Proof  Consider an MTRA (N, M) and any preference profile R. Throughout, we use P to 
refer to MPS(R). We first give a few observations about MPS which are helpful for under-
standing the following proof. We know that MPS executes multiple rounds which come to 
an end when some items are exhausted and we label all the rounds by the time at which 
they end. Let j be an arbitrary agent. Here we consider the set of rounds {rk1 , rk2 ,…} such 
that at the end of each round rkb in it, agent j stops consuming a bundle. We note that these 
rounds are not necessarily continuous because agent j may not change her current most pre-
ferred bundles at the end of some rounds. W.l.o.g. let rkb < rkb′ if b < b′.

Let �kb denote the bundle consumed by j at round rkb of MPS. Let tk0 = 0 , and for any 
round rkb , let tkb be the units of time elapsed from the start of the mechanism till the end of 
round rkb . Then, by construction of MPS, we have that pj,�kb = tkb − tkb−1 for any round rkb 
with b > 1 . Specially, when b = 1 , pj,�k1 = tk1 − tk0 trivially. This implies that

For any round rkb and � such that �kb ≻j � ≻j �
kb+1 , � is not consumed by j, i.e. pj,� = 0 . 

Therefore, it must hold that � is unavailable by the end of round rkb . Let t denote the time at 
which � becomes unavailable. Then,

With these observations we begin the proof. Suppose for the sake of contradiction that 
there is a pair of agents j and k such Pj 

sd
j
Pk . Then, there exists a bundle � which satisfies 

that 
∑

�∈U(≻j,�)
pk,� >

∑
�∈U(≻j,�)

pj,�.
Let t =

∑
�∈U(≻j ,�)

pj,� and t� =
∑

�∈U(≻j ,�)
pk,� . It is easy to see that t < t′ by the assump-

tion. The rest of the proof involves showing that due to the construction of MPS, t′ ≤ t , 
contradicting our assumption.

Now, let � be the least preferred bundle in the set {� ∈ U(≻j, �)|pk,� > 0} for agent k. 
Such a bundle � must exist. Otherwise, pk,� = 0 for any � ∈ U(≻j, �) , which implies that 
t� = 0 ≤ t , a contradiction.

Let t
�
 be the time at which � becomes unavailable. Due to U(≻j, �) ⊆ U(≻j, �) , we can 

deduce that t
�
≤
∑

�∈U(≻j,�)
pj,� ≤

∑
�∈U(≻j,�)

pj,� = t by the inequality (22). Also, we have 

(21)tkb = tkb − tk0 =

b∑

b�=1

(tkb� − tkb�−1 ) =
∑

�∈U(≻j ,�
kb )

pj,�.

(22)t ≤ tkb =
∑

�∈U(≻j ,�
kb )

pj,� =
∑

�∈U(≻j ,�)

pj,�.
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that t
�
=
∑

�∈U(≻k ,�)
pk,� by the Eq.  (21). By the selection of � , we have that 

{� ∈ U(≻j, �)|pk,� > 0} ⊆ U(≻k, �) . Therefore, we can deduce that

This implies t′ ≤ t
�
≤ t , which is a contradiction to the assumption. Therefore we have that 

Pj ⪰
sd
j
Pk for any agents j and k, which completes the proof.	�  ◻

Proof of Theorem 5

Proof  Since in Proposition 2 we show that lexi-efficiency is equivalent to no-generalized-
cycle condition, we can prove the theorem by showing that an assignment satisfies no-gen-
eralized-cycle if and only if the assignment is the output of an eating algorithm.

Sufficiency This proof is similar to the idea of proof for Theorem 5 in [42]. Let P be 
the output of an eating algorithm given a preference profile R. Suppose for the sake of 
contradiction that P admits a generalized cycle C. We use t(o) to stand for the time when o 
is exhausted in the eating algorithm and use Seq to denote a partial order on M such that o 
Seq o′ if t(o) ≤ t(o�) for any pair of items o and o′.

Let M� = {o ∈ M|o ∈ �, (�, �) ∈ C} and o� ∈ M� be the item satisfying o′ Seq o for any 
o ∈ M� . By the definition of generalized cycles, there is an improvable tuple (�, �) ∈ C 
such that o� ∈ � . It means that there exists an agent j ∈ N such that � ≻j � and pj,� > 0 . 
Hence, when agent j starts to consume � , the bundle � is unavailable with an item o ∈ � 
which is exhausted. We note that o ∈ M� due to the fact that (�, �) ∈ C . Then, we have that 
t(o) < t(o�) and therefore o Seq o′ , a contradiction to the selection of o′.

Necessity Let R be an arbitrary preference profile and P be any assignment satisfying 
the no-generalized-cycle condition w.r.t. R. For convenience, we define some quantities to 
represent the state during the execution of a member of the family of eating algorithms 
at each round. For ease of exposition, we use s to denote a round and s = 0 represents 
the initial state before the start of execution. Let M0 = M and D0 = D . We define recur-
sively that Bs = {o ∈ Ms−1|there are no �, � ∈ D

s−1 with o ∈ � and (�, �) ∈ Imp(P)} , 
Ms = Ms−1 ⧵ Bs , and Ds = {� ∈ D|for every o ∈ �, o ∈ Ms} be the available bundles in 
Ms . We note that Bs ≠ ∅ for any s with Ms−1 ≠ � . Otherwise, for any o ∈ Ms−1 , there exists 
(�, �) ∈ Imp(P) with �, � ∈ D

s−1 and o ∈ � . We note that for any � ∈ D
s−1 and o ∈ � , it 

follows that o ∈ Ms−1 , and therefore Imp(P) is a generalized cycle, a contradiction. We use 
u = min{s|Ms = �} to denote the round where every item is exhausted and N(�,Ds) to refer 
to the set of agents who prefer � best in the available bundles Ds . We have the following 
claim with these new notations.

Claim 7  For an assignment P satisfying the no-generalized-cycle condition and any 
o ∈ Bs,

We can prove the claim with the fact that for any o ∈ Bs,

t� =
∑

�∈{�∈U(≻j,�)|pk,�>0}
pk,� ≤

∑

�∈U(≻k ,�)

pk,� = t
�
.

∑

o∈�,�∈Ds−1

∑

j∈N(�,Ds−1)

pj,� +
∑

o∈�,�∉Ds−1

∑

j∈N

pj,� =
∑

o∈�,�∈D

∑

j∈N

pj,� = 1.
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and the equality must hold. Otherwise, there exist �, � ∈ D
s−1 and k ∈ N(�,Ds−1) such that 

� ≻k � , o ∈ � and pk,� > 0 , which implies that o ∉ Bs , a contradiction.
With the observation in Claim 7, we specify an instance of Algorithm 3 with the fol-

lowing eating speed functions �j : for any s ≤ u and s−1
u

≤ t ≤ s

u
,

From the design of algorithm, we know that items in Bs decide which bundles in Ds−1 are 
consumed in the round s, and these items are not consumed after the round s. Note that 
j ∈ N(�,Ds−1) implies � ∈ D

s−1.
We claim that the algorithm specified by the eating speed functions � = (�j)j≤n above 

outputs P for the MTRA with preference profile R. Let Q be the output of the eating 
algorithm. We prove that pj,� = qj,� for any agent j and the bundle � ∈ D

s−1 containing 
an item o ∈ Bs by induction on the round s.

Base case We prove that pj,� = qj,� for any j ∈ N , o ∈ B1 and bundle � with o ∈ � . 
For j ∈ N(�,D0) where � contains an item o ∈ B1 , we know that agent j consumes bun-
dle � which is available during the period [0, 1

u
] , and therefore qj,� ≥

1

u
⋅ u ⋅ pj,� = pj,� . 

By Claim 7, we have that

which means that 
∑

o∈�,�∈D0

∑
j∈N(�,D0) pj,� =

∑
o∈�,�∈D0

∑
j∈N(�,D0) qj,� . With qj,� ≥ pj,� for 

any j ∈ N(�,D0) where � contains o ∈ B1 , the equation implies that pj,� = qj,� , and we also 
have that qk,� = 0 for k ∉ N(�,D0) by Claim 7. Together they means that pj,� = qj,� for any 
agent j ∈ N , o ∈ B1 and bundle � with o ∈ �.

Inductive step Assume pj,� = qj,� for any j ∈ N , o ∈
⋃

r≤s B
r and � ∈ D  with o ∈ � . 

We prove that pj,� = qj,� for any j ∈ N , o ∈ Bs+1 and � ∈ D
s with o ∈ � . If � ∉ D

s , then 
there is an item o� ∈ � satisfying o� ∈

⋃
r≤s B

r , and therefore we have that pj,� = qj,� by 
the assumption. Then we show that pj,� = qj,� for any j ∈ N(�,Ds) , o ∈ Bs+1 and � ∈ D

s 
with o ∈ � . By the assumption, any o� ∈ Ms is available with the supply of at least ∑

o�∈�,�∈Ds

∑
j∈N(�,Ds) pj,� at time t = s

u
 . From the algorithm, we know that agent j con-

sumes � during [ s
u
,
s+1

u
] , and therefore qj,� ≥

1

u
⋅ u ⋅ pj,� = pj,� . Hence,

Then, by Claim 7, we have that

∑

o∈�,�∈Ds−1

∑

j∈N(�,Ds−1)

pj,� +
∑

o∈�,�∉Ds−1

∑

j∈N

pj,� ≤
∑

o∈�,�∈D

∑

j∈N

pj,� = 1,

�j(t)
def
=

{
u ⋅ pj,�, o ∈ �, o ∈ Bs and j ∈ N(�,Ds−1),

0, otherwise.

1 =
∑

o∈�,�∈D0

∑

j∈N(�,D0)

pj,� ≤
∑

o∈�,�∈D0

∑

j∈N(�,D0)

qj,� ≤ 1,

∑

o∈�,�∈Ds

∑

j∈N(�,Ds)

pj,� +
∑

o∈�,�∉Ds

∑

j∈N

pj,� =
∑

o∈�,�∈Ds

∑

j∈N(�,Ds)

pj,� +
∑

o∈�,�∉Ds

∑

j∈N

qj,�

≤
∑

o∈�,�∈Ds

∑

j∈N(�,Ds)

qj,� +
∑

o∈�,�∉Ds

∑

j∈N

qj,� ≤ 1.

∑

o∈�,�∈Ds

∑

j∈N(�,Ds)

qj,� +
∑

o∈�,�∉Ds

∑

j∈N

qj,� = 1.
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With qj,� ≥ pj,� for any j ∈ N(�,Ds) where � contains o ∈ Bs+1 , the equation implies that 
pj,� = qj,� , and we also have that qk,� = 0 for k ∉ N(�,Ds) by Claim 7. Together they means 
that pj,� = qj,� for any j ∈ N , o ∈ Bs+1 and � ∈ D

s with o ∈ �.
By induction, we have that pj,� = qj,� for any j ∈ N , o ∈

⋃
r≤u B

r and � ∈ D  with 
o ∈ � . This also means that P = Q , and it follows that the eating algorithm specified by 
the eating speed functions � = (�j)j≤n exactly outputs the assignment P for the given 
MTRA with R.	�  ◻

Proof of Claim 4 in Theorem 6

Proof  We know that each agent performs the following step repeatedly in PS: consuming 
her most preferred and unexhausted item till it is exhausted. To prove the claim, we show 
that agents in MPS performs the same step in each type i as they do in PS applied to just 
the type i, i.e. for any i ≤ d, j ≤ n , agent j consumes her most preferred and unexhausted 
item in type i while consuming her most preferred and available bundle. In the following 
discussion, we use (o�, ��o) to denote the bundle replacing o with o′ in �.

W.l.o.g. we consider what agent j does in MPS for type i. At the beginning of MPS, the 
bundle consumed by agent j, denoted by �1 , is her most preferred bundle w.r.t. ≻j . By Defi-
nition 7, the most preferred bundle contains agent j’s most preferred item in type i w.r.t. 
≻
i
j
 . This means that when agent j consumes �1 , she also consumes her most preferred item 

o1 = Di(�
1) . When the consumption of �1 pauses, agent j turns to the bundle consumed 

after �1 , denoted by �2 . We note that �2 does not need to be the second preferred bundle 
w.r.t. ≻j . There are two kinds of cases before consuming �2 : (i) Dh(�

1) is exhausted, h ≠ i , 
(ii) o1 is exhausted.

We claim that Di(�
2) is the most preferred and unexhausted item in type i just after �1 

is unavailable for both cases. For the case (i), the agent j’s most preferred item in type i is 
still o1 . We claim that o1 ∈ �

2 . Otherwise, suppose that o2 = Di(�
2) ≠ o1 . Then o1 ≻i

j
o2 . 

Because Dh((o1, �
2�o2)) = Dh(�

2) for h ⊳j i and o1 = Di((o1, �
1�o2)) ≻

i
j
Di(�

2) = o2 , it fol-
lows that (o1, �2�o2) ≻j �

2 , which is a contradiction to the fact that �2 is the most preferred 
and available bundle for agent j after �1 is unavailable. For the case (ii), let M1 be the set of 
unexhausted items just after �1 is unavailable in MPS, and o2 ∈ M1

⋂
Di be agent j’s most 

preferred and unexhausted item in Di w.r.t. ≻i
j
 . We also note that o2 does not need to be the 

second preferred item w.r.t. ≻i
j
 . By Algorithm  2, we know that o2 = Di(�

2) , and we can 
obtain that �2 ≻j (o

�
2
, �2�o2) if o�2 ∈ M1

⋂
Di and o′

2
≠ o2.

The claim in the previous paragraph can be applied to the general case when �k is una-
vailable and turns to �k+1 , and we have that Di(�

k+1) is always the most preferred and unex-
hausted item in type i just after �k is unavailable. We note again that �k does not need to be 
the k-th preferred item w.r.t. ≻j , and �k+1 only refers to the bundle consumed after �k . From 
the argument above, we can observe that agent j consumes the bundle containing the most 
preferred and unexhausted item in type i. This is exactly what agent j does in PS of type i. 
This argument can be extended to any agent and any type. Thus, each single type fractional 
assignment w.r.t. P which is the output of MPS is the same as the one produced by PS of 
that type. 	�  ◻
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Proof of Claim 5 in Theorem 6

Proof  When h ≤ i = 1 i.e. P1
j
= Q1

j
 , the claim means that for S1 = {�|x1 ∈ U(≻1

j
, y1)},

which is trivially true.
Suppose that the claim is true for h < i with i > 1 . Given the conditions that Ph = Qh for 

h ≤ i and Q ⪰sd
j
P , we have the following by the assumption: for any h < i,

Then we prove the claim for i. Let � denote the least preferred bundle containing y1,… , yi . 
We can take apart 

∑
�∈U(≻j,�)

pj,� , i.e. agent j’s shares over U(≻j, �) in P as:

We have a similar equation for 
∑

�∈U(≻j,�)
qj,� . We see that � ≻j � for any � ∈ U(≻j, �) ⧵ Si 

and � ∈ Si . W.l.o.g. let � denote the least preferred bundle in U(≻j, �) ⧵ Si . By the Eqs. (23) 
and  (24), we have that 

∑
�∈U(≻j,�)

pj,� =
∑

�∈U(≻j,�)
qj,� . With this and 

∑
�∈U(≻j,�)

pj,� ≤
∑

�∈U(≻j ,�)
qj,� implied by Q ⪰sd

j
P , we have that 

∑
�∈Si

pj,� ≤
∑

�∈Si
qj,� . By 

summing up each side over all the possible choices of y1,… , yi−1 , we have that

With the condition that Pi
j
= Qi

j
 , we have that 

∑
xi∈U(≻i

j
,yi)

pi
j,xi

=
∑

xi∈U(≻i
j
,yi)

qi
j,xi

 . With this 
and 

∑
�∈Si

pj,� ≤
∑

�∈Si
qj,� , it follows that 

∑
�∈Si

pj,� =
∑

�∈Si
qj,� for Si with any y1,… , yi . 	

� ◻
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