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Nanoscale chromatin imaging and analysis platform 
bridges 4D chromatin organization with 
molecular function
Yue Li1*, Adam Eshein1*, Ranya K.A. Virk1*, Aya Eid1, Wenli Wu1, Jane Frederick1, David VanDerway1, 
Scott Gladstein1, Kai Huang2, Anne R. Shim1, Nicholas M. Anthony1, Greta M. Bauer1, 
Xiang Zhou1, Vasundhara Agrawal1, Emily M. Pujadas1, Surbhi Jain1, George Esteve1, 
John E. Chandler1, The-Quyen Nguyen1, Reiner Bleher3, Juan J. de Pablo4, Igal Szleifer1, 
Vinayak P. Dravid3, Luay M. Almassalha1, Vadim Backman1†

Extending across multiple length scales, dynamic chromatin structure is linked to transcription through the regu-
lation of genome organization. However, no individual technique can fully elucidate this structure and its relation 
to molecular function at all length and time scales at both a single-cell level and a population level. Here, we 
present a multitechnique nanoscale chromatin imaging and analysis (nano-ChIA) platform that consolidates electron 
tomography of the primary chromatin fiber, optical super-resolution imaging of transcription processes, and 
label-free nano-sensing of chromatin packing and its dynamics in live cells. Using nano-ChIA, we observed that 
chromatin is localized into spatially separable packing domains, with an average diameter of around 200 nano-
meters, sub-megabase genomic size, and an internal fractal structure. The chromatin packing behavior of these 
domains exhibits a complex bidirectional relationship with active gene transcription. Furthermore, we found that 
properties of PDs are correlated among progenitor and progeny cells across cell division.

INTRODUCTION
Dynamic, three-dimensional (3D) chromatin organization plays an 
important role in regulating a vast number of cellular processes, in-
cluding cell type–specific gene expression and lineage commitment 
(1–3). Large-scale alterations in chromatin structure are associated 
with cancer, numerous neurological and autoimmune disorders, and 
other complex diseases (4, 5). However, the precise conformation of 
chromatin and its relationship with transcription, a direct determinant 
of cellular phenotype, remain contested. The basic units of chromatin 
are nucleosomes, which are connected by linker DNA to form a 
“beads-on-a-string” chromatin fiber. Previously, the primary 11-nm 
fiber was thought to aggregate into a thicker 30-nm chromatin fi-
ber, but this textbook view has been challenged by several recent 
studies (6, 7). One such work used a novel imaging technique, chro-
matin electron tomography (ChromEMT), to interrogate chroma-
tin ultrastructure down to the level of single nucleosomes (8). Using 
ChromEMT, Ou et al. (8) found that DNA and nucleosomes assemble 
into disordered chains, with diameters varying between 5 and 24 nm, 
which themselves pack at various densities within the nucleus.

Parallel to microscopy-based techniques such as ChromEMT, 
chromosome conformation capture–based methods have provided 
key insights into higher-order chromatin structures by linking 
chromatin topology with genomic information (9). Specifically, high-
throughput chromatin conformation capture (Hi-C) measures pair-
wise contact frequencies of different genes and quantitatively maps 
these contacts throughout the genome (10). Bulk Hi-C measurements, 

which capture average chromatin structure over millions of cells, have 
revealed the existence of topologically associating domains (TADs), 
regions of tens to hundreds of kilobases with frequent intradomain 
interactions that exhibit a hierarchical organization (11). Notably, 
single-cell Hi-C methods have demonstrated the potential existence 
of TADs in individual nuclei, although a high degree of intercellular 
heterogeneity in TAD distribution has been reported (12).

Recently, the development of super-resolution (SR) microscopies, 
including stochastic optical reconstruction microscopy (STORM) and 
photoactivated localization microscopy, in combination with labeling 
methods, such as fluorescence in situ hybridization (FISH) and DNA 
point accumulation in nanoscale topology, has allowed for direct 
comparison between microscopy and Hi-C techniques. Multiple 
independent studies have reported the existence of TAD-like chro-
matin nanocompartments using SR microscopies (13–16). In addi-
tion, Nozaki et al. (14) elucidated the coherent dynamics of chromatin 
domains in live cells using SR imaging and single-nucleosome track-
ing. Despite the advancements in visualizing nanocompartments, 
several critical open questions remain, including how the chromatin 
chain packs into these and other higher-order structures, the mech-
anisms of formation and maintenance of chromatin conformation in 
live cells, and the connection between chromatin conformation, gene 
loci connectivity, and transcription processes.

To characterize these details of chromatin organization and un-
derstand their relation to gene transcription at all length scales, it is 
necessary to overcome several fundamental limitations of existing 
techniques. Hi-C and derivative techniques, although effective at 
detecting longer-range interactions, suffer from high noise below 5 
to 100 kb, depending on experimental factors such as read depth 
and restriction enzymes (17). Even SR methods are unable to 
achieve the detailed resolution provided by ChromEMT, which is able 
to characterize chromatin structure down to the individual nucleo-
some level for entire cell nuclei. However, this imaging method 
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lacks molecular and genomic information provided by both SR and 
Hi-C. In addition, ChromEMT, chromatin conformation capture–
based, and FISH-derived methods all require chemical fixation; 
thus, only a snapshot of chromatin organization at one point in 
time can be measured. Consequently, these methods are incapable 
of monitoring the dynamic process of chromatin reorganization in 
response to external stimulation and the heritability of higher-order 
chromatin structure across cell division. Partial wave spectroscopic 
(PWS) microscopy is a label-free, high-throughput spectroscopy 
technique with live-cell imaging capabilities that has previously 
been used to identify and monitor nanoscale structural alterations 
in chromatin packing in real time (18). Nevertheless, as a diffraction-
limited imaging technique, PWS can sense but not resolve chroma-
tin packing at the level of the chain structure. As PWS uses the mass 
density distribution of chromatin for imaging contrast, it also does 
not carry molecular-specific information.

Because no individual technique can fully elucidate the chroma-
tin organization and its relation to molecular function at all spatial 
and temporal scales (19), it is necessary to develop a multimodal 
platform combining complementary techniques. Such a platform 
should have high resolution across the entire nucleus with dynamic, 
live-cell imaging capabilities and analysis methodologies to link 
these results to genome connectivity and the localization of critical 
molecular factors. To meet these requirements, we have developed 
the nanoscale chromatin imaging and analysis (nano-ChIA) platform, 
which incorporates chromatin scanning transmission electron micro
scopy (ChromSTEM), chromatin transmission electron microscopy 
(ChromTEM), PWS, and STORM. Each facet of nano-ChIA inter-
rogates distinct aspects of chromatin architecture: ChromEM for 
directly measuring DNA density and the spatial conformation of 
chromatin chains, PWS for label-free, dynamic measurements of 
the statistical properties of the chromatin conformation in live cells, 
and STORM for in situ imaging of molecular functions at nanoscale 
resolution. Consolidating these modalities, nano-ChIA is a fully 
quantitative nanoscale imaging platform that complements the ge-
nomic information provided by chromatin conformation capture 
and other sequencing-based techniques. By bridging high-resolution 
imaging of chromatin structure and molecular processes with high-
throughput, label-free analysis of chromatin dynamics in live 

cells across time scales spanning from minutes to hours, nano-ChIA 
has the potential to provide insights into crucial questions in 4D 
genomics.

RESULTS
nano-ChIA platform integrates information from multiple 
imaging modalities to provide enhanced spatiotemporal 
information on chromatin organization and transcription
The nano-ChIA platform aims to quantify chromatin organization 
at broad spatial and temporal scales and relate this structure to tran-
scription activities. At the smallest length scales, the nano-ChIA 
platform combines DNA-specific labeling (ChromEM) with high-
angle annular dark-field (HAADF) imaging in STEM (ChromSTEM) 
and TEM imaging (ChromTEM). Specifically, ChromSTEM, an 
adaptation of the pioneering work demonstrated by Ou et al. (8), is 
able to reconstruct chromatin ultrastructure of a thick nuclear cross 
section at sub-3-nm resolution (Fig. 1A) with the potential to image 
the entire nucleus by serial sectioning (20). As ChromSTEM is not 
high throughput, with the imaging volume per experiment limited 
to 2 m × 2 m × 300 nm, the platform uses ChromTEM to gain 
statistical power. By imaging ultrathin (~50 nm) cross sections with 
a larger field of view (~150 m × 150 m), ChromTEM extends 
the yield of ChromSTEM from a fraction of a cell nucleus to multi-
ple entire cell nuclei. Although not a 3D technique, ChromTEM 
provides faster, pseudo-2D quantification of chromatin packing 
structure from the cross sections of the nucleus at 3- to 5-nm lateral 
resolution (Fig. 1B).

Next, nano-ChIA uses PWS microscopy for label-free, real-time 
imaging of chromatin packing across thousands of cells. PWS di-
rectly measures variations in spectral light interference resulting 
from light scattering due to heterogeneities in chromatin density. 
This interference signal is then processed to characterize the shape 
of the autocorrelation function (ACF) of chromatin density within 
the coherence length (~1 m in depth) in either fixed or live cells. 
Although the spatial resolution is ~250 nm, PWS is sensitive to struc-
tural length scales between 20 and 300 nm (21). To investigate the 
molecular functionality relevant to chromatin structure, nano-ChIA 
coregisters STORM and PWS to visualize chromatin packing structure 

Fig. 1. nano-ChIA platform. (A) ChromSTEM HAADF tomography characterizes the 3D chromatin structure of an A549 cell (contrast inverted). The inverted image con-
trast is inversely proportional to the local DNA density: As the electrons encounter a higher density of DNA along their trajectory, the image contrast appears darker. In-
dividual nucleosomes and linker DNA are resolved at 2-nm spatial resolution. Scale bar, 30 nm. (B) ChromTEM imaging of a BJ cell nucleus on a 50-nm resin section 
prepared by ChromEM staining. Similar to ChromSTEM, ChromTEM also maps the DNA distribution, but the image contrast follows Beer’s law. Scale bar, 1 m. (C) Coregistered 
PWS and STORM imaging of chromatin packing scaling (D, red pseudocolor) and active RNA Polymerase-II (RNAP II) (green) of an M248 cell nucleus. Scale bar, 3 m. 
(D and E) Label-free PWS images of live A549 cells of both one field of view where chromatin packing variations within nuclei are visible (D) (scale bar, 20 m) and a 9 × 9, 
stitched together, image to demonstrate the ability of PWS to visualize chromatin packing structure of cell populations (E) (scale bar, 100 m). The pseudocolor represents 
the chromatin packing scaling inside the cell nuclei.
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with respect to the spatial distribution of functionally important 
macromolecules such as active RNA polymerases (Fig. 1C). Here, all 
STORM images have an average localization precision below 20 nm. 
A schematic of the combined STORM-PWS microscope is shown in 
fig. S1. Lastly, nano-ChIA is able to track the time-varying chromatin 
packing dynamics of single cells using PWS, thus enabling the quan-
tification of supranucleosomal chromatin packing alterations through 
cell divisions with a temporal resolution on the order of 5 s (Fig. 1D). 
PWS is also a more high-throughput technique and is able to detect 
statistical changes in chromatin structure across entire cell popula-
tions with negligible image acquisition and reconstruction times 
compared to our other nano-ChIA modalities (Fig. 1E).

Chromatin forms PDs with fractal internal structure
The chromatin polymer adopts a dynamic conformation that emerges 
from interactions between its basic units (i.e., histone proteins and 
DNA) and the surrounding nucleoplasmic environment, coupled with 
various molecular mechanisms that impose additional topological 
constraints (22). Biochemical factors, including histone modifica-
tions, DNA methylation, pH, and the intranuclear ionic environment, 
can tune chromatin-chromatin and chromatin-nucleoplasm inter-
actions (23, 24). Chromatin organization is further modified by active 
processes such as loop extrusion, as well as physical constraints, in-
cluding those imposed by nuclear lamins (25). In a good solvent, a 
homopolymer chain is expected to exhibit power-law scaling with 
fractal behavior across all length scales (26). For such a polymer, 
there exists a power-law relation between the number of monomers 
(N) and the size (r) of the physical space it occupies: N ∝ rD, where 
D is the fractal dimension or the packing scaling of the polymer 
(22). Assuming that each monomer has an identical molecular 
weight, the mass of the polymer also scales with the polymer size, 
following another mass scaling power-law relationship: M ∝ rD. In 
an intrinsically 3D system, fractal behavior occurs for 5/3 < D < 3, 
depending on the balance of the free energy of polymer-polymer 
interactions versus the free energy of polymer-solvent interactions. 
In a θ solvent, where the free energy of monomer-monomer in-
teractions and the free energy of monomer-solvent interactions are 
equally preferred, polymers behave as random walks, and D = 2. 
Polymers under good solvent conditions adopt swollen self-avoiding 
walks (D = 5/3 ), where the free energy of monomer-solvent interac-
tions exceeds that of monomer-monomer interactions. In contrast, 
monomer-monomer interactions are preferred under poor solvent 
conditions, leading to polymer collapse and 2 < D < 3. In principle, 
D can be below 5/3. For example, the fractal dimension of a polymer 
stretched out into a completely linear chain is D = 1. This represents 
the lowest theoretical limit of fractal dimension in 3D space, although 
this conformation is entropically very unfavorable and would re-
quire significant external energy input into the system. On the other 
end of the spectrum, D = 3 represents a polymer with space-filling 
behavior. If a polymer exhibits a power-law mass scaling relationship, 
then polymer density should also scale with a power-law exponent: ​​
M _ V ​  ∝ ​ r​​ D−3​​. Thus, D < 3 indicates that a polymer has decreasing den-
sity with increasing volume, and D dictates how fast the density de-
creases as a function of the distance from the center of the polymer 
(fig. S2). Notably, D = 3 does not indicate that the polymer is locally 
and globally compact and thus fills the space completely. It merely 
indicates that polymer density is constant with increasing volume. 
In addition, if a polymer forms several spatially uncorrelated fractal 
domains, the D at length scales above the domain structure is also 3, 

but the entire polymer is no longer fractal. Fractal behavior is not 
synonymous with the fractal globule model, a specific case of D = 3 
where a polymer is compacted with certain topological constraints 
(27). In contrast to homopolymers, heteropolymeric systems, such 
as chromatin, have variable chain properties. In particular, certain 
biochemical properties that vary along the linear chain give rise to 
spatially separable domains, each with distinct chromatin packing 
behavior throughout the genome.

However, still absent is evidence unequivocally demonstrating 
that chromatin exhibits fractal behavior and at what length scales 
this behavior is observed. Characterizing the precise conformation 
of a given section of chromatin is not useful, as it is not conserved 
over time or throughout cell populations. However, the statistical 
properties of chromatin conformation, such as its chromatin packing 
scaling, D, depend primarily on the free energy of chromatin-chromatin 
and chromatin-solvent interactions and relevant topological constraints 
and are thus more consistent metrics to characterize chromatin 
structure. Here, we use the nano-ChIA platform to investigate the 
spatial organization and dynamics of D and its relationship to mo-
lecular functionality. To accomplish this task, we map the relationship 
between the mass of chromatin and the physical space it occupies by 
leveraging the sub-3-nm spatial resolution of ChromSTEM for fixed 
cells and the nanoscopic sensitivity of PWS for live cells. First, 
we used our highest-resolution imaging modality in nano-ChIA, 
ChromSTEM, to reconstruct the 3D chromatin structure from part 
of the nuclei of four A549 lung adenocarcinoma cells (Fig. 2A). At 
the scale of the chromatin chain, ChromSTEM was able to resolve 
variably packed individual nucleosome assemblies connected by 
linker DNA segments (Fig. 2, B and C). We then quantified the 
mass scaling behavior of chromatin structure, i.e., how chromatin 
mass (M) contained within a spherical volume V scales up with the 
radius r of that volume (​V  = ​ 4 _ 3​  ​r​​ 3​​). To capture such a relationship, 
we calculated the 2D mass scaling by randomly sampling different 
regions within the field of view. Notably, two power-law regimes 
were observed on the mass scaling curve, each with a distinct scaling 
exponent. The power-law scaling exponents of the two regimes were 
calculated by fitting two linear regression lines on the log-log scale 
at the beginning (6 nm < r < 50 nm) and the end (258 nm < r < 302 nm) 
of the mass scaling curve, respectively. The boundary between the 
two regimes is defined as the intercept of the two linear regression 
lines. Using the law of additivity of fractal codimensions, the 3D 
mass scaling exponent D was calculated as the sum of 1 and the 2D 
mass scaling exponent (28). The first regime (r < 102.4 nm) has a 
scaling exponent, D = 2.587 ± 0.004, which indicates that the chro-
matin packing in this regime adopts a fractal structure (D between 
5/3 and 3). For the second regime (r > 102.4 nm), the scaling exponent 
increases to D = 3.007 ± 0.005, indicating an upper boundary of 
fractal packing domains (PDs). Thus, above length scales exhibiting 
fractal behavior, chromatin is composed of uncorrelated fractal 
PDs, each with their own distinct chromatin packing behavior. The 
ring scaling curve, defined as the mass on the ring located at the 
outer bound of the circle, is also indicative of a third regime with 
r < 8.24 nm, which may correspond to the size of the basic chroma-
tin chain (fig. S3, A and B), consistent with the earlier ChromEMT 
work (8). However, the mass scaling data are not sufficient to un-
equivocally distinguish between the chromatin chain and the fractal 
regimes (Fig. 2D).

The average mass scaling curve shows a smooth transition between 
the fractal regime and the uncorrelated supra-domain regime, as the 
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Fig. 2. nano-ChIA identifies fractal PDs. (A) Virtual 2D slice from ChromSTEM HAADF tomography reconstruction of chromatin from an A549 cell nucleus (contrast in-
verted). (B and C) High-resolution tomography reveals fine chromatin structures such as (B) linker DNA and (C) individual nucleosomes. (D) Average chromatin mass 
scaling shows two power-law scaling regimes fit with linear regression in log-log scale: the fractal PD regime (r < 102.4 nm; yellow dashed line) and the nonfractal 
supra-domain regime (r > 102.4 nm; red dashed line). Inset: Magnification of (D) highlighting the supra-domain regime. (E and F) Corresponding mapping of (E) D and (F) 
CVC of an A549 cell. (G) Relationship between D and CVC. (H and I) Supranucleosomal packing configurations for two PDs with different Ds highlighted in (E) by (H) the 
blue circle and (I) the purple circle. In the leftmost rendering of each panel, the DNA concentration increases from green to red. The rightmost rendering shows the surface 
topology. (J) Segmentation of D mapping. Identified PDs are in white, and the center regions of PDs, as determined by the flooding algorithm, are in yellow. (K) Distribu-
tion of PD radii (Rf), defined as the upper bound of the fractal regime of the mass scaling (MS) curve. (L) Dependence of packing efficiency factor A on Rf. Red dashed line 
denotes A = 1, which represents optimal packing. (M and N) PWS D mapping of several cells with nuclei shown in red. (N) PWS D mapping corresponding to the inset in 
(M). Each red cluster represents a diffraction-limited observation of PDs. (O) Rendering of three spatially separable PDs (green, blue, and red) with distinct packing scaling 
behavior.
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slope of this curve increases gradually. We hypothesized that this 
smooth transition is due to the superposition of scaling behavior for 
many PDs, each of which may have a unique internal fractal struc-
ture characterized by D and genomic size. To test this hypothesis, 
we mapped the distribution of the chromatin packing scaling D 
measured within the first ~30-nm region of the mass scaling curve 
calculated for the entire field of view (see Materials and Methods). 
The D distribution (Fig. 2E) showed that chromatin organizes into 
spatially separable fractal PDs. The packing scaling was consist
ent across a given PD but varied across PDs. Next, we mapped 
chromatin volume concentration (CVC) to determine the relation-
ship between chromatin density and packing scaling for each PD 
(Fig. 2, F and G). Notably, we see that PDs themselves correspond 
to areas of higher chromatin density and higher D (Fig. 2, E and F). 
In addition, we found a positive correlation between chromatin 
packing scaling and chromatin density within PDs, indicating that 
domains with higher D also have higher CVC (Fig. 2G). Further 
analysis examining the packing behavior of PDs with varying D 
demonstrates that a low-D domain (Fig. 2, E, blue circle, and H) 
exhibits a distinct supranucleosomal packing configuration from a 
high-D domain (Fig. 2, E, purple circle, and I).

After determining that each fractal PD exhibits unique packing 
behavior with varying packing densities, we wished to examine the 
size distribution of these identified PDs. From the spatial distribu-
tion of D, we first identified the center of each PD by using a flood-
ing segmentation algorithm (Fig. 2G). We then estimated the radius 
of a given fractal PD (Rf) by considering several criteria, such as the 
distance at which the mass scaling curve significantly deviates from 
a power-law relationship, as explained in detail in Materials and 
Methods (fig. S3, C to F). We observed that PD radius Rf has a medi-
an value of 96.0 nm, which agrees with the upper bound of the 
fractal regime calculated from the average mass scaling curve 
(Fig. 2, D and K). Thus, we confirmed the existence of PDs with 
variable D and Rf, which can provide a potential explanation for the 
gradual transition between the fractal and uncorrelated mass scaling 
regimes. Assuming that the highest DNA packing resolved by 
ChromSTEM represents pure, unhydrated DNA, we further estimated 
the average genomic size of PDs to be 352.6 kilo–base pair (kbp) 
based on the median D and Rf. Last, we examined whether the rela-
tionship between chromatin density and packing scaling was depen-
dent on Rf. The packing efficiency factor A describing CVC(D) was 

estimated from the equation ​CVC  = ​ M _ V ​  =  A * ​​(​​ ​  ​R​ f​​ _ ​R​ min​​​​)​​​​ 
D−3

​​, where Rf 
is the PD size (in nanometers), and Rmin = 10 nm is the size of the 
primary chromatin chain (8). We found that each PD had a unique 
packing efficiency factor, and thus, there was no universal constant 
to describe this functional relationship of PD packing properties 
(Fig. 2L). In addition, our results demonstrate that A has a positive 
relationship with PD size Rf. Here, A = 1 represents optimal chro-
matin packing for a given D. As larger PDs have A ~ 1, this cor-
responds to a more optimal packing efficiency than smaller PDs. 
We see this same behavior when calculating A from the estimated 
genomic size (in base pairs) of separate PDs and determining en-
semble behavior by performing the same analysis on binned PDs 
of similar sizes to more robustly account for experimental noise 
(fig. S3, G to I).

As ChromSTEM has a limited field of view and requires chemi-
cal fixation, we used PWS to inspect the chromatin packing scaling 
distribution across the entire nucleus and confirm the presence of 

PDs in live cells. As previously mentioned, PWS measures chroma-
tin density fluctuations. Chromatin packing scaling, D, can be cal-
culated from these measured fluctuations as described in sec-
tion S3 (29). PWS analysis also identified spatially separable 
chromatin PDs characterized by similar D values within each PD. 
Specifically, the average chromatin packing scaling determined 
from the ChromSTEM D map (Fig. 2E) differs from the average D 
values measured with PWS (Fig. 2, M and N) by only ~6%. In sum-
mary, by combining the high spatial resolution of ChromSTEM 
and live-cell imaging capabilities of PWS, we have identified the ex-
istence of spatially separable supranucleosomal chromatin PDs within 
which the chromatin chain exhibits fractal behavior (Fig. 2O). These 
PDs with different chromatin packing behavior could potentially be 
created by biophysical mechanisms such as looping, phase separa-
tion, or fluctuations in the intranuclear ionic environment. The dis-
covery of the existence of these fractal PDs urged us to then investigate 
their potential functional significance.

Relationship between chromatin packing and 
genome connectivity
Packing behavior of a fractal polymer is expected to affect the prob-
ability distribution of distances and contacts between distal mono-
mers. We thus wanted to test whether such a phenomenon exists 
within chromatin PDs. Contact probability scaling is an important 
statistical property of chromatin that represents overall chromatin 
connectivity and can be measured using chromatin conformation 
capture techniques such as Hi-C. Prior studies have revealed the 
critical role of such contact properties in transcription regulation, 
with implications for enhancer-promoter interactions (30). Returning 
to simple homopolymeric systems as a conceptual example, the 
probability of contact (P) between two monomers of distance N 
apart on the linear chain follows a power-law scaling relation: P ∝ 
N−s, where s is the contact probability scaling exponent. Recent ad-
vances in Hi-C have demonstrated that no single power-law scaling 
exponent can describe chromatin organization throughout the entire 
nucleus, and several studies have used analyses of genome-wide 
contact probability scaling behavior to disprove the previously pop-
ular fractal globule model (31).

Intuitively, a chromatin polymer with a higher D and, consequently, 
a lower rate of decrease of CVC as a function of distance from the 
PD core (fig. S2) should be associated with a higher contact fre-
quency among distant loci. This would translate into a lower con-
tact probability scaling s. Multiple homopolymer models show an 
inverse relationship between these two properties, with s = 3/2 for 
a random coil in a θ solvent and s = 1 for a fractal globule in a 
poor solvent (27). Both cases are in agreement with a more general 
relationship: s = 3/D. Does this inverse relationship still hold for 
more complex models of chromatin structure or is it only relevant 
for these given models? Halverson et al. (32) reached the same func-
tional relationship between s and D by using a mean-field argument. 
However, this initial derivation assumed that two monomers sepa-
rated by genomic distance N will have a uniform probability of be-
ing at spatial distance r apart anywhere within volume ​​R​g​ 3​ ~ ​N​​ 3/D​​. 
This assumption is not true; for example, for good solvent condi-
tions, which result in polymer swelling, causing repulsion between 
non-neighboring monomers that would break down the previous 
mean-field assumption. Halverson et al. (32) provide additional scaling 
analysis, demonstrating that the contact probability scaling exponent 
does not depend solely on D. These results suggest the more complex 
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chromatin polymer might follow a general inverse relationship 
between these two scaling properties, but the exact functional form has 
yet to be established. Because no existing model can faithfully capture 
all aspects of chromatin structure, we sought to test this hypothesis 
by implementing two distinct computational models of chromatin. 
The models we use here are not expected to be an exhaustive set but 
instead were used as test beds to ascertain whether the inverse relation-
ship between s and D was likely to be a model-independent property.

First, we implemented a basic homopolymer model under vary-
ing solvent conditions to represent chromatin structure within PDs 
for different intranuclear environments. We introduced effective 
attractions between monomers using the Lennard-Jones (LJ) po-
tential, which physiologically represents the solvent quality of the 
polymer solution. We tuned the attractive potential between mono-
mers to generate polymers ranging from a swollen self-avoiding walk 
coil under good solvent conditions to a collapsed globule under poor 
solvent conditions to modulate two measurable statistical polymeric 
properties, D and s, and investigate their relationship. This self-
attracting homopolymer system was probed by running Brownian 
dynamics (BD) simulations. For these simulations, each monomer 
represented one nucleosome (~146-bp DNA), and the entire poly-
mer chain contained 1000 monomers. In addition, we used the 
self-returning random walk (SRRW) model, which has been shown 
to be in agreement with several key experimental observations of 
chromatin (33). The SRRW model implements a heterogeneous 
distribution of monomers to represent the high degree of confor-
mational freedom of the disordered chromatin polymer. The model 
accomplishes this by randomly generating chromatin conformations 
using a continuous spectrum of step sizes, each of which corre-
sponds to chromatin segments of the same genomic size. In addi-
tion, the model explicitly includes stochastic, self-returning events 
to create domain-like structures with frequent self-contacts connected 
and isolated by open backbone segments. The probability of self-
returning events is controlled by the chromatin folding parameter, 
which modulates the size and packing behavior of hierarchical 
domains. We varied this chromatin folding parameter to modulate 
chromatin conformation states (33). SRRW conformations were 
generated by Monte Carlo (MC) simulations with each step size 
representing 2 kb of DNA (~10 nucleosomes). For both models, we 
measured D and s by performing a linear regression on their respec-
tive power-law scaling relations. The regression was performed with-
in the genomic range from 20 to 200 kb, which is of the same order 
of magnitude as the predicted genomic size of chromatin PDs. Al-
though the two chromatin models resulted in two distinct functional 
forms of s(D), as would be expected, both models demonstrated an 
inverse relationship between these two statistical parameters (Fig. 3, A 
and B). After computationally establishing a more chromatin-specific 
inverse relationship between packing behavior and polymer connec-
tivity, we wanted to investigate whether this property can be ob-
served in vitro.

To test this hypothesis experimentally, we used the nano-ChIA 
platform to measure changes in chromatin packing scaling D upon 
external stimulation, which we compared with changes in contact 
probability scaling s measured by Hi-C analysis. Dexamethasone 
(DXM) treatment has previously been demonstrated to alter whole-
scale genome connectivity (34). Analysis of publicly available Hi-C 
data revealed that s increases upon 32 hours of DXM treatment in BJ 
(human fibroblast) cells treated with 100 nM DXM (Fig. 3, C to F), 
which we hypothesized would result in an inverse change in chromatin 

packing scaling. Thus, we first used ChromTEM (Fig. 3, G to J) to 
measure statistical changes in D before and after treatment with DXM 
in fixed cells. Unlike ChromSTEM, which resolves the exact 3D 
structure, ChromTEM images the projection of a thin cross section 
(50 nm) of chromatin. To calculate chromatin packing scaling D from 
ChromTEM data, we performed ACF analysis (Fig. 3I). The ACF of 
the spatial variations of the density of a polymer, such as chromatin, 
can be derived from its mass scaling relationship and is thus used to 

measure D: ​ACF(r ) ∝ ​dM(r) _ dV ​   ∝ ​ r​​ D−3​​. For an infinite, continuous, and 

random structure, the 2D ACF can be considered to be identical to 
the 3D ACF of the original 3D structure with high accuracy. For a 
finite fractal structure, we demonstrated numerically that 2D ACF 
is more accurate at determining D, compared to mass scaling, for 
thin 50-nm ChromTEM sections (fig. S4).

In agreement with our modeling results, we observed inverse 
changes in D and s at the level of individual cells upon DXM treat-
ment, as measured by ChromTEM (Fig. 3, G to J). Next, we con-
firmed that the change in D as measured by ChromTEM in fixed 
cells was comparable to the D measured in live cells using PWS 
microscopy by measuring D in live cells treated with DXM every 
4 hours for 32 hours (Fig. 3, K and L). We found that the relationship 
between chromatin packing scaling and contact probability scaling 
was consistent for ChromTEM and PWS measurements compared 
to bulk Hi-C methods. Notably, the absolute values of chromatin 
packing scaling measured by higher-resolution ChromTEM on fixed 
cells and PWS on live cells under the control and treated conditions 
were in good agreement (Fig. 3, J and L). In addition, using PWS, 
we saw an intermediate decrease in chromatin packing scaling for 
the midway 16-hour time point, corresponding to an intermediate 
increase in contact probability scaling determined by further Hi-C 
analysis at this 16-hour time point, which was significant compared 
to normal fluctuations measured by PWS at the same 16- and 32-hour 
time points (fig. S5, A to D). To further test the inverse relationship 
between D and s, we performed additional ChromTEM and PWS 
experiments on A549 cells treated with DXM for 0 and 12 hours 
and compared the results to publicly available Hi-C results under 
the same treatment conditions (35). Again, we observed a decrease 
in D after DXM treatment and the same inverse relationship between 
D and s (fig. S5, E to N).

Together, these results suggest that genome connectivity is in-
versely related to the packing scaling behavior of chromatin within 
PDs. Thus, measuring chromatin packing behavior within PDs could 
provide information regarding the overall statistical connectivity of 
genes with promoters and enhancers for a given PD. In addition, we 
have demonstrated that nano-ChIA allows for real-time monitoring 
of chromatin structure and associated statistical properties of genome 
connectivity in live cells. Furthermore, nano-ChIA can be used in 
the future to establish the exact relationship between chromatin 
packing and genome connectivity inside PDs, which, in turn, can 
help test and identify an optimal computational model of chromatin 
structure.

Relationship between chromatin packing and transcription
Next, we wanted to leverage nano-ChIA to explore the relationship 
between chromatin packing and gene transcription. The direction 
of causality between chromatin structure and transcription is the sub-
ject of much debate with two divergent hypotheses: (i) Chromatin struc-
ture is a modulator of transcriptional activity, and (ii) transcriptional 
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activity drives changes in chromatin structure. We investigated the 
validity of both of these hypotheses by using STORM-PWS to colo-
calize chromatin packing behavior and molecular transcriptional 
events. Earlier studies have suggested that chromatin density may 
play a role in the regulation of transcription processes (18, 36). In 
particular, the eukaryotic nucleus is a highly crowded, heterogeneous 
environment (8). Therefore, macromolecular crowding—the excluded 
volume effects exerted by proteins, DNA, RNA, and other macro-
molecules, which occupy space within the nucleus—is expected to 
markedly alter the thermodynamics and kinetics of most transcrip-
tional reactions. Chromatin is the major contributor to crowding in 
the nucleus. To predict how chromatin packing scaling influences 
gene expression, we have developed a multiscale computational chro-

matin packing macromolecular crowding (CPMC) model, which in-
corporates molecular regulators of transcription [e.g., concentration 
of RNA polymerase II (RNAP II) and transcription factors] within 
the framework of a statistical description of the chromatin polymer 
to predict the effects of physical regulators of transcription, such 
as chromatin packing scaling, on gene expression patterns (37). The 
model implements transcription as a network of chemical reactions 
that depends on local crowding conditions within a specific transcrip-
tion interaction volume (~20 nm in radius) within a fractal PD 
(36, 37). In turn, chromatin density (i.e., the contribution of chro-
matin to macromolecular crowding) within a given transcription 
interaction volume has competing effects on transcription reactions. 
Increasing chromatin density first increases transcriptional activity by 

Fig. 3. Relationship between s and D. (A and B) A general inverse relationship between s and D is demonstrated using (A) self-attracting polymer and (B) SRRW simulations. 
(C and D) Hi-C contact maps for BJ cells treated with DXM treatment for (C) 0 hours and (D) 32 hours. (E) Intrachromosomal contact probability plotted against genomic 
distance in log-log scale. (F) s for BJ cells treated with DXM for 0 and 32 hours. The linear regression fit was performed on contact probability versus genomic distance between 
105.8 and 106.8 bp. (G and H) ChromTEM images of BJ cells (G) without and (H) with DXM treatment for 32 hours. (I) The average ACF of chromatin mass density for untreated 
cells (blue) significantly differs from that of treated cells (red). D was measured inside the fractal PD (50 to 100 nm) by a linear regression fit of the ACF in log-log scale. (J) Using 
ChromTEM ACF analysis on fixed cells, an increase in D was observed after the 32-hour DXM treatment (N = 31 cells per condition; P < 0.001). (K and L) Live-cell PWS analysis of 
BJ cells treated with DXM. (K) PWS images of BJ cells with DXM treatment at 0-, 16-, and 32-hour time points. (L) Time course PWS measurements showed a significant decrease 
in D for all time points after 12 hours (N > 67 cells; *P < 0.05 and **P < 0.001) compared to the 0-hour time point.
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increasing the binding efficiency of transcriptional reactants. How-
ever, after a critical packing density, crowding effects decrease the 
molecular mobility of these reactants to such an extent that gene 
expression becomes suppressed. Here, we use the CPMC model to 
predict how chromatin packing scaling D modulates active gene 
transcription. As D of a PD increases, the model predicts an in-
crease in the accessible surface of chromatin within the PD. In ad-
dition, an increase in D increases the variance under crowding 
conditions to which the genes within the PD are exposed. As a re-
sult of the competing effects of accessible surface and distribution of 
crowding conditions, at lower D, gene expression will asymptotical-
ly increase with D up to an inflection point. Above this critical value 
of specific chromatin packing scaling, the range of crowding condi-
tions to which the genes are exposed becomes suboptimal. Thus, 
after a certain critical D value, the transcriptional output is predicted 
to decrease. The shape of this nonmonotonic relationship between 
D and gene expression is dependent on several molecular and physical 
regulators of transcription (defined in table S1). For example, higher 
concentrations of transcriptional reactants increase ensemble expres-
sion rates across all D values (Fig. 4A). In addition, these more fa-

vorable molecular conditions shift the critical chromatin packing 
scaling inflection point to higher values (Fig. 4A).

To test the predicted relationship between chromatin structure 
and gene expression experimentally, we used STORM-PWS to lo-
calize regions of active gene transcription by imaging active RNAP II 
with STORM, labeling elongating Pol II with the phospho-Ser2 an-
tibody, and measuring the surrounding chromatin packing scaling 
with PWS (Fig. 4, B and C). CPMC model predictions of transcrip-
tion rates were in excellent agreement with the in situ experimental 
STORM-PWS findings across multiple cell lines, demonstrating a 
consistent nonmonotonic relationship between chromatin packing struc-
ture (D) and transcription (Fig. 4D and fig. S1, C and D). Notably, 
we found that RNAP II density is associated with observed PDs, with 
pockets of high RNAP II density forming around the periphery of PDs 
(Fig. 4, B, C, and E). As discussed previously, polymer physics tells us 

that ​​dM(r) _ dV ​   ∝ ​ r​​ D−3​​, indicating that chromatin density is proportional to 

rD−3. Our ChromSTEM analysis has shown that PDs are fractal with 
D < 3. Thus, we would expect the center of the PD to have the highest 
chromatin density, with CVC decreasing radially outward toward 

Fig. 4. nano-ChIA platform investigates the relationship between chromatin structure and transcription. (A) Multiple realizations of the CPMC model with varying 
molecular conditions for low- and high-expression genes show that in all cases, the surrounding chromatin packing scaling has a nonmonotonic relationship with gene 
expression. (B) STORM image of an M248 ovarian cancer cell with labeled active RNAP II (green) overlaid on top of chromatin packing scaling D map measured by PWS 
(red). (C) A magnified view of the white square in (B). (D) The relationship between D (chromatin packing scaling) and the local concentration of active RNAP II (gene ex-
pression level) (N = 4 cells) compared with one realization of the CPMC model. (E) A violin plot shows the distribution of distances between enriched Pol II regions and 
their nearest PD. The plot shows that active RNAP II tends to distribute around the boundary of PDs (N = 4 cells). (F) PWS imaging of a live BJ fibroblast cell during Act-D 
treatment. The pseudocolor is coded by the D values inside the nuclei. (G) After transcriptional elongation is halted with Act-D, average nuclear chromatin packing scaling 
decreases steadily within minutes as measured by PWS (P < 0.001 comparing t = 0 and 10 min). (H) The change in the volume fraction of the nucleus containing PDs as 
measured by PWS (P < 0.001 comparing t = 0 and 10 min).
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the edges. In addition, our ChromSTEM data show that PDs 
are associated with higher chromatin density, whereas the space 
between observed PDs is associated with lower chromatin density 
(Fig. 2, E and F). Together, this would indicate that active Pol II is asso-
ciated with neither the densest (centers of PDs) nor the least dense 
(space between PDs) areas of chromatin. Instead, active Pol II seems 
to be favored near the edges of PDs, where chromatin density might 
be optimal for facilitation of active transcription due to the presence 
of an intermediate chromatin density.

The agreement between the CPMC model and the experimental 
data supports the hypothesis that the chromatin packing structure 
can influence the rate of transcription. However, these results do not 
exclude the possibility that transcription reactions affect chromatin 
packing. To test the second hypothesis that PD structures are direct-
ly influenced by active gene transcription, we performed a perturba-
tion study to halt transcriptional elongation in BJ fibroblast cells by 
treatment with actinomycin D (Act-D) (38). After Act-D treatment, 
we continuously captured PWS images for 10 min to monitor the 
real-time effect of transcriptional inhibition on chromatin structure 
from the level of PDs to the scale of the whole nucleus. For each PD, 
PWS measured D with sensitivity down to the size of the chromatin 
chain (20 nm). At the level of the entire nucleus, we observed that 
treatment with Act-D produces a rapid decrease in average chroma-
tin packing scaling across the cell population (Fig. 4, F and G). Over 
10 min, we observed a 7% decrease in average nuclear D. In addition, 
we observed that the projection fraction of the nucleus occupied by 
PDs decreased by 29% (Fig. 4H). The abrogation of transcription did 
not eliminate the PD structure of chromatin (fig. S6). Similar results 
were also observed in A549 cells, an effect which was not observed in 
vehicle control experiments for both BJ and A549 cell lines (fig. S6).

Our findings are consistent with previous work showing that chro-
matin structure is stabilized by transcriptional elongation (14). Further-
more, our results support the hypothesis that the process of active 
gene transcription affects supranucleosomal chromatin organization, 
but is not its sole determinant, as PD structure is significantly modified, 
but not completely eliminated, upon transcription inhibition. In 
conclusion, our interrogation of the relationship between chromatin 
structure and transcription provides evidence of a complicated, bi-
directional relationship between supranucleosomal chromatin packing 
and gene expression.

Chromatin PDs are heritable across cell division
A hierarchy of gene expression patterns is reestablished after mitotic 
exit to ensure the maintenance of cell identity, potentially driven 
by mechanisms such as mitotic bookmarking through the mainte-
nance of histone modifications at promoter regions (39). Addi-
tional studies using chromosome conformation capture techniques 
have demonstrated that higher-order cell type–specific structures, such 
as TADs, are lost during mitosis and reestablished along with a lineage-
specific replication timing program in the early G1 phase of the cell 
cycle (40). Together, these results suggest a potential relationship 
between transcriptional memory propagation and the heritability of 
chromatin structure. These considerations led us to employ live-cell 
PWS microscopy from the nano-ChIA platform to investigate whether 
chromatin packing behavior is transferred between parent and progeny 
cells through cell division. With its high-throughput, label-free, and live-
cell imaging capabilities, PWS microscopy is uniquely suited for this 
task. Critical questions include how the spatial distribution of the scaling 
of chromatin packing evolves over a long period of time (hours) and 

whether the time-dependent fluctuations of chromatin packing scaling 
across the nucleus are conserved through the process of cell division.

To address these questions, we measured spatial and temporal 
changes in chromatin packing scaling in HCT116 colon cancer cells 
with PWS for 20 hours, over which several cell division events were 
observed (Fig. 5, fig. S7, and movies S1 and S2). An example of a 
PWS image of two progeny cells derived from the same progenitor 
is shown in Fig. 5A. For our analysis of the spatial distribution of 
chromatin packing scaling, we first isolated 10 dividing cells and 
calculated a histogram showing the spread of D across each cell 
nucleus (Fig. 5B). We then calculated the ratio of each individual 
histogram to the average histogram for all cells at each time point, 
thus focusing on the unique deviation of each cell from the popula-
tion mean (Fig. 5, C and D). After cell division, we compared the 
histogram ratios of cells that originated from the same progenitor 
and cells originating from unique progenitors. We found that the 
spatial distribution of chromatin packing scaling among related progeny 
cells is more highly correlated over time, even several hours after 
cell division (Fig. 5, E and F). In addition, we compared the histo-
gram ratios from each progeny cell 3 hours after cell division to the 
histogram ratios of all progenitor cells 3 hours before cell division 
and found a significantly higher correlation between progeny cells 
and their related progenitors than between progeny cells and unre-
lated progenitors in the same population (Fig. 5G).

Next, to track how the average chromatin packing scaling changes 
over time, we tracked the mean chromatin packing scaling for all 
dividing cells (N = 10) over the course of 12 hours. Figure 5 (H and I) 
shows the tracking of two dividing cells over time. We observe that 
the average nuclear D has relatively small fluctuations compared to 
the mean D before cell division, which is uncorrelated between cells 
(Fig. 5J). During division, the cells partially detach from the dish, 
causing the nucleus to exit the detectable field of view of the PWS 
system. Following re-adherence to the glass, the progeny of the 
original cells resume their small fluctuations in chromatin pack-
ing scaling. Notably, the time-dependent changes in the chromatin 
packing scaling of each pair of progeny cells were more likely 
to be correlated with each other than with other dividing cells 
(Fig. 5K). Likewise, the chromatin packing scaling of progeny cells 
during the first 2 hours following mitosis is more correlated with 
their progenitors than with other cells at the same temporal cross 
section following division (Fig. 5L). Together, these results demon-
strate that the chromatin PD structure is heritable through the pro-
cess of cell division. Note that these results do not definitively point 
to the exact mechanisms by which PD structure is inherited. Such 
mechanisms could involve heritability of proteins such as CTCFs/
cohesins, which induce topological constraints on chromatin struc-
ture through loop formation; ion channels, which affect the intra-
nuclear ionic environment and, consequently, compaction and charge 
regulation of chromatin; and proteins, which induce histone modi-
fications and DNA methylation, altering chromatin accessibility. 
Thus, heritability could be the combined result of inherited epigenetic 
modifications and specific genetic mutations that alter the expres-
sion or structure of these proteins that influence chromatin packing 
structure and are propagated from parent to progeny cells.

DISCUSSION
In this work, we present nano-ChIA, a multitechnique nanoscale 
imaging and analysis platform that enables the study of chromatin 
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Fig. 5. Time-resolved PWS imaging of HCT116 cells determines heritability of chromatin packing scaling for N = 10 progenitor cells and N = 20 progeny cells. 
(A) PWS D map of two progeny cells originating from the same progenitor. (B) Average spatial D distribution of all cells imaged 5 hours after cell division. (C and D) Histogram 
ratio of the spatial D distribution for each individual progeny cell [from (A)] normalized by the average histogram of all cells at that time point [from (B)]. (E) After cell di-
vision, the normalized histograms of paired progeny cells are more highly correlated with each other than with unrelated progeny cells at the same time point (*P < 0.05). 
(F) Across all time points, normalized histograms of paired progeny cells are more significantly correlated compared to those of unrelated progeny. (G) Comparing all 
progeny cells 3 hours after division to all progenitors 3 hours before division shows that progeny cells have a higher correlation with their “parent” than with unrelated 
progenitors (P = 0.021). (H and I) PWS D maps at four time points before, during, and after cell division. During cell division, nuclei exit the objective’s depth of field by 
lifting off the glass and return to the glass when they have finished dividing. (J) Average nuclear D tracked over time [from cells in (H) and (I)]. After ~5 hours, both cells 
have finished dividing, and their progeny cells were tracked for an additional ~7 hours. (K) D of progeny cells is more strongly correlated with that of their paired progeny 
than with other unrelated cells (P < 0.001). (L) Progeny cells are more correlated with their parent progenitor cells than with other unrelated cells.
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organization across a wide range of length and time scales (Fig. 1). 
At sub-3-nm spatial resolution, ChromSTEM provides 3D informa-
tion about chromatin configuration down to the level of individual 
nucleosomes and linker DNA. Alternatively, ChromTEM quantifies 
the chromatin packing from a larger portion of the nucleus for multiple 
cells and thus generates more information regarding chromatin struc-
ture, leading to better statistics when comparing cell populations. 
However, the ChromEM staining used in both TEM imaging and 
ChromSTEM tomography requires chemical fixation and can only 
measure chromatin organization at a single time point. A comple-
mentary nanoimaging technique, PWS, provides a label-free imaging 
method with live-cell capabilities that enables probing the chromatin 
structure in individual cells. In addition, real-time PWS imaging has 
a temporal resolution on the order of ~5 s and is thus able to acquire 
chromatin packing information for a substantial amount of cells 
within a reasonable amount of time. Although diffraction-limited, 
within each coherence volume, PWS is sensitive to chromatin packing 
structure between 20 to 300 nm (21). ChromSTEM and PWS methods 
are complementary imaging modalities, which, when combined, allow 
for high spatial and temporal monitoring of statistical chromatin 
structure. The third component of nano-ChIA, STORM, coregisters 
the locations of targeted molecular species or events with ≤20-nm local-
ization precision, thus providing critical information about the molecular 
functionality of chromatin organization. Collectively, the nano-ChIA 
system integrates structural information about chromatin packing 
with details regarding the localization of critical molecular factors.

Consolidating results from electron and PWS microscopies 
allowed us to uncover the existence of chromatin PDs with an in-
ternal fractal structure in both fixed and live cells (Fig. 2). In addi-
tion, we determined that contact probability scaling and chromatin 
packing scaling within these PDs follow an inverse relationship 
through both polymer simulations representing different models of 
chromatin structure and experimental cross-validation with chro-
mosome conformation capture methods (Fig. 3). This suggests that 
the physical packing of chromatin into fractal PDs affects contacts 
between genes located within the same PD. Using STORM molec-
ular nanoscopy, we were able to interrogate the relationship be-
tween chromatin structure and transcription processes (Fig. 4). We 
found that the chromatin packing scaling of a PD influences the 
extent of active transcription within the PD. Conversely, these 
transcription processes themselves can also influence the organiza-
tion of chromatin PDs, as the disruption of transcriptional elonga-
tion results in the disruption of some PD structures and drastic 
changes in the packing scaling of the remaining PDs. Finally, we 
exploited the live-cell monitoring capabilities of PWS to assess the 
heritability of supranucleosomal chromatin organization between 
progenitor and progeny cells through the process of cell division. 
We demonstrated that chromatin packing scaling is correlated 
among progeny cells from the same progenitor and between prog-
eny cells and their progenitors (Fig. 5).

The supranucleosomal chromatin structure uncovered by 
ChromSTEM suggests that chromatin fibers (beads on a string) can 
pack into spatially separable PDs of varying sizes and densities. We 
observe a power-law mass scaling behavior of chromatin confor-
mation inside the PDs, indicating that chromatin adopts local 
fractal structures. These findings were confirmed in live cells 
using PWS microscopy. The existence of fractal PDs illustrates the 
statistical behavior of chromatin as a polymer. Chromatin may adopt 
a variety of distinct configurations in 3D space but still produce the 

same statistical chromatin packing behavior, which can be quanti-
fied by D. Specifically, the exact conformation of a polymer sur-
rounding a specific genomic locus within a given PD may differ 
across realizations and over time. However, the statistical properties 
of the encompassing PDs, such as their size and packing scaling, 
may remain the same. In addition, our analysis demonstrated that 
PDs, which have higher D values than non-PD regions of the nucle-
us, tend to correspond to areas of higher chromatin density. We 
also uncovered the existence of a nonuniversal chromatin packing 
efficiency factor, A, relating chromatin packing scaling to chromatin 
density. Notably, we found that, although there is an overall positive 
correlation between D and CVC, this coefficient describing the exact 
relationship is unique for each PD and increases with PD size.

Packing structures in polymeric systems can be formed by a variety 
of mechanisms—from changing polymer-polymer and polymer-
solvent interactions, as occurs during phase separation, to the intro-
duction of topological constraints, such as confining chromatin in 
loops induced by CTCF/cohesin complexes, transcription-induced 
supercoiling, or interactions with lamins (23–25). In particular, 
polymers with a higher free energy of self-interactions than of polymer-
solvent interactions tend to adopt conformations with a higher fractal 
dimension. In turn, self-interactions and chromatin-nucleoplasm 
interactions might be affected by chromatin chain modifications and 
the nucleoplasmic nanoenvironment, such as histone modifications, 
DNA methylation, nucleoplasmic crowding, pH, and ionic environment. 
The presence of chromatin PDs with distinct fractal behavior contra-
dicts the prediction that chromatin packing behavior can be described 
by a single power-law scaling exponent throughout the entire nucleus, 
and is thus discordant with the view of chromatin as a homopolymer. 
Intuitively, the heteropolymeric behavior of chromatin is consistent 
with what is known at the molecular level. The attractive and repul-
sive potentials between the basic units of chromatin and the nucle-
oplasm are influenced by a complex combination of epigenetic 
modifications, such as histone modifications and DNA methylation, 
as well as the local physicochemical environment composed of crowd-
ing concentrations, pH, and the ionic environment. In addition, 
architectural proteins and other factors that topologically constrain 
chromatin contribute to supranucleosomal chromatin structure. 
Chromatin can be thought of as a piece-wise, heterogeneous poly-
mer, as all of these factors influencing chromatin packing vary 
along the linear genomic sequence and in 3D throughout the nucleus. 
Altogether, they may potentially drive the formation of spatially sep-
arable PDs by creating areas with similar chromatin-chromatin and 
chromatin-nucleoplasm interactions, which are further affected by 
physical topological constraints.

It is important to stress that it is premature to suggest whether 
structurally defined PDs are related to functionally defined struc-
tures found by Hi-C, specifically TADs, regions of tens to hundreds 
of kilobases with frequent intradomain interactions that exhibit a 
hierarchical organization. However, we would like to point out that 
several properties of PDs are similar to those of sub-TADs and 
TADs. From ChromSTEM data, we estimated the average genomic 
size of PDs to be 352.6 kbp, which is within the range of typical 
TAD sizes (11). However, we assumed that the highest DNA inten-
sity in ChromSTEM data represents pure, unhydrated DNA, which 
is likely to be an overestimation. A more accurate evaluation requires 
additional calibration experiments to link ChromSTEM image con-
trast to the total mass of DNA at different pixel sizes. In addition, 
PDs are heritable through the process of cell division, as are TADs. 
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Moreover, previous Hi-C experiments have demonstrated that tran-
scription inhibition significantly alters genome connectivity within 
and between TADs (41), and similarly, the structure of PDs appears 
to be altered by transcription inhibition. Finally, the genome connectivity 
behavior within TADs is potentially related to the 3D conformation 
of the chromatin chain within PDs. However, as both ChromSTEM 
and PWS currently lack genomic information, further investigation 
using genomic sequence–specific labeling techniques is required to 
establish a potential association between PDs and TAD-related 
structures. This would require the development of labeling methods 
which are not reliant on DNA denaturation, a process that disrupts 
the endogenous chromatin packing structure. Providing such a link 
between the structural (e.g., PDs) and functional (e.g., TADs) units 
of chromatin organization may help elucidate the functionality of 
PDs, which appear to be key observable structures in supranucleo-
somal chromatin packing.

The intricacies of the relationship between physical chromatin 
organization and gene transcription can be studied by the nano-ChIA 
platform combined with a physics-based modeling platform. First, 
we demonstrate that local chromatin packing scaling influences gene 
expression, as predicted by our CPMC model of transcription. Gene 
expression is a nonmonotonic function of local chromatin packing 
scaling; low and high D can inhibit transcription processes by alter-
ing the balance between reaction rate constants, molecular mobility 
of transcriptional reactants, and the surface topology of chromatin. 
Conversely, transcription processes themselves may contribute to 
the packing organization of chromatin. Using nano-ChIA, we ob-
serve a partial disruption of PDs that occurs on the order of minutes 
upon the inhibition of transcription elongation. Thus, active tran-
scription processes could directly influence the chromatin packing 
conditions to which genes are exposed. Earlier reports have suggested 
that transcriptionally driven DNA supercoiling and phase separation 
of highly expressed genes might be involved in the transcriptional 
regulation of chromatin conformation (42). However, further studies 
are necessary to unequivocally determine the molecular mechanisms 
of transcription-dependent chromatin packing regulation. Overall, 
the results are consistent with the view of the genome as a self-organizing 
system, where interactions between chromatin packing behavior and 
transcriptional processes might represent a dynamic, self-organizing 
process (43). In this case, higher rates of transcription reactions 
are associated with more favorable chromatin nanoenvironments, 
such as within PDs that have more optimal chromatin packing 
scaling. Concomitantly, transcription processes themselves may 
help drive the formation of PDs with distinct chromatin packing 
behavior.

Higher-order chromatin structure changes significantly throughout 
the cell cycle. Mitotic chromosomes lose their cell type–specific or-
ganization and gene expression profiles, yet both are reestablished 
upon mitotic exit (44). This poses the question of whether chromatin 
organization can be preserved over generations of cells, and in what 
sequence the higher-order chromatin structures are reestablished. 
Unfortunately, nanoimaging techniques such as ChromSTEM and 
biochemical methods such as chromosome conformation capture 
can provide only snapshots of chromatin organization, as chemical 
fixation is involved. Notably, the live-cell, label-free PWS module in 
nano-ChIA is capable of dynamically tracking chromatin organiza-
tion throughout the cell cycle. Using PWS, we uncovered a strong 
correlation between the chromatin packing scaling of progeny cells, 
which is also correlated with that of the progenitor cell. For the same 

progenitor cells, we observed significant synchronization of the re-
distribution of chromatin packing immediately after cell division. 
This may have significant functional consequences for dividing cells. 
In particular, chromatin packing scaling has been shown to be di-
rectly correlated with the phenotypic plasticity of cancer cells (18). 
Thus, the ability to inherit a more transcriptionally plastic chromatin 
packing structure across cell division may be a critical factor in can-
cer progression and the propagation of chemoresistant phenotypes.

The spatiotemporal coherence of chromatin packing scaling among 
progenitor and progeny cells is indicative of a heritable chromatin 
packing structure. This raises the question of what molecular mecha-
nisms contribute to the reestablishment of higher-order chromatin 
structure across cell division. Although the molecular mecha-
nisms of PD formation remain to be elucidated, most of the puta-
tive determinants are potentially heritable. The expression of ion 
channels, which are direct regulators of the intranuclear physico-
chemical environment, is genetically and epigenetically conserved 
across cell division. In particular, dysregulated expression and function 
of ion channels have been associated with the propagation of cancer 
phenotypes (45). The CTCF-cohesin complex has been shown to 
play a crucial role in maintaining coherent, cell type–specific, and 
heritable TAD boundaries (46). Furthermore, transcriptional memory 
propagation occurs through mechanisms such as mitotic book-
marking (47). Specifically, bookmarking transcription factors remain 
bound to condensed chromosomes and allow gene expression to occur 
throughout mitosis, potentially helping to reestablish transcription 
patterns following cell division (39). In addition, both active and 
repressive histone modifications have been demonstrated to be pre-
served throughout the cell cycle (47). Future investigations elucidating 
the contribution of these potential mechanisms to the heritability of 
supranucleosomal chromatin organization may, in turn, provide 
insights into cancer cell plasticity, the development of chemoresis-
tance, and phenotype formation and maintenance.

Despite the strengths of the nano-ChIA platform, further devel-
opment is necessary to adequately respond to the open questions 
explored in this work. Specifically, the labeling of active RNA poly-
merase is only a proxy for measuring transcription processes. Future 
studies could label specific genes to assess the surrounding chromatin 
packing conditions using PWS and concomitantly label correspond-
ing mRNA transcripts in the cytoplasm to obtain results more di-
rectly comparable with the CPMC model predictions and observed 
cellular phenotype. In addition, we assessed the effects of tran-
scriptional inhibition on PDs using only PWS, which provides 
nanoscale sensitivity but diffraction-limited localization. Thus, 
this technique alone is insufficient to fully assess PD reorganiza-
tion upon transcriptional inhibition. More specifically, PWS is 
unable to differentiate whether a fraction of PDs is completely dis-
rupted by transcriptional perturbation, broken into smaller PDs, or 
internally reorganized with a lower packing scaling. Finally, as nano-
ChIA currently lacks genomic information, the integration of single-
cell Hi-C would be necessary to understand how local changes in 
chromatin structure contribute to alterations in genome connectivity. 
Bulk Hi-C measurements provide only a statistical description of 
population-wide contacts. Thus, single-cell methods would be pref-
erable to allow for direct comparison with our single-cell nanoimaging 
platform. In summary, the nano-ChIA platform provides direct, high-
resolution imaging of 3D chromatin structure and real-time, live-
cell chromatin packing information over multiple length scales, 
highlighting the importance of combining distinct nanoscale-sensitive 
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techniques to provide a more coherent picture of chromatin struc-
ture and function.

MATERIALS AND METHODS
Cell culture
A549 cells were cultured in Dulbecco’s modified Eagle’s medium 
(Thermo Fisher Scientific, Waltham, MA; #11965092). BJ cells were 
cultured in minimum essential media (Thermo Fisher Scientific, 
Waltham, MA; #11095080). HeLa and M248 cells were cultured in 
RPMI 1640 medium (Thermo Fisher Scientific, Waltham, MA; 
#11875127). HCT116 cells were cultured in McCoy’s 5a modified 
medium (Thermo Fisher Scientific, Waltham, MA; #16600082). 
All culture media were supplemented with 10% fetal bovine se-
rum (Thermo Fisher Scientific, Waltham, MA; #16000044) and 
penicillin-streptomycin (100 g/ml; Thermo Fisher Scientific, 
Waltham, MA; #15140122). All cells were maintained and imaged 
under physiological conditions (5% CO2 and 37°C) for the duration 
of the experiment. Experiments were performed on cells from pas-
sages 5 to 20.

ChromEM sample preparation, imaging, 
and tomography reconstruction
All cells were prepared by previously published chromEM staining 
protocol (8) and described in detail in section S2. Two kinds of sections 
were made using an ultramicrotome (UC7, Leica). For the tomog-
raphy, 100- to 200-nm-thick resin sections were cut and deposited 
onto a copper slot grid with carbon/formvar film (EMS). For inves-
tigating the chromatin structure difference with and without DXM 
treatment, 50-nm-thick resin sections were made and deposited 
onto copper 200-mesh grid with carbon/formvar film (EMS). The 
grids were plasma-cleaned by a plasma cleaner (easiGlow, TED 
PELLA) before use. No poststaining was performed, but 10-nm col-
loidal gold particles were added to the tomography samples on both 
sides as fiducial markers.

A 200-kV STEM (HD2300, HITACHI) was used for tomogra-
phy data collection. HAADF imaging contrast was used in the tilt 
series. To reduce the missing wedge, tilting series from −60° to 60° 
on two perpendicular axes were recorded manually, with 2° step size. 
The pixel dwell time was kept small (~5 s) to prevent severe beam 
damage during imaging. For the thin sections, a TEM (HT7700, 
HITACHI) was operated at 80 kV in the bright field to capture 
high-contrast chromatin data.

For tomography, a combination of methods was used to achieve 
high-quality reconstruction (section S2). A nominal voxel size of 2 
to 2.9 nm was used in the tomography to resolve individual nucleo-
somes. The DNA density was used to generate color-coded nucleo-
some configurations, with green color dictating the lowest density, 
and red dictates the highest density. The chromatin binary masks 
were used to generate the surface of supranuclesomal structures. 
The videos of example tomography and volume rendering can be 
found in movies S4 and S5.

Self-attracting polymer simulations
Coarse-grained polymer simulations were performed using LAMMPS 
molecular dynamics software. Chains of identical monomers were 
simulated using BD with a Langevin thermostat. Each monomer rep-
resents a nucleosome core and has mass m = 1. Polymers up to ~150 kbp 
(1000 monomers) were simulated. Intermonomer bonds were formed 

between successive monomers using the finitely extensible nonlinear 
elastic potential

	​​E =  − 0.5 ​KR​0​ 2​ ln​[​​1 − ​​(​​ ​ r −  ─ ​R​ 0​​ ​​ )​​​​ 
2
​​]​​ + 4​[​​ ​​(​​ ​   ─ r −  ​​)​​​​ 

12
​ − ​​(​​ ​   ─ r −  ​​)​​​​ 

6
​​]​​ + ​​	

(1)

for K = 30.0, R0 = 1.5,  = 1.0,  = 1.0, and  = 4.0. An LJ potential 
was used to model pairwise interactions between all monomers and 
reinforce excluded volume effects

	​​ E  =  4​[​​ ​​(​​ ​   ─ r −  ​​)​​​​ 
12

​ − ​​(​​ ​   ─ r −  ​​)​​​​ 
6
​​]​​ r  < ​ r​ c​​+ ​​	 (2)

for  = 1.0,  = 4.0, and rc =  + 1.12246. D and s were modulated by 
tuning LJ, the depth of the attractive LJ well potential, between 0 
and 2.5. All simulations were first equilibrated, and all mass scaling 
and contact probability scaling calculations were performed on tra-
jectory files generated by subsequent production runs. Mass scaling 
was calculated by first counting the number of monomers within a 
sphere of increasing radius with an origin at the center of mass of 
the polymer chain and then fitting the resulting relationship between 
the radius of sphere and mass using linear regression. Two beads 
were in contact if their coordinates were within a critical distance 
rcrit of each other in 3D space. Contact probability was calculated by 
summing up all observed contacts between monomers of a certain 
distance apart in the 1D linear chain overall 4D trajectories. A linear 
regression fit to the contact probability decay curve plotted against 
genomic distance was used to calculate contact probability scaling.

SRRW simulations
The SRRW model was used to describe chromatin folding in a coarse-
grained manner. The SRRW model uses steps with a continuous 
spectrum of step sizes. Each of these steps corresponds to about 2 kb 
of DNA (about 10 nucleosomes) that represent the conformational 
freedom of a 10-nm chromatin fiber, i.e., how densely or loosely 
packed each coarse-grained unit is. Stochastic, self-returning events 
are implemented through the return probability, which decays with 
the length of the current step size and is controlled by a chromatin 
folding parameter, . We investigated the relation between contact 
scaling and mass scaling at varying folding states. We used the 
genomic range of 20 to 200 kb to probe the scaling behaviors within 
typical PDs. While the contact probability as a function of genomic 
distance can be analyzed within such a specific window of genomic 
length, the mass scaling as a function of the physical radius can-
not be directly mapped into the genomic window of interest. 
Moreover, the genomic mass that falls into a spherical probe tends to 
be discontinuous on the genomic sequence as the radius of the 
probe increases. To circumvent these problems, we used the inverse 
of the end-to-end distance scaling factor as an effective mass scaling 
factor. For a perfect mass-fractal, the end-to-end distance scaling 
factor is rigorously inverse to the mass scaling factor. One thousand 
independent conformations were generated to calculate the ensemble-
averaged scaling curves. Linear regressions were used to obtain the 
scaling factors.

Hi-C analysis
The Juicer analysis tool was used to perform read alignment and 
read pairing and deduplication for each Hi-C replicates (48). Reads 
with a low mapping quality score (<30) were removed. Reads across 
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replicates for each condition were merged. Juicebox was used for 
Hi-C contact map visualization, which was plotted with 5 kb resolu-
tion. TAD sizes were calculated using the Arrowhead function from 
Juicer tools. All Hi-C analysis was performed on data that are publicly 
available through the Gene Expression Omnibus database (BJ cells: 
GSE81087; A549 cells: GSE92819 for control cells and GSE92811 for 
DXM treatment). Reads from raw Hi-C data from BJ cells were 
mapped to the hg19 genome, and Hi-C data from A549 cells were 
mapped to the hg38 human reference genome with Mbo I as the re-
striction enzyme. Contact probability as a function of genomic dis-
tance was calculated by normalizing observed contacts to expected 
contacts (i.e., possible pairs at a given genomic distance apart). A linear 
regression fit on the log-log relationship between genomic distance and 
contact probability was performed. The mean and SE for contact prob-
ability scaling was calculated from the slope of the regression and the SE 
for this parameter estimate, respectively. To determine whether the dif-
ference of contact probability scaling between two treatment condi-
tions was significant, we assumed that contact probability scaling for 
each condition follows a normal distribution with SD equal to the root 
mean square error of the regression residuals. P values were calculated 
by performing a paired Student’s t test assuming unequal variance.

STORM sample preparation
Cells were grown until approximately 70% confluent on 35-mm 
glass-bottom petri dishes. Cells were quickly washed with phosphate-
buffered saline (PBS) and then fixed with a solution of 3% parafor-
maldehyde and 0.1% glutaraldehyde in PBS for 10 min. Cells were 
washed for 5 min in PBS and then quenched in 0.1% sodium boro-
hydride in PBS for 7 min. Cells were washed two times in PBS for 
5 min each and then permeabilized in blocking buffer [0.2% Triton 
X-100 and 3% bovine serum albumin (BSA) in PBS] for 20 min. The 
primary antibody (anti-RNA RNAP II–phospho S2, Abcam, ab193468 
or ab5095) was added to the blocking buffer to a concentration of 
2.5 g/ml and incubated for 2 hours. Cells were then washed in 
washing buffer (0.1% Triton X-100 and 0.2% BSA in PBS) three 
times for 5 min each. Cells were then incubated with the secondary 
antibody (Alexa Fluor 647, Thermo Fisher Scientific) at a concen-
tration of 2.5 g/ml in blocking buffer for 40 min. Cells were then 
washed two times in PBS for 5 min each. Cells were imaged in stan-
dard imaging buffer with an oxygen scavenging system containing 
glucose oxidase (0.5 mg/ml; Sigma-Aldrich), catalase (40 g/ml; 
Roche or Sigma-Aldrich), and glucose (100 mg/ml) in TN buffer 
[50 mM tris (pH 8.0) and 10 mM NaCl].

STORM imaging
The STORM optical instrument was built on a commercial inverted 
microscope base (Eclipse Ti-U with the perfect focus system, Nikon). 
The microscope is coupled to two imaging modalities. For STORM 
imaging, a 637-nm laser (Obis, Coherent) is collimated through a 
100× 1.49 numerical aperture (NA) objective (SR APO TIRF, Nikon) 
with an average power at the sample of 3 to 10 kW/cm3. Images were 
collected via a 100× objective and sent to an electron-multiplying CCD 
(iXon Ultra 888, Andor). At least 8000 frames with a 20-ms acquisi-
tion time were collected from each sample. For PWS imaging, samples 
were illuminated with low NA light (0.5), and images are collected using 
the same 100× objective and sent through a liquid crystal tunable filter 
(LCTF; CRI VariSpec) and then to an sCMOS camera (ORCA Flash 4.0, 
Hamamatsu). The LCTF allows for spectrally resolved imaging. Im-
ages are collected between 500 and 700 nm with 2-nm intervals.

PWS sample preparation
Before imaging, cells were cultured in 35-mm glass-bottom petri 
dishes until approximately 70% confluent. All cells were given at least 
24 hours to re-adhere before treatment (for treated cells) and imaging. 
A549 and BJ cells treated with DXM (Sigma-Aldrich, D6645) were 
treated with a dose of 100 nM.

PWS imaging
The PWS optical instrument is built on a commercial inverted micro-
scope (Leica, Buffalo Grove, IL, DMIRB) using a Hamamatsu Image-
EM CCD camera C9100-13 coupled to an LCTF (CRi Woburn, MA) 
to do hyperspectral imaging. Spectrally resolved images are collected 
between 500 and 700 nm with 2-nm steps. Broadband illumination 
is provided by an Xcite-120 light-emitting diode lamp (Excelitas, 
Waltham, MA). For live-cell measurements, cells were imaged live 
and maintained under physiological conditions (5% CO2 and 37°C) 
via a stage top incubator (In Vivo Scientific, Salem, SC; Stage Top 
Systems). As described in Results, PWS measures the spectral SD of 
internally optical scattering originating from nuclear chromatin, 
which is related to variations in the refractive index distribution (). 
Those variations in the refractive index distribution are characterized 
by the mass scaling or chromatin packing scaling, D. Therefore, D was 
calculated from maps of . A detailed description of the relationship 
between  and D is provided in section S3 (18, 21, 29).

PD analysis using ChromSTEM tomography
We generated binary masks for chromatin from the ChromSTEM 
tomograms based on automatic thresholding in Fiji (Otsu’s method) 
as reported previously (8). Unlike the ChromEMT study using TEM, 
our tomography data were obtained through STEM HAADF imaging 
mode, and we fine-tuned the imaging processing parameters. The 
set of parameters were optimized by comparing their performance 
with manually segmented chromatin mask on the same structure 
(fig. S8D). For all chromatin masks used in this work, the following 
procedure was performed. First, the local contrast of the tomograms 
was enhanced by CLAHE, with a block size of 120 pixels. Then, Ostu’s 
segmentation algorithm with automatic threshold was used. Last, we 
removed both dark and bright outliers using a threshold of 50 and a 
radius of 2 to refine the chromatin mask. All imaging processing 
was performed in FIJI (49).

On the binary chromatin masks, mass scaling analysis was per-
formed to unveil the chromatin packing structure. The mass scaling 
relation M(r) is the mass of chromatin (M) contained within a sphere 
of radius r, and it dictates the relationship between the physical size 
and the genomic size of the chromatin. For a fractal structure, the 
mass scaling follows a power-law relation, and the scaling exponent 
is the packing scaling D. To calculate the mass scaling curve from 
ChromSTEM data, the total chromatin M(r) was calculated within 
concentric circles for each radius r. One hundred nonzero pixels 
were randomly chosen on each slice of the tomography data as the 
origin of the concentric circles. The average mass scaling curve was 
calculated from individual mass scaling curves to reduce noise.

In addition, average mass scalings within 3D moving windows 
were used to calculate the spatial distribution of packing scaling Ds 
for the entire field of view. The average 2D mass scaling curve was 
calculated over multiple individual mass scaling curves centered on 
nonzero pixels located in the center region (~15 nm3) in each win-
dow. To calculate D, we used linear regression on the average mass 
scaling curve in the log-log scale, fitting from ~10 to ~30 nm. We 
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then assigned this value to the center pixel of the 3D window to map 
the spatial distribution of D.

A contrast enhancement (CLAHE plugin in FIJI) (49) and a 
flooding algorithm (MATLAB) were implemented to segment indi-
vidual PDs with similar packing scaling. We defined the boundary 
of each PD as the spatial separation where the mass scaling curve 
deviates from a fractal behavior, and the distance from the center of 
the PD to the boundary is the PD radius Rf. One of the four criteria 
has to be met if the mass scaling curve deviates from a fractal behav-
ior: (i) The linear fit of the power-law from 11.7 to 33.3 nm is 5% 
different from the mass scaling curve (multiple packing scalings); 
(ii) the slope of the mass scaling curve reaches 2 (not fractal); (iii) 
the curvature (second derivative) of the mass scaling curve 
reaches 2 (nonlinear); (iv) the radial CVC of the PD starts to in-
crease (other PDs). If all criteria are satisfied, we chose the smallest 
value to be Rf. An example of such a process can be found in fig. S3. 
We calculated the average mass scaling from individual mass 
scaling centered on all the nonzero voxels in the middle region 
within one PD and quantified the D and Rf. Assuming that the high-
est intensity in the tomograms represents 100% unhydrated DNA 
(density = 2 g/cm3) and the average molecular weight for a nucleotide 
is 325 Da, we calculated the highest mass (m) per voxel (dr = 2 nm) 
to be ~15 bp. We further calculated the average genomic size 

of PDs to be 352.6 kbp by ​M  =  m ​​(​​ ​ ​R​ f​​ _ dr​​)​​​​ 
D

​​, with Rf = 96.0 nm and 

D = 2.60.

Chromatin fractal dimension comparison for cells 
with DXM treatment
TEM images of 50-nm-thin sections were used in the analysis of 
chromatin packing alterations induced by the DXM treatment for 
32 hours. Unlike STEM HAADF imaging mode, the TEM bright-
field contrast attenuates following Beer’s law

	​ I(x, y ) = ​I​ 0​​ ​e​​ −(x,y)t​​	 (3)

where I(x, y) is the TEM image intensity distribution, I0 is the incident 
beam intensity,  is the absorption coefficient, (x, y) is the density 
distribution, and t is the section thickness. In our experiment, I0, , 
and t were controlled to be constant for all images, only the chromatin 
density (x, y) contributes to the final image intensity I(x, y). To obtain 
the density fluctuation, (x, y), we took the negative logarithm of 
all the TEM images directly and subtracted the mean value. At the 
same time, the incident beam intensity I0 is canceled out. The 2D 
ACF was calculated using the Wiener-Khinchin relation as

	​​ B​ ​​(x, y ) = ​F​​ −1​ { ​∣F(​​ ​​(x, y ) ∣​​ 2​}​	 (4)

where F−1 and F are the inverse Fourier and the Fourier transforms, 
and the  is the fluctuating part of the chromatin density. To minimize 
the noise, a rotational average of B(x, y) was taken to obtain the final 
form of the ACF B(r), representing the correlation of chromatin 
density as a function of spatial separation r. Notice that mathematically, 
a fractal structure can be characterized by a power-law ACF, B(r)~rD−3, 
with D being the fractal dimension. For the chromatin reconstructed 
by ChromSTEM, the mean ACF B(r) was averaged over the ACFs 
of each virtual 2D slice and plotted in log-log scale. Linear regression 
was performed from 50 to 100 nm to obtain the slope p. The chromatin 
packing scaling D was calculated by 3 + p. Each nucleus was carefully 

segmented manually in FIJI (49), and the chromatin packing scaling 
D was calculated through the ACF analysis within the nucleus.

CPMC model
As previously introduced in the CPMC model, at specific chroma-
tin packing scaling D, the average expression of a group of genes can 
be approximated as the product of two components, i.e., the proba-
bility of the genes to be on the accessible surface Ps and the average 
mRNA expression rate of these genes ​​ ̄  ℇ​​

	​ E  = ​ P​ s​​ ⋅ ​ ̄  ​​	 (5)

On the basis of the power-law mass scaling (fractal property) of 
the chromatin, Ps is determined by the genomic size of fractal PDs, 
Nf, and the chromatin packing scaling D of the corresponding PD as

	​​ P​ s​​  = ​ (​N​ f​​)​​ ​−1 ⁄ D​​​	 (6)

The average expression rate of mRNA for genes with specific mo-
lecular factors ​​m  ⃑​​ can be evaluated by integrating mRNA expression 
rate ​ℇ(​m ⃑ ​, )​ with crowding density distribution . This is performed 
by modeling transcription as a series of chemical reactions and 
then solving the steady-state network of equations as described by 
Matsuda et al. (36). This systems biology method incorporates results 
from BD and MC simulations to study the effects of increased crowding 
and molecular regulators of transcription on diffusion and binding of 
transcriptional reactants, respectively. If the probability distribution 
function of  is f(), the average mRNA expression rate is therefore

	​​    ​  =  ∫ (​ ⇀ m ​,  ) f( ) d​	 (7)

Without the loss of generality, crowding density can be assumed to 
follow a Gaussian distribution. Thus, f() can be approximated as ​

f( ) = ​  1 _ 
​√ 
_

 2 ​​​ ,in​​​​ 2​ ​
​ ​e​​ ​

​(−​​ in,0​​)​​ 2​ _ 
2​​​ ,in​​​​ 2​

 ​ ​​, where , in
2 is the variance of crowding density 

and in,0 is the average crowing density within a transcriptional in-
teraction volume. ,in

2 is determined by D as ​​​​ ​​​​ 2​  = ​ ​ in,0​​(1 − ​
​ in,0​​ ) ​​(​​ ​​r​ min​​⁄​L​ in​​​​)​​​​ 3−D​​, where rmin is the size of the elementary particle in 
the chromatin (i.e., the nucleotide) and Lin is the length of the inter-
action volume whose crowding environment can affect the tran-
scription of a single gene.

Data analysis for multimodal STORM-PWS studies
STORM images were reconstructed using the ThunderSTORM 
plugin for FIJI (49). Maps of chromatin packing scaling (D) from 
raw PWS images were created using a custom analysis script in 
MATLAB that has been described in detail in previous works (21). 
Colocalization between PWS and STORM images was achieved through 
alignment of widefield reflectance images collected on each separate 
imaging arms. Errors caused by sample drift during imaging sequences 
were first corrected in ThunderSTORM; any additional corrections 
were applied manually as needed. To create plots in Fig. 4 and fig. S1, 
the average chromatin packing (D) was calculated from the PWS data 
(in red), and the average local RNAP II concentration was calculated from 
STORM data (in green) in each pixel (130 nm × 130 nm). Elongating 
RNAP II was labeled using the phospho-Ser2 antibody (ab193468). 
Data points with similar D are grouped together (D within 0.025) 
and plotted in Fig. 4D. The circles represent the means, and error 
bars are SE between regions.
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To perform spatial analysis of PDs and Pol II locations, maps 
of D measured by PWS microscopy were first binarized using the 
function “imbinarize” in MATLAB with adaptive thresholding. 
This allows the segmentation of PDs. Next, the Euclidean dis-
tance transform of the binarized image was calculated using 
“bwdist” to find the distance between each pixel and the nearest 
PD. Positive distances denote pixels outside of PDs, and negative 
distances denote pixels inside of PDs. Next, all pixels containing 
no RNAP II (as visualized by STORM) were removed. The dis-
tances from pixels with RNAP II density higher than the mean 
(i.e., the most RNAP II–rich regions) were plotted in a violin 
plot (Fig. 4E).

Halting transcriptional elongation
BJ cells (Fig. 4) and A549 cells (fig. S5) were treated with Act-D 
(5 g/ml; Sigma-Aldrich, A9415), which inhibits transcription by 
halting elongation of the transcribed RNA (38). Immediately after 
the introduction of Act-D, PWS images were collected continuous-
ly for 10 min (one image collected every ~15 s). All cells within each 
field of view were analyzed. Average nuclear D was tracked. In ad-
dition, maps of D from PWS were thresholded and segmented to 
find the PD projection fraction. The PD projection fraction is the 
fraction of the 2D projection of the nucleus, measured by PWS, 
occupied by PDs. A PD projection fraction of 1 would indicate that 
the entire nucleus is filled with PDs. Changes in the PD projection 
fraction were observed over time.

Characterizing heritability of chromatin packing with PWS
HCT116 cells were monitored with PWS for a period of 24 hours. 
Images were captured every 15 min. Ten cells that could be observed 
dividing during the 24-hour period were identified and chosen for 
analysis. D was tracked for 3 hours before cell division and at least 
6 hours after cell division.

To analyze spatial correlations between progeny cells and their 
progenitors, histograms of D at all pixels within the nucleus were 
compared. First, each cell was analyzed at each time point. A histo-
gram of D was calculated with 10 evenly spaced bins with widths of 
0.15. Each histogram was analyzed by being normalized by the av-
erage histogram of all cells at the same time point. For example, a 
histogram of cell #1, 3 hours before cell division, was normalized by 
the average of all cells (N = 10) histograms 3 hours before cell divi-
sion. Therefore, these normalized histogram ratios focused on each 
cell’s specific deviation from the mean of the population at a specif-
ic time point. See fig. S7 for a step-by-step explanation for how his-
tograms were calculated and normalized. The Pearson correlation 
coefficient was calculated in MATLAB with the “corrcoef” function 
comparing every pair of progeny cells at each time point. Also, all 
progeny cells at 3 hours after division were compared to all progenitor 
cells at 3 hours before division. Three hours was chosen to compare 
cells before and after division at relatively stable time points (i.e., not 
during cell detachment or nuclear splitting).

To analyze temporal correlations in averaged nuclear D, the 
Pearson correlation coefficient was calculated in MATLAB with 
the corrcoef function to compare time-dependent changes in D be-
tween each of the progeny cells (after division). D values measured 
for a 2-hour segment was compared between all progeny cells and 
progenitors. The 2-hour time period was 1 hour before (for progenitors) 
and after (for progeny cells) division. A 1-hour “buffer” around the 
time of cell division was chosen since the measured D was highly 

dynamic during this time and subject to artifacts since the cell was 
in the process of partially detaching from the glass substrate.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/1/eabe4310/DC1

View/request a protocol for this paper from Bio-protocol.
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