

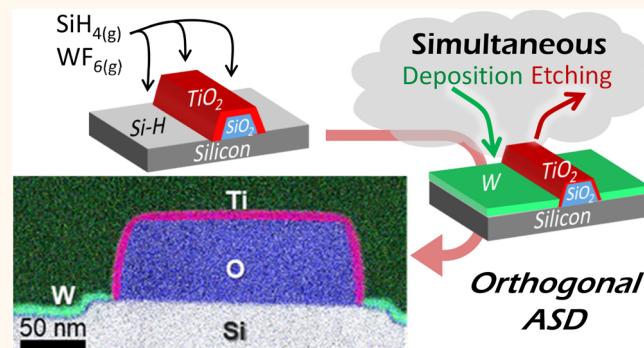
Multimaterial Self-Aligned Nanopatterning by Simultaneous Adjacent Thin Film Deposition and Etching

Seung Keun Song, Jung-Sik Kim, Hannah R. M. Margavio, and Gregory N. Parsons*

Cite This: *ACS Nano* 2021, 15, 12276–12285

Read Online

ACCESS |


Metrics & More

Article Recommendations

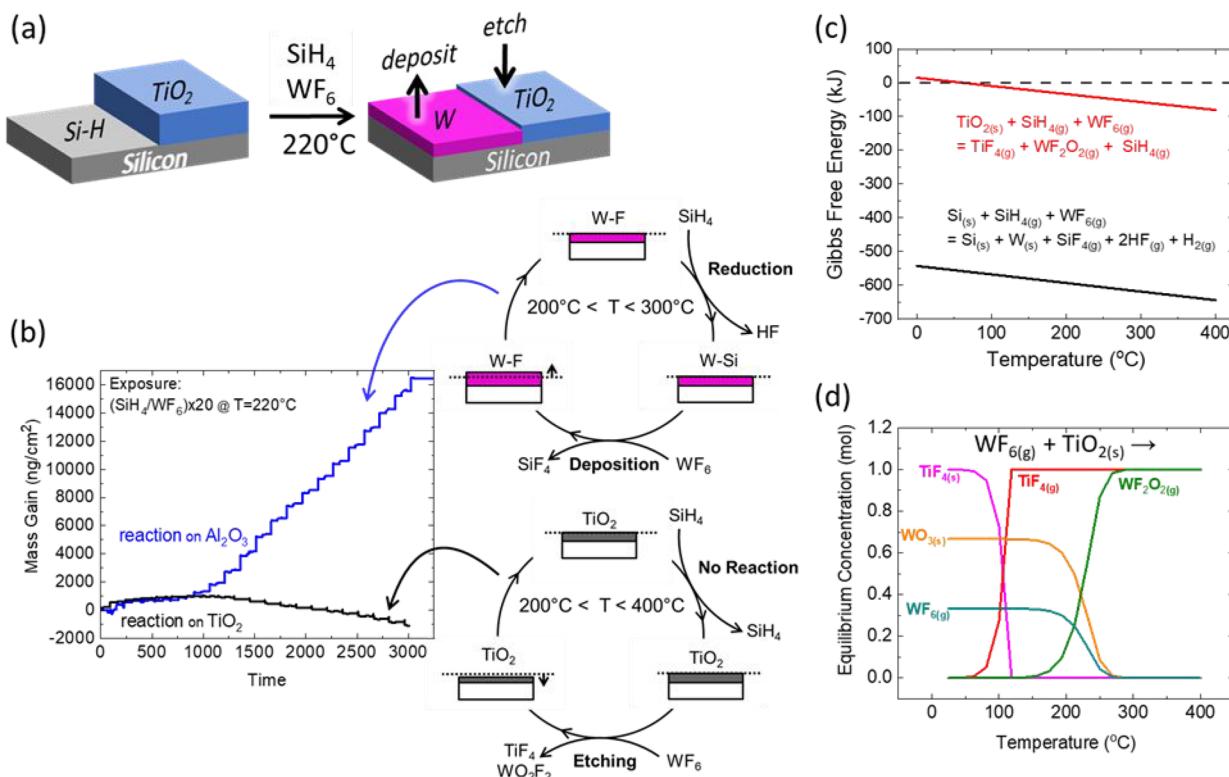
Supporting Information

ABSTRACT: Printed component sizes in electronic circuits are approaching 10 nm, but inherent variability in feature alignment during photolithography poses a fundamental barrier for continued device scaling. Deposition-based self-aligned patterning is being introduced, but nuclei defects remain an overarching problem. This work introduces low-temperature chemically self-aligned film growth *via* simultaneous thin film deposition and etching in adjacent regions on a nanopatterned surface. During deposition, nucleation defects are avoided in nongrowth regions because deposition reactants are locally consumed *via* sacrificial etching. For a range of materials and process conditions, thermodynamic modeling confirms that deposition and etching are both energetically favorable. We demonstrate nanoscale patterning of tungsten at 220 °C with simultaneous etching of TiO₂. Area selective deposition (ASD) of the sacrificial TiO₂ layer produces an orthogonal sequence for self-aligned patterning of two materials on one starting pattern, *i.e.*, TiO₂ ASD on SiO₂ followed by W ASD on Si-H. Experiments also show capacity for self-aligned dielectric patterning *via* favorable deposition of AlF₃ on Al₂O₃ at 240 °C with simultaneous atomic layer etching of sacrificial ZnO. Simultaneous deposition and etching provides opportunities for low-temperature bottom-up self-aligned patterning for electronic and other nanoscale systems.

KEYWORDS: area-selective deposition, etching, patterning, orthogonal, self-aligned

The smallest printed features in semiconductor manufacturing are currently less than 15 nm.¹ Continued scaling poses significant problems in material patterning and feature alignment.^{1–4} Techniques to create small features are well-developed, but a key barrier is the limited ability to control minute variations in feature pattern alignment. Devices are constructed with hundreds of layers of patterned metals and dielectrics, and achieving circuit performance requires the conductors and insulators in each layer to be precisely registered as they form on top of each other. Patterns that are misaligned by only a few nanometers (a distance corresponding to ~10 atoms in crystalline silicon) can lead to faults including electrical shorts, open circuits, and excess resistance.⁴ To avoid metal diffusion, reaction temperature during “back-end” fabrication is limited to <400 °C,³ putting stringent demands on surface chemical processes. Advanced 13.5 nm extreme UV (EUV) lithography can address some of these challenges, but equipment costs are expected to be substantial,⁵ especially when multiple EUV steps are needed. Also, alignment problems will become more

acute in future 3D devices being considered to overcome impending obstacles of silicon memory density and computing energy consumption.¹


To overcome inherent variability and stochastics in lithography, new self-alignment methods are needed where the chemistry of the underlying surface can guide the placement of overlying material layers. Self-aligned area-selective deposition (ASD) uses surface chemistry to promote deposition in predetermined growth regions and minimize growth in adjacent nongrowth regions. At <400 °C, ASD can proceed using chemical vapor deposition (CVD)^{3,6–11} or atomic layer deposition (ALD).^{12–16} In these methods, the

Received: May 13, 2021

Accepted: June 17, 2021

Published: June 25, 2021

Figure 1. Schematic for self-aligned patterning using simultaneous deposition and etching: (a) starting Si–H/TiO₂ pattern exposed to a set of reactants (in this example, SiH₄/WF₆ in an ALD-type reaction sequence for 20 cycles), yielding W growth on silicon, with no growth in the TiO₂ region due to simultaneous TiO₂ etching. (b) Mass change (ng/cm²) measured by QCM during SiH₄/WF₆ exposures (SiH₄/Ar/WF₆/Ar = 45/45/1/60 s) at 220 °C, along with the expected reactions during SiH₄ and WF₆ exposure steps on W and on TiO₂ surfaces. The indicated product species are from thermodynamic analysis. A QCM precoated with Al₂O₃ shows net mass gain indicating favorable ALD of W (blue line). On the basis of the density of W, the growth rate is ~0.5 nm/cycle. Under identical conditions, a QCM crystal precoated with TiO₂ shows net mass loss corresponding to etching (black line), with an etch rate of ~0.1 nm/cycle. (c) Overall Gibbs free energy change for SiH₄/WF₆ reactions on TiO₂ (red) and Si (black) surfaces, consistent with the QCM results in panel b. (d) Thermodynamic equilibrium product compositions for WF₆ reacting with an equimolar composition of TiO₂, further supporting simultaneous deposition and etching.

vapor-phase reactants are generally selected to favor net deposition; *i.e.*, the Gibbs free energy change for deposition is negative, $\Delta G < 0$.^{17,18} However, the strong reaction energetics is problematic for ASD because it leads to creation of unwanted nucleation defects. Surface passivation layers or other means can slow the rate of nucleation, but unwanted nuclei eventually form, leading to undesired growth and loss of self-alignment. During “front-end” processing, temperatures can exceed 700 °C, and selective silicon epitaxy is widely used to self-align the source/drain contacts to silicon channels. Using high temperatures, defect nuclei are effectively avoided by optimizing reaction thermodynamics.^{8–11,19–21} For selective silicon epitaxy, a single set of gas-phase precursors (often including a mixture of chlorosilanes, HCl, and hydrogen) can allow favorable silicon film growth on receptive regions, while, in neighboring regions, the same reactants favor formation of only volatile silicon products, such as SiCl₂.^{11,20} In this way, self-aligned selective epitaxy avoids defects using thermodynamically favorable reactions that locally consume the deposition reactant in the regions where growth is not desired.

Several vapor/surface exchange and conversion reaction mechanisms are known where material deposition simultaneously liberates another volatile species at the surface deposition site.^{22–24} In contrast, low-temperature surface reactions that achieve simultaneous delocalized deposition

and etching in neighboring regions on a patterned surface are not well known.

In this work, we demonstrate low-temperature (<400 °C) self-aligned deposition using a single set of vapor-phase reactants to achieve deposition in a desired growth region while simultaneously etching a neighboring sacrificial surface in a nongrowth region. The primary example reported here shows self-limiting ALD with simultaneous continuous chemical vapor etching (CVE), and an alternate example shows ALD with simultaneous self-limiting atomic layer etching (ALE). Akin to high-temperature selective epitaxy reactions, the resulting net deposition is inherently self-aligned with the prepatterned starting surface because the etching reaction locally consumes the deposition reactant, thereby avoiding unwanted nuclei.

Starting with a patterned surface with exposed hydrogen-terminated silicon (Si–H) and TiO₂ regions, we show that sequential exposures of SiH₄ and WF₆ at 220 °C produce self-aligned growth of tungsten only on the silicon, while simultaneously, on the neighboring TiO₂, the WF₆ preferentially reacts to form volatile WO₂F₂ and TiF₄, thereby avoiding tungsten metal growth. At the reaction temperature, the deposition and etching rates are sufficient to avoid accumulation of unwanted W metal until the sacrificial layer is consumed. By creating the starting pattern using area-selective deposition of TiO₂ on SiO₂,¹⁶ we establish a primary

experimental demonstration of multiple-material orthogonal area-selective deposition.²⁵ Using a combination of thermodynamic modeling and experiments, we further show that self-aligned deposition and etching can be extended to a range of other material systems and show experimental results confirming that deposition of AlF₃ dielectric can proceed with atomic layer etching of ZnO.

RESULTS AND DISCUSSION

The reaction scheme for self-aligned pattern generation using simultaneous deposition and etching is shown in Figure 1a. For this example system, a surface with open Si–H and TiO₂ regions is exposed to multiple cycles of SiH₄/WF₆ co-reactants separated by Ar purge at 220 °C, resulting in W deposition on the Si–H region and simultaneous etching of the sacrificial TiO₂. We performed *in situ* quartz crystal microbalance (QCM) experiments to monitor the surface mass change on two different surfaces exposed to the same reaction conditions, and results are given in Figure 1b. For this study, a QCM crystal was pretreated *in situ* with 25 cycles of Al₂O₃ ALD to create a surface receptive to W growth, similar to QCM crystals coated with silicon.²⁶ This was followed immediately in the same reactor by 20 cycles of sequential SiH₄/Ar/WF₆/Ar exposures at 220 °C.²⁷

The blue line in Figure 1b shows the mass change (ng/cm²) during the SiH₄/WF₆ cycles, indicating that after a few initial cycles this process gives net atomic layer deposition of tungsten on Al₂O₃. Consistent with previous studies,²⁶ after ~5 cycles of growth initiation on Al₂O₃, mass increases linearly with cycles, which on the basis of the density of W correlates to a W growth rate of ~0.5 nm/cycle. The black line in Figure 1b gives the mass change collected during 20 cycles of SiH₄/Ar/WF₆/Ar under identical reactor conditions, except, for this case, the QCM crystal was prepared by coating with 200 cycles of TiO₂ ALD using TiCl₄/H₂O doses at 220 °C. The results show a small mass gain due to initial uptake of tungsten and fluorine, followed by net mass loss, consistent with TiO₂ etching *via* reaction with WF₆ to form volatile WF₂O₂(g).^{28,29} Using the density of TiO₂, the mass change correlates with a loss of ~2 nm during the 20 cycles, for an average of ~0.1 nm/cycle.^{28,29}

Figure 1b also includes schematics of the reactions corresponding to the QCM results, and panels c and d of Figure 1 show corresponding thermodynamic equilibrium analysis of the expected reactions and reaction products.³⁰ When SiH₄ and WF₆ react on a receptive growth surface, the net Gibbs free energy change (black line in Figure 1c) shows large $-\Delta G$ values across a wide temperature range. The SiH₄ acts as a reducing agent, with some Si–H remaining on the surface after exposure. The surface Si–H is then available to promote reduction and net deposition during the WF₆ exposure step.^{27,31} This produces the stepwise mass uptake observed in the QCM data. On the TiO₂ surface, however, etching reactions become available. In Figure 1c, the red line shows the overall Gibbs free energy change when SiH₄ and WF₆ react with TiO₂. For temperatures above 75 °C, a favorable reaction ($\Delta G < 0$) yields volatile TiF₄ and WF₂O₂, with no net reaction for the SiH₄. Because SiH₄ does not react on TiO₂ at low temperature, surface Si–H groups are not available to reduce the WF₆, thereby promoting WF₆ to react and be consumed by the etch reaction. Likewise, Figure 1d gives the expected equilibrium product concentrations when WF₆ reacts with TiO₂ at different temperatures. At 220 °C, the

expected products are TiF₄ and WF₂O₂ vapors. Some tungsten oxide solid may also be expected, but oxide buildup is avoided due to continued formation of WF₂O₂(g) as a volatile etch product.^{28,29} For the SiH₄/WF₆ reaction on TiO₂, the QCM results in Figure 1b are consistent with negligible reaction during SiH₄ and net mass loss during the WF₆ dose. XPS surface analysis results in Supporting Information Figure S1 further confirm minimal reaction with SiH₄.

We also used ellipsometry and XPS to analyze simultaneous deposition and etching reactions during SiH₄/WF₆ exposure on Si–H and TiO₂ surfaces. On patterned wafers discussed below, Si–H and TiO₂ surfaces are formed by applying TiO₂ ASD to Si–H/SiO₂ patterns. This is followed by W ASD, producing a multiple-material orthogonal ASD sequence²⁵ (*i.e.*, TiO₂ ASD on SiO₂ followed by W ASD on Si–H). Therefore, for ellipsometry and XPS analysis, the starting Si–H and TiO₂ samples also were prepared by TiO₂ ASD, following the same procedure used below for Si–H/TiO₂-patterned wafers. Specifically, a pair of silicon wafer pieces, one with silicon oxide (Si–OH) and one with Si–H termination, were simultaneously exposed to TiO₂ ASD at 150 °C using a “supercycle” sequence, including TiO₂ ALD cycles with periodic atomic layer etching steps.¹⁶ This was followed by a 5 s dip in dilute (5%) HF solution and immediate transfer to the SiH₄/WF₆ reactor. The intermediate HF dip step facilitated the desired W nucleation on Si–H and removed ~5 nm of the deposited TiO₂ layer (Figure S2 and Table S2). The procedure was also tested without any intermediate treatment and with intermediate H₂/Ar plasma exposure. As discussed in the Supporting Information, samples without HF treatment or with H₂/Ar plasma exposure showed an unfavorable delay in W growth on the Si–H. Therefore, the HF dip was used for further analysis.

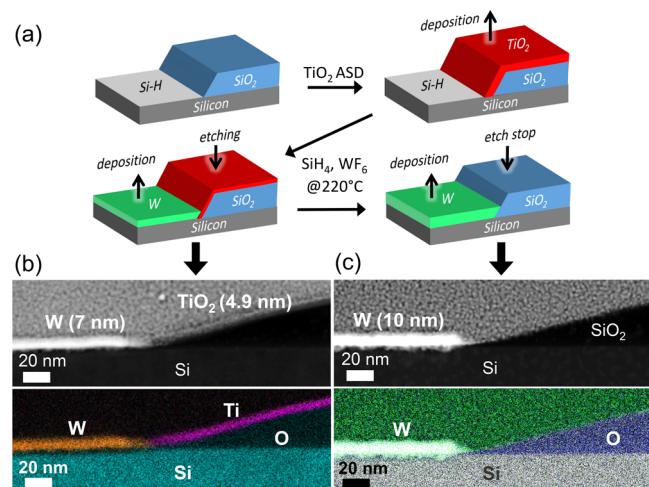
After TiO₂ ASD on Si–OH and Si–H, ellipsometry data (Table S2) shows TiO₂ thickness of 16.4 nm on the Si–OH and ~1.9 nm on the Si–H. After HF, ellipsometry showed no oxide on Si–H, with 11.4 nm of TiO₂ on the Si–OH, indicating a loss of ~5 nm of TiO₂. After simultaneous exposure to 15 cycles of SiH₄/WF₆ at 220 °C, the Si–H sample showed a net growth of 9.7 nm of W, while the TiO₂ film showed a net thickness decrease of ~1.1 nm. Using newly prepared Si–H and TiO₂ samples, the experiment was repeated using 20 cycles of SiH₄/WF₆. On Si–H, 20 SiH₄/WF₆ cycles produced 12.6 nm of W, with a net TiO₂ thickness decrease of ~1.4 nm.

The measured thickness change indicates the SiH₄/WF₆ allowed simultaneous deposition and etching, consistent with QCM in Figure 1. From the thickness data, the W deposition rate is ~0.6 nm/cycle and the etch rate of the TiO₂ is ~0.1 nm per ALD cycle, in reasonable agreement with the deposition rate of ~0.5 nm/cycle and etch rate of ~0.1 nm/cycle estimated from the QCM results in Figure 1b. Under the conditions used, this etching rate is sufficient to avoid W growth.

For this approach to be useful, it should be compatible with different methods to form patterned sacrificial materials. A possible issue is that the rate of etching will depend on the process used to form the sacrificial layer. For example, using TiO₂ deposited by physical vapor deposition, initial experiments show a slower etch rate. The slower etching consumes less reactant, and therefore promotes unwanted deposition. To address this, the process provides flexibility to allow tuning of the relative deposition and etching rates. For the W/TiO₂

Table 1. XPS Atomic Fraction (at. %) Measured on Si–H and TiO₂ before and after Exposure to 15 or 20 Cycles of SiH₄/WF₆ at 220 °C^a

surface	SiH ₄ /WF ₆ treatment at 220 °C	XPS atomic fraction (at. %)						
		Ti 2p	W 4d	Si 2p	O 1s	F 1s	Cl 2p	B 1s
Si–H	none	0	0	79.2	7.5	1.2	0	0
	15 cycles	0	20.2	1.5	53.7	0.3	0	0
	20 cycles	0	22.2	2.6	47.4	0	0	0
TiO ₂	none	18.0	0.4	0	48.5	6.8	0.7	4.9
	15 cycles	17.7	4.1	0.2	55	2.1	0.4	3
	20 cycles	15.1	2.5	1.6	52	1.3	0	2.5


^aThe starting Si–H and TiO₂ were prepared by exposing Si–H or Si–OH wafers to TiO₂ ALD/ALE supercycles,¹⁶ following the same procedure applied to Si–H/SiO₂-patterned wafers discussed in the text.

system, increasing substrate temperature from 220 to 275 °C does not substantially change the W deposition rate,²⁷ but a larger etching rate is observed (Table S3), thereby allowing process adjustment and optimization.

The same blanket samples used for thickness measurement were also analyzed by XPS to evaluate the surface element composition after SiH₄/WF₆ treatment, and results are shown in Table 1. As expected, all samples show oxygen and carbon resulting from exposure to the ambient between deposition and analysis. On the Si–H surface, both 15 and 20 SiH₄/WF₆ cycles lead to strong W signals, consistent with expected W deposition on the receptive Si–H. Also as expected, the signal from Ti 2p was below the detection limit (<0.1 at. %). A small Si signal after SiH₄/WF₆ is ascribed to remnant surface silicon from the silane reducing agent. On the TiO₂ surface, the SiH₄/WF₆ leads to a small amount of W (~2.5–4.1 at. %), ascribed to formation of tungsten oxides, as expected from the thermodynamic analysis shown in Figure 1d.²⁹ We also note that the amount of W on TiO₂ does not increase when the number of W ALD cycles increases from 15 to 20, further indicating that tungsten oxide does not accumulate on the TiO₂.^{28,29} This small amount of tungsten oxide on the TiO₂ can be effectively removed by exposing the surface to BCl₃ vapor at the reaction temperature (Table S4).

We applied this approach on microscale and nanoscale line/space patterns. Microscale-patterned substrates, used previously for ASD studies,^{16,31,32} consisted of 3 μm wide SiO₂ lines, ~100 nm thick, separated by 3 μm of exposed Si–H (i.e., 6 μm full-pitch). To form the patterned sacrificial TiO₂ layers, Si–H/SiO₂ samples were coated at 150 °C by ASD TiO₂ using a supercycle sequence as mentioned above. A sequence of 20 supercycles produced ~16.4 nm of TiO₂ atop the SiO₂ regions, with minimal TiO₂ on adjacent Si–H regions.¹⁶ After TiO₂ ASD, samples were treated with a 5 s dip in dilute (5%) HF solution and immediately transferred to the SiH₄/WF₆ reactor to perform the second ASD step using simultaneous W deposition and TiO₂ etching. This sequence of TiO₂ ASD on SiO₂ followed by W ASD on Si–H provides an experimental demonstration of multiple-material orthogonal ASD.²⁵

The resulting microscale self-aligned W/TiO₂ patterns are shown in Figures 2 and 3. Figure 2b shows cross-sectional scanning transmission electron microscopy (STEM) images and corresponding STEM-EDX (EDX, energy-dispersive X-ray spectroscopy) data after treating the TiO₂/Si–H pattern with 15 cycles of SiH₄/WF₆ at 220 °C. A tungsten film with thickness of 7.0 ± 0.4 nm (given as the mean of 8 measurements \pm 1 standard deviation) is visible only on the Si–H region, and the TiO₂ is visible only atop the SiO₂. The remaining ASD TiO₂ layer is 4.9 ± 0.3 nm thick, indicating

Figure 2. Self-aligned orthogonal microscale patterning of TiO₂ and W films: (a) Schematic sequence used for preparation of patterned sacrificial TiO₂ layer, followed by simultaneous deposition and etching to form the self-aligned W and TiO₂. (b) Cross-sectional STEM and STEM-EDX after 15 SiH₄/WF₆ cycles. (c) Data collected from an identical sample after 20 SiH₄/WF₆ cycles. The images show the SiH₄/WF₆ cycles produce net W deposition in exposed Si–H regions, with simultaneous etching of the sacrificial TiO₂ layer.

that the HF dip + SiH₄/WF₆ treatment removed ~11 nm of TiO₂. The experiment was repeated on another TiO₂/Si–H substrate with ~16.4 nm of ASD TiO₂, except for the second ASD step; the SiH₄/WF₆ exposure was performed for 20 cycles. Figure 2c shows the resulting STEM and STEM-EDX images. In this case, the samples show 10.0 ± 0.6 nm of W on Si–H, with no visible TiO₂ on the SiO₂. The 20 W ALD cycles were sufficient to completely remove the sacrificial TiO₂, while simultaneously depositing 10 nm of W in the neighboring Si–H regions.

Comparing the thicknesses of the TiO₂ and W films in Figure 2 to those measured by ellipsometry on blanket substrates following identical process conditions, the patterned wafers show somewhat thinner W layers. The patterned wafers also show thinner TiO₂ layers compared to the blanket samples. This thinner TiO₂ layer may result from faster etching on the patterned surface. Mechanisms leading to pattern-dependent deposition and etching rates are well-known during ASD^{3,9,31,33} and generally relate to gas-transport and surface diffusion effects that alter the local reactant concentration and supersaturation across the sample surface. As discussed below,

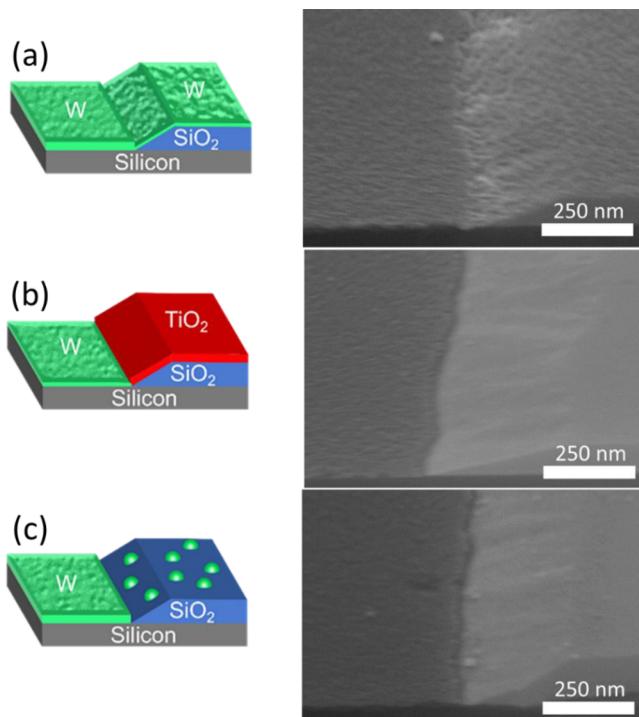


Figure 3. Angled-view SEM for (a) Si-H/SiO₂ patterns with no TiO₂ present after 20 cycles of SiH₄/WF₆, indicating W deposition on both of Si-H and SiO₂; (b) the sample from Figure 2b, showing surface texture consistent with W deposition on Si-H and simultaneous etching of the TiO₂; and (c) the sample from Figure 2c showing a small number of W nuclei on SiO₂, consistent with consumption of the TiO₂ sacrificial layer.

understanding pattern-dependent reaction rates remains an overarching issue for self-aligned deposition-based patterning.

The self-aligned patterned samples shown in Figure 2 were also analyzed by angled-view SEM, and images are presented in Figure 3. Figure 3a shows a control Si-H/SiO₂ wafer (with no TiO₂ initially present) treated with 20 cycles of SiH₄/WF₆. The SiH₄/WF₆ produces a cohesive W film on Si-H, and the rough texture on SiO₂ is consistent with W nuclei.³¹ Figure 3b shows the sample from Figure 2b, corresponding to Si-H/TiO₂ after 15 cycles of SiH₄/WF₆. Both the TiO₂ and W regions appear smooth, with no visible W nuclei on the TiO₂. Figure 3c shows the sample from Figure 2c, identical except after 20 SiH₄/WF₆ cycles. Some particles appear in the SiO₂ region likely corresponding to W nuclei that are expected to form after complete consumption of the TiO₂. Similarly sized nuclei (10–20 nm) formed during ASD were previously analyzed using SEM-EDX, but sensitivity was limited by the small volume of the nuclei.¹⁶

We further confirmed that the approach could extend to nanoscaled patterns, and results are given in Figure 4. The figure includes a schematic diagram, along with corresponding STEM and STEM-EDX images of self-aligned W and TiO₂ on ~200 nm of Si-H/SiO₂-patterned substrates (~400 nm full-pitch) using the same condition as for samples in Figure 2b. Four neighboring features in Figure 4b show consistent pattern duplication, with an expanded higher resolution view of one example region in Figure 4c,d. The sequence yielded 6.1 ± 0.5 nm of W on the Si-H region and 5.8 ± 0.3 nm of TiO₂ on the SiO₂. These values are reasonably similar to those in Figure 2b obtained on the 3 μm features.

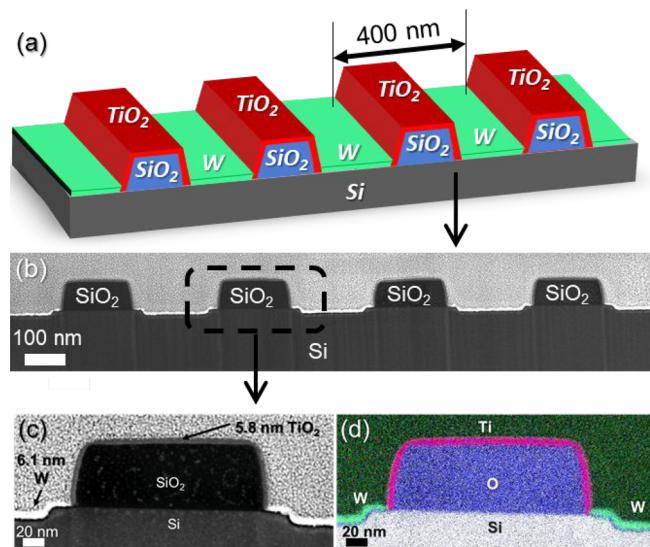


Figure 4. (a) Broad-view schematic of the orthogonal selective deposition of W and TiO₂ on Si-H/SiO₂-patterned surfaces (200 nm width and ~100 nm height) after TiO₂ 20 supercycles and W 15 cycles. (b) Cross-sectional STEM of the multiple patterns: (c) zoom-in view of one pattern from panel b; (d) STEM-EDX corresponding to image panel c.

Careful inspection of the high-resolution images shows that the TiO₂ layer may be thinner on top of the corner edge of the SiO₂, possibly indicating faster TiO₂ etching on exposed corners. The high-resolution images also show uniform W thickness on the exposed silicon, with no visible W nuclei on the TiO₂. The TiO₂/W feature edge boundaries appear well-defined, but understanding feature development at the atomic scale remains a challenge. Figure S3 shows additional TEM/STEM images of self-aligned nanopatterned W/TiO₂ samples.

This work presents simultaneous deposition and etching as a route for direct-patterned area-selective deposition. Also importantly, as shown in Figures 2 and 4, we show that the starting sacrificial pattern can be formed by area-selective deposition, thereby confirming experimental feasibility for orthogonal multiple-material patterning²⁵ as a step forward in bottom-up nanomaterial surface synthesis.

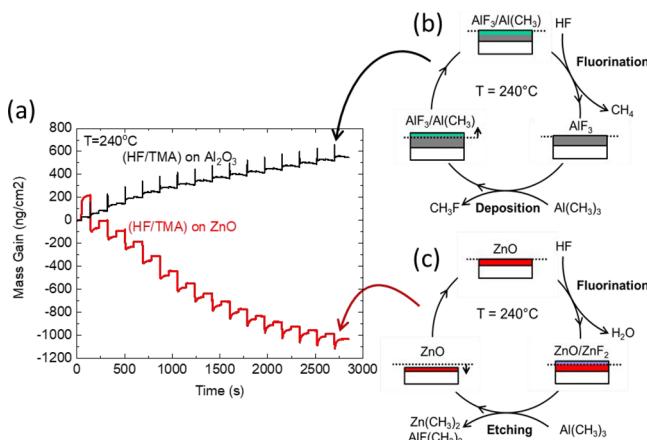
Extension to Other Material Systems. In addition to the W/TiO₂ system, thermodynamic modeling³⁰ and published rate data indicate that simultaneous deposition and etching can be achieved for a range of other deposition and sacrificial materials. Examples are presented in Table 2. The table includes calculated values of the Gibbs free energy changes for atomic layer deposition and etching and the approximate overlapping temperature range, where both reactions are expected to be energetically favorable. Where available, the table also includes experimental values for atomic layer deposition and etching rates at an example temperature within the favorable temperature range. For some systems, a range of etch rates is reported because etch kinetics can depend strongly on detailed process conditions. The etching rates (nm/cycle) correspond to the expected thickness loss during the simultaneous atomic layer deposition cycle. We further note that, for some materials sets, reaction thermodynamics may favor simultaneous deposition and etching but slow reaction kinetics may make them experimentally difficult. The deposition reactions are expected to proceed on any receptive surface where etching does not occur.

Table 2. Partial List of Example Material Systems Showing Thermodynamic Feasibility for Self-Aligned Patterning via Simultaneous Deposition and Etching^a

ASD material	Sacrificial material	Reactants	T range (°C)		Expected reactions	Example T (°C)	Rate (nm/cycle)	ΔG (kJ/mol) @ example T	Reference
W	TiO ₂	SiH ₄ , WF ₆	200 - 300	Deposition	SiH ₄ + WF ₆ → W _(s) + SiF _{4(g)} + HF _(g) + H _{2(g)}	220	0.58	-598	this work, 27
				Etching	TiO ₂ + SiH ₄ + WF ₆ → TiF _{4(g)} + WO ₂ F _{2(g)} + SiH _{4(g)}				
WO ₃	TiO ₂	SiH ₄ , WF ₆ , H ₂ O	200 - 275	Deposition	WF _{6(g)} + SiH _{4(g)} + 3H ₂ O _(g) → WO _{3(s)} + SiF _{4(g)} + 2HF _(g) + 4H _{2(g)}	220	0.58	-653	27, 36
				Etching	TiO _{2(s)} + SiH _{4(g)} + WF _{6(g)} + H ₂ O _(g) → TiF _{4(g)} + WO ₂ F _{2(g)} + SiH _{4(g)} + H ₂ O _(g)				
WO ₃	TiN	H ₂ O, SiH ₄ , WF ₆	200 - 275	Deposition	WF _{6(g)} + SiH _{4(g)} + 3H ₂ O _(g) → WO _{3(s)} + SiF _{4(g)} + 2HF _(g) + 4H _{2(g)}	220	0.58	-653	27, 36
				Etching	TiN _(s) + 2H ₂ O _(g) + SiH _{4(g)} + WF _{6(g)} → TiF _{4(g)} + WO ₂ F _{2(g)} + SiH _{4(g)} + 0.5H _{2(g)}				
WS ₂	TiO ₂	WF ₆ , H ₂ S	250 - 300	Deposition	H ₂ S + WF ₆ → WS _{2(s)} + HF _(g) + S _{2(g)}	300	~0.1	-409	37
				Etching	TiO ₂ + WF ₆ + H ₂ S → TiF _{4(g)} + WO ₂ F _{2(g)} + H ₂ S _(g)				
AlF ₃	ZnO	HF, TMA	200 - 250	Deposition	Al(CH ₃) _{3(g)} + 3HF _(g) → AlF _{3(s)} + 3CH _{4(g)}	220	~0.05	-701	34
				Etching	ZnO _(s) + 2HF _(g) + 2Al(CH ₃) _{3(g)} → Zn(CH ₃) _{2(g)} + 2AlF(CH ₃) _{2(g)} + H ₂ O _(g)				
AlF ₃	Ga ₂ O ₃	HF, TMA	200 - 250	Deposition	Al(CH ₃) _{3(g)} + 3HF _(g) → AlF _{3(s)} + 3CH _{4(g)}	250	~0.05	-699	34
				Etching	Ga ₂ O _{3(s)} + 6HF _(g) + 4Al(CH ₃) _{3(g)} → 3H ₂ O _(g) + 2GaF(CH ₃) _{2(g)} + 4AlF(CH ₃) _{2(g)}				
Si ₃ N ₄	HfO ₂	HF, SiCl ₄ , NH ₃	300 - 350	Deposition	3SiCl _{4(g)} + 4NH _{3(g)} → Si ₃ N _{4(s)} + 12HCl _(g)	350	0.2	-104	39
				Etching	HfO _{2(s)} + 4HF _(g) + SiCl _{4(g)} → 2H ₂ O _(g) + SiF _{4(g)} + HfCl _{4(g)}				
SnS	HfO ₂	HF, Sn(acac) ₂ , H ₂ S	200 - 250	Deposition	Sn(acac) _{2(g)} + H ₂ S _(g) → SnS _(s) + 2H(acac) _(g)	200	0.019	< 0 ^b	41
				Etching	HfO _{2(s)} + 4HF _(g) + 4Sn(acac) _{2(g)} → Hf(acac) _{4(g)} + 4SnF(acac) _(g) + 2H ₂ O _(g)				
SnS	Al ₂ O ₃	HF, Sn(acac) ₂ , H ₂ S	200 - 250	Deposition	Sn(acac) _{2(g)} + H ₂ S _(g) → SnS _(s) + 2H(acac) _(g)	200	0.019	< 0 ^b	41
				Etching	Al ₂ O _{3(s)} + HF _(g) + Sn(acac) _{2(g)} → Al(acac) _{3(g)} + SnF(acac) _(g) + H ₂ O _(g)				

^aThe reported temperature range indicates the values where simultaneous deposition and etching are expected to both be energetically favorable. The reported ΔG values for deposition and etching are evaluated at the example temperature shown. Rates are estimated from published reports of deposition by ALD and etching by CVE or ALE determined from ellipsometry. Etch rates correspond to the expected amount etched per ALD cycle.

^bFavorable reaction energetics consistent with published experimental results.


As one example, data in Table 2 indicate that, with use of trimethylaluminum (TMA) and hydrogen fluoride (HF) as co-reactants at 240 °C, a receptive surface (such as Al₂O₃)³⁴ is expected to yield favorable deposition of AlF₃. Further, when a ZnO surface is exposed to these same conditions, reaction energetics favors ZnO atomic layer etching, producing volatile dimethyl zinc, dimethyl aluminum fluoride, and water.³⁵

To confirm the feasibility of the AlF₃ and ZnO system, we used QCM analysis to observe mass changes on different surfaces exposed to HF/TMA and results are shown in Figure 5. For these data, the experimental procedure follows that was used to collect data in Figure 1. First, a QCM crystal was precoated with ALD Al₂O₃ at 150 °C to be receptive to AlF₃, followed by exposure to repeated doses of HF and TMA at 240 °C. The data in Figure 5 show stepwise mass gain, consistent with ALD of AlF₃.³⁴ Also in Figure 5, a second QCM crystal was precoated with ZnO at 150 °C and then exposed to HF/TMA under identical conditions at 240 °C. The QCM results show clear mass loss, consistent with ZnO etching.³⁵ Therefore, the concept demonstrated above for simultaneous deposition and etching can also be extended to other ASD

material systems, including AlF₃ on Al₂O₃ with sacrificial etching of neighboring ZnO.

CONCLUSIONS

In summary, our findings highlight the importance of thermodynamically designed surface chemistry for nanoscale self-aligned thin film patterning. Counterintuitively, results show that, at low temperatures, using a single set of reactants, it is possible for both deposition and etching to be favored at the same time on different regions of an exposed patterned surface. This means that unwanted nucleation, a broad problem in area-selective deposition, can be avoided because the etching reaction locally consumes the nucleation reactants. This approach to avoid unwanted nucleation may be useful for low-temperature self-aligned patterning in back-end electronics manufacturing and other nanoscale material systems. As one key prospect, we show a sequence of two deposition processes can orthogonally self-align two different materials in different regions on a single starting patterned substrate.

Figure 5. (a) Collected QCM mass gain data from Al₂O₃ or ZnO precoated crystals during 15 cycles of (HF/TMA) exposures. (b) AlF₃ deposition mechanism on Al₂O₃ surface and (c) ZnO atomic layer etching mechanism on ZnO during 15 HF/TMA cycles. Reaction schemes indicate the expected dominant products from thermodynamic analysis.

Our findings also reveal several challenges and remaining problems. One challenge is that reaction conditions should allow the etching and deposition rates to be balanced so that the etching rate is sufficient to consume the gas-phase reactants and avoid unwanted nucleation, with fast enough deposition to develop the desired pattern thickness. Also, while we show the approach works using tungsten and TiO₂, which are important materials in semiconductor processing, semiconductor device manufacturers are seeking self-aligned patterning solutions for a broad and expanding set of materials. Discovering additional material systems will require more extensive modeling and may include the design of new precursors and reactants. Another important outstanding problem is to what extent this process can apply to features approaching atomic scale dimensions. Results show uniform patterning at the 200 nm scale, but we see that etching and deposition rates may depend on feature shape and size. Further scaling will require better understanding of these effects.

Eventually, scaling of deposition-based self-aligned patterning to single-atom dimensions will allow ultimate precision in materials fabrication. Achieving this feat using designed surface chemistry will be a critical step toward producing large numbers of devices in parallel across large surface areas under conditions using limited thermal exposure.

METHODS

Substrate Preparation. For all deposition studies reported here, each run was performed using wafer pieces with Si–H/SiO₂ patterns and/or separate blanket Si–H and Si–OH pieces, with both pieces always present in the deposition chamber. Surfaces designated as “Si–OH” consist of piranha cleaned silicon producing hydroxyl termination, whereas surfaces designated as “SiO₂” are thermally oxidized silicon, also with hydroxyl termination. “Si–H” surfaces are formed by dipping the Si–OH in 5% HF for 30 s, producing hydrogen termination. Before deposition, lithographically patterned Si–H/SiO₂ substrates were prepared by piranha cleaning and HF dipping of Si/SiO₂. The piranha solution was prepared by mixing 30% hydrogen peroxide (electronic grade, J.T. Baker) and 98% sulfuric acid (certified ACS plus, Fisher Chemical) with 1:1 volume ratio.

A boron-doped silicon (100) wafer with 5–10 Ω·cm resistivity was cleaved into small pieces (10 mm × 10 mm). These wafer pieces were cleaned with the piranha solution for 15 min, rinsed with deionized

(DI) water, and stored in a DI water filled glass vial. They served as our oxide-terminated blanket silicon substrates (Si–OH) after being rinsed with DI water and dried with N₂ flow.

Hydrogen-terminated blanket silicon (Si–H) samples were prepared from the Si–OH pieces described above by employing a 30 s dip in 5% HF solution, a 30 s rinse in flowing DI water, and then drying with N₂. The Si–H substrates were always loaded into the reactor within 10 min after preparation.

Si/SiO₂ line patterned substrates were prepared by photolithographic wet etching of 100 nm thick thermally grown silicon dioxide (SiO₂) on silicon wafers. The pattern consists of long (>10 mm) alternating lines of SiO₂ and Si, each 3 μm wide for a 6 μm pitch. The wafer was cleaved into small pieces (10 mm × 10 mm) and prepared immediately prior to loading, as described above for Si–H sample preparation. The 200 nm half-pitch patterned samples were provided by industry and prepared in the same way.

TiO₂ ALD/ALE Supercycles Condition. TiO₂ ALD was performed using 99% pure TiCl₄ (Strem Chemicals) and deionized water (DI water), and the ALE was performed using 99.999% pure WF₆ (Galaxy Chemicals) and 99.9% pure BCl₃ (Matheson). The ALD/ALE supercycles were conducted in a custom-built tubular hot-walled isothermal viscous-flow ALD reactor, further notified as “TiO₂ reactor”, under constant wall temperature (150 °C) and pressure (0.9–1.1 Torr) with 150 sccm of 99.999% pure N₂ (Arc3 Gases) as a carrier gas. One TiO₂ ALD cycle was defined as “TiCl₄ pulse (0.1 s) → N₂ purge (45 s) → H₂O pulse (0.05 s) → N₂ purge (45 s)”, and one TiO₂ ALE cycle was defined as “WF₆ pulse (0.1 s) → N₂ purge (45 s) → BCl₃ pulse (1 s) → N₂ purge (45 s)”. One TiO₂ ALD/ALE supercycle consisted of 30 cycles of TiCl₄/H₂O (for TiO₂ ALD) followed by 7 cycles of WF₆/BCl₃ (TiO₂ ALE). The supercycles were performed in a single reactor at a fixed temperature of 150 °C. Using 12 or 20 supercycles produced ~11.5 and ~16.4 nm of TiO₂ on Si–OH, respectively, with less than 1.9 nm of TiO₂ on exposed Si–H surfaces.

W ALD Cycles Condition. W ALD, using 2% SiH₄ (Custom Gas Solution) and 99.999% pure WF₆ (Galaxy Chemicals), was performed in a separate custom-built tubular hot-walled isothermal viscous-flow ALD reactor, further notified as “W reactor”, under constant wall temperature (220 °C) and pressure (2.0–2.4 Torr) with 210 sccm of 99.999% pure Ar (Arc3 gases) as a carrier gas. One W ALD cycle was defined as “SiH₄ pulse (45 s) → Ar purge (45 s) → WF₆ pulse (1 s) → Ar purge (45 s)”. W film was deposited on prepared substrates by running W ALD 10–20 cycles. In this experiment, we first performed Al₂O₃ ALD to initialize the internal surface of the hot-walled reactor and the surface of the QCM crystal. Trimethylaluminum (TMA; 98%, Strem Chemicals) and DI water were used for the Al₂O₃ ALD to initialize the wall condition of the W reactor between batches. One cycle of TMA/H₂O was defined as “TMA pulse (0.1 s) → Ar purge (45 s) → H₂O pulse (0.1 s) → Ar purge (45 s)”, and 25 cycles of TMA/H₂O were used for the initialization.

Integrated Sequence of “TiO₂ ALD/ALE → HF Dipping → W ALD”. Prepared blanket Si–OH and Si–H samples as well as Si–H/SiO₂-patterned substrates were loaded into the TiO₂ reactor and allowed to reach thermal equilibrium for 60 min under 150 sccm of N₂ flow at 150 °C wall temperature. TiO₂ ALD/ALE 12 or 20 supercycles were performed for TiO₂ ASD on SiO₂. Following TiO₂ ASD, the samples were removed from the reactor, dipped into 5% HF for 5 s, rinsed with flowing DI H₂O for 30 s, and dried with N₂ flow in atmospheric conditions to remove undesired oxides on Si–H surfaces. Next, the samples were loaded into the W reactor and allowed to reach thermal equilibrium for 30 min with 210 sccm of Ar flow at 220 °C wall temperature. Subsequently, 10–20 W ALD cycles were carried out at 220 °C to selectively deposit W film on Si–H.

HF/TMA Exposures on ZnO and Al₂O₃. Hydrogen fluoride pyridine (~70% HF + ~30% pyridine, Sigma-Aldrich) was used as the HF source. One cycle of HF/TMA exposure was defined as “HF pulse (2 s) → N₂ purge (90 s) → TMA pulse (1 s) → N₂ purge (90 s)”, and 15 cycles of HF/TMA exposure were performed at 240 °C after either ZnO or Al₂O₃ predeposition on QCM crystals at 150 °C.

95% pure diethylzinc (DEZ) from Strem Chemicals and DI water were used to deposit ZnO films on QCM crystals. One cycle of DEZ/H₂O was defined as “DEZ pulse (0.5 s) → N₂ purge (60 s) → H₂O pulse (0.1 s) → N₂ purge (60 s)”, and 100 cycles of DEZ/H₂O exposure at 150 °C were performed before the HF/TMA exposures at 240 °C.

One cycle of TMA/H₂O was defined as “TMA pulse (0.5 s) → N₂ purge (60 s) → H₂O pulse (0.1 s) → N₂ purge (60 s)”, and 100 cycles of TMA/H₂O exposure at 150 °C were performed before the HF/TMA exposures at 240 °C.

Characterization. For monitoring mass uptake on TiO₂ or W films during deposition, a quartz crystal microbalance probe (Kurt Lesker) with a 6 MHz gold-coated crystal sensor (Inficon) was inserted into the reactor and kept in the reactor at least 120 min to be thermally stabilized. To avoid deposition on the exposed electrical contacts, the backside of the crystal was purged with 25 sccm of carrier gas flow during the measurement. *In situ* mass loading (ng/cm²) was obtained by electronic data acquisition.

W or TiO₂ thickness was measured by *ex situ* spectroscopic ellipsometry (alpha-SE ellipsometer, J.A. Woollam) in the 380–890 nm of wavelength (λ) at 70° incident angle. A Cauchy model provided from J.A. Woollam was used to calculate the TiO₂ thickness. The values for W thickness were estimated by correlating ellipsometry parameters Δ and Ψ collected at $\lambda = 700$ nm to film thickness.³¹

Chemical composition of obtained TiO₂ and W films was characterized using *ex situ* X-ray photoelectron spectroscopy (XPS, Kratos Analytical Axis Ultra) with an Al K α (1486.6 eV) gun (operating at 15 kV and 10 mA). A neutralizer was used to reduce the charging effect. Survey and high-resolution scans were carried out for C 1s, O 1s, F 1s, Cl 2p, Ti 2p, W 4f, W 4d, B 1s, and Si 2p. Casa XPS software was used to process the collected raw data, and peak positions were calibrated with the adventitious C 1s peak as 284.8 eV. The high-resolution and survey scans were used to obtain atomic concentrations (at. %).

Angled- and top-view images of patterned samples were obtained using field emission scanning electron microscopy (SEM, FEI Verios 460L). A high-current Ga⁺ liquid metal focused ion beam (FIB; FEI Quanta 3D FEG) was used to prepare samples for TEM. The dual beam FIB provided 7 nm resolution at 30 keV for the ion column and 1.2 nm resolution at 30 keV for the SEM column. Prior to the lift-out, samples were coated with a Pt capping layer with thickness of ~3.2 μ m. The Ga⁺ ion source was used to mill-out a 20 μ m \times 2 μ m region, followed by a final milling to ~100 nm thickness using of 5 kV at 48 pA ion emission current. The TEM specimen was then removed from the sample using a micromanipulator and placed directly onto a 3 mm diameter Cu TEM grid. Cross-sectional images of patterned samples were collected by transmission electron microscopy (TEM; FEI Talos F200X) operated at 200 kV with 0.12 nm resolution. The TEM camera (ThermoFisher Ceta) acquired images with 4k \times 4k resolution. Energy-dispersive X-ray spectroscopy element mapping was performed using scanning transmission electron microscopy (STEM). In STEM mode, the HAADF images were acquired with camera length of ~100 mm. The FEI Talos F200X TEM uses the Super-X EDX system, which is comprised of four in-column EDX detectors with a collection angle of ~0.9 sr. The typical parameters for STEM-EDX used a beam current of 350 pA, and each EDX collection time exceeded 5 min.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acsnano.1c04086>.

More detailed data, including results of XPS analysis, effect of temperature on TiO₂ etching, and additional TEM/STEM images, as well as discussion and results of intermediate treatments between TiO₂ ASD and W ASD ([PDF](#))

AUTHOR INFORMATION

Corresponding Author

Gregory N. Parsons – Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States; orcid.org/0000-0002-0048-5859; Email: gnp@ncsu.edu

Authors

Seung Keun Song – Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States; orcid.org/0000-0002-2214-449X

Jung-Sik Kim – Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States; orcid.org/0000-0002-3846-4092

Hannah R. M. Margavio – Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States; orcid.org/0000-0001-5327-3713

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acsnano.1c04086>

Author Contributions

All authors contributed to the reaction modeling, data analysis and interpretation. S.K.S. and J.-S.K. developed and conducted experiments under the supervision of G.N.P. S.K.S., J.-S.K., and H.R.M.M. prepared the draft manuscript, and the text was finalized by G.N.P. S.K.S. and J.-S.K. contributed equally to the project. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

Data and Materials Availability: All data needed to evaluate the conclusions in the article are supplied in the manuscript and in associated online content. Additional data may be requested from the authors.

ACKNOWLEDGMENTS

This work was supported by funding from the Semiconductor Research Corporation, Task 2729.001 and Task 3036.001, and from the U.S. National Science Foundation, Award No. 1704151. We thank IBM for supplying wafers with 200 nm half-pitch features. TEM/STEM and SEM were performed at North Carolina State University Analytical Instrumentation Facility (AIF), supported by the state of North Carolina and the National Science Foundation (Award No. ECCS-2025064). XPS was conducted at Duke University Shared Materials Instrumentation Facility (SMIF) and University of North Carolina Chapel Hill Analytical and Nanofabrication Laboratory (CHANL). NNF, SMIF, and CHANL are members of the North Carolina Research Triangle Nanotechnology Network (RTNN), which is supported by the National Science Foundation (Grant ECCS-1542015) as part of the National Nanotechnology Coordinated Infrastructure (NNCI).

REFERENCES

- (1) *Decadal Plan for Semiconductors*; Semiconductor Industry Association, Semiconductor Research Corp., 2021. www.sra.org/decadal-plan (accessed 2021-06-16).
- (2) Clark, R.; Tapily, K.; Yu, K.-H.; Hakamata, T.; Consiglio, S.; O'Meara, D.; Wajda, C.; Smith, J.; Leusink, G. Perspective: New

Process Technologies Required for Future Devices and Scaling. *APL Mater.* **2018**, *6*, 058203.

(3) Parsons, G. N.; Clark, R. D. Area-Selective Deposition: Fundamentals, Applications, and Future Outlook. *Chem. Mater.* **2020**, *32*, 4920–4953.

(4) Mohanty, N.; Smith, J. T.; Huli, L.; Pereira, C.; Raley, A.; Kal, S.; Fonseca, C.; Sun, X.; Burns, R. L.; Farrell, R. A.; Hetzer, D. R.; Metz, A. W.; Ko, A.; Scheer, S. A.; Biolsi, P.; DeVillers, A. EPE Improvement Thru Self-Alignment via Multi-Color Material Integration. In *Optical Microlithography XXX*; Erdmann, A., Kye, J., Eds.; The International Society for Optics and Photonics (SPIE), 2017; Vol. 10147, p 1014704.

(5) Levinson, H. J. *The Potential of EUV Lithography*. In *35th European Mask and Lithography Conference (EMLC 2019)*; Behringer, U. F., Finders, J., Eds.; The International Society for Optics and Photonics (SPIE), 2019; Vol. 1117702, p 2.

(6) Bally-Le Gall, F.; Friedmann, C.; Heinke, L.; Arslan, H.; Azucena, C.; Welle, A.; Ross, A. M.; Wöll, C.; Lahann, J. Free-Standing Nanomembranes Based on Selective CVD Deposition of Functional Poly-p-Xylylenes. *ACS Nano* **2015**, *9*, 1400–1407.

(7) Gladfelter, W. L. Selective Metallization by Chemical Vapor Deposition. *Chem. Mater.* **1993**, *5*, 1372–1388.

(8) Claassen, W. A. P.; Bloem, J. The Nucleation of CVD Silicon on SiO₂ and Si₃N₄ Substrates: I. The System at High Temperatures. *J. Electrochem. Soc.* **1980**, *127*, 194–202.

(9) Fitch, J. T.; Denning, D. J.; Beard, D. The Pattern Dependence of Selectivity in Low Pressure Selective Epitaxial Silicon Growth. *J. Electron. Mater.* **1992**, *21*, 455–462.

(10) Hartmann, J. M.; Bertin, F.; Rolland, G.; Laugier, F.; Semeria, M. N. Selective Epitaxial Growth of Si and SiGe for Metal Oxide Semiconductor Transistors. *J. Cryst. Growth* **2003**, *259*, 419–427.

(11) Gates, S. M. Surface Chemistry in the Chemical Vapor Deposition of Electronic Materials. *Chem. Rev.* **1996**, *96*, 1519–1532.

(12) Minaye Hashemi, F. S.; Prasittichai, C.; Bent, S. F. Self-Correcting Process for High Quality Patterning by Atomic Layer Deposition. *ACS Nano* **2015**, *9*, 8710–8717.

(13) Mameli, A.; Merkx, M. J. M.; Karasulu, B.; Roozeboom, F.; Kessels, W. E. M. M.; MacKus, A. J. M. Area-Selective Atomic Layer Deposition of SiO₂ Using Acetylacetone as a Chemoselective Inhibitor in an ABC-Type Cycle. *ACS Nano* **2017**, *11*, 9303–9311.

(14) Pattison, T. G.; Hess, A. E.; Arellano, N.; Lanzillo, N.; Nguyen, S.; Bui, H.; Rettner, C.; Truong, H.; Friz, A.; Topuria, T.; Fong, A.; Hughes, B.; Tek, A. T.; DeSilva, A.; Miller, R. D.; Qiao, G. G.; Wojtecki, R. J. Surface Initiated Polymer Thin Films for the Area Selective Deposition and Etching of Metal Oxides. *ACS Nano* **2020**, *14*, 4276–4288.

(15) Cho, T. H.; Farjam, N.; Allemand, C. R.; Pannier, C. P.; Kazyak, E.; Huber, C.; Rose, M.; Trejo, O.; Peterson, R. L.; Barton, K.; Dasgupta, N. P. Area-Selective Atomic Layer Deposition Patterned by Electrohydrodynamic Jet Printing for Additive Manufacturing of Functional Materials and Devices. *ACS Nano* **2020**, *14*, 17262–17272.

(16) Song, S. K.; Saare, H.; Parsons, G. N. Integrated Isothermal Atomic Layer Deposition/Atomic Layer Etching Super-Cycles for Area-Selective Deposition of TiO₂. *Chem. Mater.* **2019**, *31*, 4793–4804.

(17) Leskelä, M.; Ritala, M. Atomic Layer Deposition (ALD): From Precursors to Thin Film Structures. *Thin Solid Films* **2002**, *409*, 138–146.

(18) Parsons, G. N.; George, S. M.; Knez, M. Progress and Future Directions for Atomic Layer Deposition and ALD-Based Chemistry. *MRS Bull.* **2011**, *36*, 865–871.

(19) Holleman, J. Selective Chemical Vapor Deposition. In *Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies*; Pauleau, Y., Ed.; Springer: New York, 2002; pp 171–198. DOI: 10.1007/978-94-010-0353-7_8

(20) Madar, R.; Bernard, C. Thermodynamic Modeling of Selective Chemical Vapor Deposition Processes in Microelectronic Silicon. *J. Vac. Sci. Technol., A* **1990**, *8*, 1413–1421.

(21) Carlsson, J. O. Selective Vapor-Phase Deposition on Patterned Substrates. *Crit. Rev. Solid State Mater. Sci.* **1990**, *16*, 161–212.

(22) Juppo, M.; Vehkämäki, M.; Ritala, M.; Leskelä, M. Deposition of Molybdenum Thin Films by an Alternate Supply of MoCl₅ and Zn. *J. Vac. Sci. Technol., A* **1998**, *16*, 2845–2850.

(23) Myers, T. J.; Cano, A. M.; Lancaster, D. K.; Clancey, J. W.; George, S. M. Conversion Reactions in Atomic Layer Processing with Emphasis on ZnO Conversion to Al₂O₃ by Trimethylaluminum. *J. Vac. Sci. Technol., A* **2021**, *39*, 021001.

(24) Agbenyeku, R. E.; Han, S. H.; Park, B. K.; Chung, T.-M.; Lee, Y. K.; Kim, C. G.; Han, J. H. Simultaneous Etching of Underlying Metal Oxide and Sulfide Thin Films during Cu₂S Atomic Layer Deposition. *Appl. Surf. Sci.* **2020**, *524*, 146452.

(25) Haukka, S. P.; Matero, R. H.; Tois, E.; Niskanen, A.; Tuominen, M.; Huotari, H.; Pore, V. J. Dual Selective Deposition. U.S. Patent Application US 2015/0299848 A1, 2015.

(26) Lemaire, P. C.; King, M.; Parsons, G. N. Understanding Inherent Substrate Selectivity during Atomic Layer Deposition: Effect of Surface Preparation, Hydroxyl Density, and Metal Oxide Composition on Nucleation Mechanisms during Tungsten ALD. *J. Chem. Phys.* **2017**, *146*, 052811.

(27) Kalanyan, B.; Losego, M. D.; Oldham, C. J.; Parsons, G. N. Low-Temperature Atomic Layer Deposition of Tungsten Using Tungsten Hexafluoride and Highly-Diluted Silane in Argon. *Chem. Vap. Deposition* **2013**, *19*, 161–166.

(28) Lemaire, P. C.; King, M.; Parsons, G. N. Understanding Inherent Substrate Selectivity during Atomic Layer Deposition: Effect of Surface Preparation, Hydroxyl Density, and Metal Oxide Composition on Nucleation Mechanisms during Tungsten ALD. *J. Chem. Phys.* **2017**, *146*, 052811.

(29) Lemaire, P. C.; Parsons, G. N. Thermal Selective Vapor Etching of TiO₂: Chemical Vapor Etching via WF₆ and Self-Limiting Atomic Layer Etching Using WF₆ and BC₁3. *Chem. Mater.* **2017**, *29*, 6653–6665.

(30) Roine, A.; Kotiranta, T.; Eerola, H.; Lamberg, P. *HSC Chemistry*, Ver. 7.1; Oktukumpu Research Oy: Pori, Finland, 2002.

(31) Kalanyan, B.; Lemaire, P. C.; Atanasov, S. E.; Ritz, M. J.; Parsons, G. N. Using Hydrogen to Expand the Inherent Substrate Selectivity Window during Tungsten Atomic Layer Deposition. *Chem. Mater.* **2016**, *28*, 117–126.

(32) Atanasov, S. E.; Kalanyan, B.; Parsons, G. N. Inherent Substrate-Dependent Growth Initiation and Selective-Area Atomic Layer Deposition of TiO₂ Using “Water-Free” Metal-Halide/Metal Alkoxide Reactants. *J. Vac. Sci. Technol., A* **2016**, *34*, 01A148.

(33) Creighton, J. R. A Mechanism for Selectivity Loss during Tungsten CVD. *J. Electrochem. Soc.* **1989**, *136*, 271.

(34) Lee, Y.; DuMont, J. W.; Cavanagh, A. S.; George, S. M. Atomic Layer Deposition of AlF₃ Using Trimethylaluminum and Hydrogen Fluoride. *J. Phys. Chem. C* **2015**, *119*, 14185–14194.

(35) Zywotko, D. R.; George, S. M. Thermal Atomic Layer Etching of ZnO by a “Conversion-Etch” Mechanism Using Sequential Exposures of Hydrogen Fluoride and Trimethylaluminum. *Chem. Mater.* **2017**, *29*, 1183–1191.

(36) Warren, A.; Nylund, A.; Olefjord, I. Oxidation of Tungsten and Tungsten Carbide in Dry and Humid Atmospheres. *Int. J. Refract. Hard Met.* **1996**, *14*, 345–353.

(37) Scharf, T. W.; Prasad, S. V.; Mayer, T. M.; Goeke, R. S.; Dugger, M. T. Atomic Layer Deposition of Tungsten Disulphide Solid Lubricant Thin Films. *J. Mater. Res.* **2004**, *19*, 3443–3446.

(38) Lee, Y.; Johnson, N. R.; George, S. M. Thermal Atomic Layer Etching of Gallium Oxide Using Sequential Exposures of HF and Various Metal Precursors. *Chem. Mater.* **2020**, *32*, 5937–5948.

(39) Klaus, J. W.; Ott, A. W.; Dillon, A. C.; George, S. M. Atomic Layer Controlled Growth of Si₃N₄ Films Using Sequential Surface Reactions. *Surf. Sci.* **1998**, *418*, L14–L19.

(40) Lee, Y.; Huffman, C.; George, S. M. Selectivity in Thermal Atomic Layer Etching Using Sequential, Self-Limiting Fluorination and Ligand-Exchange Reactions. *Chem. Mater.* **2016**, *28*, 7657–7665.

(41) Kim, J. Y.; George, S. M. Tin Monosulfide Thin Films Grown by Atomic Layer Deposition Using Tin 2,4-Pentanedionate and Hydrogen Sulfide. *J. Phys. Chem. C* **2010**, *114*, 17597–17603.