How Perceptions of Caller Honesty Vary During Vishing Attacks That Include Highly Sensitive or Seemingly Innocuous Requests

- Miriam E. Armstrong, Keith S. Jones, and Akbar Siami Namin
 Texas Tech University, Lubbock, Texas, USA
- ⁵ Precis: Participants read written descriptions of vishing conversations. Half included
- 6 highly sensitive requests; half included seemingly innocuous requests. Participants started
- 7 in the truth-default state. Several aspects of vishing conversations, including request type,
- 8 influenced participants' perceptions of visher honesty. It appears that Truth-Default
- 9 Theory may be a useful tool for understanding vishing attacks.

Running Head: Perceived Honesty During Vishing Calls

Manuscript Type: Research Report
Word Count: 4405

Corresponding Author: Keith S. Jones, keith.s.jones@ttu.edu

- 4 Acknowledgements: This research was supported by the National Science Foundation
- (NSF) under award number 1723765. Opinions, findings, and conclusions are those of the
- authors and do not necessarily reflect the views of NSF.

10

13

Abstract

- Objective: To understand how aspects of vishing calls (phishing phone calls) influence
- 20 perceived visher honesty.
- 21 Background: Little is understood about how targeted individuals behave during vishing
- 22 attacks. According to Truth-Default Theory, people assume others are being honest until
- 23 something triggers their suspicion. We investigated whether that was true during vishing
- 24 attacks.
- 25 Methods: Twenty-four participants read written descriptions of eight real-world vishing
- 26 calls. Half included highly sensitive requests; the remainder included seemingly innocuous
- ²⁷ requests. Participants rated visher honesty at multiple points during conversations.
- 28 Results: Participants initially perceived vishers to be honest. Honesty ratings decreased
- before requests occurred. Honesty ratings decreased further in response to highly sensitive
- requests, but not seemingly innocuous requests. Honesty ratings recovered somewhat, but
- only after highly sensitive requests.
- **Conclusions:** The present results revealed five important insights: 1) people begin vishing
- conversations in the truth-default state, 2) certain aspects of vishing conversations serve as
- triggers, 3) other aspects of vishing conversations do not serve as triggers, 4) in certain
- 35 situations, people's perceptions of visher honesty improve, and, more generally, 5)
- Truth-Default Theory may be a useful tool for understanding how targeted individuals
- 37 behave during vishing attacks.
- 38 Application: Those developing systems that help users deal with suspected vishing
- attacks or penetration testing plans should consider: 1) targeted individuals' truth-bias, 2)
- the influence of visher demeanor on the likelihood of deception detection, 3) the influence
- 41 of fabricated situations surrounding vishing requests on the likelihood of deception
- detection, and 4) targeted individuals' lack of concern about seemingly innocuous requests.

43 Keywords

vishing; telephone fraud; social engineering; deception detection; Truth-Default Theory

45 Introduction

Social engineers acquire information by "hacking" humans (Hadnagy, 2010). One form 46 of social engineering is vishing (a portmanteau of "voice" and "phishing"), which occurs when a social engineer attempts to persuade a targeted individual to divulge information 48 such as a username and password, or other employees' names and roles, during a phone call (Griffin & Rackley, 2008; Ollmann, 2007). The visher may use such information for immediate financial gain, or to deceive others during future vishing attacks. 51 Vishing has grown into a constant and expensive problem (Bullée, Montoya, Pieters, 52 Junger, & Hartel, 2018; Maggi, 2010). Globally, at least 40% of working adults can be expected to experience vishing attacks within a given year (Proofpoint, 2019), and 69% of frauds reported to the Federal Trade Commission occurred over the phone (FTC, 2019). Vishing and other social engineering attacks impact hundreds of thousands of people globally, and approximately 25% of the financial losses stemming from these attacks are never recovered (FBI & IC3, 2019). To thwart vishing attacks, call blocking technologies have been implemented. 59 However, vishers can spoof caller ID information, rendering such technologies ineffective (Pandit, Perdisci, Ahamad, & Gupta, 2018); thus, individuals continue to receive and 61 respond to vishing calls (Tu, Doupé, Zhao, & Ahn, 2019). When that happens, targeted individuals may benefit from tools, such as a digital assistant, that help them deal with the suspected vishing attack. To develop such tools, we need to understand how targeted individuals experience vishing calls and detect vishers' deception. To date, little empirical research has investigated that topic, however, deception detection theories, such as Truth-Default Theory (TDT) (Levine, 2014b), may prove useful.

68 Truth-Default Theory

According to TDT, people generally assume others are being honest (Levine, 2014b).

That is, people are typically in a truth-default state. This is adaptive because the majority

of day-to-day communications are truthful (DePaulo, Kashy, Kirkendol, Wyer, & Epstein, 1996; Serota, Levine, & Boster, 2010). Thus, it is usually accurate to believe that one's 72 conversation partner is honest (Park & Levine, 2001; Street, 2015). Because of their 73 truth-default state, individuals do not actively evaluate the veracity of what they are being told unless something triggers them to do so (Clare & Levine, 2019; Levine, 2014b). 75 According to TDT, several triggers are possible (Levine, 2014b). Examples include: 1) 76 the target becoming aware of a motive for lying, 2) the liar saying or doing things 77 associated with a dishonest demeanor, 3) the liar saying or doing things that do not agree with one another, 4) the liar saying or doing things that do not agree with known reality, 79 or 5) a third-party's warning of potential deception (Levine, 2014b). Research regarding 80 triggers is on-going, so this list is likely not exhaustive (Levine, 2014b; Street, 2015). 81 When a trigger prompts one to leave the truth-default state, one searches for evidence 82 that the suspected message is deceptive. For example, one might question the person with 83 whom they are speaking so as to catch them in a lie (Levine, 2014a). If one acquires sufficient evidence of lying, they will decide the person with whom they are speaking is 85 being deceptive; otherwise, the individual will decide the other person is being honest, and return to the truth-default state (Levine, 2014b).

88 Vishing Through a Truth-Default Theory Lens

In the context of vishing, TDT suggests targeted individuals will be in the
truth-default state at the beginning of the phone conversation. That tendency, which
ordinarily is adaptive, now puts them at risk because they will not actively evaluate the
veracity of what the visher is telling them unless a trigger prompts them to do so.

What aspects of a vishing call might be triggers? One possibility is the visher's
request. Some requests concern highly sensitive information, e.g., personal identification
numbers (PINs) or social security numbers (SSNs) (Ollmann, 2007). Other requests
concern seemingly innocuous information, e.g., a co-worker's name or vacation schedule, or

job-specific terminology, which can be used to build credibility during future social engineering attacks (Mitnick & Simon, 2011). For example, a social engineer who learned that banks communicate their "merchant identification number" to consumer credit 99 reporting agencies can use that terminology to appear more credible when later vishing 100 someone from such agencies (Mitnick & Simon, 2011). Targeted individuals may be 101 triggered by either request type. After all, both request types involve someone the targeted 102 individual does not know asking them to do something that is at least a little out of the 103 ordinary. With that said, targeted individuals will probably be triggered to a greater 104 degree by highly sensitive requests than seemingly innocuous requests because people are 105 generally unwilling to share highly sensitive information (Phelps, Nowak, & Ferrell, 2000), 106 and may even consider the malicious reasons why the visher requested the sensitive 107 information, which could greatly increase the likelihood that the targeted individual will detect the visher's deception (Bond Jr, Howard, Hutchison, & Masip, 2013).

110 The Current Experiment

111

122

calling a targeted individual and requesting they provide some information or perform some action. In half of the descriptions, vishers requested highly sensitive information; in 113 the other half, vishers requested seemingly innocuous information. Participants rated visher honesty at multiple points during the conversation descriptions. 115 We made three hypotheses. First, we hypothesized participants would be in the 116 truth-default state when they began reading the conversation descriptions (Hypothesis 1). 117 Thus, we predicted participants would rate vishers as being significantly more honest than 118 neutral at the beginning of the conversation descriptions. Second, we hypothesized that 119 vishing requests would be triggers (Hypothesis 2). Therefore, we predicted honesty ratings 120 would be greater before vishing requests than during requests. Third, we hypothesized that 121

some types of requests would serve as stronger triggers than others (Hypothesis 3).

Participants read written descriptions of phone conversations; each described a visher

Specifically, we predicted requests for highly sensitive information, such as PINs and passwords, would lead participants to reduce their honesty ratings to a greater degree than requests for seemingly innocuous information, such as requests for names or for terminology. To our knowledge, this experiment is one of the first to explicitly test hypotheses derived from TDT within a social engineering context.

128 Method

129 Participants

Twenty-four participants (17 women; $M_{\rm age} = 26.36$, $SD_{\rm age} = 8.36$) were recruited 130 through the university's announcement system and fliers posted on campus. Participants 131 were fluent in English and received \$30 for participation. No participants reported taking a 132 cybersecurity course, having cybersecurity work experience, or receiving training about 133 what to do during a vishing call. Three participants reported being vishing attack victims, 134 and one of those participants also reported receiving training on determining whether a 135 phone call was a vishing call. Those participants were not excluded from the sample. 136 Excluding those participants from the data set did not alter our conclusions. 137

138 Materials

Examples of successful real-world vishing attacks were identified (Get Safe Online,
2015a, 2015b, 2015c; MadeInSyr, 2013; Mitnick & Simon, 2011; Power & Forte, 2006).

Examples had to meet several criteria: the conversation 1) had two speakers, the visher
and the targeted individual, 2) began with the visher calling the targeted individual, and
3) was a complete conversation.

From those examples, eight written descriptions of vishing calls were created. All
descriptions concerned vishing calls because our hypotheses did not concern differences
between vishing and non-vishing calls. Descriptions were written, rather than recordings
played for participants, because a recording of a role-played interaction might not

accurately represent the many personality, emotional, and behavioral characteristics that 148 make one a convincing liar (Vrij, Granhag, & Mann, 2010). Descriptions were written, 149 rather than actual interactions with participants, because the latter would make it 150 impossible to control conversation content or the role-played visher's behavior. Brief 151 descriptions of each conversation can be found in Table 1. 152 Each conversation was divided into 9-30 sections. Sections were 1-2 sentences long and 153 had one speaker. Conversations contained one of two request types: highly sensitive and 154 seemingly innocuous. During highly sensitive requests, vishers asked for information such 155 as login information or a PIN. During seemingly innocuous requests, vishers asked for 156 information such as job-specific terminology or a coworker's name, or asked the targeted 157 individual to perform a task, such as accessing a Web site. Conversations that included 158 highly sensitive or seemingly innocuous requests were similar in the following ways: total number of sections within a conversation, t(6) = 0.53, p = .612, the portion of the conversation in which the visher was talking, t(6) = 0.92, p = .394, and the number of 161 sections between the beginning of a conversation and when the visher made their request, 162 t(6) = 0.43, p = .681.163 Perceived honesty ratings were collected with a scale used in previous deception 164 detection research (McCornack, Levine, Solowczuk, Torres, & Campbell, 1992) ($\alpha = .99$). 165 The scale contains four semantic difference items: misleading/not misleading, 166

170 Procedure

167

168

169

173

The research complied with the APA Code of Ethics, and was approved by the Texas
Tech Institutional Review Board. Each participant provided informed consent.

deceitful/truthful, dishonest/honest, and deceptive/not deceptive. Each item was rated

determine a honesty score between 1 and 6 (6 = greatest level of perceived honesty).

from 1 to 6 (e.g., misleading = 1; not misleading = 6). Those four items were averaged to

During instructions, participants were told that some speakers might be deceitful.

 $\begin{array}{c} {\rm Table} \ 1 \\ {\it Brief Descriptions \ of \ Phone \ Conversation \ Stimuli} \end{array}$

Conversation Description	Request
Highly Sensitive Request Type	
Conversation 1. The target is the supervisor of a phone company's	username,
help desk. The visher claims that the systems are down and asks for	password
the supervisor's username and password so that they may access her	
account and determine what's going on.	
Conversation 2. The visher calls a small business claiming to be from	username, PIN
a bank and concerned about a series of suspicious payments made by	
the business. The visher requests the target's username and PIN in	
order to cancel the payments.	
Conversation 3. The visher calls a small business claiming to be from a	PIN
bank and concerned about a series of suspicious debits made by the	
business. The visher requests the target's PIN in order to cancel the	
debits.	
Conversation 4. A visher calls a bank claiming to be an employee at	signature card
another branch of the bank and requesting a customer's signature	
card which contains sensitive information such as the customer's SSN.	
Seemingly Innocuous Request Type	
Conversation 5. A visher calls a company's tech support team and claims	visit Web site
that they can't access a Web site. When the target visits the Web	
address, the visher is able to access the company's network.	
Conversation 6. A visher asks a bank employee to confirm a banking	terminology
term and claims they wish to know because they are writing a book	
and want to use the correct terminology.	
Conversation 7. The visher asks a receptionist for the name of an ac-	name
counting department manager so that they can address an invoice to	
a specific person.	
Conversation 8. The visher calls a small business claiming to be from	name
a bank and concerned about a series of suspicious deposits made by	
the business. The visher asks for the names of business associates who	
should be notified about the deposits.	

That was consistent with previous experiments (Granhag & Strömwall, 2001; Levine, Kim, & Blair, 2010; Schindler & Reinhard, 2015), but may have primed participants to perceive dishonesty more readily than they would have otherwise (Clare & Levine, 2019; Parsons, McCormac, Pattinson, Butavicius, & Jerram, 2015).

Participants then completed a practice block, during which they read a written 178 description of a phone conversation that was divided into four sections. Participants read a 179 given section, rated the honesty of the speaker in that section, and then continued to the 180 next section. Participants then completed eight experimental blocks. The order of which 181 was randomized for each participant. Experimental blocks were identical to the practice 182 block except the length of the phone conversation description varied. Finally, participants 183 answered two sets of questions. The first set concerned demographics. The second asked 184 whether participants had taken a cybersecurity course, had cybersecurity work experience, 185 had been trained to recognize vishing calls, had been trained to respond to vishing calls, or 186 had been a vishing victim. 187

As noted, participants read written descriptions of phone conversations; they did not 188 participate in those conversations. That may have further lessened participants' honesty 189 ratings for several reasons. First, those who observe liars conversing with others perceive 190 liars to be less honest than those who talk with liars (Feeley & DeTurck, 1997). Second, 191 those who do not participate in a conversation experience less mental workload, and thus 192 have more resources to devote to deception detection, than those who participate (Waugh 193 et al., 2000). Third, those who do not participate in a conversation may be somewhat 194 inoculated from the many personality, emotional, and behavioral characteristics that make 195 one a convincing liar (Vrij et al., 2010). Accordingly, perceived honesty in real-world 196 settings will likely be greater than that reported here. 197

Results 198

Computing Honesty Ratings Per Conversation Section 199

Honesty ratings were averaged across participants at four conversation sections: the 200 Beginning, Before Request, Request, and End sections (Table 2). Beginning sections were 201 the first sections in which vishers spoke. Before Request sections were the last sections 202 before requests in which vishers spoke. Request sections were those in which vishers made 203 their requests. End sections were the last sections in which vishers spoke. Mean honesty 204 ratings for each conversation at each section can be found in Table 2. 205 All conversations contained Beginning and Request sections. For those sections, 206 honesty ratings were averaged across all four conversations within a conversation type. 207 Because stimuli were created based on real-world vishing conversations, not all 208 conversations contained Before Request and End sections. For those sections, honesty 209 ratings were averaged across all conversations that contained those sections within a 210 conversation type (see Table 2 for details). This was acceptable because it did not impair 211 our ability to test our hypotheses. 212

Analytic Approach 213

223

The following sub-sections describe tests performed to investigate three hypotheses and 214 seven research questions related to unexpected trends. We differentiate tests of hypotheses 215 from tests of non-hypotheses by referring to the latter as exploratory. Our narrative 216 interweaves the two test types so the Results section follows the flow of the conversations. For each test, we computed t-tests. Parametric tests were considered appropriate 218 because 1) composite scores derived from sets of response items with discrete values often 219 exhibit the characteristics of an interval scale (Carifio & Perla, 2007), and 2) even if our 220 honesty scores did not exhibit those qualities, t-tests are quite robust against violations of 221 the interval level data assumption (Carifio & Perla, 2007; Havlicek & Peterson, 1974). 222 The t-tests compared mean honesty ratings either across conversation sections or

Table 2 Mean (SD) honesty ratings of each conversation during four sections of the phone conversation stimuli

	Conversation Section: Mean (SD)				
Conversation	Beginning	Before Request	Request	End	
Highly Sensitive Request Type					
Conversation 1	3.81(1.52)	1.98(1.45)	1.21(0.51)	1.89(1.27)	
Conversation 2	5.17 (1.21)	3.28(1.71)	2.71(1.52)	3.63(1.74)	
Conversation 3	5.67(0.82)	2.09(1.36)	1.67(0.84)		
Conversation 4	5.66 (0.76)		4.18 (1.67)	3.94(1.66)	
Across Conversations	5.08 (0.73)	2.45 (1.14)	2.44(0.71)	3.15 (1.18)	
Seemingly Innocuous Request Type					
Conversation 5	5.78(0.51)	5.47 (0.87)	5.69 (0.62)	5.13 (1.70)	
Conversation 6	5.71(0.75)	4.71(1.44)	4.74(1.45)	5.14(1.42)	
Conversation 7	5.14 (1.30)	_	4.89 (1.62)	5.45(1.26)	
Conversation 8	5.50(0.88)	5.06(1.46)	4.83 (1.61)	4.69(1.53)	
Across Conversations	5.53(0.63)	5.08 (0.89)	5.04 (0.86)	5.10 (0.96)	

Note: Beginning sections were the first sections in which vishers spoke. Before Request sections were the last sections before the request in which vishers spoke. Request sections were those in which vishers made their requests. End sections were the last sections in which vishers spoke. Honesty scores could range from 1 to 6 (6 = greatest level of perceived honesty).

- against the honesty scale's neutral point, i.e., 3.5. For the latter, mean honesty ratings that 224 were significantly greater than 3.5 (neutral) were interpreted as reflecting a truth-default 225 state. Effect sizes were variations of Cohen's d: d_{rm} for paired samples t-tests and d_z for 226
- single sample t-tests (Lakens, 2013).

227

- We considered t-tests related to each hypothesis or research question to be a family. 228
- We applied a Bonferroni correction so that $\alpha = .05$ for each family (Tabachnick, Fidell, & 229 Ullman, 2007). 230

$_{\mbox{\tiny 231}}$ Were Participants in the Truth-Default State at the Beginning of

232 Conversations?

We hypothesized participants would be in the truth-default state during Beginning 233 sections (Hypothesis 1). To test that, we conducted two single-sample t-tests 234 $(\alpha = .05/2 = .025)$, one for conversations that eventually involved requests for highly 235 sensitive information and another for conversations that eventually involved requests for 236 seemingly innocuous information. Each compared Beginning section honesty ratings to 3.5. 237 The mean honesty rating for Beginning sections was significantly greater than 3.5 for 238 conversations that eventually involved highly sensitive requests (M = 5.08, SD = 0.73), 239 $t(23) = 10.53, p < .001, d_z = 2.15$, as were those for conversations that eventually involved 240 seemingly innocuous requests $(M = 5.53, SD = 0.63), t(23) = 15.83, p < .001, d_z = 3.23.$ Accordingly, participants were in the truth-default state during Beginning sections, which 242 supports Hypothesis 1.

²⁴⁴ Were Honesty Ratings Equal at the Beginning of Conversations?

We conducted a paired-samples t-test to explore whether Beginning section honesty ratings were similar across conversation types ($\alpha = .05$). To our surprise, the mean honesty rating for conversations that eventually included highly sensitive requests was significantly less than that for conversations that eventually included seemingly innocuous requests, $t(23) = 4.31, p < .001, d_{rm} = 0.66$. Accordingly, the visher's initial interaction with their target led participants to perceive vishers who later made highly sensitive requests to be less honest than vishers who later made seemingly innocuous requests.

252 Why Were Honesty Ratings Unequal Between Conversation Types?

We explored the data at the conversation level to investigate why Beginning section honesty ratings differed between conversation types. Doing so revealed that three of the four conversations that eventually included highly sensitive requests had mean honesty 256

eventually included seemingly innocuous requests (Ms = 5.14 - 5.78); see Table 2. In 257 contrast, the fourth conversation that eventually included a highly sensitive request, 258 Conversation 1, had a mean honesty rating (M = 3.81) that was less than the others. Thus, 259 it appeared Conversation 1 drove the significant difference between conversation types. 260 To evaluate that, we conducted a paired-samples t-test ($\alpha = .05$), which compared 261 Beginning section mean honesty ratings across conversation types, but this time with 262 Conversation 1 excluded. That test revealed the mean Beginning section honesty rating for 263 conversations that eventually included highly sensitive requests (M = 5.50, SD = 0.75)264 was not significantly different from that for conversations that eventually included 265 seemingly innocuous requests, t(23) = 0.31, p = .762, $d_{rm} = 0.05$, which suggests the 266 difference in Beginning section honesty ratings between the two conversation types was driven by unique characteristics of Conversation 1. 268 Vishers' opening lines in Conversation 2-8 are conventional; for instance, the visher 269 greets the targeted individual. In contrast, the visher in Conversation 1 begins the 270 conversation by asking the targeted individual if they are having a bad day. That 271 unconventional opening line may have caused participants to perceive the visher as 272 unpleasant or unfriendly. Pleasantness and friendliness are characteristics of an honest 273 demeanor (Levine et al., 2011). Therefore, that unconventional opening line may have 274 served as a trigger because participants may have perceived the visher as having a 275 dishonest demeanor. A dishonest demeanor, while not actually diagnostic of dishonesty, is 276 often perceived as an indication of deception (Levine et al., 2011). 277

ratings (Ms = 5.17 - 5.67) that were similar to those for the four conversations that

278 Did Honesty Ratings Decline Before Vishing Requests?

To explore whether honesty ratings declined before vishing requests, we conducted two paired-samples t-tests, one for each conversation type ($\alpha = .05/2 = .025$). Beginning section honesty ratings were compared to those for Before Request sections.

Honesty ratings significantly decreased between the Beginning (M = 4.88, SD = 0.83)282 and Before Request (M = 2.45, SD = 1.14) sections for conversations that eventually 283 included highly sensitive requests, t(23) = 9.96, p < .001, $d_{rm} = 2.42$. Similarly, honesty 284 ratings significantly decreased between the Beginning (M = 5.66, SD = 0.89) and Before 285 Request (M = 5.08, SD = 0.62) sections for conversations that eventually included 286 seemingly innocuous requests, t(23) = 3.24, p = .004, $d_{rm} = 0.75$. Notably, the former's 287 effect size was three times greater than the latter's. Collectively, these results indicate 288 participants perceived vishers to be less honest than they had at the beginning of the 289 conversation, even before any vishing requests were made, and especially for vishers who 290 later made highly sensitive requests. 291 Prior to requests, conversations that led to seemingly innocuous requests mostly 292 concerned fairly typical situations, e.g., technical support helping someone to access a Web site (Conversation 5) or a bank employee answering a question about whether their bank uses a given credit reporting agency (Conversation 6). In contrast, prior to requests, 295 conversations that led to highly sensitive requests concerned fairly atypical situations, e.g., 296 the targeted individual being told that their system went down without their awareness 297 (Conversation 1), or dealing with potentially fraudulent transactions (Conversation 2 and 298 3). Individuals who access a given platform (e.g., Facebook) more frequently and for longer 299 durations are less susceptible to social engineering through that platform than others, 300 presumably because the former are better able than the latter to identify atypical 301 situations, which often signal attacks (Heartfield, Loukas, & Gan, 2016). If that is true for 302 vishing, then the fabricated contexts surrounding highly sensitive requests may have served 303 as a stronger trigger than those surrounding seemingly innocuous requests because 304 participants' suspicions might be proportional to how typical or atypical are those contexts. 305

Were Participants Still in the Truth-Default State Immediately Before Vishing Requests?

To explore whether participants remained in the truth-default state immediately before 308 the vishing requests, we conducted two single-sample t-tests, one for each conversation type 309 $(\alpha = .05/2 = .025)$. Each compared mean Before Request section honesty ratings to 3.5. 310 Mean Before Request section honesty ratings during conversations that eventually 311 included highly sensitive requests (M = 2.45, SD = 1.14) were significantly less than 3.5, 312 $t(23) = 4.52, p < .001, d_z = 0.92$. In contrast, mean Before Request section honesty ratings 313 for conversations that eventually included seemingly innocuous requests were significantly 314 greater than 3.5 $(M = 5.08, SD = 0.89), t(23) = 8.67, p < .001, d_z = 1.77$. Thus, 315 participants were not in the truth-default state at this point during conversations that 316 eventually included highly sensitive requests and participants remained in the truth-default 317 state at this point during conversations that eventually included seemingly innocuous 318 requests.

³²⁰ Did Honesty Ratings Decline Further Because of Vishing Requests?

We hypothesized vishing requests would serve as triggers (Hypothesis 2). To evaluate 321 that, we conducted two paired-samples t-tests, one for each conversation type $(\alpha = .05/2 = .025)$. Each compared Before Request and Request section honesty ratings. When vishers made highly sensitive requests, the mean Before Request section honesty 324 rating (M = 2.45, SD = 1.14) was significantly greater than that for the Request section 325 $(M = 1.86, SD = 0.76), t(23) = 3.49, p = .002, d_{rm} = 0.56.$ In contrast, when vishers made 326 seemingly innocuous requests, the mean Before Request section honesty rating (M = 5.08,327 SD = 0.89) was not significantly different than that for the Request section (M = 5.09, 328 SD = 0.75), t(23) = 0.07, p = .944, $d_{rm} = 0.01$. Thus, requests for highly sensitive 329 information served as triggers whereas requests for seemingly innocuous information did 330 not, which partially supports Hypothesis 2 and fully supports Hypothesis 3. 331

Were Participants in the Truth-Default State When Vishing Requests Were Made?

To explore whether participants were in the truth-default state during Request 334 sections, we conducted two single-sample t-tests, one for each conversation type 335 $(\alpha = .05/2 = .025)$. Each compared Request section honesty ratings against 3.5. 336 When highly sensitive requests were made, honesty ratings were significantly below 337 neutral $(M = 2.44, SD = 0.71), t(23) = 7.33, p < .001, d_z = 1.50.$ When seemingly 338 innocuous requests were made, honesty ratings were significantly above neutral (M = 5.04,339 SD = 0.86), t(23) = 8.77, p < .001, $d_z = 1.79$. Thus, participants were not in the 340 truth-default state during highly sensitive requests, and were in the truth-default state 341 during seemingly innocuous requests.

Did Honesty Ratings Recover After Vishing Requests?

Typically, vishing requests were not the end of conversations, so it was possible that 344 honesty ratings could have recovered after requests were made. To explore that, we 345 conducted two paired-samples t-tests ($\alpha = .05/2 = .025$), one for each conversation type. 346 Each compared Request section honesty ratings to those for End sections. 347 For conversations that included highly sensitive requests, the mean Request section honesty rating (M = 2.70, SD = 0.78) was less than that for the End section (M = 3.15,SD = 1.18) but the difference was not significant after Bonferroni correction, t(23) = 2.25, 350 $p = .034, d_{rm} = 0.43$. For conversations that included seemingly innocuous requests, the 351 mean Request section honesty rating (M = 5.04, SD = 0.86) was not significantly different 352 from that for the End section $(M = 5.10, SD = 0.96), t(23) = 0.43, p = .669, d_{rm} = 0.07.$ 353 These results suggest honesty ratings did not recover after vishing requests. However, the 354 effect size for conversations that included highly sensitive requests ($d_{rm} = 0.43$) suggests 355 those honesty ratings may have recovered somewhat, although not enough to be 356 statistically significant once the Bonferroni correction was applied. 357

359

374

383

Were Participants in the Truth-Default State at the End of Conversations? 358

To explore whether participants were in the truth-default state during End sections, we conducted two single-sample t-tests, one for each conversation type ($\alpha = .05/2 = .025$). 360 Each compared End section honesty ratings to 3.5. 361 For conversations that included highly sensitive requests, the mean End section 362 honesty rating was not significantly different from 3.5 (M = 3.15, SD = 1.18), 363 $t(23) = 1.45, p = .161, d_z = 0.30$. For conversations that included seemingly innocuous 364 requests, the mean End section honesty rating was significantly greater than 3.5 365 $(M = 5.10, SD = 0.96), t(23) = 8.17, p < .001, d_z = 1.67$. Thus, participants were not in 366 the truth-default state at the end of highly sensitive conversations, and were in the 367 truth-default state at the end of seemingly innocuous conversations. 368 For conversations that included highly sensitive requests, the mean Request section 369 honesty rating was significantly less than 3.5 (M = 2.44, SD = 0.71) whereas the mean End section honesty rating was not (M = 3.15, SD = 1.19). That corroborates our earlier 371 argument that honesty ratings for conversations that included highly sensitive requests 372 recovered somewhat by the end of those conversations. What might have driven that 373

Discussion 375

recovery is explored in the Discussion section.

For vishing conversations that included requests for highly sensitive information, 376 participants entered the conversation in the truth-default state. As those conversations 377 progressed, participants left the truth-default state. Vishers were perceived to be dishonest 378 immediately before vishing requests, and honesty ratings declined further once requests 379 were made. By the end of those conversations, honesty ratings had recovered somewhat, 380 enough that vishers were perceived as neither honest nor dishonest (neutral) rather than 381 dishonest. 382

For vishing conversations that included requests for seemingly innocuous information,

participants entered the conversation in the truth-default state. As those conversations
progressed, honesty ratings declined but not enough for participants to leave the
truth-default state. Honesty ratings did not decline further when seemingly innocuous
requests were made, and did not recover by the end of those conversations.

Insights Derived From The Present Results

The present results revealed five important insights: 1) people begin vishing
conversations in the truth-default state, 2) certain aspects of vishing conversations serve as
triggers, 3) other aspects of vishing conversations do not serve as triggers, 4) in certain
situations, people's perceptions of visher honesty improve, and, more generally, 5) TDT
may be a useful tool for understanding how targeted individuals behave during vishing
attacks. Each will be detailed below.

People Begin Vishing Conversations in the Truth-Default State. During
Beginning sections, honesty ratings were significantly greater than the honesty scale's
neutral value for both conversation types. Thus, our results supported Hypothesis 1, which
stated participants would be in the truth-default state at the beginning of vishing
conversations. As noted earlier, people often exhibit a truth-bias (Levine, 2019), however,
that is not always the case. For example, people exhibit a lie-bias when evaluating online
news (Baryshevtsev et al., 2020). Accordingly, it is important to establish that people
exhibit a truth-bias at the beginning of vishing conversations.

Certain Aspects of Vishing Conversations Serve as Triggers. Honesty
ratings for Conversation 1 during the Beginning section were less than those for the other
conversations. As noted earlier, the unconventional opening line in Conversation 1 may
have served as a trigger because participants may have perceived the visher to have a
dishonest demeanor, which is known to trigger suspicion (Levine, 2014b).

Honesty ratings decreased prior to requests, especially during conversations that led to highly sensitive requests. As noted previously, the relatively atypical contexts that

surrounded highly sensitive requests (e.g., computer systems being down without the 410 targeted individual being aware of that) may have served as a trigger because participants' 411 suspicions may be a function of typicality (Heartfield et al., 2016). 412 Honesty ratings also decreased as a result of highly sensitive requests. During such 413 requests, vishers asked targeted individuals to provide personal information such as 414 usernames (Conversation 1 and 2), passwords (Conversation 1), or PINs (Conversation 2) 415 and 3), or to send vishers a document that contained such information (Conversation 4). 416 Most people have been explicitly told that they should not share such information with 417 others. Therefore, requesting that information may have served as a trigger because the 418 visher violated what participants were taught or because the request caused participants to 419 consider the vishers' motives for requesting that information. Requests for highly sensitive 420 information also served as triggered during phishing attacks (Downs, Holbrook, & Cranor, 2006; Furnell, 2007), which suggests such requests serve as triggers across social engineering 422 attack types. 423 In summary, these observations collectively shed light on aspects of vishing 424 conversations that may serve as triggers. Specifically, aspects of vishing conversations will 425 likely encourage people to leave the truth-default state when they: 1) cause the visher to 426 be perceived as unfriendly or unpleasant, 2) cause the situation to be perceived as atypical, 427 or 3) violate what participants were taught. 428 Certain Other Aspects of Vishing Conversations Do Not Serve as Triggers. 429 Honesty ratings did not decrease as a result of seemingly innocuous requests, and were 430 significantly greater than neutral during those requests. During such requests, vishers 431 asked targeted individuals to visit a Web site (Conversation 5), answer a question about 432 terminology (Conversation 6), or provide a co-worker's name (Conversation 7 and 8). 433 Those requests may not have served as triggers because participants may not have been 434 warned about such attacks or understood how those requests could be used for nefarious 435

purposes. Regarding the latter, some users are unaware that phishers sometimes request

436

seemingly innocuous information (Greene, Steves, Theofanos, & Kostick, 2018); the same
may be true for vishing attacks. Alternatively, those requests may not have served as
triggers because such requests are commonplace but rarely attacks, which makes them very
difficult to detect when they are attacks (Sawyer & Hancock, 2018). Given that
participants stayed in the truth-default state during seemingly innocuous requests, people
will likely not detect deception when vishers make requests that are not typically
mentioned during social engineering training, for which a nefarious motive is not obvious,
or are only rarely associated with attacks.

In Certain Situations, Perceptions of Visher Honesty Improve. 445 ratings increased between Request and End sections, but only after highly sensitive 446 requests. Vishers who made seemingly innocuous requests mostly made polite conversation 447 after making their requests. In contrast, vishers who made highly sensitive requests often provided follow-up information that made their requests seem reasonable. For example, vishers explained why a problem was occurring (Conversation 1), explained why it would be necessary to generate a passcode (Conversation 2), or provided a security code 451 (Conversation 4). A similar approach is used when crafting spear-phishing emails, making 452 them very difficult to differentiate from legitimate emails (Butavicius, Parsons, Pattinson, 453 & McCormac, 2016). Providing plausible explanations is a characteristic of an honest 454 demeanor (Levine et al., 2011). Therefore, providing follow-up information that made 455 highly sensitive requests seem plausible may have partly assuaged participants' concerns, 456 leading participants to perceive those vishers as more honest than they were perceived to 457 be before. 458

Truth-Default Theory May Be A Useful Tool. According to TDT, people
generally assume others are being honest, unless something triggers them to question what
they are being told. As detailed above, the present results revealed participants were in the
truth-default state at the beginning of conversations, and certain aspects of vishing
conversations triggered them into questioning the visher's honesty. Accordingly, our results

suggest TDT may be a useful tool for understanding how targeted individuals perceive vishers during vishing attacks.

466 Potential Applications of the Present Results

The present results have several important implications for the design of tools, such as 467 digital assistants, that can advise targeted individuals during suspected vishing attacks. 468 Specifically, the present results suggest such systems should reflect that people 1) begin 469 conversations in the truth-default state, 2) are not concerned about seemingly innocuous 470 requests, and 3) do not understand how seemingly innocuous requests can be used for 471 nefarious purposes. One possibility would be to activate the system when the caller makes 472 a request. Simply warning a user of potential deception could result in users leaving the 473 truth-default state (Levine, 2014b), and additionally the system could convey information 474 known to trigger suspicion and increase lie detection. For example, the system could 475 convey i) a potential nefarious motive for the request (Bond Jr et al., 2013; Levine et al., 476 2010), and ii) questions to ask the caller which may reveal instances in which the caller 477 says something that is inconsistent with earlier statements or with known reality (Levine, 478 Blair, & Clare, 2014). Such features might shift users away from their truth-default state, increase their level of concern about seemingly innocuous requests, and help them understand how requests can be used for nefarious purposes. In doing so, the system might increase vishing attack detection. 482 The present results also have several important implications for penetration testing, 483 i.e., authorized hacking to identify security vulnerabilities (Hadnagy, 2010). Specifically, 484 the present results suggest penetration testers should 1) understand that people exhibit a 485 truth-bias, so penetration testers should 2) aim to act in such a way so as to maintain that 486 truth-bias. Toward that end, when possible, penetration testers should 3) aim to create 487 contexts for their attacks that involve fairly typical situations, 4) request information that 488 most people have not been warned against sharing, and 5) provide plausible explanations 480

for why requests for such information are reasonable given the circumstances. In doing so,
penetration testers should increase the likelihood that their vishing attacks will be
successful.

493 Future Research Directions

As the first study to examine perceptions of visher honesty during vishing attacks, the 494 results of the present experiment lay the groundwork for future research in this important 495 area. The present results highlight several aspects of vishing conversations that may cause 496 honesty ratings to decrease, and other aspects of vishing conversations that may cause 497 honesty ratings to increase. Future research should investigate whether those aspects of 498 vishing conversations truly drive those effects. The present results also shed light on 499 perceptions of visher honesty during vishing attacks, but do not speak to how those 500 perceptions translate into target behavior. Future research should investigate the 501 relationship between perceptions of visher honesty and whether targeted individuals 502 comply with vishers' requests. Phishing research revealed that individual differences can 503 predict phishing susceptibility (Lawson, Pearson, Crowson, & Mayhorn, 2020). Future 504 research should investigate whether the same is true for vishing susceptibility.

506 Key Points

- People begin vishing conversations in the truth-default state.
- Certain aspects of vishing conversations serve as triggers.
- Other aspects of vishing conversations do not serve as triggers.
- In certain situations, people's perceptions of visher honesty improve.
- Truth-Default Theory may be a useful tool for understanding how targeted individuals behave during vishing attacks.

References References

```
Baryshevtsev, M. V., et al. (2020). Sharing is not caring: news features predict false news

detection and diffusion (Unpublished doctoral dissertation).
```

- Bond Jr, C. F., Howard, A. R., Hutchison, J. L., & Masip, J. (2013). Overlooking the obvious: Incentives to lie. *Basic and Applied Social Psychology*, 35(2), 212–221.
- Bullée, J.-W. H., Montoya, L., Pieters, W., Junger, M., & Hartel, P. (2018). On the
 anatomy of social engineering attacks—A literature-based dissection of successful
 attacks. *Journal of Investigative Psychology and Offender Profiling*, 15(1), 20–45.
- Butavicius, M., Parsons, K., Pattinson, M., & McCormac, A. (2016). Breaching the human firewall: Social engineering in phishing and spear-phishing emails. arXiv preprint arXiv:1606.00887.
- Carifio, J., & Perla, R. J. (2007). Ten common misunderstandings, misconceptions,

 persistent myths and urban legends about likert scales and likert response formats

 and their antidotes. *Journal of social sciences*, 3(3), 106–116.
- Clare, D. D., & Levine, T. R. (2019). Documenting the truth-default: The low frequency of spontaneous unprompted veracity assessments in deception detection. *Human*Communication Research, 45(3), 286–308.
- DePaulo, B. M., Kashy, D. A., Kirkendol, S. E., Wyer, M. M., & Epstein, J. A. (1996).

 Lying in everyday life. *Journal of Personality and Social Psychology*, 70(5), 979.
- Downs, J. S., Holbrook, M. B., & Cranor, L. F. (2006). Decision strategies and susceptibility to phishing. In *Proceedings of the second symposium on usable privacy*and security (pp. 79–90).
- FBI, & IC3. (2019). 2018 Internet Crime Report. Retrieved from

 https://pdf.ic3.gov/2018_IC3Report.pdf
- Feeley, T., & DeTurck, M. (1997). Perceptions of communications as seen by the actor and as seen by the observer: The case of lie detection. *International Communication*Association Annual Conference.

- FTC. (2019). Consumer sentinel network data book for january-december 2018. Retrieved from 541 https://www.ftc.gov/reports/consumer-sentinel-network-data-book-2018 542 Furnell, S. (2007). Phishing: can we spot the signs? Computer Fraud & Security, 2007(3), 543 10-15.544 Get Safe Online. (2015a, Aug 26). Reconstruction of actual vishing call to a small business 545 - Alfie Johnson. YouTube. Retrieved from https://www.youtube.com/ 546 watch?v=IyzP1PIch8Y&list=PLT208mGYzrB0ke-krvY2h9T0MPjpuxiWH&index=3 Get Safe Online. (2015b, Aug 26). Reconstruction of actual vishing call to a small business 548 - Archie Hicks. YouTube. Retrieved from https://www.youtube.com/ 549 watch?v=lwc9iU2MidQ&list=PLT2O8mGYzrBOke-krvY2h9TOMPjpuxiWH 550 Get Safe Online. (2015c, Aug 26). Reconstruction of actual vishing call to a small business - Harwood Estates. YouTube. Retrieved from https://www.youtube.com/ 552 watch?v=MIgSM-7miVM&list=PLT208mGYzrB0ke-krvY2h9T0MPjpuxiWH&index=2 553 Granhag, P. A., & Strömwall, L. A. (2001). Deception detection: Interrogators' and 554 observers' decoding of consecutive statements. The Journal of Psychology, 135(6), 555 603-620.556 Greene, K. K., Steves, M. P., Theofanos, M. F., & Kostick, J. (2018). User context: an 557 explanatory variable in phishing susceptibility. In in proc. 2018 workshop usable 558 security. 559 Griffin, S. E., & Rackley, C. C. (2008). Vishing. Proceedings of the 5th Annual Conference 560 on Information Security Curriculum Development, 33–35. 561 Hadnagy, C. (2010). Social engineering: The art of human hacking. John Wiley & Sons. 562 Havlicek, L. L., & Peterson, N. L. (1974). Robustness of the t test: A guide for researchers 563 on effect of violations of assumptions. Psychological Reports, 34 (3_suppl), 564 1095-1114.565
- Heartfield, R., Loukas, G., & Gan, D. (2016). You are probably not the weakest link:

- Towards practical prediction of susceptibility to semantic social engineering attacks. *IEEE Access*, 4, 6910–6928.
- Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and anovas. *Frontiers in Psychology*, 4, 863.
- Lawson, P., Pearson, C. J., Crowson, A., & Mayhorn, C. B. (2020). Email phishing and signal detection: How persuasion principles and personality influence response patterns and accuracy. *Applied Ergonomics*, 86, 103084.
- Levine, T. R. (2014a). Active deception detection. *Policy Insights from the Behavioral and Brain Sciences*, 1(1), 122–128.
- Levine, T. R. (2014b). Truth-default theory (TDT): A theory of human deception and deception detection. *Journal of Language and Social Psychology*, 33(4), 378–392.
- Levine, T. R. (2019). Duped: Truth-default theory and the social science of lying and deception. University Alabama Press.
- Levine, T. R., Blair, J. P., & Clare, D. D. (2014). Diagnostic utility: Experimental
 demonstrations and replications of powerful question effects in high-stakes deception
 detection. *Human Communication Research*, 40(2), 262–289.
- Levine, T. R., Kim, R. K., & Blair, J. P. (2010). (In)accuracy at detecting true and false confessions and denials: An initial test of a projected motive model of veracity judgments. *Human Communication Research*, 36(1), 82–102.
- Levine, T. R., Serota, K. B., Shulman, H., Clare, D. D., Park, H. S., Shaw, A. S., . . . Lee,

 J. H. (2011). Sender demeanor: Individual differences in sender believability have a

 powerful impact on deception detection judgments. *Human Communication*Research, 37(3), 377–403.
- MadeInSyr. (2013, Aug 5). Live hack and social engineering at DEF_CON by Dave
 Kennedy and Kevin Mitnick. YouTube. Retrieved from
 https://youtu.be/DB6ywr9fngU?t=276
- Maggi, F. (2010). Are the con artists back? A preliminary analysis of modern phone

- frauds. 2010 10th IEEE International Conference on Computer and Information
 Technology, 824–831.
- McCornack, S. A., Levine, T. R., Solowczuk, K. A., Torres, H. I., & Campbell, D. M.
- (1992). When the alteration of information is viewed as deception: An empirical test
- of information manipulation theory. Communications Monographs, 59(1), 17–29.
- Mitnick, K. D., & Simon, W. L. (2011). The art of deception: Controlling the human
- element of security. John Wiley & Sons.
- Ollmann, G. (2007). The vishing guide. IBM, Tech. Rep.
- Pandit, S., Perdisci, R., Ahamad, M., & Gupta, P. (2018). Towards measuring the effectiveness of telephony blacklists. In *Ndss*.
- Park, H. S., & Levine, T. (2001). A probability model of accuracy in deception detection experiments. *Communication Monographs*, 68(2), 201–210.
- Parsons, K., McCormac, A., Pattinson, M., Butavicius, M., & Jerram, C. (2015). The
 design of phishing studies: Challenges for researchers. Computers & Security, 52,
 194–206.
- Phelps, J., Nowak, G., & Ferrell, E. (2000). Privacy concerns and consumer willingness to provide personal information. *Journal of Public Policy & Marketing*, 19(1), 27–41.
- Power, R., & Forte, D. (2006). Social engineering: Attacks have evolved, but

 countermeasures have not. Computer Fraud & Security, 2006 (10), 17–20.
- Proofpoint. (2019). State of the phish: 2019 report (Tech. Rep.). Retrieved from https://info.wombatsecurity.com/hubfs/
- Wombat_Proofpoint_2019%20State%20of%20the%20Phish%20Report_Final.pdf
- Sawyer, B. D., & Hancock, P. A. (2018). Hacking the human: the prevalence paradox in cybersecurity. *Human factors*, 60(5), 597–609.
- Schindler, S., & Reinhard, M.-A. (2015). Increasing skepticism toward potential liars:
- Effects of existential threat on veracity judgments and the moderating role of honesty norm activation. Frontiers in Psychology, 6, 1312.

- Serota, K. B., Levine, T. R., & Boster, F. J. (2010). The prevalence of lying in America:
- Three studies of self-reported lies. Human Communication Research, 36(1), 2–25.
- Street, C. N. (2015). Alied: Humans as adaptive lie detectors. Journal of Applied Research
- in Memory and Cognition, 4(4), 335-343.
- Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics
- 626 (Vol. 5). Pearson Boston, MA.
- Tu, H., Doupé, A., Zhao, Z., & Ahn, G.-J. (2019). Users really do answer telephone scams.
- In 28th { USENIX} security symposium ({ USENIX} security 19) (pp. 1327–1340).
- Vrij, A., Granhag, P. A., & Mann, S. (2010). Good liars. The Journal of Psychiatry &
- Law, 38(1-2), 77-98.
- Waugh, J. D., Glumm, M. M., Kilduff, P. W., Tauson, R. A., Smyth, C. C., & Pillalamarri,
- R. S. (2000). Cognitive workload while driving and talking on a cellular phone or to
- a passenger. Proceedings of the Human Factors and Ergonomics Society Annual
- Meeting, 44(33), 6-276.

Biographies

Miriam E. Armstrong is a doctoral candidate in Texas Tech University's Human Factors program.

638

- 639 Keith S. Jones is an Associate Professor of Psychology at Texas Tech University. He
- 640 received his Ph.D. in Experimental Psychology with an emphasis on Human Factors
- Psychology from the University of Cincinnati in 2000.

642

- Akbar Siami Namin is an Associate Professor of Computer Science at Texas Tech
- University. He received his Ph.D. in Computer Science with an emphasis on Software
- 645 Engineering from the University of Western Ontario in 2008.

646