This article was downloaded by: [73.24.225.127] On: 17 December 2020, At: 16:01
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

% e INFORMS Journal on Computing
—
T

Publication details, including instructions for authors and subscription information:

K - :; http://pubsonline.informs.org
‘ﬁ..-‘ —#.y-" y
N L« " Stochastic Decomposition for Two-Stage Stochastic Linear

B Programs with Random Cost Coefficients
\ T A ®

| I —-p Harsha Gangammanavar, Yifan Liu, Suvrajeet Sen
\E .‘,‘:-:_ . I-f./

. ¥

1|“ g % ﬁ “|

To cite this article:
Harsha Gangammanavar, Yifan Liu, Suvrajeet Sen (2020) Stochastic Decomposition for Two-Stage Stochastic Linear Programs
with Random Cost Coefficients. INFORMS Journal on Computing

Published online in Articles in Advance 28 May 2020
. bhttps://doi.org/10.1287/ijoc.2019.0929

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2020, INFORMS

Please scroll down for article—it is on subsequent pages

informs.

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijoc.2019.0929
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

. INFORMS JOURNAL ON COMPUTING

s@ Articles in Advance, pp. 1-21
http://pubsonline.informs.org/journal/ijoc ISSN 1091-9856 (print), ISSN 1526-5528 (online)

Stochastic Decomposition for Two-Stage Stochastic Linear
Programs with Random Cost Coefficients

Harsha Gangammanavar,? Yifan Liu,” Suvrajeet Sen®

2Southern Methodist University, Dallas, Texas 75275; P84 51°, Cincinnati, Ohio 45202; °Universi’fy of Southern California, Los Angeles,
California 90089
Contact: harsha@smu.edu, () https: //orcid.org/0000-0003-4389-5433 (HG); yifanl@usc.edu (YL); s.sen@usc.edu,

https: // orcid.org/0000-0002-6285-8833 (SS)

Received: October 5, 2018
Revised: March 12, 2019; June 21, 2019
Accepted: July 21, 2019

Published Online in Articles in Advance:
May 28, 2020

Abstract. Stochastic decomposition (SD) has been a computationally effective approach to
solve large-scale stochastic programming (SP) problems arising in practical applications.
By using incremental sampling, this approach is designed to discover an appropriate
sample size for a given SP instance, thus precluding the need for either scenario reduction
or arbitrary sample sizes to create sample average approximations (SAA). When compared
with the solutions obtained using the SAA procedure, SD provides solutions of similar
quality in far less computational time using ordinarily available computational resources.
However, previous versions of SD were not applicable to problems with randomness in
second-stage cost coefficients. In this paper, we extend its capabilities by relaxing this
assumption on cost coefficients in the second stage. In addition to the algorithmic en-
hancements necessary to achieve this, we also present the details of implementing these
extensions, which preserve the computational edge of SD. Finally, we illustrate the
computational results obtained from the latest implementation of SD on a variety of test
instances generated for problems from the literature. We compare these results with those
obtained from the regularized L-shaped method applied to the SAA function of these
problems with different sample sizes.

https://doi.org/10.1287/ijoc.2019.0929

Copyright: © 2020 INFORMS

History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete.

Funding: This work was supported by the Air Force Office of Scientific Research [FA9550-15-1-0267]; the
Division of Civil, Mechanical and Manufacturing Innovation [1538605, 1822327]; and the Division of
Electrical, Communications and Cyber Systems [1548847].

Keywords: stochastic programming ¢ stochastic decomposition « sample average approximation «
two-stage models with random cost coefficients « sequential sampling

1. Introduction
The two-stage stochastic linear programming prob-
lem (2-SLP) can be stated as

min f(x) := c"x + E[h(x, @)]
st. xe ¥ := {x|Ax < b} C R™,

where the recourse function is defined as follows:

(1a)

h(x, w) ;== min d(w)"y
st. D(w)y = &(w) - C(w)x (1b)
y20,yeR™.

The random variable @ is defined on a probability
space (Q, &, ?), where the sample space Q € R, and
w denotes a realization of this random variable. The
problem statement allows one or more elements of
data (d,D,&,C) to depend on the random variable.
Moreover, the statement accommodates both con-
tinuous as well as discrete random variables. Com-
putational approaches to address this formulation,
however, have largely focused on problems with fi-
nite support, for which uncertainty is represented
using a set of realizations {w!, @?, ..., wN} with their

respective probabilities p/ ,j=1,...,N that are assumed
to be known. When N is small, a deterministic equiv-
alent problem can be formulated and solved using
off-the-shelf LP solvers.

In problems with continuous random variables,
calculation of the expectation functional involves a
multidimensional integral in high dimension. For
such problems as well as those in which the number of
possible realizations is astronomically large, sampling-
based methods offer a computationally viable means
for obtaining a reasonable approximation. When sam-
pling precedes the optimization step (i.e., external
sampling), the objective function in (1a) is replaced by
its so-called sample average approximation (SAA)
using a fixed number of outcomes. As an alternative to
choosing the sample size, one can allow the algorithm to
dynamically determine a sufficiently large sample size
during optimization. We refer to such a coupling of
sampling and optimization as sequential or internal
sampling, and this forms the basis for the stochastic de-
composition (SD) algorithm (Higle and Sen 1991, 1994).

http://pubsonline.informs.org/journal/ijoc
mailto:harsha@smu.edu
https://orcid.org/0000-0003-4389-5433
https://orcid.org/0000-0003-4389-5433
mailto:yifanl@usc.edu
mailto:s.sen@usc.edu
https://orcid.org/0000-0002-6285-8833
https://orcid.org/0000-0002-6285-8833
https://doi.org/10.1287/ijoc.2019.0929

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

The SD algorithm allows for seamlessly incorpo-
rating new outcomes to improve the approximation
of the expected recourse function without having to
restart the optimization. In order to accomplish this,
the algorithm continuously gathers relevant infor-
mation during the course of its run and efficiently
reutilizes this information in future iterations. These
features have enabled SD to provide high-quality
solutions in far less computational time using ordi-
nary desktop and laptop computers when compared
with the methods that involve using the SAA func-
tion to obtain solutions of similar quality. This was
demonstrated on a suite of stochastic programming
(SP) instances in Sen and Liu (2016) and on a real-
scale power system operations planning problem in
Gangammanavar et al. (2016).

Nevertheless, previous research on SD, including
the most recent work of Sen and Liu (2016), focuses on
2-SLPs in which uncertainty affects only the right-
hand side elements of Subproblem (1b), that is, ele-
ments of vector & and matrix C. In this paper, we
extend the capability of SD to address 2-SLPs with
random cost coefficients, making it applicable to
problems in which parameters (d, &, C) are governed
by the random variable @.

In classical approaches to solve 2-SLPs—including
the L-shaped method (Van Slyke and Wets 1969)—the
subproblems for all realizations are solved in every
iteration, and the outer linearization generated in an
iteration is based on dual multipliers computed only
in that iteration. Hence, when compared with the
computational workload for 2-SLPs with determin-
istic second-stage cost coefficients, an instance with
random cost coefficients does not pose any addi-
tional difficulty for such methods. On the other hand,
the reliance on information discovered in earlier itera-
tions to generate SD approximations and, in particular,
the repeated use of previously discovered dual vertices
can no longer be used without modification when cost
coefficients have random elements. In light of this, the
main contributions of this work are as follows:

¢ We show that, in the presence of random cost
coefficients, dual vertices can be represented by a
decomposition consisting of a deterministic repre-
sentation together with a shift vector that depends on
the realization of the random variable. This shift vector
can be applied when the elements of d(w) are both
dependent or independent. Moreover, the dimension
of the shift vector depends on the number of random
elements in d. For instances in which the number of
random elements is small, the dimension of shift
vectors is also small, thus allowing SD to retain many
of the advantages available in the case of fixed second-
stage cost coefficients.

* We design extensions of previous SD computa-
tional data structures to accommodate the introduction

of random cost coefficients without sacrificing most of
the computational advantage of SD. However, the
number of random cost coefficients does have a neg-
ative impact on the algorithm’s performance. In view
of this, we also identify optimization model struc-
tures that help us to overcome these negative impacts.

* We design new instances with random cost co-
efficients that can be used to benchmark SP algorithms.
We also present computational results obtained from
the enhanced SD algorithm and compare them to those
obtained using the regularized L-shaped method ap-
plied to the SAA function of varying sizes.

The rest of the paper is organized as follows. In
Section 2, we present a succinct review of the SD
algorithm focusing on the principal steps involved in
computing the approximations of the first-stage ob-
jective function. In Section 3, we formalize all of the
key algorithmic ideas necessary to enable the SD al-
gorithm to address problems with random cost coef-
ficients. Our discussion also includes notes on chal-
lenges associated with implementing these ideas and
our approach to address them. This is followed by a
narration of our computational experience in Section 5
on both small- and large-scale instances.

2. Background: Stochastic Decomposition
Before we present our work, a brief overview of the
SD algorithm is in order. We refer the reader to Higle
and Sen (1991, 1994) and Sen and Liu (2016) for de-
tailed mathematical expositions of this algorithm.
Our discussion here focuses on the construction of
lower bounding approximations of the expected re-
course function in (1la) with an eye toward computer
implementation. We present a high-level description
of the regularized SD algorithm while ignoring the
algorithmic details regarding incumbent update
(used in the proximal term of the regularized version)
and stopping rules. In particular, we focus on the
information that is collected during the course of the
algorithm and discuss how this information is uti-
lized to generate/update the approximations in a
computationally efficient manner. In the remainder of
this paper, the computer programming constructs are
presented in typewriter font to distinguish them
from the mathematical constructs.

We first state the assumptions for the 2-SLP models
as required by previous versions of SD.

Assumption 1. The set of first-stage solutions & and the set
of outcomes () are compact.

Assumption 2. The 2-SLP model satisfies the fixed re-
course property; in other words, the recourse matrix D is
deterministic.

Assumption 3. There exists an L > —oco such that L <
h(x, @) < oo almost surely.

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

3

Assumption 4. The cost coefficient vector d of Subproblem (1b)
is deterministic.

Note that h(x, @) < co under Assumption 3 implies
that our 2-SLP model conforms with the relatively
complete recourse assumption of SP. Further, a finite
lower bound on the recourse value implies that the
dual feasible set is nonempty almost surely. We de-
note outcomes of random variables using a super-
script over the parameter’s name. For instance & and
C are equivalent to &(w') and C(w/), respectively. The
letter k is reserved to denote the iteration counter of
the algorithm.

2.1. Algorithmic Description
The principal steps of regularized SD are presented in
Algorithm 1. We begin our description at iteration k
when we have access to a candidate solution x¥, an
incumbent solution 2%, and the current approximation
of first-stage objective function fk(x). The iteration
begins by sampling an outcome @w* of the random
variable @ independently of all prior samples {a/}" i .
If this outcome is encountered for the first time, it
is added to the collection of unique outcomes 0¥1 :=
{w!, @?,...} observed during the first (k — 1) iterations
of the algorithm. The current candidate solution x*
and outcome @ are used to evaluate the recourse
function h(x*, @*) by solving the subproblem (1b) to
optimality. The resulting optimal dual solution 7} is
added to the collection of previously discovered dual
vertices V&, that is, V5 =¥5"1 U {nf}. Using the
outcomes in 0%, one may define an SAA function

1 k

Frx) =c"x +-
k=

hix, @),)
which uses a sample size of k. In iteration k, the SD
algorithm creates an approximation f*(x), which sat-
isfies f¥(x) < F¥(x). In order to see how this is ac-
complished, we make the following observations:

1. Under Assumptions 2—4, the dual feasible region
Iy := {m|D"m < d} is a nonempty deterministic set.

2. Linear programming duality ensures that a m €
OV’(S satisfies m'[&(@) — C(@)x] < h(x, @) almost surely
forall x € %.

Thus, we identify a dual vertex in V% that provides
the best lower bounding function for each summand
in the SAA function of (2) as follows:

T € argmax{nT[éf - Cka” me Vg}
V' € 0%, # k. (3)

Because of the need to associate the dual vertices with
an outcome @' and the set V%, we use two indices for
dual vertex mf. We reserve the superscript (k) to in-
dicate the iteration of the algorithm when the dual
vertex is identified. The subscript (j), on the other

hand, points to the outcomes in OF for which the dual
vertex is identified.

During our presentation of the algorithmic aspects,
we use the function argmax(-) to represent the pro-
cedure in (3). Because nﬁ is the optimal dual solution
of the subproblem in (1b) with (¥}, @¥) as input, it can
be used to compute the best lower bound for h(x, "),
and hence, invoking the argmax(:) procedure is not
necessary forj = k. These dual vertices {Tzk} are used to
compute the subgradient ff and the mtercept term af
of an affine function fk(x) as follows:

1& T
af=p2(m) & e 2@ @

Similar calculations with respect to the incumbent
solution yield another affme function fk(x) = ak+
(ﬁk)Tx where &% replaces x* in (3) and the corre-
sponding dual multipliers are used to obtain (af, ﬁk)
in (4). Both the candidate affine function {’k(x) and
the incumbent affine function fk(x) provide a lower
bounding approximation of the SAA function in (2).
Note that the SAA function uses a larger collection of
outcomes as the algorithm proceeds, and hence, an
affine function £, generated at an earlier iteration j < k
provides alower bounding approximation of the SAA
function Fi(x), but not necessarily for Ff(x). Conse-
quently, the affine functions generated in earlier it-
erations need to be adjusted such that they continue to
provide lower bound to the current SAA function
F¥(x). Under Assumption 3, the adjustment can be
achieved using the following recursive calculations:

L k-1 1

k-1
k k-1
a; <——k a] EL ﬁj <——ﬁj

i=1,...k-1. (7

Algorithm 1 (Regularized SD Algorithm)
1: Input: Scalar parameters ¢ >0, 4 >0, and 7 > 0.
2: Initialization: Solve a mean value problem' to
obtain x!' € ¥. Initialize 0°=0, V0 =0, 3°=x",
0%=0, and k « 0. Set optimality_flag to
FALSE.
3: while optimality_flag = FALSE do
4: ke—k+1
5: Generate an outcome w* by sampling
independently from all previous outcomes,
and update OF « 0F1 U {w}.
6: Setup and solve linear programs to evaluate
h(x*, @) and h(x¥!, W").
7: Obtain optimal dual solutions 7f and 7, and
update VE «— V51 U {rk, ik}
8: Include new afﬁne functions:
9: (x) = form_cut(VE, x*, k);
T8(x) = form_cut(VE, &1 k).
10: Update previously generated affine functions
{}y; = update_cuts({f{'}y;, k).

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

11: Update the first-stage objective function ap-
proximation as
f = max e, i), Bl (5)
12: & =incumbent_update (f*,f*1,ak1 xb).
13: o* =update_prox(c*!, ||x* — &1||, x,).
14: Obtain the next candidate solution by solving
the following regularized master problem:

e argmin{fk(x) +%ka - &kHZ |x € 96} (6)

15: optimality_flag= check_optimality(x
16: end while

The most recent piecewise linear approximation
f¥(x) is defined as the maximum over the new affine
functions (¢£(x) and #5(x)) and the adjusted old affine
functions (f;-‘(x) forj < k). This update is carried out in
step 11 of Algorithm 1. The next candidate solution is
obtained using this updated function approximation. The
cut formation is performed in the function form_cut(-),
and the updates are carried out in update_cuts(-).

We postpone the discussion on implementational de-
tails until Section 4, and the details regarding sub-
routines form_cut (), update_cuts(-),update_prox(-),
and argmax(-) are in Appendix B. In this paper, we
do not discuss the details regarding incumbent up-
date and stopping rules (incumbent_update(-) and
check_optimality(-), respectively). These details
can be found in earlier works, in particular Higle and
Sen (1999) and Sen and Liu (2016). We end this section
by drawing attention to two salient features of the
SD algorithm.

¢ Dynamic sample size selection: When using the
SAA function, a key question is to determine a sample
size so that the solution to the sampled instance is an
acceptable approximation to the true problem. The
works of Shapiro and Homem-de Mello (1998) and
Kleywegt et al. (2002) offer some guidelines using
measure concentration approaches. Although the the-
ory of SAA recommends a sample size for a given level
of accuracy, such sample sizes are known to be con-
servative, thus prompting a manual trial-and-error
strategy of using an increasing sequence of sample
sizes. It turns out that the computational demands for
such a strategy can easily outstrip computational re-
sources. Perhaps, the best-known computational study
applying the SAA function to some standard test in-
stances was reported in Linderoth et al. (2006) in which
experiments had to be carried out on a computational
grid with hundreds of nodes. The SD algorithm al-
lows for simulation of a new outcome concurrently
with the optimization step. This avoids the need to
determine the sample size ahead of the optimization

RGN

step. Further, the SD stopping criteria include both in-
sample and out-of-sample procedures to estimate
solution quality. These procedures together allow SD
to dynamically determine the statistically adequate
sample size that can be sufficiently stringent to avoid
premature termination.

* Variance reduction: In any iteration, the SD al-
gorithm builds affine lower bounding functlons &
and ¥, created at the candidate solution x* and the
incumbent solution ¥, respectively. Both these func-
tions are created using the same stream of outcomes.
This notion of using common random numbers is
commonly exploited in simulation studies and is
known to provide variance reduction in function
estimation. In addition to that, Sen and Liu (2016)
introduced the concept of “compromise decision”
within the SD framework, which uses multiple rep-
lications to prescribe a concordant solution across all
replications. This replication process reduces both
variance and bias in estimation, and therefore, the
compromise decision provides more reliable estimates of
the optimal value than solutions obtained in individual
replications (see theorem 2 of Sen and Liu 2016).

3. SD for Recourse with Random

Cost Coefficients

In this section we remove Assumption 4 and allow the
cost coefficients of Subproblem (2) to be uncertain.
We, however, retain Assumptions 1-3. More specif-
ically, we can think of the random variable @ as in-
ducing a vector (&§,C/,d/)" associated with each out-
come /. As aresult, the dual of Subproblem (1b) with
(x,) as input is given as

max {T[T [Sj - ij] |DTTc < dj}. (8)
Notice that the dual polyhedron depends on the out-
come d/ associated with observation /. This jeopar-
dizes the dual vertex reutilization scheme adopted by
SD to generate the best lower bounding function in (3)
as all elements of the set ¥ may not be feasible for
observation @/. The main effort in this section is de-
voted to designing a decomposition of dual vectors
such that the calculations for obtaining lower bounding
approximations and for establishing feasibility of dual
vectors can be simplified. To do so, we first leverage
Assumption 2 to identify a finite collection of basis
submatrices of D. Because D is deterministic, the basis
submatrices are also deterministic. Second, without
loss of generality, we represent a random vector as the
sum of its deterministic mean and a stochastic shift
vector. Consequently, the optimal solution of (8) can
be decomposed into a deterministic component and
a stochastic shift vector. Although our presentation
is focused on general constraint matrix D, certain
special structured matrices (e.g., total unimodular,

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

5

diagonal scaling, etc.) provide ample opportunity for
specialized implementation. In the following, we present
the general procedure in greater detail.

3.1. Sparsity Preserving Decomposition of
Second-Stage Dual Vectors

An important notation used frequently here is the
index set of basic variables B/ and a collection of such
index sets %*. When Subproblem (1b) is solved to
optimality in iteration k, a corresponding optimal
basis is discovered. We record the indices of the basic
variables B into the collection of previously discov-
ered index sets as B = B! U B*. We use Dy to denote
the submatrix of D indexed by B.

In the kth iteration, the optimal dual solution n,’j
and basis Dy of the subproblem (1b) with (xf, @) as
input satisfies

DLt = dY,)

Letting d = E[d(&)], we can express the kth outcome of
cost coefficient in terms of the expected value d and
deviation from the expectation 6(w") (or simply 6¥) as
d=d+ 6. (10)
Using the decomposed representation of cost co-
efficients (10) for only the basic variables in (9) yields
the optimal dual vector as solution, which has the
following form:
m; = (D) dgs + (DF)™ 83 (11)
This allows us to decompose the dual vector into
two components Tt’,ﬁ = v* + 6f, where
V= (D5, 0F=(DR) 8. (2)
Although the deterministic component v* is com-
puted only once for each newly discovered basis Dg,
the stochastic component 6f (shift vector) depends on
the basis Dy as well as observation w®. Our motivation
to decompose the dual vector” into these two com-
ponents rests on the sparsity of deviation vector &,
associated with previous (j=1,...,k —1) and future
observations «/,j > i. Only basic variables with ran-
dom cost coefficients can potentially have a nonzero
element in vector 6]3,». When the second stage has a
network structure, these calculations are far more
streamlined because one can take advantage of the
tree structure associated with a basis. Such speciali-
zations can significantly reduce both computational
effort as well as storage.

3.2. Description of the Dual Vertex Set

Let us now apply the decomposition idea to describe
the set of dual vectors associated with an observation
' and all the index sets encountered until iteration k.

We denote this set by °i7;‘ Because, for every basis Dy;,
the deterministic component v* is computed only
when it is discovered, our main effort in describing
the set of dual vertices is in the computation of the
stochastic component 9} (§ee (12)).

For an index set B’, let B’ C B! index the basic var-
iables whose cost coefficients are random and e,
denote the unit vector with only the nth element equal
to one and the remaining elements equal to zero.
Using these, we define a submatrix of basis inverse
matrix (D, 1 as follows:

= {4, = (D)) e, (13)

ne Bi}.

In essence, the matrix @ is built using columns of the
basis inverse matrix corresponding to basic variables with
random cost coefficients. We refer to these columns as
shifting direction vectors. Using these shifting directions,
the stochastic component can be computed as

0] = D', = >)9,

neB!

(14)

With every discovery of a new basis, we compute not
only the deterministic component v/, but also the
shifting vectors @'. These two elements are sufficient
to completely represent dp(w/) and, consequently,
the dual vector 7 associated with any observation w’.
Using these, the dual vector set associated with an
observation @' can be built as follows:

Pt = {n]’i ’ ml=v + D, Vie %k}. (15)
With every new observation of @ encountered, one
can use the precomputed elements v' and @' to gen-
erate the set of dual vectors. This limits the calculation
to computationally manageable sparse matrix mul-
tiplication in (14). We present ideas for efficiently
utilizing the decomposition of dual vectors to directly
compute coefficients of affine function ¢(x) later in
Section 4; before that, however, we discuss tech-
niques used to address one additional factor, namely
determining feasibility of dual vectors in °Vk

3.3. Feasibility of Dual Vectors
We are interested in building the set °Vk C °V;‘ of fea-
sible dual vectors associated with observat1on .
When Assumption 4 is in place, the cost coefficients
are deterministic, and the stochastic shift-vector &/ =
for all observations in 0. Therefore, every dual vec-
tor can be represented using only the deterministic
component, that is, T[;: = v/ for all j. In other words, for
every elementin the set ¥k, there is a unique basis that
yields a dual vector v' = (Dj, 139 (Dg,-)_ldB, that is
feasible for all observatlons in OF.

In the absence of Assumption 4, a basis Dg en-
countered using an observation @/ may fail to yield a
feasible dual vector for another observation @' for

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

6

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

which & # &' . Therefore, we need to recognize whether
an index set B’ admits dual feasibility for a given
observation w/. We formalize the dual feasibility test
and necessary computations through the following
theorem. In the following, we use the subscript w for
the dual feasible set and the set of dual vertices (I,
and V', respectively) instead of index j when the
corresponding statements are true for any outcome w €
Q and not just for observations w/ € OF.

Theorem 1. Let Tly={m|D"m<d} be a nonempty
polyhedral set and Vo be the set of vertices of I1y. For a
vector-valued perturbation 6(w), let T1, = {m|D"m < d+
0(w)} represent the perturbed polyhedral set and V', the set
of vertices of I'l,,. Given a feasible index set B associated with
a vertex of Iy, the following statements are equivalent:

1. Awvertexof Iy, sayv € V', can be mapped to a vertex
of the perturbed polyhedron, I1,, as v + 0, € V,,, where
0., = (D})'6p(w) is a parametric vector of w.

2. Gd + G6(w) = 0, where G = [-D{(D}) 7%, I].

Proof. We begin by first showing that 1 = 2.

Because v is a vertex of the deterministic poly-
hedron, Iy, it is the solution of a system of equations
givenby D} 1 = dp. Thatis, v = (D) 'dp. Let N denote
the index set of nonbasic variables, and consequently,
Dy is the submatrix of the recourse matrix D formed
by the columns corresponding to nonbasic variables.
Because the current basis Dp is also a basis for per-
turbated polyhedron I1,, a basic solution can be iden-
tified by solving the following system of equations:

D} = dp + 6p(w) = DEv + 6p(w),
& Di(n—v) =dp(w),

o n=v+ (Dg)_lég(w).

The second equality is due to dg = D} v. Defining 6, =
(D;,f)_1 0(w), we can obtain a basic solution of perturbed
polyhedronasm = v + 0,,. This basic solution is feasible,
that is, m € V', if it also satisfies the following system:

D;\—]T[< l_iN + Oon(w)
(=14 D;\-]V + DZEGM < 0_1]\] + (51\]((0)
& 0< [—DI,(DE)_lt;lB + 511\1]
+ [-Dg(pg) 65(w) + 6N(w)]
_ - T
=|[-pu(p) 1.
+|-DLDF) ™ 1[[88(@)" (@)]
= Gd + Gd(w),
where G = [-DJ(D})™},I] with I as an (n — my) di-

mensional identity matrix. Therefore,m = v+ 0, €7,
implies that Gd + Go(w) > 0.

In order to show that 2 = 1, we can start with the
definition G = [-DJ(D})™!,I] and the relation G(d +
6(w)) > 0 to obtain the following inequality:

|-DL(DF) 1|y + dp(@), dy + bx(@)| 0.
By rearranging the terms, we get
D} [(DF) s + (D) " 6n(w)]
<dy+0n(w) =dy. (16a)
Define 7 = (D) 'dp + (D})"'65(w) and note that
Dy = |D; (DF) ' |ds + | D5 (DF) " |85(w)

= dp + 0p(w) = dz. (16b)

From (16a) and (16b), we can conclude that 7 is a
vertex of IT,. Q.E.D.

The implication of this theorem is that the feasi-
bility of a basis Dy associated with an index set B € %*
with respect to an observation @ € 0 can be estab-
lished by checking if the following inequality is true:

|-DL(DF) L 1|[8} @), @] =g, (17)

where g = [D},(D})~!, ~I]d. Once again, note that the
term on the right-hand side of (17) is a product of a
dense matrix and a vector that only needs to be cal-
culated when the basis is discovered for the first time.
Moreover, the term DJ,(D})™! is the submatrix of the
tableau formed by the nonbasic variables when the
simplex algorithm is employed. The left-hand side
term of (17) is a product of a dense matrix and a sparse
vector that can be carried out efficiently even for a
large number of observations. These calculations are
further streamlined based on the position of the var-
iable with random cost coefficient in the basis. In this
regard, the following remarks are in order.

Remark 1. Suppose that the index set B’ = 0; that is, the
basic variables associated with index set B’ have de-
terministic cost coefficients (equivalently, the variables
with random cost coefficients are all nonbasic), then all
the elements of 6g(w) are zeros and only Ox(w) has
nonzero elements. In such a case, the calculations on
the left-hand side of (17) for feasibility check yield

|-DX(DF) " 185 (@), 65 (@)]"

- [—D;V (DF)7", 1] [07,60(@)] = bn(w). (18)
Consequently, we can verify dual feasibility by checking if
On(w) > g. Because any feasible outcome lies inside an
orthant, this check can be carried out very efficiently.

Remark 2. If B' # 0, that is, at least one basic variable
associated with index set B! has random cost coefficient,
then we need to explicitly check the feasibility of the

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

remapped basic solutions using the inequality (17).
Nevertheless, one can take advantage of sparsity of
these calculations.

Remark 3. The amount of calculations necessary to
compute the dual vector and to establish its feasibility
depends on the number of random elements in cost
coefficient vector d. When d is fixed, every basis Dy is
associated with a unique dual vector with stochas-
tic component €, = 0, which remains feasible for any
outcome «’. In this case, the calculations reduce to
those in the original SD algorithm. When the number of
random elements of d is small, the dimension of sto-
chastic component is also small. Consequently, calcu-
lations in (12) and (17) impose only a marginal over-
head beyond those involved for 2-SLPs with fixed d.
Therefore, many of the computational advantages of
the original SD are retained.

Remark 4. The advantages resulting from low-
dimensional randomness in d can also be obtained in
some special cases. Suppose that we discover a de-
terministic matrix ® (say of dimension p, X g2) such
thatp, < ¢, and d(w) = O g(w), with a random vector
g(w) € R”2. Then, we can rewrite d" (w)y = g(w) " Oy.
Such a structure is characteristic of statistical linear
factor models that are used in many financial and
economic applications (Tsay 2005). By appending a
second-stage constraint z — @y = 0, we can redefine the
second-stage problem with an objective function in the
form g(w) " z. Here, g(w) has only p» < ¢, elements, thus
achieving the desired reduction in dimension of ran-
dom elements in cost coefficients. Because the matrix
(I,—0O) does not change with @, this transformation
does not affect the fixed recourse structure required for
SD. In other words, scalability of our approach may
depend on how the model is constructed, and the
modeler is well advised to minimize the number of
second-stage variables that have random cost co-
efficients associated with them.

Remark 5. A very special case arises when one random
variable may affect cost coefficients of multiple decision
variables simultaneously, that is, p, = 1. For example,
the Federal Reserve’s quarterly adjustment of the in-
terest rate might impact returns from multiple in-
vestments at the same time. Following an earlier re-
mark, if the new decision variable z is nonbasic, then
the high-dimensional orthant reduces to a simple one-
dimensional check to see if the random outcome is
within a bound. Alternatively, when the variable z
is basic, the feasibility check requires us to verify
whether the outcome belongs to a certain interval.
Recall~that ¢ = (Dp) e, j € B, and in this special
case, |B| = 1. Hence,

|-DA(DF) " 1[5 (@), 6% (@)= ~Diydy(w) = g, (19)

7
which implies that &y, < 6;(w) < 6,;, with
S = MaXey, (_#ld;])l where [} = {1| (_D;i¢j)i> 0}
Oup = Miney, (—#141])1 where I, = {il (—DIE¢j)i< O}.

Note that the subscript i in these equations indicates
the ith element (corresponds to a row in basis matrix)
of the column vector.

Algorithm 2 (SD for Problems with Random Cost
Coefficients)
Steps 1-6 in Algorithm 1.
7a: if w* ¢ OF1 (observation generated for the first
time) then initialize the set V%! as follows:

Vit —{vV +6,1G6" >3, 0] = Do

L ie B

7b: end if

7c: Obtain the optimal index set B, and add it to the
collection B « B U {BF}.

7d: if BX ¢ B 1 (basis encountered for the first time)
then compute vk, @, G¥, and gk as

v = (D) dye @ = {¢;f (j € Bk}
Gt = [—D;Vk (ng)‘l,I] g =-G,

where ¢ is defined as in (13).
7e: for w' € 0 do update °V}"l as follows:

e 6| 0 -0 |

7f: end for
7g: end if
8: {f(x) = form_cut(BF, x, k); 2’,;(x) =
form_cut(%k, %, k).

Steps 10-16 in Algorithm 1.

3.4. Revised Algorithm Description

Before closing this section, we summarize the mod-
ifications to the SD algorithm described in Section 2.1
thatarenecessary to address 2-SLPs with random cost
coefficients. Although bookkeeping in SD of Section 2.1
was restricted to dual vertices, the revision proposed
in this section mandates that we store the basis
generating the dual vectors. Specifically, the modi-
fications affect steps 7-9 and are summarized in
Algorithm 1.

At the beginning of the iteration, we have a col-
lection of index sets B! and observations O L.
Whenever a new observation " is encountered, the
set of feasible dual vectors ¥%7! is initialized by
computing the stochastic components 0; using the

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

8

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

parameter @' and establishing the feasibility of
n. = v + 01 corresponding to all index sets in B L.
The feasibility of dual vectors is determined by
checking (17), which uses parameters G' and g'.
Note that the parameters used for these computa-
tions, viz., @', v, G/, and §', are precomputed and
stored for each index set B' € 1.

Once the subproblem is solved, we may encounter a
new index set B¥. This mandates an update of the sets
of feasible dual vectors. In order to carry out these
updates, we begin by computing the deterministic
parameters vk, @, G¥, and g*. These parameters are
stored for use not only in the current iteration, butalso
when new observations are encountered in future
iterations. For all observations @/ € 0%, the set of
feasible dual vectors is updated with information
corresponding to the new basis Dy. This is accom-
plished by computing the stochastic component 0}‘,
which, in turn, is used to compute the dual vector

1'(}C =k + 6}‘, and then we include the dual vector in

the set °V;"1 only if it is feasible. This results in an
updated set °V}‘. .

For all observations @/(j # k), the dual vertex that
provides the best lower bounding affine function is
identified from the corresponding collection of fea-
sible dual vectors V. This procedure is completed in
form_cut(-), which is presented as subroutine 4 in
Appendix B. To give a concrete sense of the calcu-
lations being carried out, we present an illustrative
examplein Appendix A. Therevised SD algorithm uses
the original procedure in Algorithm 1 with steps 7-9
updated as shown in Algorithm 2.

We close this section by noting that the revised
algorithm retains the convergence properties of the
original SD algorithm with some modifications. No-
tice that, because of the fixed recourse Assumption 2,
there are only finitely many basis matrices % for the
subproblem (1b). Consequently, the set of dual ver-
tices 7, and the set of feasible dual vertices V', as-
sociated with any outcome w € Q are also finite. With
these observations, the main convergence result for the
revised SD algorithm is stated in the following theorem.

Theorem 2. Fora 2-SLP model that satisfies Assumptions 1-3
and o* > 0, the revised SD algorithm generates a sequence
{&} that asymptotically converges to an optimal solution
with probability one.

Proof. Under assumption Assumption 3, the dual fea-
sible set I1, is nonempty and bounded with prob-
ability one. Further, the recourse function is the value of
a linear program. These imply that h(x, w) is a con-
tinuous function in x € ¥ and bounded. By construc-
tion, the collection of index sets satisfies B € B! C B.
For a given w, this set of feasible dual vectors V% and
1 built using collections %B* and B**1, respectively,

satisfy VX € V1 C 9,,. Here ¥, is the set of vertices
of I1,,. If we define I*(x, w) = max{n" (&(w) — C(w)x) |
n € Uk}, then we have I (x, w) < H**!(x, w) < h(x, w) for
all k and for all (x, w) € ¥ X Q. Observing that {1} is
a monotonically increasing sequence of continuous
functions bounded from above by the finite function
leads us to the same conclusion as lemma 1 in Higle and
Sen (1991). The rest of the proof follows from theorem 5
in Higle and Sen (1994) and theorem 1 in Sen and Liu
(2016). Q.E.D.

4. Implementational Details
The SD algorithm is designed to effectively record
information that is relevant across different realiza-
tions of the random variable and, hence, is shareable.
This results in significant computational savings for
the SD algorithm. However, one cannot completely
take advantage of its features without appropriate
implementation of this algorithm. Therefore, our
presentation of the algorithm would be incomplete
without a detailed discussion of the implementation.
In this section, we present the data structures em-
ployed in our implementation. Detailed description of
the principal subroutines associated with checking
feasibility of a dual vector, cut generation, cut up-
dates, and updating the proximal term are given in
Appendix B as subroutines 3-6, respectively. The de-
tails presented here expand upon those presented in Sen
et al. (1994b) and chapter 6 of Higle and Sen (1996).
Our implementation relies on decomposing the in-
formation discovered during the course of the algo-
rithm into a deterministic component (*) and a sto-
chastic component A, which captures the deviation
from the deterministic component. We discussed the
value of this decomposition in our calculations of dual
vectors described in Section 3.1. Here, we extend this
idea to other components of the problem. Note that,
for most problems, the number of parameters that
are affected by the random variable are significantly
smaller than the dimension of the subproblem. There-
fore, our decomposition approach reduces the compu-
tations necessary by introducing sparsity. Recall that, the
random variable affects the right-hand side &, technol-
ogy matrix C, and the cost coefficient vector d. These
components can be written as

d(w’) = d_bar + d_obs[j], &(w’) = xi_bar + xi_obs[j],
C(w’) = C_bar + C_obs[j], (20)

where the deterministic components d_bar, xi_bar,
and C_bar are set to d = E[d(®)], & = E[&(®)], and
C = E[C(@)], respectively. Note that, for deterministic
parameters, the stochastic components *_obs[j] =0
for all observations w/. The strategy to decompose the
random elements into deterministic and stochastic

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

components was also applied in Infanger and Morton
(1996) to expedite computation of cut coefficients in a
multistage setting. Our choiceis driven by the SD data
structures for computing coefficients corresponding
to newly discovered outcomes (Sen et al. 1994b) and
determining feasibility of newly discovered dual ver-
tices. Figure 1 illustrates an information matrix that
captures the evolution of information over the course
of SD iterations. An element of this information
matrix corresponds to an observation-index set pair
and contains all terms involving the pair that are
necessary for computation during the course of the
algorithm. Each iteration of SD may add one obser-
vation of @ and up to two new index sets to the
collection %F (one from solving the subproblem with
the candidate solution as input, and the other from
solving with the incumbent solution as input). Cal-
culations associated with each new observation of @
result in an additional column in the information
matrix and discovery of new basis results in a new
row. Every basis is associated with an index set B,
which is stored as basis_idx[i].

4.1. Elements of the Information Matrix
These computations are carried out for the lightly
shaded cells in the last column and row of the in-
formation matrix. There are two sets of elements that
are stored in each cell of the information matrix.
The first set is associated with elements that are
necessary to establish feasibility of a basis for a given
observation w’/. When a new basis is observed, these
elements are necessary to establish feasibility of the
basis not only with respect to observations of @ already
encountered, but also for observations that the algo-
rithm may discover in future iterations. To see the de-
velopment of these elements, notice that the inequality
used to establish feasibility of a basis Dy associated with
an index set B' € B can be rewritten as
G'6-3 = [GLby, 65] -5 2 0.

Here, the calculations only involve columns from the
constraint matrix corresponding to basic variables

with random cost coefficients (indexed by B'), and
constant vector g'. These elements are stored as

g' = sigma gbar[i]; G%i = lambda G[i]. (21)
The first term is a floating point vector in R", and
the second term is a floating point sparse matrix
in R™ x R%.

A critical step in computing the lower bounding
affine functions in SD is the argmax(:) procedure
whose mathematical description appears in (3). By
introducing the decomposition of subproblem dual
vectors into these calculations, we can restate the argu-
ment of (3) corresponding to a feasible basis Dg: and
observation w/ as follows:

() (&~ o
(v + @S,) [(E+A€) - (C+Af'c)x]
= ()&~) x|+)AL - ()" A
(éde)l)é] (CT)| + [(A@)qu&éi

- (A]C) cDWB,,x]. (22)
The elements in the first bracketed term are computed
only once when the basis is discovered:

(vi)TE = sigma_bbar[i][0]; C"v' = sigma_Cbar[i][0].
(23)

The first term is a floating point scalar, and the second
is a sparse vector in R™. To facilitate the calculations
in the second bracketed term, note that, if the struc-
tures &(@) and C(@) are such that there are no ran-
dom elements in row m, then the mth element in the
term computes to zero. Thus, we use Al to denote a
vector obtained by extracting only those compo-
nents of v’ that correspond to rows with random
elements and naturally stored as a sparse vector
lambda_rho[i] [0].

Figure 1. (Color online) Illustration of Calculations to Obtain the Set of Feasible Dual Vectors
New
Basis Deterministic Observations l
Index sets components ‘ ’
w1 w2 Wk—1
B! ‘ v el Gl gt ‘ ‘ =v+6} J/‘ Ty =v' +6} J/ --------------- > ‘ Ty =vi40p ‘ ‘ m=vl+0} q/
B? ‘ v?, @2 G2, g? ‘ ‘ =02+ 02 J/ ‘ 3 =12 +63 J/ --------------- > ‘ T =1A 407 J/ ‘ 2= +07 \A/
g1 ‘ JEoL ko1, -1 g1 ‘ ‘ Tl ket g ghet ‘ ‘ wETl =kl ght J/ --------------- > ‘ L Y * ‘ =4 ‘
Newv*‘-*Bk [wetatg | [m=dea][A=l | s » [b= S d=vra \4/‘
\ I

\/ indicates feasibility.

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

10

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

Recall that @' is formed by the columns of the basis
matrix corresponding to variables with random cost
coefficients (see (13)). We treat these columns in a
manner similar to the deterministic component v/,
and therefore, the terms ETd' and CT®' are concate-
nated to sigma_bbar and sigma_Cbar, respectively:

&7 ¢!, = sigma bbar[i][n];

C'¢! = sigma Cbar[i][n]; Vn e B (24)
This concatenation results in sigma_bbar[i] being a
floating point vector in R%*1 and sigma_Cbar[i] a
floating point sparse matrix in R"™*@+1_For the cal-
culations in the last bracketed term, we use Al to
denote a vector obtained by extracting the compo-
nents of ¢! corresponding to rows with random el-
ements and storeitasa sparse vector lambda_rho[i] [n].
This results in lambda_rho[i] to be a sparse matrix
in R%2X(q2+1)

Given lambda_rho[i], sigma_bbar[i], and sigma_
Cbar[i], the computation in (22) can be performed
as follows:

delta b[i][j] =1lambda_rho[i][0] X xi_obs[j]+
length(basis_idx[i])
(sigma_bbar[i][n]
n=1

+ lambda_rho[i][n] X xi_obs[j])
X d_obs_b[i][j]; (25a)

delta C[i][j] =1lambda rho[i][0] X C_obs[j]+
length(basis_idx[i])
(sigma Cbar[i][n]
n=1

+ lambda rho[i][n] X C_obs[j])
X d_obs_b[i][j]; (25b)

whered_obs_b[i][j] is defined as a vector with only
those elements of d_obs[j] indexed by basis_idx[i],
thatis, SJB‘. All matrix multiplications in the preceding
calculation are undertaken in the sparse manner. In
the preceding notation, delta_b in (25a) define sca-
lars, and delta_Cin (25b) define vectors. Note that, in
a deterministic problem, the deviation terms are all
zero, and the preceding calculations reduce to zeros
as well. The same is case if the observation corre-
sponds to the mean value scenario. Therefore, the terms
delta_b and delta_C are necessary to account for
variability in random observations.

The choice of this data structure and calculation is
motivated by the fact that lambda_rho[i], sig-
ma_bbar[i], and sigma_Cbar[i] require less mem-
ory than storing entire vectors v’ and 6. The reason
for this is that, in 2-SLPs, the size of the second-stage
subproblem is significantly larger than the number of

first-stage decisions affecting the subproblem. This,
along with the earlier note on the sparsity of deviation
of observations from their means, leads to substantial
savings in memory usage and required computations.
Our implementation takes advantage of further savings
achieved by sharing the elements of lambda_rho[i] [n],
sigma_bbar[i] [n], and sigma_Cbar[i] [n] across the
indices in %" (this is possible when more than one
basis matrix have the same column ¢,,).

In summary, the updates to the information matrix
are carried out as follows:

1. Column update: Given a new observation "k,
use (25) to compute the delta_b[i][k] and delta_C
[i][k] for all bases B! € .

2. Row update: If a new basis D is seen, then
compute the feasibility elements sigma_gbar[k] and
lambda_G[k] in (22). Forevery elementinbasis_idx[k],
use (24) to compute sigma_bbar[i][0] and sigma_
Cbar[i][0], and forall @' € OF, computedelta_b[i][]]
and delta_C[i][j] using (25).

Because of the dynamic nature of evolution of the
information matrix and, therefore, the storage re-
quirement of the SD algorithm, we emphasize the
need for careful memory management during imple-
mentation of this algorithm.

To conclude, we summarize how the earlier imple-
mentation of SD compares with the current version. In
2-SLPs with deterministic cost coefficients, every dual
vertex is associated with a unique basis and the index
set B' = 0 (basis_idx is empty). Therefore, in earlier
implementations of the SD algorithm (detailed in Sen
etal. 1994b and chapter 6 of Higle and Sen 1996), a cell
of the information matrix can be viewed to be asso-
ciated with a unique dual vertex (instead of a basis)
and an observation. Therefore, elements of the cell
included sigma_bbar[i][0] and sigma_Cbar[i][0]
in(23)anddelta_b[i][j]anddelta_C[i][j]in(25).
The dual vertex remains feasible with respect to all ob-
servations, and hence, there is no need for the feasibility
check procedure. Finally, the calculations in (25) are re-
stricted to only the first terms (without the summation).
The original implementation and the updated imple-
mentation of the SD algorithm are available under the
GNU license from the authors” Github repository as
v1.0 and v2.0, respectively (USC3DLAB 2019).

5. Computational Experiments

In this section, we present our computational expe-
rience with the SD algorithm when applied to in-
stances with random cost coefficients. Our experi-
ments conducted on instances of three problems
compare solutions obtained using the SD algorithm
with a collection of solutions obtained by optimiz-
ing SAA functions with increasing sample size using
the regularized L-shaped method. These experiments

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

11

reveal that the SD algorithm (a) provides a higher qual-
ity solution for a given computational budget (time) and
(b) takes lower computational time to provide a solution
of desired quality. We provide a brief description of the
problems used in the experiments, the algorithm used
to solve the SAA instances, and the experimental
setup before presenting the results in detail.

Although there are many challenging instances of
2-SLPs in which randomness affects the right-hand
side vector &, there is a lack of real-scale instances with
random cost coefficients. Although the SG-Portfolio
problems (Frauendorfer et al. 1996) have cost coeffi-
cients that are modeled as random variables, the avail-
able instances have a small set of realizations. Such
small sample sizes do not require the use of sampling-
based approaches. Therefore, we modified three larger
problems from the literature to include random cost
coefficients. These problems are ssn_rc—a telecom-
munication network resource allocation problem,
scft—logistics/supply chain planning problem, and
transship—a multilocation transshipment problem.
Further details regarding these problems and their
instances considered for our experiments are given in
Appendix C.

Because 2-SLPs are predominantly solved using
the L-shaped method, we use it as a benchmark to
present our computational results for SD. We begin
this section by briefly describing our implementation
of the regularized L-shaped method (see Ruszczynski
and Shapiro 2003 for details). The L-shaped method is
applicable to problems in which uncertainty is
characterized by a finite number of realizations (a
problem with random variables with discrete distri-
bution or an SAA instance). As before, this set of
realizations is denoted by O. In iteration k, we start
with a candidate first-stage solution x* obtained by
solving a master program. We solve subproblems for
all possible observations @’ € 0 and obtain the opti-
mal dual solution 7f. These are used to generate a
lower bounding affine function:

o +ﬁ;‘x =c'x+ >, pl-(n)7[& - Clx].
w'eO

In contrast to the coefficients computed in SD (see (4)),
which use relative frequency of realizations, these
calculations are based on given probabilities associ-
ated with the realizations. In this regard, the affine
function always provides a “true” lower bound of the
first-stage objective function in (la), or (2) when an
SAA function is employed and does not warrant the
update mechanism in (7). The algorithm is terminated
when the gap between the in-sample upper and lower
bound is within an acceptable tolerance (set to a
nominal value of 0.001 in our implementation).

Our implementation of the L-shaped method also
provides the option of quadratic regularization in the

first stage. When regularization is used, the first-stage
approximate problem includes a proximal term cen-
tered around an incumbent solution, and therefore, the
candidate solutions are obtained by solving a qua-
dratic program. The incumbent update rules and the
stopping criteria are based on Ruszczynski and
Shapiro (2003). This implementation is also avail-
able on the authors” Github repository USC3DLAB
(2019). Both the regularized L-shaped (RLS) and the SD
algorithms are implemented in the C programming
language on a 64-bit Intel core i7-4770 CPU at 3.4GHz
x8 machine with 32 GB memory. All linear and qua-
dratic programs were solved using CPLEX 12.8 callable
subroutines (CPLEX 2018).

5.1. Experimental Setup

We use an experimental setup similar to that in-
troduced by Mak et al. (1999) in which lower and
upper bounds are estimated through multiple repli-
cations. For the SAA procedure, we generate M in-
dependent samples {aﬂ’m}jlil, each of size N. These
samples are generated using the standard Monte
Carlo simulation and are used to set up the SAA
function, which is then solved using the RLS method.
Note that variance reduction techniques, such as
Latin hypercube sampling, can be employed to re-
duce variance of the SAA estimates (see Linderoth
et al. 2006). The optimal objective function values are
denoted as fy" with corresponding solutions as x}/".
We compute the statistical lower bound to the true
optimal value f* and the (1 —a)-confidence interval
associated with this lower bound as

Za/25L
VM |
(26)

Ly = l%f*’m' CIL =Ly — Za/25L Ly +
M= VM

Here, z,1is the (1 — a) quantile level of standard normal
distribution and s; is the sample variance of lower
bounds {fy"}.

An upper bound estimate is computed by evalu-
ating the function at solutions obtained from indi-
vidual replications, that is, x/" for m =1,..., M. The
functions are evaluated using a different set of sam-
ples {@'™};, generated independently from those used
for optimization as well as those used in evaluating
solutions from other replications. The estimate of
the function and the variance associated with it is
given by

N
fevn(x) = %Z [c¢"x + h(x, “’j)]f
=

N
SEy = (N’il—l) ; [¢"x + h(x, &) —fEV,N'(x)]2-

(27)

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

12

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

The estimation is terminated when sgy is within an
acceptable threshold e. The final estimation value is
denoted as fry(x).

The function estimates at solutions obtained by
optimizing the SAA function in different replication
can, in turn, be used to obtain an estimate of the upper
bound as follows:

1M .
Un =57 > fev(x");
m=1
Cly = |Uy - Z2M gy + Z02M) (9

VT VM

We also build a confidence interval around this es-
timation as shown. Finally we define a pessimistic
gap as the difference between the upper limit of Cly
and the lower limit of CI;. Although the pessimistic
gap is a reliable indicator of optimality, in some cases,
it can be too demanding to reduce it beyond a certain
level. Nonetheless, we use this gap as a measure for
solution quality: a lower value indicates higher quality
solution. For our experiments with the SAA function,
we calculated values fy" for m =1,...,M and varying
number of observations N in the SAA function. The
function estimation for computing the upper bound
is terminated when sgy /fev N < € = 0.01.

The SD algorithm does not require a preset number
of observations, but instead dynamically determines
the number of outcomes necessary for obtaining
statistically optimal solutions based on the progress
made. As in the SAA experiments, optimization is
performed over M replications. In each replication,
statistical optimality of a solution is established using
an in-sample and an out-of-sample stopping rule (see
Higle and Sen 1999 and Sen and Liu 2016 for details).
These rules basically establish whether the approxi-
mations have sufficiently stabilized based on a given
tolerance level. In our experiments, we execute all the
instances using three increasingly tighter relative
tolerances, that is, loose (0.01), nominal (0.001), and
tight (0.0001).

In our experiments, we set the number of replica-
tions M = 30 for both the SAA and SD experiments.
We use two sets of M random number seeds; the first

set is used to generate the samples to be used in the op-
timization step, and the second set is used for evaluation.

5.2. Numerical Results

The results from the SAA experiments with varying
sample sizes solved using RLS and the SD experi-
ments with varying tolerance values are reported in
Tables 1-4. The tables present the average lower
bound (26) and upper bound (28) along with half
widths of their corresponding 95% confidence inter-
vals (parenthetical values), pessimistic gap as an ab-
solute value and as a fraction of its respective average
lower bound (computed as pessimistic gap over av-
erage lower bound), and average computational time
with its standard deviation.

The ssn_rcO instance is the derivative of SSN,
which is one of the early 2-SLP models with de-
terministic cost coefficients. SSN has been used in past
to study scalability of sampling-based methods (for
example, Linderoth et al. 2006 and Sen and Liu 2016),
and therefore, we begin our discussion with results
for this model. First, the computational results with
RLS reveal that the pessimistic gap can be un-
acceptably high for small sample SAA functions. In
fact, the pessimistic gap does not fall below 10% until
one uses N =1,000. A comparable solution was ob-
tained using SD with loose tolerance within about
2.3% of the computational time used by RLS.’

Across all the instances, the SAA results indicate
that the quality of function estimates and solutions
improve as the sample size used in creating the SAA
function increases. This is clear by noting an overall
reducing trend of the pessimistic gap with increasing
sample size.* These results computationally verify the
theoretical properties of the SAA function. However,
as the sample size increases, a larger number of sub-
problems are solved in the second stage during the
execution of RLS, thus increasing the computational
requirement. This is reflected in the increasing com-
putational time with sample size N.

Our SAA results are comparable in quality (in term
of bound estimates) to those reported in Linderoth
etal. (2006). The use of a computational grid in the earlier
study resulted in a wall clock time of 30-45 minutes per

Table 1. Optimal Objective Value and Optimality Gap Estimates for ssn_rcO Instances

Sample size Lower bound Upper bound Average time, s
Algorithm (standard deviation) (95% CI) (95% CI) Pessimistic gap (standard deviation)
RLS-nominal 50 4.46 (+0.80) 13.63 (+0.36) 10.32 (231.24%) 12.54 (4.41)
100 6.53 (+0.64) 12.18 (+0.20) 6.49 (99.52%) 31.54 (8.05)
500 9.06 (+0.39) 10.43 (+0.07) 1.84 (20.30%) 470.34 (208.88)
1,000 9.56 (+0.25) 10.15 (+0.04) 0.88 (9.17%) 1,698.00 (806.79)
5,000 9.85 (+0.10) 9.95 (+0.01) 0.22 (2.20%) 30,800.76 (15,187.34)
SD-loose 1,567 (+286) 9.59 (+0.22) 10.21 (+0.05) 0.89 (9.27%) 38.91 (17.60)
SD-nominal 2,315 (£251) 9.72 (+0.13) 10.14 (+0.04) 0.59 (6.03%) 103.86 (30.48)
SD-tight 3,318 (+670) 9.88 (+0.11) 10.12 (+0.04) 0.39 (3.98%) 299.02 (177.00)

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

13

Table 2. Optimal Objective Value and Optimality Gap Estimates for ssn_rcG (G = 1,...,4) Instances

Sample size Lower bound Upper bound Average time, s
Algorithm (standard deviation) (95% CI) (95% CI) Pessimistic gap (standard deviation)
Panel A: ssn_rcl
RLS-nominal 50 38.85 (+8.58) 149.60 (+5.78) 125.11 (321.99%) 21.82 (5.19)
100 63.62 (+6.48) 129.13 (+3.21) 75.19 (118.20%) 43.69 (5.57)
500 90.51 (+4.70) 107.31 (+0.91) 22.41 (24.76%) 212.49 (14.96)
1,000 93.51 (+£3.06) 104.56 (+0.40) 14.51 (15.52%) 441.57 (25.41)
5,000 98.35 (+1.38) 101.70 (+0.14) 4.86 (4.94%) 2421.76 (123.20)
SD-loose 1,600 (+266) 95.64 (£1.95) 104.73 (+0.56) 11.44 (11.96%) 84.31 (31.39)
SD-nominal 2,352 (+410) 97.75 (£1.62) 104.45 (+0.56) 8.72 (8.92%) 221.41 (95.62)
SD-tight 3,305 (x614) 99.30 (£1.55) 103.93 (+0.65) 6.68 (6.73%) 536.48 (242.50)
Panel B: ssn_rc2
RLS-nominal 50 19.75 (£4.07) 73.40 (£2.59) 60.30 (305.27%) 17.87 (4.40)
100 30.38 (£3.21) 62.36 (+1.47) 36.67 (120.69%) 36.77 (5.79)
500 4492 (+1.88) 51.83 (+0.31) 9.10 (20.26%) 171.06 (9.36)
1,000 46.77 (£1.02) 50.91 (+£0.22) 5.38 (11.50%) 359.77 (22.02)
5,000 48.29 (+0.56) 49.65 (+0.06) 1.98 (4.09%) 1,904.31 (114.96)
SD-loose 1,759 (+340) 47.54 (+£0.81) 51.24 (+£0.42) 4.83 (10.39%) 131.80 (74.75)
SD-nominal 2,628 (+423) 48.44 (+0.86) 50.92 (+0.32) 3.58 (7.54%) 366.50 (147.59)
SD-tight 3,939 (£704) 49.02 (+£0.59) 50.76 (+£0.34) 2.58 (5.44%) 1,018.46 (476.64)
Panel C: ssn_rc3
RLS-nominal 50 12.55 (£2.37) 48.11 (£2.07) 40.01 (318.85%) 16.47 (2.63)
100 20.02 (+£2.00) 40.65 (£1.17) 23.80 (118.85%) 32.95 (4.18)
500 29.27 (£1.33) 32.99 (+0.31) 5.36 (18.33%) 152.07 (9.83)
1,000 29.66 (+0.93) 31.76 (x0.11) 3.15 (10.63%) 298.02 (18.52)
5,000 30.55 (+0.33) 30.95 (+0.05) 0.77 (2.51%) 1,556.83 (87.75)
SD-loose 1,833 (£334) 31.82 (+0.68) 32.86 (+0.36) 2.08 (6.54%) 140.88 (56.61)
SD-nominal 2,648 (+460) 31.99 (£0.60) 32.59 (+0.26) 1.46 (4.58%) 357.93 (152.25)
SD-tight 3,975 (+662) 32.07 (+0.52) 32.60 (+0.28) 1.32 (4.11%) 1,033.81 (441.54)
Panel D: ssn_rc4
RLS-nominal 50 8.67 (x1.70) 35.36 (£1.47) 29.87 (344.54%) 14.84 (2.97)
100 14.86 (+1.44) 30.25 (+£1.28) 18.11 (121.85%) 29.06 (4.20)
500 20.64 (+0.98) 23.89 (£0.14) 4.37 (21.17%) 133.93 (12.03)
1,000 21.52 (+0.57) 23.24 (+0.11) 2.41 (11.18%) 267.68 (16.34)
5,000 22.17 (x0.21) 22.56 (+£0.04) 0.65 (2.94%) 1,337.37 (94.24)
SD-loose 1,797 (£331) 23.71 (+0.63) 24.64 (+0.35) 1.91 (8.07%) 143.08 (69.65)
SD-nominal 2,798 (+418) 23.99 (£0.43) 24.56 (+0.37) 1.37 (5.70%) 417.94 (156.96)
SD-tight 3,928 (+634) 24.08 (+0.42) 24.50 (+0.37) 1.21 (5.01%) 1,017.31 (428.80)

replication for SAA instances with N =5,000. In
comparison, our implementation on a single desktop
computer takes in excess of 8.5 hours on average to
complete the replications. These observations underscore
the fact that the SAA approach for challenging 2-SLP
models requires significant computational time and/or
a high-performance computing environment.

Given that the 2-SLPs are computationally very
demanding, the reuse of previously discovered struc-
tures of an instance in future iterations provides consid-
erable relief. This is the case in the “sampling-on-the-fly”
approach of SD as the results indicate. The SD results
for ssn_rc@ are comparable to those reported in Sen
and Liu (2016), which used the previous version of
SD implementation. The minor increase in the compu-
tational time can be attributed to additional overhead

introduced by the data structures necessary to handle the
updated information matrix described in Section 4.1.
The increasing tightness in tolerance levels used in
experiments with the SD algorithm reflect a more de-
manding requirement in terms of stability of approxi-
mation. This results in a higher computational time as
indicated in the tables. An increased tolerance level also
results in a more accurate estimation of the objective
function, and therefore, the solution obtained from such
a setting results in a lower pessimistic gap. In any case,
our results show that SD provides high-quality solu-
tions in a reasonable amount of time using only ordi-
nary computational resources.

Unlike deterministic optimization, we are more
than satisfied to get a solution whose pessimistic gap
is within an acceptable limit. This limit is dependent

14

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

Table 3. Optimal Objective Value and Optimality Gap Estimates for scft Instances

Sample size

Lower bound

Upper bound
(95% CI)

Pessimistic gap

Average time, s
(standard deviation)

Panel A: scft-6

553,536 (+250)
553,408 (£226)
553,393 (+220)
553,393 (+220)
553,393 (+220)
553,598 (+244)
553,499 (+262)
553,658 (+269)

1,879 (0.34%)
1,164 (0.21%)
100 (0.02%)
480 (0.09%)
469 (0.08%)
438 (0.08%)
182 (0.03%)
230 (0.04%)

0.14 (0.03)
0.25 (0.04)
0.94 (0.09)
1.83 (0.22)
8.51 (0.78)
0.20 (0.02)
0.40 (0.03)
0.85 (0.06)

Panel B: scft-46

Algorithm (standard deviation) (95% CI)
RLS-nominal 50 553,806 (+1,900)
100 554,129 (+1,659)
500 554,032 (+518)
1,000 553,458 (+325)
5,000 553,278 (+134)
SD-loose 149 (+13) 554,812 (+1,409)
SD-nominal 274 (+10) 554,391 (+813)
SD-tight 526 (+5) 554,239 (+541)
RLS-nominal 5 7,391,427 (£120,741)
10 7,486,263 (+72,180)
25 7,549,045 (+50,789)
50 7,582,958 (+35,836)
SD-loose 288 (+28) 7,339,518 (+17,206)
SD-nominal 430 (+44) 7,408,929 (+13,428)
SD-tight 1,282 (+295) 7,517,501 (£8,061)

7,763,122 (+15,146)
7,706,001 (+8,586)
7,659,751 (+£6,165)
7,642,093 (+3,769)
7,648,999 (+3,509)
7,647,755 (+3,828)
7,642,883 (+4,288)

507,582 (6.87%)
300,503 (4.01%)
167,661 (2.22%)

98,740 (1.30%)
330,195 (4.50%)
256,081 (3.46%)
137,731 (1.83%)

3,954.39 (905.08)
6,506.03 (1,003.11)
10,913.06 (1,217.61)
14,268.55 (1,298.53)
25.24 (4.39)
53.12 (10.41)
373.78 (158.45)

on the instance, for example, a 5% pessimistic gap may
be considered acceptable for ill-conditioned problem
instances, such as ssn_rcG. As the results indicate,
this is already a very high bar to set for SP algorithms.
Thus, whenever we achieve 1% or less in pessimistic
gap, we consider the instance as being solved. In light
of this, it is only appropriate to compare SP algo-
rithms and sample sizes in terms of the pessimistic
gap of the solutions reported.

The computational advantage of SD is evident in
the results of ssn_rcG, scft, and transship in-
stances. In these instances, the results in the last
column of the tables show that the time required for
SD to generate a solution of comparable quality is
significantly lower than the RLS method. For exam-
ple, the solution obtained using SD with loose tol-
erance for ssn_rc0 results in a pessimistic gap of 0.89,
which is comparable to the solution obtained using
the RLS method applied to a SAA function with
sample size of N =1,000 (pessimistic gap is 0.88).

However, the computational time of SD is lower (by a
factor of 43) when compared with the computational
time for RLS.

An SAA experiment involves executing multiple
optimization steps using RLS, each time increasing
the sample size used to build the SAA function if the
solution is not acceptable and starting the optimi-
zation step from scratch. Therefore, the cumulative
experiment time before a solution of desired quality
is identified is always significantly higher than the
computational time for SD to identify a solution of
comparable quality. Moreover, the cumulative time
depends on the sequence of sample sizes chosen
for experiments (for example, N = 50, 100, 500, 1,000,
5,000 in our experiments for most instances), and
there are no clear guidelines for this selection. On the
other hand, when SD is executed with a certain tol-
erance level and if the desired solution quality is not
attained, then the tolerance level can be increased and
optimization can resume from where it was paused.

Table 4. Optimal Objective Value and Optimality Gap Estimates for transship Instances

Sample size Lower bound Upper bound Average time, s

Algorithm (standard deviation) (95% CI) (95% CI) Pessimistic gap (standard deviation)
RLS-nominal 10 2,333.13 (+£3.95) 2,341.36 (+1.60) 13.78 (0.59%) 0.20 (0.02)

20 2,333.75 (+2.99) 2,338.99 (+1.17) 9.40 (0.40%) 0.31 (0.04)

30 2,335.65 (+2.10) 2,337.93 (+1.01) 5.38 (0.23%) 0.41 (0.04)

40 2,335.82 (£1.79) 2,337.69 (+1.00) 4.66 (0.20%) 0.52 (0.04)

50 2,336.64 (+1.64) 2,337.38 (+0.92) 3.30 (0.14%) 3.84 (2.20)

75 2,337.38 (+1.35) 2,337.17 (+0.89) 2.02 (0.09%) 0.92 (0.07)

100 2,337.59 (+0.91) 2,337.01 (+0.85) 1.18 (0.05%) 60.55 (164.51)

SD-loose 168 (+17) 2,336.80 (+0.85) 2,336.88 (+0.92) 1.86 (0.08%) 0.34 (0.06)
SD-nominal 292 (+18) 2,336.44 (+0.83) 2,337.02 (+0.77) 2.18 (0.09%) 0.86 (0.11)
SD-tight 544 (+£18) 2,337.00 (+0.59) 2,337.69 (+0.88) 2.16 (0.09%) 2.70 (0.23)

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

15

This means that the additional computational time to
achieve a higher quality solution (on average) is simply
the difference between the computational times reported
for different tolerance levels in our tables. Such “on-
demand quality” solution is desired in many prac-
tical applications.

6. Conclusions

In this paper, we presented the algorithmic enhance-
ments to SD to address fixed recourse 2-SLPs with
random right-hand side components as well as random
cost coefficients in the second stage. For problems with
deterministic cost coefficients, SD reutilizes previously
discovered second-stage dual vertices to compute value
function approximations in future iterations. However,
for problems with random cost coefficients, the feasi-
bility of past dual vertices is not guaranteed. In order
to address this issue, we treated the bases that gen-
erate the dual vertices as fundamental elements that
can be reused in the future. We proposed a sparsity
preserving decomposition of dual vectors into deter-
ministic and stochastic components computed using
these bases. We presented computationally efficient
steps for establishing the feasibility of dual vectors and
computing the value function approximations. We also
described the data structures employed in our imple-
mentation of the algorithm which are designed to be
applicable to real-scale problem instances. Our nu-
merical experiments illustrated the computational
edge of SD on a variety of test instances when com-
pared with the SAA-based approach.

The multistage stochastic decomposition algorithm
was presented in Sen and Zhou (2014), which was the
first attempt to extend SD to a multistage setting.
Although the authors provide algorithmic details
supported by strong analytical results, the compu-
tational implementation of this extension faces a criti-
cal challenge. When sequential sampling is employed
in a multistage setting, the approximations of cost-to-go
functions are stochastic in nature. Consequently, the
optimization problem at a nonterminal stage has an
objective function with random cost coefficients. The
enhancements presented in this paper for the two-
stage problems provide the foundation necessary to
build a successful implementation of the multistage
stochastic decomposition algorithm. This will be un-
dertaken in our future research endeavors.

The notion of compromise decision was introduced
in Sen and Liu (2016) for sampling-based convex
optimization algorithms. The principal idea was to
use function approximations and solutions generated
during different replication of the algorithm to create
a “grand mean” or a compromise problem. The so-
lution obtained by solving this problem, which is

termed as the compromise decision, is shown to re-
duce bias and variance in function estimation and
provide a more reliable performance. They also show
that the difference between an average solution (com-
puted across all replications) and a compromise decision
provides a natural stopping rule. The idea of compro-
mise decisions are best implemented in a parallel envi-
ronment. This is because all replications (conducted with
different seeds for random number generation) should
be continued until the stopping criterion, based on the
difference between average and compromise decision
being small enough, is satisfied. Further bounds on
objective function estimates can also be obtained as
suggested in Deng and Sen (2018). In any event, be-
cause our tests were performed on a serial imple-
mentation, we did not adopt the compromise solution.
Given the relevance of compromise decisions from the
practitioners” point of view, honing the concept of
compromise decision for 2-SLPs with random cost
coefficients and adapting our implementation for a
parallel/high-performance environment will also be
an integral part of our future research.

Acknowledgment
The authors thank the referees for their careful review of
this paper.

Appendix A. An lllustrative Example

Weillustrate the random cost developments via an example
that we refer to as the “diamond-shaped” problem. Con-
sider the following problem:

min f(x) = —0.75x + E[h(x, @)], (A1)
0<x<5
where h(x, w) is the value of the following LP:
h(x,w) =min —y; +3y2 + Y3 + Ya + wsYs
1
s.t. —Y1tY2—Y3+VYs+Ys=we+ Ex,
1
—Yitt+ Y3 —Ys=wy +1x,
yi>0,i=1,...,5. (A2)

The random variables @s, @s and @; are assumed to be
independent and follow uniform distribution over the in-
tervals [0, 3], [-1,0], and [0, 1], respectively. The dual LP of
the subproblem (A.2) is given by

1 1
h(x, w) = max|wg +Ex T + a)7+1x)

st.—mp -1 < -1, M1+ <3, -1+ <1,
T =7 <1, 71 < ws. (A3)

Notice that the dual feasible region depends on the observation
of the random variable @ through the constraint m; < ws.

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

16

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

Figure A.1. (Color online) Basic Solutions and Feasible Regions of Subproblem Dual LP in (A.3)

()

3|

(@)
. .
2
3 3|
A i 2 [
‘IP
1 B i 1 B
xlf‘
0 0|
v L
=1 -1
L
!
-0.5 0.0 05 10 15 20 25 3.0 os 0.0 05 1.0
1 __
Wi =2.95 W

We present all the calculations with respect to three ob-
servations of the random variable, viz., wi = 2.5, w? = 1.5,
and @i = 0.5. The dual feasible region and the basic solu-
tions of the subproblem dual LP (A.3) with respect to the
three observations are shown in Figure A.1. For each basis,
we compute v, @, G', and g’ as given in line 3 of Algorithm 2.
Recall that these values are computed on the fly as
and when the basis are discovered for the first time. We
present these values in Table A.1. In the matrix G/, the
columns associated with the variables with random cost

15 2.0 25 3.0 o 0.0 0.5 10 15 2.0 25 3.0

w3 =0.5

coefficients (boldfaced in the table) are sufficient for
the feasibility check (see (17)), and it suffices to store only
these columns.

When new observations are encountered, the stochastic
components required to compute the dual vector are com-
puted, and the feasibility of the resultant dual vector is
established based on the inequality (17). These calculations
are shows in Table A.2. Note that these computations
are based on deviation from the mean of random variable
0l = wl — @s, that is, 6 = 1.0, 62 = 0.0, and &% = -1.0.

Table A.1. Bases and Deterministic Components Used to Compute Dual Vectors of

Subproblem (A.3)

i: BN v P!

[

:{1,3}/{2,4,5}

2:{2,3}/{1,4,5}

N o=
oo

Iy
o

3:4{1,4}/{2,3,5}

4:{2,4}/{1,3,5}

[l g
oo

5:43,5}/{1,2,4}

N =
w1

6:{4,5}/{1,2,3}

o=
o1

7:4{2,5}/{1,3,4}

e
o1

e e e e

8:{1,5}/{2,3,4}

(55) fe= (09

Gi gz
10 0 1.0 0 O -2.0
[0 10 0 10 o] -2.0
05 05 0 0 1.0 -1.5
10 0 10 0 O -2.0
[0O 10 0 10 O] -2.0
-05 05 0 0 1.0 -0.5
10 0 10 0 O -2.0
[0 10 0 10 o] -2.0
05 -05 0 0 1.0 -0.5
1.0 0 10 0 o0 -2.0
0 10 0 10 o -2.0
-05 -05 0 0 10 0.5
1.0 20 10 0 O -3.0
-1.0 =20 0 10 O 1.0
1.0 0 0 0 10 -2.0
-1.0 20 1.0 0 O -1.0
10 -20 0 10 O -1.0
1.0 0 0 0 1.0 -2.0
1.0 0o 10 0 O -2.0
-1.0 20 0 10 O -1.0
10 -20 0 0 1.0 -1.0
1.0 0o 10 0 O -2.0
10 20 0 10 O -3.0
-1.0 =20 0 0 1.0 1.0

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS 17
Table A.2. Dual Vectors for All Bases and Their Feasibility Check for w! = 2.5, @? = 1.5, and «® = 0.5
Observation o' (6t =1.0) Observation w? (6§ =0) Observation w® (62 =-1.0)
B'/N; i G' x 6! g Feasibility 7 G x 6 g Feasibility A G'x6° 3 Feasibility
0 0 -2 0 0 -2 0 0 -2
B'/N! (1) 0 -2 True (1) 0 -2 True (1) 0 -2 True
1 -1.5 0 -1.5 -1 -1.5
1 0 -2 1 0 -2 1 0 -2
B?/N? (2) 0 -2 True (2) 0 -2 True (2) 0 -2 False
1 -0.5 0 -0.5 -1 -0.5
1 0 -2 1 0 -2 1 0 -2
B3/N?3 (0) 0 -2 True (0) 0 -2 True (0) 0 -2 False
1 -0.5 0 -0.5 -1 -0.5
5 0 -2 > 0 -2 5 0 -2
B*/N* (1) 0 -2 True (1) 0 -2 False (1) 0 -2 False
1 0.5 0 0.5 -1 0.5
2 -3 0 -3 -2 -3
B®/N°® (;g) -2 1 False (;g) 0 1 False ((1);) 2 1 True
’ 0 -2 ’ 0 -2 : 0 -2
2 -1 0 -1 -2 -1
B®/N°® (%g) -2 -1 False ((1);) 0 -1 True (_()(')55) 2 -1 False
’ 0 -2 ’ 0 -2 ’ 0 -2
0 -2 0 -2 0 -2
B7 /N7 (ég) 2 -1 False (}g) 0 -1 True (gg) -2 -1 False
’ -2 -1 ’ 0 -1 ’ 2 -1
0 -2 0 -2 0 -2
B8/N8 (_21'55) 2 -3 False (_1(')55) 0 -3 False (8153) -2 -3 True
’ -2 1 : 0 1 ’ 2 1
Appendix B. Principal SD Subroutines 7 feasFlag = lambda_G[i] [n] X d_obs[j]1[n] - sigma_
This section presents SD subroutines for checking feasi- gbar[i][n] >=0;
bility, computing cut coefficients, and updating the cuts 8: end if
and the proximal parameter. 9: n=n+1

B.1. Checking Feasibility

Feasibility of a given basis Dy for an observation @’/ is
verified using the inequality in (17). The steps are presented
as function check_feasibility(:) in subroutine 3. The
process of checking feasibility is completed in two steps.
The first one is a trivial check for nonbasic variables:
6;@. - g;-,,. > 0. The second step is for basic variables, which
involves checking the inequality G}, 0 — &, > 0. Once the
feasibility check is completed, the results (the return values of
check_feasibility(:)) are stored in a Boolean vector
obsFeasibility[i], one for each index set B e Bk, The
next set of calculations is carried out only if the basis is
found to be feasible. The use of this Boolean vector avoids
the need to store separate sets of feasible dual vectors °V;‘ for
each observation w’.

B.1.1. Subroutine 3: Subroutine to Check Feasibility of a
Dual Vector.
1: function check_feasibility(lambda_G, sigma_gbar,

d_obs, basis_idx, i, j)

2: feasFlag = TRUE; n=1

3: whilen < = length(basis_idx) &é& feasFlag = = TRUE do

4. if n ¢ basis_idx then

5: feasFlag=d_obs[j][n] - sigma_gbar[i] [n] >=0);

6 else

10: end while
11: return feasFlag
12: end function

B.2. Computing and Updating Cut Coefficients

With the elements of the information matrix defined, we are
now in a position to present the calculations involved in
computing the coefficients of the lower bounding affine
functions. The principal step is the argmax(:) procedure
presented in subroutine 4, which is invoked once for each
observation @' € 0%. The argument for this operation in (3)
is computed using elements of the information matrix as

()" (& — Cx) = sigma bbar[i][0] +delta b[i][}]
— (sigma Cbar[i][0] + delta C[i][]]) X x.

Note that this calculation is performed only for index set
B’ € B, which yields a feasible basis with respect to the
observation /. The output of the argmax procedure is the
coefficients alpha_star and beta_star. These coefficients
correspond to the intercept and subgradient of the affine
function, which provides the best lower bound to h(x, /).
The argmax(-) also returns a pointer to an index set in RBK,
which is used to compute these coefficients. These pointers
are stored in an integer vector called i_star for their use
in resampling the cut for our statistical optimality tests.

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

18

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

We define a cut data structure with fields alpha, beta,
sample_size,and i_star, where sample_size denotes the
number of observations that are used to create the cut (this
is the same as iteration count k as one sample is added
every iteration). The computation of the SD affine functions
is shown in function form_cut(-) in subroutine 4.

B.2.1. Subroutine 4: Subroutines to Form Cuts.
1: function argmax(bases,x, j)
2: maxval = -oo;
3: fori=1...1ength(bases) do
4 if obsFeasibility[i][j] = = TRUE then
5 val = sigma_bbar[i][0] + delta_b[i][j]
- (sigma_Cbar[i][0] + delta_C[i][j]) X x;

6 if maxval < val then
7: alpha_star = sigma_bbar[i][0] + delta_b[i][j]
8: beta_star =-(sigma_Cbar[i][0] +delta_C[i][j1);
9: maxval = val;

10: i_star =i,

11: end if

12: end if

13: end for

14: return (alpha_star, beta_star, i_star);
15: end function

16: function form_cut (bases,x,k)

17: /* alpha, beta, sample_size, i_star and eta_coeff
are fields of cut. */

18: alpha=0,beta=]0,...,0], sample_size =k, eta_coeff=1.0;

19: forj=1,...kdo

20: (alpha_star, beta_star, i_star[j]) =k
argmax (bases,x,j);

21: alpha = (j-1)/j X alpha + alpha_star/j;

22: beta = (j-1)/j X beta + beta_star/j;

23: end for

24: return cut;
25: end function

B.2.2. Subroutine 5: Subroutine to Update Cuts.
1: function update_cut(cuts, k)

return cuts;
end function

2: forc=1...1length(cuts) do

3: eta_coeff[c] = k/(k-1) X eta_coeff[c];

4. if L # 0 then

5: rhs[c] = rhs[c] + (k-cut_iter[c])/cut_iter[c]) L;
6: end if

7: end for

8:

9:

B.3. Updating the Proximal Parameter

The SD algorithm uses a proximal term built around the
incumbent solution & to form the regularized master
program. Our implementation includes certain enhance-
ments that involve the proximal parameter ¢* and are de-
signed to improve the computational performance of the SD
algorithm. Instead of keeping the proximal parameter con-
stant, we allow it to be updated throughout the course of
the algorithm (hence, we use iteration index in our notation).
In general, the o* is decreased when the incumbent changes
and |¥**! — #|| increases from one iteration to the next
and increased when the incumbent does not change. This

procedure is presented as function update_prox(:) in
subroutine 4 in which ¢* is referred to as prox_param. We
note that this procedure does not alter the theoretical proper-
ties of the regularized SD algorithm because o* > 0 for all k.

B.3.1. Subroutine 6: Subroutine to Update Proximal

Parameter.

1: /*rl, r2 < 1.0 are given constants, norm(-) computes
two-norm. */

2: function update_prox (prox_param, old_norm, x, hat_x,
new_incumb)

3: if new_incumb = = TRUE then

4 new_norm = norm(x, hat_x);

5: if new_norm > r1 X old_norm then

6 prox_param = min(max(r2 X prox_param,

pow(10,-6)), 1.0);

7 end if

8: else

9: prox_param = prox_param/r2;
10: end if

11: return prox_param;
12: end function

Recall that, as the algorithm progresses, the coefficients
of the lower bounding affine function are updated as shown
in (7). The affine functions are added as constraints in the
master problem. The direct implementation of this pro-
cedure requires updating all the coefficients (a;?’l,ﬁ;?’l) of
the affine functions. Computationally, this may prove to be
cumbersome. However, one can view these updates in the
mathematically equivalent form forj=1,...,k—-1as

k N\ _ k=1 1)
nzaf+ () x == (o + (87 5)
() (g) KT
=l () ¥+ L
_ (K Ny s g oK)
= (j)r] - (ﬁj) X2z a +TL.
This representation allows us to retain most of the co-
efficients at values obtained when they were computed (for
example, ﬁ;, which were computed in iteration j). The up-
dates are restricted only to a single column corresponding
to the auxiliary variable 1. The right-hand side is updated
only if L # 0. These updates are carried out in the function
update_cut(:) in subroutine 4 in which cut_iter[-] en-
codes the iteration when a cut is generated (i.e., j).

Appendix C. Test Instances

In this section, we provide a brief description of the test
instances used in our computational study.” The size of the
problem instances is summarized in Table C.1. The fourth
column corresponds to the number of second-stage pa-
rameters affected by the random variable (RV) presented as
number of right-hand side elements and objective cost co-
efficients. These instances are available in the SMPS format in
the authors” Github repository USC3DLAB (2019).

C.1. Sonet-Switched Network with Random Cost Coefficients
This problem has its origin in telecommunication network
planning and was presented in the original form in Sen et al.
(1994a). The problem considers allocation of additional

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

19

Table C.1. Details of Problem Instances

First-stage

Second-stage

Instance name variables/constraints variables/constraints Number of RVRHS + Ob;. Magnitude of outcomes
ssn_rcG 89/1 709/178 86 + G 107

SCFT-6 30/18 86/36 12 +2 10°

SCFT-46 602/174 348/1,480 184 + 2 10'%
transship 7/0 77/35 7+7 Normal distribution

capacity to the links in a network that provides private line
telecommunication services. These service requests arise
between pairs of nodes in the network. In the original model,
the service quantity (demand) is the only parameter assumed to
depend on the random variable, and the goal is to allocate
capacity so as to reduce the total demand lost. Here we ex-
tend the model by associating a cost with lost demand, which
also depends on the random variable. We briefly describe the
model here.

We denote the communication links in the network by .
A service request is characterized by a pair of origin-
destination nodes, which is assumed to be an element of the
set . Each service request (say 7) can be satisfied over a set
of routes denoted by R;. If there are no routes with sufficient
capacity available to accommodate the request, it cannot be
fully served. The existing capacity of the links denoted as e,
needs to be appended by additional capacity x, which con-
stitutes the first-stage decision variable. The total amount
of capacity that can be added is restricted to be with a
budget denoted as b. This results in following first-stage
optimization problem:

min {E[h(x,)]

leﬁb, xe>0VleXZs.
te?

Once the capacity decisions have been made, requests for
service canbe routed in a manner that efficiently utilizes the
network resources. To this effect, the function h(x,) cap-
tures the cost of unsatisfied service and is the value of the
following LP:

min 3 dg(w)[z MI]

g€% [Se

s.t. Z ZAirfir <er+xy Vied
ey ieR;
DS+ ui = Ef(w) Vied,
reR;
fir i >0 VreR;, i€

Here the decision variable u; captures the number of units
of unsatisfied demand, and f;, denotes the amount of ser-
vice satisfied via route r € R; for every service requesti € ¥.
The term A;, denotes an incidence matrix whose element-¢
is one if link-{ belongs to route r € R; and zero otherwise.
Although the first set of constraints ensures that the total
flow on each link in the network does not exceed the sum
of existing and newly installed capacity, the second set of
constraints accounts for the total amount of service requested
byi € ¥ as either satisfied over all the associated routes or as
unsatisfied. The right-hand side of the second set of con-
straints, representing the total service requested, depends
on the random variable. We distinguish the service requests

by clustering them into groups denoted by the set 9 and
penalize the unsatisfied service request differently across
these groups. Moreover, the penalty cost for group g, denoted
by dg, also depends on the random variable. Note that the
original model can be recovered by setting |4/ =1 and
de(@) = 1, almost surely.

To create the instances of this model, we assume that the
demand and the cost coefficients are independent of one
another. We use the original stochastic information for the
service demand data and use a discrete distribution to
model the demand random variable. We created different
instances by varying the number of groups. These instances
are denoted as ssn_rcG, where G=1,...,4.

C.2. Supply Chain—Freight Transportation Optimization
This problem is aimed at mi-term planning of a global
multiproduct chemical supply chain and appeared first in
You et al. (2009). A set of products are manufactured and
distributed through a given global supply chain that in-
cludes a large number of worldwide customers and a
number of geographically distributed plants and distri-
bution centers. The facilities can hold inventory and are
connected to each other by transportation links. The problem is
to determine the monthly production and inventory levels of
each facility and the monthly shipping quantities between
network nodes such that the total expected cost of operat-
ing the global supply chain is minimized while satisfying
customer demands over the specified planning horizon.
Because of involved notations in the model, we restrict to
a verbal presentation of the model and refer the reader to
the original publication for the mathematical formulation.
The problem involves decisions made over a finite ho-
rizon at multiple discrete time epochs. The inventory,
transshipment, and production decisions are made at the
beginning of the time period. These decisions are subject to
mass balance constraints at the plants, distribution centers,
and customer locations. These mass balance equations take
into account the transportation time during the shipping
process such that the freight can arrive at the destination on
time. The initial inventory required for mass balance at all
facilities is assumed to be known, and an explicit constraint
ensures that the inventory level is maintained above a
certain minimum requirement. In addition to these con-
straints, the decision variables are bounded by their re-
spective capacities. The decisions for the first time period
are made in a here-and-now manner, and the decisions for
the remaining horizon are adaptive in nature and depend
on the realization of random variables corresponding to
customer demands and freight rates. The objective func-
tion is to minimize the total expected cost, which in-
cludes the inventory holding costs at facilities, freight and

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

20

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

facility throughput costs for shipment between facilities
(including customer locations), and penalty costs for un-
met demand.

Unfortunately, the data used in the original publication is
not publicly available. Therefore, we have generated two
instances of the model using synthetic data. The first in-
stance (SCFT-6) is for a supply chain network with two
plants, three distribution centers, and six customer loca-
tions, which are connected by 14 transportation links. The
second, more realistic, instance is comparable in size to the
tothatusedin Youetal. (2009). This instance has five plants,
13 distribution centers, and 46 customer locations. These
facilities are connected by 131 transportation links. In our
instances, the model horizon is set to three months; the first
month is considered to be the here-and-now stage, and the
remaining two months constitute the second stage. Further,
in our instances, 10% of the freight rates are affected by
randomness and are assumed to follow a discrete distri-
bution. The size of the two problem instances is summa-
rized in Table C.1.

C.3. Multilocation Transshipment Problem

This problem, adopted from Herer et al. (2006), involves
several nonidentical retailers and one supplier that co-
ordinate their replenishment strategies and transshipments
to minimize the long-run expected cost. The system in-
ventory is periodically reviewed, and the replenishment
orders are placed with the supplier. At the beginning of a
period, replenishment orders (placed in the previous time
period) arrive, and they are used to satisfy any outstanding
backlog and to increase the inventory level. Following this,
the demand is realized, transshipments are completed
immediately and are used to satisfy the demand, the un-
satisfied demand is backlogged, and the inventory quan-
tities are updated. Finally, based on the inventory and
backlog quantities, new replenishment decisions are placed
with the supplier. The system costs are determined by
transshipment costs, inventory holding cost, and backlog
penalties. In the original work, the authors assume that
only the demand at each retailer in a period is random
and stationary over time. We extend their model by also
allowing the transshipment costs to be random.

Undera non-shortage-inducing policy assumption, Herer
et al. (2006) show that there exists an optimal order-up-to
policy. The order-up-to quantities are estimated using a
sample-path optimization method, such as infinitesimal
perturbation analysis. Alternatively, one can formulate this
problem as a 2-SLP with the first stage tasked with iden-
tifying the order-up-to quantities and the second stage
associated with replenishment orders and transshipments.
To present the 2-SLP formulation, we use N to denote
the number of suppliers, s; and d;(@) to denote the first-stage
decision representing the order-up-to quantity, and ran-
dom variable dependent demand at retailer i. The second-
stage decisions are the ending inventory e;, stock used to
satisfy demand f;, inventory increased through replenish-
ment g;, and amount of backlog met after replenishment r;
at retailer 7 and stock at retailer i used to meet demand at
retailer j using transshipment ;. The unit holding and back-
log penalty costs at retailer i, unit transshipment cost from
retailer i to j are denoted as /, p;, and c;;(@), respectively.

Given an order-up-to policy for the replenishment quantities,
Herer et al. (2006) suggest a linear cost network flow model
to identify the optimal transshipment quantities. We use
the same approach to state the 2-SLP as follows:

E[h((s:);, @)1,

min
520, i=1,...,N

(C1)

where
N

> (@)t

i=1i#]

N
h((s1);, @) =min > (hie; + piri) +
=1

s.t. fz’+ Z tij+ei=5i i=1,...,N;

L

N
ﬁ-+ Z t,‘j+1’i:d1'(d)) i:1,~--/N;

L

N N
Dri+q) =D di(@);
i=1 i=1
ei+q;=35; i=1,...,N;
e, ,,q,,ri,tijZO i,jzl,...,N. (CZ)
To build our instances with random cost coefficients, we
have used the demand distribution information presented
in table 3 of Herer et al. (2006). The cost coefficients are
nonidentical and built as described in section 4.5 of Herer
etal. (2006). We assume that the transshipment costs follow
a normal distribution with mean equal to the deterministic
quantities from the reference and standard deviation set to
20% of the mean. This instance is named as transship in
our database.

Endnotes

! The mean or expected value problem is a deterministic optimization
problem obtained by replacing all random variables in (1) by their
expected values.

?The dual vector 7! and its components (v/, 0!) are indexed by jand i.

The subscript j denotes the observation @/, and the superscript i
denotes the index set B' associated with the dual vector.

®In certain cases—for example, transship instances with N > 100—a
few replications of the RLS experiments take significantly longer
than the others. This results in the large standard deviation in the
average computational time as seen for N = 100 in Table 4.

*Because these are stochastic estimates that depend on randomly
sampled quantities, one should not expect a strictly monotonic be-
havior. Moreover, the numbers reported are averages across mul-
tiple replications.

¥ The scope of the variables and parameters defined here is restricted
to individual subsections.

References

CPLEX (2018) CPLEX Callable Library (C API) Reference Manual, 12.8
ed. (IBM, Armonk, NY).

Deng Y, Sen S (2018) Learning Enabled Optimization: Toward a Fusion of
Statistical Learning and Stochastic Programming. Technical report,
University of Southern California, Los Angeles.

Frauendorfer K, Hartel F, Reiff MF, Schiirle M (1996) SG-Portfolio Test
Problems for Stochastic Multistage Linear Programming (Springer,
Berlin, Heidelberg).

Gangammanavar H, Sen S, Zavala VM (2016) Stochastic optimization
of sub-hourly economic dispatch with wind energy. IEEE Trans.
Power Systems 31(2):949-959.

Gangammanavar, Liu, and Sen: SD for 2-SLPs with Random Cost Coefficients

INFORMS Journal on Computing, Articles in Advance, pp. 1-21, © 2020 INFORMS

21

Herer YT, Tzur M, Yiicesan E (2006) The multilocation transshipment
problem. IIE Trans. 38(3):185-200.

Higle JL, Sen S (1991) Stochastic decomposition: An algorithm for two-
stage linear programs with recourse. Math. Oper. Res. 16(3):650-669.

Higle JL, Sen S (1994) Finite master programs in regularized sto-
chastic decomposition. Math. Programming 67(1-3):143-168.

Higle JL, Sen S (1996) Stochastic Decomposition: A Statistical Method for
Large Scale Stochastic Linear Programming (Kluwer Academic
Publishers, Boston).

Higle JL, Sen S (1999) Statistical approximations for stochastic linear
programming problems. Ann. Oper. Res. 85:173-193.

Infanger G, Morton DP (1996) Cut sharing for multistage stochastic
linear programs with interstage dependency. Math. Programming
75(2):241-256.

Kleywegt AJ, Shapiro S, Homem-de Mello T (2002) The sample av-
erage approximation method for stochastic discrete optimiza-
tion. SIAM |. Optim. 12(2):479-502.

Linderoth J, Shapiro A, Wright S (2006) The empirical behavior of
sampling methods for stochastic programming. Ann. Oper. Res.
142(1):215-241.

Mak W, Morton DP, Wood K (1999) Monte Carlo bounding tech-
niques for determining solution quality in stochastic programs.
Oper. Res. Lett. 24(1):47-56.

Ruszczynski A, Shapiro A (2003) Handbooks in Operations Re-
search and Management Science: Stochastic Programming, vol. 10
(Elsevier, Amsterdam).

Sen S, Liu Y (2016) Mitigating uncertainty via compromise decisions
in two-stage stochastic linear programming: Variance reduction.
Oper. Res. 64(6):1422-1437.

Sen S, Zhou Z (2014) Multistage stochastic decomposition: A bridge
between stochastic programming and approximate dynamic
programming. SIAM |. Optim. 24(1):127-153.

Sen S, Doverspike RD, Cosares S (1994a) Network planning with
random demand. Telecommunication Systems 3(1):11-30.

Sen S, Mai], Higle JL (1994b) Solution of large scale stochastic
programs with stochastic decomposition algorithms. Hager
WW, Hearn DW, Pardalos PM, eds. Large Scale Optimization:
State of the Art (Springer, Boston), 388-410.

Shapiro A, Homem-de Mello T (1998) A simulation-based approach
to two-stage stochastic programming with recourse. Math. Pro-
gramming 81(3):301-325.

Tsay R (2005) Analysis of Financial Time Series, Wiley Series in
Probability and Statistics, 2nd ed. (Wiley-Interscience,
Hoboken, NJ).

USC3DLAB (2019) Two-stage stochastic decomposition. Accessed
July 21, 2019, https:// github.com/USC3DLAB/SD.git.

Van Slyke RM, Wets R]JB (1969) L-shaped linear programs with
applications to optimal control and stochastic programming.
SIAM |. Appl. Math. 17(4):638-663.

You F, Wassick JM, Grossmann IE (2009) Risk management for a
global supply chain planning under uncertainty: Models and
algorithms. AICKE]. 55(4):931-946.

https://github.com/USC3DLAB/SD.git

	Stochastic Decomposition for Two-Stage Stochastic Linear Programs with Random Cost Coefficients
	Introduction
	Background: Stochastic Decomposition
	SD for Recourse with Random Cost Coefficients
	Implementational Details
	Computational Experiments
	Conclusions

