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ARTICLE INFO ABSTRACT

CCS Concepts: The Web spam identification problem can be modeled as an instance of the conventional classification problem.
Security and privacy Web spams aim at deceiving web crawlers by advertising certain Web pages through elevation of their page
Software security engineering rankings superficially than their actual weights. Web spams are intended to produce fraudulent results of web
Keywords: search queries and degenerate the client’s experience by directing users to fake Web pages. We present a fuzzy
Dempster-Shafer Theory evidence-based methodology for identifying Web spams by which the spamicity of web hosts is formulated as
Dempster-Shafer Combination a reasoning problem in the presence of uncertainty. However, any classification task intrinsically suffers from
Basic probability assignment incomplete or vague evidence and ambiguity in the class assignment based on evidence. In this work, we

Mass function combine fuzzy reasoning as the decision maker for selecting the most suitable evidence in a multi-source

lEjle;::fsfibility Dempster—Shafer (DS) based classification algorithm. The introduced approach has the benefit of providing
Fuzzy reasoning more reliable solution to detect spams without any prior information. The evidence theory offers flexible
Classification support that takes into account the multi-dimensional nature of implementation decisions. The experimental
Web spam results show that the fuzzy reasoning in combination with DS theory, reduces the conflicts among evidence

leading to enhanced classification results. The aim of this paper is to describe the potential of fuzzy reasoning
and the Dempster-Shafer Theory (DST) as a decision model for the web spams classification problem.

1. Introduction We all live in an era of data explosion and retrieval of precise and
reliable data is of prime importance. Due to spamming or spamdex-
ing, retrieved online data can become misleading. Hence, we need
unceasing adaptation of the methodologies to identify new spams in
systems. Technological advances cause introduction of new spams to
the existing systems, every now and then and the prevailing detection
methodology might fail due to the lack of prior knowledge about the
newly introduced spam generated using some novel technologies.

To effectively classify newly introduced spam pages, typical ap-
proaches such as the classical Bayesian theorem would require prior
knowledge. However, on some circumstances, the prior knowledge
may not be available. As an alternative approach, if we utilize the
evidence-based approach of Dempster—Shafer Theory (DST), we could
measure the improbability of newly introduced spam pages, using the
DST’s distinctive capability to handle the uncertainty. DST can combine
evidence from multiple resources and can thus help in classifying a web
page as spam or not spam.

Evidence fusion is an integral part of any typical classification
task. The underlying application domain may exhibit various types of
uncertainty that render unreliable classification results, for example:
(1) evaluation error for deciding class-association, (2) the associated

The term Web spam, or spamdexing, was proposed in 1996 by Eric
Convey [1] and soon was perceived as one of the key security problems
of the Internet search engines [2]. As of today, most prominent Search
Engine Organizations (SEO) are focused on dealing with harmful data
retrieval as this is the most negative impact caused by spams and thus
arising research challenges in this area [3].

In addition to breaking down the attributes of query items, spams
may ruin the reputation of the underlying search engine causing loss
of its users and thus customers. These purposeful malicious Web pages
are also the major tool for propagating phishing activities. For example,
Eiron et al. [4] investigated 100 million Web pages utilizing Page
Rank calculation [5] and found that 11 out of 20 results were adultery
sites, but had higher ranks through maneuvering the contents and
connections to the pages.

Web spams also drive a search engine organization to squander a lot
of computational and memory resources. In 2005, the aggregate bud-
getary adversities caused by spams were estimated at $50 billion [6].
The estimate reached $130 billion in 2009 [7].
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variables that are restrictive or deficient for probability based esti-
mates, (3) stochastic noise and so on. Since, the data from individual
sources are either incomplete or tainted, they introduce uncertainty
and/or ambiguity to the application. To avoid the impact of uncertainty
on the classification outcome, information from various data sources
can be combined. However, when the evidence generated from such
applications are fused for classification, the result may not be optimal.
Hence, it is necessary to increase the discriminative proficiency of the
classifier. One way to achieve better classifier performance is to select
the evidence that are more impactful on the classification task.

In most cases, evidence are presented as a measurable quantity and
referred to as vectors. Selecting relevant vectors for classification would
lead to reduced computational cost and improved accuracy. One such
approach for vector selection could be fuzzy rules. The possibility of
adapting fuzzy set-based classification models in managing uncertainty-
related issues have been intensively studied, and their ability has been
demonstrated empirically in numerous applications such as clustering
including [8], pattern recognition Pedrycz et al. [9], and classifica-
tion [10]. However, the fuzzy If-Then rules can also be applied to select
appropriate features before fusing them for classification. While the
Dempster—Shafer Theory can provide powerful mechanism for evidence
fusion, fuzzy logic can be utilized for selecting the highly correlated
evidence.

The Dempster-Shafer Theory (DST), first introduced by Dempster
[11] and then developed by Shafer [12], on the utilization of proba-
bilities with upper and lower limits, is essentially a generalization of
Bayes theorem. DST has been extensively studied and advanced in the
field of artificial intelligence (AI) and expert systems [13-15], with
specific accentuation set on combining evidence from various sources.
Multi-characteristic decision making is a field of research in which
different schemes have been introduced to make “preferred choices”
such as assessment, prioritization, and determination over the possible
outcomes that are portrayed by numerous, and generally contradicting
criteria. In this paper, we present the fundamental ideas of the DST of
evidence for addressing the problem of identification of Web spams,
specifying its roots and correlations with the more customary Bayesian
hypothesis. DST models the webspam threats by utilizing the bounds
of belief and plausibility of some evidence and to achieve that the DST
gathers qualitative evidential support.

Degrees of belief and plausibility computed by DST might be utilized
to demonstrate and measure the abstract credibility by incomplete or
faulty evidence. Researchers have studied the combination between
fuzzy sets and the belief functions of DST, and proposed powerful
methods for incorporating them (e.g., [16]).

Our approach of combining fuzzy modeling with DST aims at elim-
inating the disadvantages ingrained to either of the approach. While
the Fuzzy modeling helps to select the most suitable evidence from
different sources at different time, DST contributes to integrate the
evidence for final class assignment.

Motivation and Contributions

Inspired by the uncertainty modeling capability provided by fuzzy
rules and DST, we build an improved classification framework extend-
ing our previous work [17]. In this paper, we introduce an improved
approach for Web spam classification using the mathematical model
of evidence theory (i.e., the Dempster-Shafer Theory (DST)). DST has
the unique capabilities to model uncertainty. More specifically, DST
is proficient in representation of knowledge even with lack of prior
knowledge about all possible outcomes. DST also provides the com-
putational framework for combining evidence from multiple sources
resulting in a numerical score for each of the opinions and beliefs.
Leveraging the functionalities provided by DST, the work presented
in [17] aimed at classifying content and link spams. This paper extends
our work [17] on Web spam detection using Dempster-Shafer Theory
in accordance with fuzzy rules.

In [17], we applied DST’s rule of combination to fuse the inde-
pendent evidence. DST’s rule of combination ascribes the mass of
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conflicting evidence to the null hypothesis. DST causes unreasonable
mass assignment to null hypothesis. So, our classifier in [17] rejected
the null hypothesis with irrational mass (mass assignment outside
the range of 0 through 1) and suffers from lack of specificity (true
negative rate) for the Web spam identification task. To overcome the
shortcomings of our previous DST-based classifier [17], in this paper,
we propose to combine a fuzzy logic-based evidence selection approach
with DST based classifier. This approach reduces the conflict among
evidence before fusion and attain better classification results.

For example, let us consider that there are two different sources of
evidence s, and s,. s, and s, provide three observations supporting the
status of a web host A. s, supports one observation, that indicates the
host is a spam and it also provides another observation that neither
specifies the web host as spam or nonspam. While s, provides obser-
vation that 4 is a spam. Intuitively, it might seem that the web host
should be classified as spam, but while quantifying and assigning mass
values to these three observations and combining them using DST’s
combination rule, the theory detects conflict and does not classify it
as either spam or nonspam. Rather, % is assigned “undecided” status
due to the presence of conflicting evidence.

In this paper, we improved upon our previous approach by utilizing
fuzzy If-Then rules. So that instead of leaving a host as unclassified,
we selecte the observation that is best representative of s,’s evidence.
For example, IF s, is undecided about h at time r AND s, observes
h is a spam at t + 1, THEN s, supports h is a spam. Where AND is
a fuzzy logical operator. This approach reduces the conflicts among
evidence and improves the classification results when the evidence are
obtained from multiple sources to combine. The key contributions to
our previous work [17] are as follows:

— Employ fuzzy modeling to select the most appropriate candidate
for evidence fusion and reduce imprecision due to redundant
data. This hybrid approach ensures higher interpretability and
better classification performance.

— Use DST for spam classification, as an alternative to the tradi-
tional classification approaches, to model the uncertainty reason-
ing for multi source unsupervised classification task using the
functionalities provided by DST.

— Present a detailed evaluation of the proposed model through case
studies.

In the rest of the paper, we provide the background and motivation
of our work and relevant definitions (Section 2), followed by discussion
on related research (Section 3). Then, we move onto the demonstration
of the exploitation of the fuzzy modeling and DST approach to show
that fuzzy-Dempster Shafer is a dependable and robust model for
making a decision from conflicting proofs (Section 4). The general
methodology is presented in Section 5. Following this we discuss how
this hypothesis can be utilized to display web spam classification prob-
lem (Section 6) as well as model user-reliability (Section 7) by means of
numerical results. Section 8 concludes the paper and highlights future
research directions.

2. Related work

Identifying novel features to build low cost web spam filters that
reduce uncertainty in real time has been an active research area.
Ntoulas et al. [18] proposed a decision tree based approach for content-
based spam detection. The authors extracted feature set based on the
common design practices of search engines and applied C4.5 decision
tree algorithm for classifying the web pages as spam or normal. An-
droutsopoulos et al. [19] implemented a Naive Bayes classifier that
trains only on, or a combination of lemmatized words and phrases and
non-textual attributes like attachments of, an email message to indicate
if it is a spam.
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Amitay et al. [20] extracted structural features of websites and
applied decision rules using See5 and C5.0 [21] to identify the pat-
terns of the websites and detect their functionalities. Their work could
identify spams from the clusters of websites with similar fingerprint or
structural patterns.

Support Vector Machine (SVM) has been a prevalent classifier
choice for spam detection. Kolari et al. [22] created catalog of local and
global features for spam blogs or splogs and applied SVM classifier and
logistic regression to set the splogs apart. Abernethy et al. [23] utilized
the page features and the structure of the hyperlinks and trained a
linear learning model using SVM to classify spams. Ott et al. [24] work
is targeted towards identifying “deceptive opinion spam” on products
reviews. In their work, they combined computational linguistics with
psychological aspects and trained a Naive Bayes and an SVM classifier
to identify the spam reviews.

The machine learning approaches have shown significant results in
classifying web spams. However, handling inconsistent and incomplete
information on the web with the changing web standards, makes it
imperative for the machine learning models to retrain to integrate
newer information so that the newer patterns in web structure and
information on the web are leveraged in identifying the spam contents.
The role of discriminative patterns in the features are crucial for
building an inexpensive and efficient classifier.

Fuzzy logic has been extensively used to identify patterns for clas-
sification problems. Keller et al. [25] employed fuzzy integration for
solving a multi-sensory data fusion for target recognition and for clas-
sifying handwritten characters. Their work establishes the efficiency
of fuzzy integration for different application areas such as feature
combination, classifier data fusion and sensor evidence fusion.

The machine learning based classifiers exhibit superior perfor-
mance. Depending on the application areas, they require balanced data
set to train. This could be a problem in many real time applications
like web spam classification, where the systems are faced with inherent
uncertainty, incompleteness and ambiguity of information. Dempster—
Shafer Theory has widely been used to address the classification in such
problem domains.

In their work, Le Hegarat-Mascle et al. [26] illustrated how
Dempster—Shafer Theory can be applied for multisource data fusion
for classification of remote sensors. Chatterjee and Namin [17] utilized
the uncertainty reasoning capabilities of Dempster-Shafer Theory and
combined evidence from multiple sources for web spam classification.
However, the classifier sensitivity suffered in the presence of conflicting
evidence.

Recent work of Xiao [27,28], and Xiao et al. [29] show DST-base
approach can be modified to resolve conflicting evidence and reduce
uncertainty for better decision making. Boston et al. [30] compared
the classification results from DST based classifier with that of fuzzy
detectors. Binaghi et al. [31] explored the hybrid fuzzy Dempster Shafer
model (FDS) for classification tasks, that overcomes the drawbacks of
DST.

Motivated by the existing literature, this paper overcomes the draw-
back of the classifier presented in [17] by combining fuzzy logic with
Dempster—Shafer Theory. This paper implements an inexpensive, fast,
efficient that achieve better classification results in web spam detection
in the presence of incomplete, conflicting and ambiguous information.

3. Basic principles of Dempster-Shafer evidence theory

The Dempster-Shafer theory, commonly referred as the Evidence
Theory, is a generic interpretation of the Bayesian theory of subjective
probability. Despite the fact that the Bayesian concept requires prob-
abilities for every result, evidence theory enables us to base “degrees
of belief” of the outcome of an event, formulated from the probabili-
ties of related events. These degrees of belief could possibly have the
logical properties of probabilities. However, the extent beliefs differ
from probabilities will depend upon how closely the two results are
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connected. The Dempster-Shafer theory relies upon two considerations:
(1) gaining degrees of belief for one result from subjective probabilities
for a related result, and (2) Dempster’s standard for unification of such
degrees of belief when they rely upon autonomous evidence.

Traditional Bayesian guideline faces trouble when applied with
vague information sources. In such cases, we have the “Bayesian dogma
of precision”, by which the information pertaining to unverifiable
but real parameters, must be exhibited by conventional, unequivo-
cally suggested, probability distribution. DST is a general expansion of
Bayesian rule that can utilize the available information very effectively.
Furthermore, DST offers several advantages, including the capabilities
to transfer probabilistic measures to focal elements, and assigning the
probabilistic values to the frame of discernment.

3.1. A formal elaboration on Dempster Shafer Theory (DST)

In this section, we review the fundamental concepts and terminolo-
gies related to DST. Suppose 0 is the “frame of discernment” and it con-
sists of an exhaustive and exclusive set of postulations as {4, h,, ... ..,
h,}. The basic probability assignment (bpa) is defined as m : 2° —
[0, 1] such that 27 is the power set of . Any subset x of the frame of
discernment 6 for which m(x) is non-zero is known as a “focal element”
and denotes the confidence in x.

DST is driven by the frame of discernment (6), which is characterized
by the finite set of propositions and suppositions (i.e., perceptions
and conceivable outcomes) for the event space. It is the super set of
every single imaginable state. For instance, while determining a patient
illness, & would be the set account for all conceivable illnesses. As
another example is rolling a dice. While rolling a dice, & would be a
set accounting for all possible sides of the dice. The power set 2¢ is
the set of all admissible sub-sets of 6 including the empty-set ¢. For
instance, if

0 ={a,b} (€]
then
20 = {¢,{a}, {b},0} 2

Every component in the power set adds to the representation of the
decision making process. For example, the recommendation of “this
host is a spam” allocates more inclinations to parts of § that are spams
and contains all and simply the states where that recommendation is
legitimate.

3.2. Dempster’s Rule of Combination

The Dempster Rule of Combination (DRC) is the premise of
Dempster—Shafer hypothesis. The proportions of Belief and Plausibility
are consequent of basic likelihood assignments. DRC combines two or
more distinct, independent evidence sources through bpa(m), i.e., basic
probability assignments over mass function. Mass functions are unique
representations of the belief functions. These independent sources of
evidence are intrinsically the subset of the frame of discernment.
DRC provides the standard methods for combining general, potentially
infinite, sets of conceivable outcomes.

DRC exploits the conjunctive operation (AND) to combine evidence.
Thus, a decision is made through performing conjunctive operations on
the opinions acquired from independent evidence sources. For instance,
consider m; and m, as the masses associated with two different obser-
vations, then the combined mass or the joint bpa(m, ,) is expressed and
computed from the accrued bpa’s of the masses of the two observations
as follows:

myp(A) = (my & my)(A) 3

m @ m)(A) = (=) N
BNC=A%#¢

my(Bymy(C) 4
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myp(¢) =0 %)

K= Y m(Bmy(C) O]
BnC=¢

Where A, B and C are independent bodies of evidence, & is the
notation to signify combination of masses, K is the mass related with
opposing beliefs and it is determined as the results of the mass of every
null intersections. The count of K is commutative and associative, but
not idempotent or persistent.

The denominator 1—K in DRC is the normalization factor. It has the
effect of comprehensively ignoring the conflict and attributing any mass
related with conflict to the invalid set [32,33]. Consequently, ascribing
all the conflicting masses to invalid set would yield unreasonable
results in spite of high conflict in certain event space. Without the
normalization procedure, @ becomes proportionate to the Dempster
rule. The denominator 1 — K enables quick and clear convergence to
an outcome.

4. Background on Fuzzy feature selection

For circumstances, in which the data cannot be measured cor-
rectly in a quantitative structure, it might be presented as a subjective
manner. For instance, consider the cases when we qualify human
judgments. We frequently use words from natural language rather than
numerical qualities. In different cases, exact quantitative data cannot
be expressed because it is possible that it is inaccessible or the expense
for its calculation is too high. The utilization of Fuzzy Sets Theory
has given excellent outcomes for subjective data modeling [34] and
it has demonstrated to be useful in solving numerous issues, such as
decision making [35,36] and information retrieval [37]. In this section,
we provide the theoretical background on fuzzy aggregation and the
application of it to select the features for classifier.

We applied fuzzy If-Then rule to labeled data to reduce the linguistic
set (spam, nonspam, undecided). The selected fuzzy sets are optimal for
DST combination for a better classification results. A fuzzy If-Then rule
takes the form of:

If x, is A Then y, is B @)
Expression (7) can mathematically be written as:
If A Then Bor A > B (€))

We define fuzzy rules in the form:

If feature f, is ¢, AND .... feature f, is ¢, Then » — nonspam

Where e,,....,e, constitutes fuzzy linguistic set (in our case evi-
dence), h represents host and “AND” is the fuzzy logical operator.

4.1. Aggregation of rule

The knowledge-base of the system is bound to generate more than
one rule and to achieve the overall rule-based membership. If we
consider our knowledge base as a fuzzy system, and we have two
evidence x;, x, for host ;. Input x; and x, have three linguistic
variables supporting host status spam, nonspam, borderline. The output
h, has two linguistic variables spam, nonspam. The rule-base comprises
the rules like:

If x, is spam AND x, is spam Then h; is spam 9

If x, is nonspam AND x, is borderline Then h; is nonspam (10)
The rules are aggregated and defined by membership function (y) as:
u(h) = max'[min[y' (x,), p' (x,)1] a1

Where i = 1,2,...,k. k is the number of rules. In this case, since we
defined two rules in Eq. (9) and Eq. (10) value of k for this knowledge
base is 2.
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5. Methodology

Our classification algorithm identifies an object under consideration
as represented by attributes vector. The classifier looks for common
rules in the vector representation of the object for defining a class label.

In our work, the classification process integrated in the algorithm
works in five distinct steps: (1) Data pre-processing, (2) Rule translation
using fuzzy modeling, (3) Mass assignment, (4) Belief combination, and
(5) Normalization. The overview of the steps is shown in Fig. 1.

The steps (3), (4) and (5) constitute the DST based classifier and
represented using the @ symbol in Fig. 1. Following are the elaboration
on each step:

Steps 1: Data Preprocessing. Data pre-processing enables identification
of the class labels, that constitutes the DST’s frame of discernment.
The dataset has four distinct observation provided for any specific host:
“spam”, “nonspam”, “unknown”, and “borderline.” Our algorithm se-
lects the distinct observations for all the hosts and forms the frame of
discernment (0) for the classification model. Hence, the Eq. (1) for our
model becomes: 0 = {nonspam, spam, borderline, unknown}.

Step 2: Rule Translation using Fuzzy Modeling. Fuzzy feature selection
incorporates the human intuition to assign numerical values for features
using linguistic rules. It decides which information qualities are vital for
accurately defining the relationships between classes. Accordingly, the
important characteristics must be maintained and the remaining parts
of data can be discarded. This step defines the fuzzy rule for selecting
the most suitable assessment per host for better classification results.

Step 3: Mass Assignment. The algorithm iterates over each host. For
each host, it calculates mass values or basic probability assignments
(BPA), for the distinct list of assessor over §. Once the BPAs for all
assessors are computed, the values are then provided to DRC for belief
combination.

Step 4: Belief Combination. Once the algorithm combines all the
BPAs, for a particular host, from different assessors, that combined
value is used to classify the host. This algorithm is administered by
the formulae described in Section 3. However, the algorithm requires
pre-processed data before it can calculate the mass function for each
host and each assessor and combines them iteratively using DRC and
decide the host’s status.

Step 5: Normalization of Results. The result from DRC needs re-
distribution for conflicting masses and is achieved through normal-
ization. Normalization divides the combined masses by the difference
between 1 and the mass of the empty set. That way, the non-zero
masses are allotted to the empty intersections.

5.1. Experimental setup

We applied the aforementioned fuzzy-rule for evidence selection
and combined the evidence using Dempster-Shafer Combination rule
to two different case studies, as described in the following section.

For both case studies, we utilized UK-WEBSPAM2007 dataset.! We
build a fuzzy-Dempster Shafer model to characterize a system for cre-
ating and executing a conventional web spam classifier, which is aimed
at improving performance of our previous DST based classifier for Web
spam detection [17]. The dataset has been prepared by collective effort
of volunteers to aid the research work on Web spam identification. It
includes 105.9 million pages and over 3.7 billion links to about 114,529
pages.

Table 1 captures a snapshot of the data. It shows the set of observa-
tions on admin-to-go.co.uk (represented by numeric host-id 322), from
different assessors, at different timestamp. The Label column records
the observation of the assessors. Period column captures the type of
assessment.

This data set employed to present two different case studies:

L http://chato.cl/webspam/datasets/uk2007.
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Final class
assignment

Rule based evaluation
Non-fuzzy input |:> of input to select the
best candidate for

classifier input

:(> DST classifier :{) Class label

(De-fuzzified)

Fig. 1. Schematic diagram of the proposed Fuzzy-DST classifier.

Table 1 Table 2
Sample data: Assessment on Host admin-to-go.co.uk. Snapshot of experimental results (Case Study I).
Host Assessor Label Timestamp Period Host # Distinct  Actual Predicted
J44 - 1197388571 VIEW evidence Score  Label Score  Label
Ja4 Spam 1197388733 INITIAL sources
322 J49 - derli 1197389053 VIEW 109belfast.boys- 4 0 nonspam 0 nonspam

J49 Borderline 1197389155 INITIAL brigade.org.uk

J49 - 1198072545 VIEW -

J49 Spam 1198072563 REVISED admin-to-go.co.uk 2 1 spam 1 spam
www.aaxon.org.uk 6 1 spam 1 spam
bradleyhire.co.uk 2 - undecided - undecided
www.manaction.co.uk 7 0 nonspam 0 nonspam

(1) We observed that at different timestamp, assessors have changed
their assessment of the hosts, leading to conflict, while combining
evidence for classification.

(2) We observed that some assessors are more efficient in assessing
the hosts. Hence in a second case study, we exploited the capabilities of
Dempster Shafer combination framework to quantify the trustworthiness
of the assessors.

6. Case study I: Time-variant observations

The main goal for the first case study is to leverage the time
dependent observations for predicting the host status. We utilized the
fuzzy If-Then rules over the linguistic observation set for each of the
assessor. This resulted in a reduced number of non-conflicting evidence.
The reduced set of evidence is then combined using DRC for final class
assignments of the host.

The steps for fuzzy feature selection and DST based classification is
shown in Algorithm 1 to elaborate the steps involved in classifying a
host as spam or non spam. The algorithm takes the entire data frame
containing the list of hosts and their different types of assessment by
different assessors at various time period and it produces the host and
its associated label as output.

The algorithm iterates for each host, and using the If-Then fuzzy
rules, selects the assessment of each host. The assessments of the hosts
are further computed to assign qualitative mass values. Finally, all the
assessment for a particular host is combined using DRC that results in
the final classification label of the host.

To give an insight about the data, Table 2 presents a snapshot of the
results for five different hosts. The number of distinct evidence sources
are number of assessor providing assessments for each of the web host.
The “Actual” label is the actual class assignment of the hosts and the

Actual score is a quantitative measure of the level of “spamicity” of the
host. Predicted score and Predicted labels are the output produced by
the Algorithm 1.

For example, let us consider Algorithm 1 selects the host 322 in
Table 1. Then it iterates and identifies the 2 distinct evidence sources
(assessor) related to it. Next, using the fuzzy If-Then rule (inside the
nested for loop of the algorithm), it selects the most recent observation
about this host provided by each assessor. So in this case, the algorithm
selects spam as an observation by assessor J44 and spam by assessor
J49 as well. The most recent (or most relevant) observations from
each assessor are then translated into mass (bpa) assignment. For basic
probability assignment we applied Laplace’s definition of probabil-
ity [38], we divide the specific observation (spam, nonspam etc.) by the
total number of observations of the host. The calculated mass is then
provided to the DST based combination rule defined in Eq. (3). Finally,
the DST rule based combination generates the combined mass for each
class label for the hosts using Egs. (4), (5) and (6). Our algorithm is
designed to select the class label that has a combined mass greater than
50% for a particular host to define its (the host’s) status.

6.1. Confusion matrix

Confusion Matrix is a table, which is usually utilized to portray
the performance of a classification model (i.e., “classifier”) on an
arrangement of test information for which the results are known. Each
column of the matrix represents samples from the predicted class while
each row represents samples in the actual class (or vice versa). The
name originates from the fact that it makes it easy to see if the system is
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ALGORITHM 1: Fuzzy-DST algorithm for Webspam classification.

input : Dataframe containing HostList, AssessorList, LabelsList
output: List of hosts and their respective class labels

n « Count of distinct hosts;
k < Count of distinct labels;
for i < HostList[1] to HostList[n] do
bpa < empty massList;
bca « empty beliefList // contains k distinct classes and
mass functions
m « Count of distinct assessor;
for j < AssessorList[1] to AssessorList[m] do
if 3 nonspam cases given by Assessor j for Host i then ns; « 1 ;
if 3 spam cases given by Assessor j for Host i then s;; « 1;
if 3 unknown cases given by Assessor j for Host i then u;; < 1 ;
if 3 borderline cases given by Assessor j for Host i then b;; < 1;
1« (ns; +s;; +uy; +by);
if ns; >0 then
| append bca; for nonspam as (ns;;/t;;) computed for assessor j
else
| bea; for nonspam < 0O
end
if s;; >0 then
\ append bca ; for spam as (s; /1) computed for assessor j
else
| bea; for spam <0
end
if b; >0 then
| append bca; for borderline as (b;/t;;) computed for assessor j
else
‘ bea; for borderline < 0
end
if u; >0 then
| append bca; for unknown as (u;;/t;;) computed for assessor j

else
| bea; for unknown <0

end
update bpa; as (bca; @ bpa,);
// Combination of mass function using equation (3)

end

bpa; < normalized(bpa;) // Normalize mass using equation (4),
(5), (8

class; < Label associated with highest mass for Host i // The label

associated with highest mass in bpa is the host’s

class
end
Table 3
Confusion matrix.
Prediction
n=>5317 Nonspam Spam
Actual Nonspam TP =4777 FP =182 4959
Spam FN =358 TN =0 358
5135 182

“confused” while deciding amongst the two classes (i.e. commonly mis-
labeling one as another). This allows more itemized investigation than
minor extent of right conjectures (i.e., precision). Table 3 shows the
confusion matrix produced by the Fuzzy-DST based model introduced

in this paper.

In a typical confusion matrix, the definitive performance is indicated
by having the values on non-diagonal cells to be close to zero (i.e., FP
and FN to be close to zero. As Table 3 reports, the values of FP and
FN are 182 and 358, respectively, which is an indicator of permissible

level of performance manifested by the enhanced DST-based model.
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Table 4
Relevance measures for UK-WEBSPAM-2007 using Fuzzy-DST Model.

Parameter

Parameter description Computed value

True Positive (TP) Correctly Predicted 4777
True Negative (TN) Incorrectly Predicted 0
False Positive (FP) Correctly Rejected 182
False Negative (FN) Incorrectly Rejected 358

Table 5
Relevance measures, their formula and the corresponding values obtained y the
proposed model.

Relevance measures Formula to compute Computed value

Precision TP/(TP+ FP) 0.963

Recall TP/(TP+FN) 0.93

True Negative Rate TN/(TN + FP) 0.9945
(TP+TN)

Accuracy GPITNAFPETY) 0.9927

F-Score 2 # Lrecision Recall) 0.9962

(Precision+Recall)

6.2. Performance evaluation

For classification problems, precision and recall (or sensitivity and
probability of detection) calculations are performed for relevance mea-
surements. Precision is expressed as a probabilistic value to signify
that a randomly selected prediction is correct and it is calculated
as the quantity of true positives divided by the whole of true and
false positives; whereas, Recall is the probabilistic value of correctly
predicted instance that has been randomly selected. Recall is charac-
terized as the quantity of true positives divided by the total number
of true positives and false negatives. Before further explanation, we
present the exposition of TP, TN, FP and FN in Table 4 as well as
the number of instances for those parameters achieved through our
proposed Fuzzy-DST classification model.

In a typical data classification problem:

— A precision score proximate to 1.0 suggests that predictions made
by the proposed model is close to truth; whereas, a recall score
proximate to 1.0 suggests that the model could perform all the
predictions of the referred classes.

— Specificity (or True Negative Rate) is characterized by proba-
bilistic value of the correctly identified instances that do not
belong to the referred class. A prediction with a specificity score
proximate to 1.0 implies a prediction was correct reject from a
class relationship.

— Accuracy is the statistical measurement of a model’s capability to
incorporate or separate any instance to a class relationship. The
accuracy of a model signifies how perfectly it can identify class
memberships.

— F-Score emphasize both precision and recall at the same time by
taking their harmonic mean. We computed the basic F-score to
minimize the impact of either higher number of FP or high FN.
F-score values closer to 1.0 suggests a prefect model.

To estimate the model’s effectiveness, the authors calculated the pre-
cision, recall, true negative rate, accuracy and F-score. The formula
for calculating the aforementioned relevance measures along with the
values obtained for these relevance measures obtained by this model
are presented in Table 5.

The model performance presented in Table 5 is slightly better
when compared to Ntoulas et al. [18], which has reported 82.1%
recall and 84.2% precision for spam classification, and 97.5% recall
and 97.1% precision for non spam identification; whereas, Androut-
sopouloset al. [19] reported 92.3% precision and 80.0% recall for spam
identification before application of filters.
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Table 6 Table 7
Statistical measures of performance. Rank correlations.
Category Ve R? Relative error Correlation I' Kendall’s = Spearman’s p
Spam 0.008 0.998 0.024 Spam 0.91 0.91 0.95
Nonspam 0.011 0.915 0.031 Nonspam 0.94 0.92 0.94
Undecided 0.004 0.91 0.022 Undecided 0.9 0.9 0.9
Total Dataset 0.016 0.97 0.0.09 Average Dataset 0.935 0.9 0.911
Table 8
6.3. Statistical tests Illustrative example.
Assessor Assessment of host Actual label
6.3.1. x? Test #1281 #10480
We performed 42, (chi-squared) goodness of fit test, to measure J48 Nonspam Nonspam Nonspam
the significance of differences between the actual results and the pre- J49 Nonspam Nonspam Nonspam
dictions measured by this method. A very small chi-square statistics
signifies a good fit; whereas, higher statistics indicates the prediction
2 ; . . . .
and actual values are not related. The y* value is measured by the Where 9 is the predicted value and 9 is the actual. The relative

following formula:
2 2:(0; - Ei)2

- Zi Ei

Where O and E are the predicted and actual values, respectively.
The y? results for the dataset and Fuzzy-DST based model are presented
in Table 6.

With respect to Table 6, we observe that the proposed fuzzy-DST
based model performs very well in detecting spam hosts (32 = 0.008).
The approach, also, does a very good job when dealing with detecting
non-spam hosts (y> = 0.011) and a good job when it is difficult to
decide about a host being spam or not (y? = 0.004). Overall, achieving
7% = 0.016 is an indication of the good performance observed by the
proposed model.

(12)

6.3.2. The R? test: The coefficient of determination

The R-squared (R?) test is also performed on the results. This test
represents the proportion of the variance obtained by predictions in
comparison to the actual values. The value closer to 1 shows a perfect
prediction (i.e., the two variables demonstrate a strong relationship);
whereas, a zero value is an indication of a poor prediction. If E; are
the actual values and O; are the predicted values then R? is defined as:

S,
RP=1-2= 13
5 (13)

tot

Where S, is the residual sum square and defined as:

Sre: = Z(El - Oi)z a4
i

and S,,, is the total sum square and defined as:

Sior = Z(Oi - O_i)z 15)
i

where O; is defined as the mean of the n actual data:

1 n

0,=—30 (16)

i=1

Table 6 also reports the R? statistics of the model’s results. From the
results, it can be seen that this model has the performance close to 1 in
the case of spam prediction (0.998 to be exact). Overall, the R?> = 0.97
is an indication of a very good prediction.

6.3.3. Relative error

The relative error or approximation error calculates disparity be-
tween an actual and the corresponding prediction. Relative error (#) is
calculated using the following formula:

9

approx

9 17

n=1-

approx
errors between actual and prediction of our work are presented in

Table 6. As mentioned earlier, our model overall has only 0.09% errors
while predicting spams.

6.3.4. Rank correlations

The rank correlation coefficient computes the level of comparability
between actual and predicted outcome. It is computed in order to eval-
uate the ordinal association between actual and predicted class labels.
In this work, the rank correlation between the actual and predicted
data is calculated. The highest of Pearson correlation is I" = 1, which
implies that 100% of the population support the hypothesis, i.e., the
actual class and the model predicted class are similarly ranked. On
the other hand, a relationship of I' = 0 indicates that there is no
linear relationship between actual and predicted class. Furthermore, a
relationship of I' = —1 indicates that the actual and predicted class are
inversely correlated. Kendall’s 7 and Spearman’s p are two known rank
correlations. Table 7 presents the Pearson and rank correlations for
the actual and predicted class relationships obtained for the proposed
model.

Consistent with the other analyses, the fuzzy-DST model performs
satisfactorily in detecting spam hosts (i.e., correlation of 0.95). Overall,
the regular and rank correlations for all data are remarkably high
(0.935,0.9,0.911).

7. Case study II: User reliability modeling

Whenever a system is dependent on a human assessor, then the
actions or decision made by them is important to produce a certain
output by the system. Therefore, it is important to recognize the
reliability of the assessors. The problem is similar to recognizing the
correct or faulty behavior of a sensor of a certain system. In this section,
we present that the Dempster Shafer combination can be utilized to
quantify the reliability of assessors. This quantitative modeling using
DST can lead to a potential decision about the assessors and classify
them as “trustworthy” or “untrustworthy” from fusing the information.

7.1. Illustrative example

We elaborate the trust computation process using an example.
Let us consider two hosts bristolwest-libdems.org.uk (host id 1281) and
www.acquireland.co.uk (host id 10480). 1281 is assessed by J48 and
J49, and 10480 is assessed by J20, J40, J48 and J49. If we are to
compute the trust for J48 and J49 based on the two hosts status, (as
presented in Table 8), we compute the trustworthiness as:

— Capturing opinion’s (i.e., evidence) of each assessor.

— Translating evidence into mass assignment.

— Combining the mass using DST for overall class assignment of the
host.
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— Comparing assessor’s assessment with the host’s label. If they
match, then we label the assessor as trustworthy and if they do
not match then untrustworthy.

Both J48 and J49 support evidence that 1281 and 10480 are
nonspam, which matches their class assignment. So, we can draw
conclusion that J48 and J49 are “trustworthy” assessor. Algorithm 2
presents the steps involved in user reliability measure.

ALGORITHM 2: The DRC-based algorithm for user reliability.

input : Dataframe containing HostList, AssessorList, LabelsList
output: List of hosts and their respective class labels

n « Count of distinct hosts;
k < Count of distinct labels;
for i « HostList[1] to HostList[n] do
bpa < empty massList;
bca < empty beliefList // contains k distinct classes and
mass functions
m « Count of distinct assessor;
for j < AssessorList[1] to AssessorList[m] do
if 3 nonspam cases given by Assessor j for Host i then ns; « 1 ;
if 3 spam cases given by Assessor j for Host i then s;; « 1;
if 3 unknown cases given by Assessor j for Host i then u;; « 1;
if 3 borderline cases given by Assessor j for Host i then b;; « 1;
1 < (ns; +s;; +uy; +by);
if ns; >0 then
| append bca; for nonspam as (ns;;/t;;) computed for assessor j

else
| bea; for nonspam < 0O
end
if s;; >0 then
| append bca; for spam as (s;;/;;) computed for assessor j
else
| bea; for spam <0
end
if b, >0 then
| append bca; for borderline as (b;/1;;) computed for assessor j
else
| bea; for borderline « 0
end
if u; >0 then
| append bca; for unknown as (u;;/t;;) computed for assessor j
else
‘ bea; for unknown < 0
end
update bpa; as (bca; @ bpa,);
// Combination of mass function using equation (3)

end

bpa; < normalized(bpa,) // Normalize mass using equation (4),
(8), (6)

class; < Label associated with highest mass for Host i // The label
associated with highest mass in bpa is the host’s
class

if class; = assessment; then
Mark assessor; as “trustworthy”’;

end

end

The Algorithm 2, is an extension to the Algorithm 1, with an
additional steps to compute the user trust based on their evaluation
of the hosts.

7.2. Results

Following the aforementioned steps, and as described in Algorithm
2, we processed reliability of 105 assessor over their assessments and
class assignments of 5318 different web hosts. of Table 9 shows the
results:
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Table 9

The assessors classification.

Assessor reliability Count
Trustworthy 67
Untustworthy 15
Undecided 23
Total Dataset 105

Trust plays an important role in deciding which assessor is more
trustworthy and which are not. The levels of trust and distrust for
independent sources of evidence can efficiently be modeled using DST.
The results shown in Table 9 indicates to the fact that DST could set
apart the trustworthy and untrustworthy assessors apart while it fail to
classify 23% of the assessors due to conflicting evidence.

8. Conclusion and future work

Web spam recognition has experienced a couple of eras: beginning
from straightforward content-based strategies to methodologies utiliz-
ing complex link mining and client behavior mining systems. Even
though web spams are continuously evolving we can summarize [39]
the web spam detection methodologies as:

(1) Recognize examples of spam, i.e., discover pages that contain
particular type of spam, and ignore crawling and ranking of such
pages.

(2) Counteract spamming, that is, making particular spamming pro-
cedures difficult to utilize. For example, a web crawler could
distinguish itself as a normal web program application so as to
abstain from cloaking.

(3) Offset the impact of spamming. Nowadays, web crawlers utilize
varieties of the principal ranking techniques that amounts to
some level of potency of the spam.

This paper presented a fuzzy Dempster—Shafer Theory for address-
ing the Web spams identification problem. Both the theories are ap-
pealing for their potential for handling uncertainty in the presence of
incomplete knowledge. Dempster—Shafer Theory encourages the accu-
mulation of evidence assembled at different degrees of specifics. The
fuzzy rule adds another layer of uncertainty handling capabilities to
the classifier, eliminating the most irrelevant evidence. In a framework
where all the evidence either affirms or dis-affirms singleton specula-
tions, the blend of proof by means of the Dempster-Shafer Theory is
computationally straightforward but can suffer from indecision if the
evidence are conflicting. Because of DST’s current rule format arrange-
ment, our previous web spam detection model performs satisfactory but
failed to actualize the class assignments for large number of instances.
Hence, the fuzzy rule based evidence selection is introduced in this
work, where the fuzzy rule selects the most fitting evidence for com-
bination with DRC. Moreover, the DRC computation would increment
exponentially and become multifaceted in nature if the structure of the
evidence changes.

The approach presented in this paper can still become computation-
ally expensive with introduction of multiple evidence sources and multi
criteria evidence selections. To overcome that, the proposed integration
of fuzzy rule for DST based classifier can be introduced as a multi-layer
neural networks. Then, the neural networks can be trained to mitigate
the risk of exponential computations. The trained model can then be
deployed to make the decision making process tractable. Further work
can be coordinated to adjust the hypothesis in the neural networks or
by confining the evidence domain.
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