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Abstract
The problem of estimating model parameters from data representing near-equilibrium pat-
terns in PDEs is considered. This problem is formulated as an optimization problem by
determining the nearest state on a manifold of equilibria. Algorithms to solve this opti-
mization problem are proposed, by first regularizing the problem and using explicit search
directions on the tangent space of the equilibrium manifold. Some rigorous results on local
converge are obtained. Several examples of pattern forming systems are used to test the pro-
posed methodology. Comparisons to synthetic data are made showing the ability of obtaining
excellent estimates even when significant noise is present.

Keywords Parameter estimation · PDE-constrained optimization · Pattern formation

Mathematics Subject Classification 65K10 · 35Q93

1 Introduction

Physical models are often equipped with parameters and other constitutive details which
cannot be easily related to first principles. With the abundance of experimental data and
recent advances in machine learning, it is natural to seek methods which incorporate real
world information into physically inspiredmodels by fitting or estimating system parameters.

In dynamic problems, most approaches to parameter estimation utilize data in the form
of a time series. In the context of parabolic partial differential equations, however, only a
single data point in time may be available, representing a spatially inhomogeneous signature
of the system’s behavior. Here it is imagined that this takes the form of a noisy perturbation
of either a true steady state or a long-lived transient. This is a particularly common situation
in physical models of pattern formation Cross and Hohenberg (1993) and materials science
Chen (2002), where observational timescales may be much slower than the dynamics that
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forms spatial inhomogeneity. This work focusses on this case, where the input used for
parameter estimation takes the form of a single time-independent state.

Early approaches to parameter identification in partial differential equations considered
well-posed inverse problems from which analytically exact solutions can be found (e.g.
Friedman and Reitich (1992); Knowles (2001)). More typically, the problem of parameter
identification is regularized by formulating it as an optimization problem. The most common
approach is to determine parameter values which minimize the difference between the model
output and the provided data Fullana et al. (1997); Ackleh et al. (1998); Ashyraliyev et al.
(2008); Garvie et al. (2010); Jin and Maass (2012); Croft et al. (2015); Sgura et al. (2019);
Zhao et al. (2020). This is implemented using techniques of PDE-constrained optimization
Hinze et al. (2008), sometimes in conjunction with other qualitative assessments Sgura et al.
(2019).

Sparse regression methods comprise a second class of optimization methods Rudy et al.
(2017); Schaeffer (2017); Rudy et al. (2019); Wang et al. (2019); Maddu et al. (2019), which
involve minimizing the residual error (the discrepancy in the equation itself evaluated using
the data). These approaches include a sparsity-inducing penalty term which allows for iden-
tification of minimal (parsimonious) models drawn from a large library of possibilities. This
methodology is described in the context of data which has both time and space dependence,
but can be adapted to the type of input data considered here. A direct comparison to resid-
ual minimization parameter estimation is made here, albeit without the sparsity inducing
penalization.

Numerous other approaches to data-informed inverse problems in PDEs have been
explored. Bayesian inference has been employed in the PDE setting to estimate parame-
ters Dewar et al. (2010). Alternatively, Gaussian process regression has been proposed Raissi
et al. (2017);Maziar andGeorge (2018) as away to naturally accommodate noisy data. Lastly,
machine-learning strategies using neural networks are also being studied for identification
problems in PDEs Long et al. (2019); Raissi et al. (2017a, b).

This paper is organized as follows. Section 2 reviews and compares two optimization
formulations for parameter identification in the context of stationary input data. In Sect. 2.1,
a compromise between these two formulations is proposed. Iterative methods for solving
the resulting constrained optimization problems are proposed in Sects. 2.2 and 2.3. Local
convergence of these methods is demonstrated in Sect. 3. Examples of pattern-forming par-
tial differential equations are discussed in Sects. 4–6. In these applications, synthetic data
constructed from numerical simulations with added noise is used to test the performance of
the proposed methods.

2 Formulations of parameter estimation

The underlying model which is considered here is a nonlinear evolution equation on some
vector space U of the form

ut = N (u;μ), (1)

with u(t) : R → U . The model parameters constitute μ ∈ P ⊂ R
p , with P being a

prescribed set of allowed values. Although the focus of this work is when (1) represents a
partial differential equation, in practice, spatial discretization renders U finite dimensional.
Throughout this work, the nonlinear operator N (·) is assumed to be sufficiently differentiable
with respect to its arguments.
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The dynamics in (1) is technically unnecessary here, as we are really interested in the
equilibrium set M0, defined as

M0 = {u|N (u;μ) = 0, μ ∈ P}. (2)

Typically,M0 is a collection of manifolds whose dimensions are ≥ p. In some models, it is
certainly possible that multiple parameter values produce the same equilibrium; for example
in ut = μ f (u) clearly μ cannot be inferred from equilibria at all. To make sense of the
parameter identification problem in our context, it will be assumed that for any u ∈ M0,
there is a unique parameter μ∗(u) with N (u, μ∗(u)) = 0.

Dynamics only enter the algorithm described below in the sense of a prescribed map
E0(u;μ) : U → M0, for which the preimage of u∗ = E0(u;μ) is regarded as a “basin
of attraction” for u∗. For the dynamics (1), this arises naturally by letting u(0) = u0 and
defining

E0(u0;μ) = lim
t→∞ u(t). (3)

This only makes sense if the dynamics are “relaxational” in nature, rather than oscillatory
of chaotic. Nevertheless, (3) is well defined in a great number of applications, in particular
gradient flows and more generally, systems possessing a Lyapunov functional. The method
described below does not compute E0 directly, but rather uses a regularized version (see 8).

The inverse problem for parameter identification arises by supplying “target” data uT ∈ U ,
which is assumed to be at least somewhat representative of a member of the set M0. If it
happens that uT ∈ M0, it would be natural to identify the parameters as those associated
with a true equilibrium, i.e. μ = μ∗(uT ). In general, we expect the supplied target data to
represent either a steady state or a a long-lived transient, possibly contaminated with noise
from either measurement error or effects not captured by the model. In these cases, the most
to hope for is to choose parameters to be optimal in some sense.

Optimization problems for parameter identification have historically been formulated in
two distinct ways. One methodology looks to minimize distance between the model output
(solution) and supplied data Ackleh et al. (1998); Ashyraliyev et al. (2008); Garvie et al.
(2010); Croft et al. (2015); Sgura et al. (2019). In the present context, this amounts to finding
u ∈ M0 which is as close as possible to the target data, so that the parameter estimate is
prescribed by

μ = μ∗(u∗), u∗ = argminu∈M0
||u − uT ||, (Minimum distance formulation), (4)

where the norm || · || is prescribed. The discussion here only supposes that || · || is induced
by an inner product 〈·, ·〉, although the later examples specialize to the L2 norm.

A second approach is to minimize the norm of the residual, that is,

μ = argminμ∈P ||N (uT ;μ)||, (Minimum residual formulation), (5)

where again the norm is prescribed. In the case where N has terms linear in parameter
components μi ,

N (u;μ) = N0(u) +
p∑

i=1

μi Ni (u), (6)

then (5) is a standard least-squares problem. By including in (5) a term which penalizes
the number of non-zero parameter components, the resulting problem constitutes the time-
independent version of the sparse regression method Rudy et al. (2017); Schaeffer (2017).
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While the examples below happen to be of the form (6), the algorithm we describe does not
depend on this, and allows the parameter dependence to be completely general.

Note that both formulations (4) and (5) may produce the same result if it happens that uT
is an element of M0. For target data near the equilibrium set M0, both formulations might
also produce comparable results, since ||N (uT ;μ)|| is generally smallest whenμ ≈ μ∗(u∗),
where u∗ is defined in (4).

There are advantages and drawbacks to each formulation. The optimization problem (4) is
highly nonlinear, and often possesses a vast number of local minimizers which makes finding
a global minimizer difficult. Prior studies (e.g. Croft et al. (2015)) utilize the Levenberg–
Marquardt algorithm to accomplish the minimization, but it is not clear that this would be
efficient in all cases, or always converge to the correct minimizer. On the other hand, our
results indicate that adding significant amounts of noise to an otherwise exact steady state
does not significantly alter the minimizer in (4).

The minimum residual problem (5), especially if it is of linear least squares form, is
easily computed, and appears to provide reliable parameter estimates for low-noise target
data. Computing spatial derivatives in N (uT , μ) presents a challenge, however, and readily
amplifies any noise in the the target data. We find that the estimate is easily corrupted even
in cases where noise is very moderate. It has been suggested Schaeffer (2017) that filtering
or smoothing the data to begin with may improve this situation; in the example of Sect. 4,
this idea is tested and compared to the present formulation.

2.1 A regularized approach

To mollify the disadvantages inherent in (4) and (5), consider a modified of (1),

ut = N (u;μ) + C(uT − u), (7)

which includes a “fidelity” termC(uT −u),whereC will be called the interpolation parameter,
and satisfies 0 ≤ C < ∞. Analogous to (2), the equilibrium set may be defined as

MC = {u|N (u;μ) + C(uT − u) = 0, μ ∈ P}. (8)

Associated with this set is a mapping EC (u0;μ) : U → MC , defined analogous to (3) using
the flow (7) instead. This is computed in practice by evolving (7) up to a large prescribed time,
using u0 as the initial data. Of course, this is only practical if good numerical methods are
available; we describe in detail below semi-implicit, time-adaptive spectral methods which
generally require very few timesteps.

Letting μ∗(u) define the mapping from elements in MC to corresponding parameter
values, a constrained optimization problem analogous to (9) can be formulated:

μC = μ∗(uC ), uC = argminu∈MC
||u − uT ||. (9)

Note that if uT ∈ M0, then uT is also in every set MC , and moreover μC = μ0, so solving
(9) is the same as solving (4). More generally, the optimization problem (9) can be viewed as
an interpolation between the minimum distance and minimum residual formulations. Indeed,
as C → 0, we will show that under a broad set of circumstances, minimizers to (9) converge
to minimizers of (4). Conversely for large C , the setMC is asymptotically described by the
solutions to

N (uT ;μ) + C(uT − u) = 0. (10)

In this case, minimizing ||u− uT || overMC is the same as minimizing ||N (uT ;μ)|| over μ.
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We find there is a trade-off in the choice of interpolation parameter C , reflective of the
limiting cases C = 0 and C = ∞. If C is chosen to be very small, then the difficulties of
finding a true global minimum in (4) are still present, whereas as C is increased the fidelity
term has a convexifying effect, and fewer local minima might be expected (see Fig. 2). On
the other hand, if C is too large then the quality of the parameter estimate is often poor, as
noise in the target data is not smoothed enough by the flow (9).

The optimum choice of C is entirely problem dependent. For the examples below, the
initial choice was partly made by trial and error: if C was too large, the parameter estimate
was sometimes well outside the allowed parameter set P , whereas if C was initially too
small, the minimization algorithm proposed in the next section struggles to find a reasonable
local minimum. The former issue is dealt with in Sect. 2.3 by systematically decreasing C
to improve the estimate.

2.2 The projection-relaxation algorithm

A variety of options exist for solving the constrained minimization problem (9), including
constrained gradient descent, Levenberg–Marquardt methods Ashyraliyev et al. (2008) and
Newton-typemethods Goodman (1985); Bonnans et al. (2006). Here we describe a version of
the latter, specialized to our situation where the objective function is quadratic. The constraint
is satisfied exactly at each step, and the optimization is done on the tangent space of MC .
Since this is low dimensional, the associated Hessian is easy to invert.

The iterative algorithm requires an initial state u(0) ∈ MC and parameter values μ(0) to
be given. The former is computed by letting u(0) = EC (uguess;μ(0)), where uguess ∈ U is
provided; the choice uguess = uT appears to be reliable. Further iterates u( j), μ(0) will be
constructed so as to guarantee that ||u( j) − uT || will be a strictly decreasing sequence in j .

If MC is roughly flat near some iterate u( j), then the closest point on MC to uT is well-
approximated by the projection of uT − u( j) onto the tangent space at u( j). Provided the
parameter set near μ( j) provides a local coordinate system for MC , then the tangent space
may be identified by the basis elements

vi = ∂u∗

∂μi
(μ( j)), i = 1, . . . , p. (11)

Here u(μ) is the local 1 − 1 mapping from parameters to elements of MC . This can be
computed from the defining equation N (u(μ);μ) + C(uT − u(μ)) = 0 by differentiation,
giving the linear systems

(
∇u N (u( j), μ( j)) − C

)
vi = − ∂N

∂μi
(u( j), μ( j)), i = 1, . . . , p. (12)

For parabolic PDEs, this represents a set of linear elliptic equations. This could problematic
numerically if the system is ill-conditioned, for example. Empirically, however, this does not
appear to be the case provided C is not too small. Methods for efficient inversion of this
system are described in the examples.

Projection of uT onto the tangent space can now be accomplished by finding

min
μ̃

∥∥∥∥∥u
( j) +

p∑

i=1

μ̃ivi − uT

∥∥∥∥∥ , (13)
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where μ̃ is the parameter increment. This least squares problem is equivalent to the linear
problem Aμ̃ = b where

Aik = 〈vi , vk〉, bk = 〈uT − u( j), vk〉. (14)

After projection, the new parameter estimate and state are

μ( j+1) = μ( j) + μ̃, u p = u( j) +
p∑

i=1

μ̃ivi ; (15)

however, u p is generally not in MC . This can be accomplished by a relaxation step, where
the new iterate is determined by u( j+1) = EC (u p, μ

( j+1)) (see Fig. 1).
If the manifoldMC is highly curved, there is no guarantee that u( j+1) is closer to uT than

the previous state u( j), or that the new parameters μ( j+1) are in the allowed set P . More-
over, the iterative algorithm may have stability problems when using the full size parameter
increment μ̃ in (15). To avoid these issues, step-limiting criteria are employed which reduce
the magnitude of μ̃. The first is to check that both the objective function ||u( j+1) − uT || is
smaller than ||u( j) − uT ||, and μ( j+1) ∈ P . If not, the parameter increment is reduced (by a
factor of two, for example), and the the relaxation step is repeated. Stability of the iteration
can also depend on μ̃ not being too large; to this end (15) is replaced with

μp = μ( j) + αμ̃, u p = u( j) + α

p∑

i=1

μ̃ivi . (16)

where
α = min(1,Cα||uT − u( j)||). (17)

The parameter Cα > 0 is system dependent and can be determined by an explicit stability
calculation (see Sect. 3.1). In the examples below, no stability problems where encountered
by simply setting α to unity. The complete method is summarized in algorithm 1.

Algorithm 1: Projection-relaxation (PR) optimization

Given: uguess , μ(0), uT
u(0) = EC (uguess;μ(0))

repeat
Compute tangent space basis elements by solving (12) for i = 1, . . . , p
Construct matrix Aik = 〈vi , vi 〉 and vector bk = 〈uT − u( j), vk〉
Solve Aμ̃ = b
repeat

μ( j+1) := μ( j) + αμ̃

u p := u( j) + α
∑p

i=1 μ̃ivi

u( j+1) := EC (u p;μ( j+1))

μ̃ := μ̃/2
until ||u( j+1) − uT || < ||u( j) − uT || and μ( j+1) ∈ P

until |μ̃| < μ̃min

2.3 The regularizedminimum distance (RMD) algorithm

In some problems, it might be desirable to locate a solution to the minimum distance problem
(4), rather then the regularized version where C > 0. Rather than attempting to locate the
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Fig. 1 The first two steps of the projection-relaxation method. The provided initial state uguess (typically just
uT ) is mapped via EC () (shown as red/dashed arrows) to u(0) ∈ MC , and then the nearest point to the target
data on the tangent space (blue/dotted) is found (u p1). The new iterate u(1) ∈ MC is determined again by

the mapping EC (), and then the process is repeated

Fig. 2 A schematic view of the RMD algorithm. If the true equilibrium set M0 is highly convoluted, the
optimization problem possesses numerous local minima. The algorithm provides a sequence of minimizers to
the regularized problem (here values of C were arbitrarily chosen to be 100, 10, 1) which ideally converge to
the global minimizer

global minimum in (4) by setting C = 0 immediately, we can use C as a continuation
parameter, and progressively solve (9) for smaller and smaller values of C . This is done
by specifying an initial parameter estimate, and initial state uguess = uT . The projection-
relaxation algorithm is used to solve (9) for each value of C , producing both a new estimate
for the parameter μC and state uC . These are then used as inputs for projection-relaxation
after C is reduced by some prescribed factor C f > 1. This process is repeated until C is as
small as desired, producing a sequence of parameter estimates.

A sketch of the geometric interpretation of the algorithm is given in Fig. 2. Because the true
equilibrium set M0 may be extremely convoluted, the numerous local minima for (4) may
exist. The effect of the interpolation parameter is to smooth out the equilibrium manifold
M0, improving the chances that a global minimum of (9) can be found. A progressive
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reduction of C essentially performs continuation on this problem, leading gradually toward
the unregularized optimization problem with C = 0.

The initial choice of interpolation parameter C somewhat depends on the quality of the
target data. IfC is chosen to be too small initially, then fidelity to the input data is lost, and the
algorithm may converge to a parameter estimate which encapsulates little information about
the data. Conversely, if C is chosen to be too large initially, noise from the target data is not
sufficiently damped, which can lead to poor performance in the projection-relaxation step.
Note that the PR algorithm will always terminate in a finite number of steps, since the halting
criteria |μ̃| < μ̃min will be reached even if the minimum is not obtained. In applications, this
appears to be a sign that C is simply too large, and reducing C systematically will correct
this issue. A summary of the method described above is provided in algorithm 2.

Algorithm 2: Regularized distance minimization (RMD)

Given: μguess , uT , C
Initialize uC = uT and μC = μguess

repeat
Set (u, μ) to the output of the projection-relaxation algorithm with inputs (uC , μC )

Let C := C/C f and (uC , μC ) = (u, μ)

until C < Cmin

3 Local convergence

Local convergence of the foregoing algorithms is now studied. Global behavior is muchmore
difficult to assess and will be reserved for future study, since it depends both on the quality
of the initial guesses and the structure of the underlying model. The two specific questions
to be addressed are

(1) Does the projection-relaxation iterates converge to a minimum (global or otherwise) of
problem (9)?

(2) Does a sequence of minimizers uCn for Cn → 0 converge to the minimizer in (4)?

Central to both questions is the structure and dimensionality of the manifolds M0 and MC

near minimizers. In the simplest case, ∇u N (u0;μ0) is non-singular, and an implicit function
argument shows that these manifolds are locally parameterizable by μ. Moreover, such an
argument shows that MC is close to M0 in the sense

dist(MC , u0) = o(1)asC → 0. (18)

In theorem 2, it is shown that property (18) is sufficient to guarantee that solutions to the
regularized (C > 0) optimization problem converge to the original one.

The situation of degenerate equilibria, where the dimensionality ofM0 is greater than p,
is more complicated. This arises quite naturally, for example, in cases where the evolution
equation (1) has conserved quantities or symmetries, which function as “hidden” parameters.
One possible remedy is to extend the parameter set to account for these; this is discussed in
Sect. 3.4. For gradient systems, on the other hand, it is shown that the closeness property
(18) holds without any modification.
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3.1 Stability of the PR algorithm

The behavior of the projection-relaxation algorithm in a neighborhood B of the minimizer
uC is now investigated. The manifold MC is assumed to be locally p-dimensional within
B; this is verified directly for gradient systems in Sect. 3.3. Specifically, it is assumed that
MC ∩ B is the range of a smooth map u∗(μ) : P ′ → U where P ′ ⊂ R

p is a neighborhood
of μC , and

v0i ≡ ∂u∗

∂μi
(μC ) (19)

are linearly independent. It is also supposed thatwithin the neighborhood B, themapEC (u;μ)

is independent of u, so that the relaxation step will select a unique state u∗(μ).
Provided B is sufficiently small,

u∗(μ) = uC +
p∑

i=1

v0i (μi − μC
i ) + 1

2

p∑

i=1

p∑

j=1

Q0
i j (μi − μC

i )(μ j − μC
j )

+O(||μ − μC ||3), Q0
i j ≡ ∂2u∗

∂μi∂μ j
(μC ). (20)

Notice that μC is obtained by minimizing ||uT − u∗(μ)||, which means that

〈uT − u, v0i 〉 = 0. (21)

The minimum is also assumed to be locally quadratic; in other words, the corresponding
Hessian satisfies

The matrixA0 − Qis positive definite, whereQi j = 〈uT − u, Q0
i j 〉andA0

i j = 〈v0i , v0j 〉. (22)

The tangent space basis elements vi can be estimated

vi = v0i +
p∑

j=1

Q0
i j (μ j − μC

j ) + O(||μ − μC ||2). (23)

The linear problem for the parameter increment is Aμ̃ = b where

Ai j = A0 + O(||μ − μC ||), (24)

and by (20)

bi =〈uT −uC , v0i 〉−
〈 p∑

j=1
v0j (μ j −μC

j ), v
0
i

〉
+

〈
uT −uC ,

p∑

j=1
Q0

i j (μ j −μC
j )

〉
+O(||μ−μC ||2)

=
p∑

j=1

[A0 − Q]i j (uCj − μ j ) + O(||μ − μC ||2), (25)

where (21) was used. Also note that the symmetric matrix A0 ≡ 〈v0i , v0j 〉 is positive definite
since the set {v0i } is linearly independent, and for any nonzero x ∈ R

p

A0x · x =
( p∑

i=1

xivi

)2

> 0. (26)
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Provided ||μ − μC || is small enough, a standard perturbation calculation leads to

μ̃ = μC − μ + (A0)−1Q(μ − μC ) + O(||μ − μC ||2). (27)

If μ( j) are parameter value iterates produced by the algorithm, then they obey a mapping of
the form

μ( j+1) = αμC + (1 − α)μ( j) + α(A0)−1Q(μ( j) − μC ) + O(||μ( j) − μC ||2). (28)

Linear stability of the fixed point μC is, therefore, satisfied if
∣∣∣σ

(
(1 − α)I + α(A0)−1Q

)∣∣∣ < 1, (29)

where σ() represents the spectrum of the matrix.

Lemma 1 The matrix (A0)−1Q has real eigenvalues smaller than one.

Proof The product of positive definite and symmetric matrices has real eigenvalues, and (22)
means that for any x ∈ R

p , A0x · x ≥ Qx · x . The eigenvalues solve Qx = λA0x , so that
the maximum eigenvalue is equal to

max
x �=0

Qx · x
A0x · x < 1. (30)

It follows from the lemma that σ
(
(1− α)I + α(A0)−1Q

)
< 1. Then to satisfy (29), one

needs

α <
1

1 − min σ
(
(A0)−1Q

) . (31)

The prescription (17) satisfies (31) provided

Cα = ||(A0)−1Q0||−1, (32)

where || · || denotes the operator norm. We have proved

Theorem 1 If μ(0) is sufficiently close to μC , then the projection-relaxation algorithm gives
μ( j) → μC and u( j) → uC as j → ∞.

3.2 Convergence of the RMD algorithm

The question of whether minimizers to the regularized problem converge to the minimizer
in (4) is now addressed.

Theorem 2 Suppose that (18) holds. If uCn , Cn → 0, is a sequence of global minimizers of
the problem (9) converging to u0, then u0 is the unique global minimizer in (4).

Proof Suppose that instead, there is a global minimizer in (4) ũ �= u0, and therefore

||u0 − uT || − ||ũ − uT || ≡ d > 0. (33)

By (18), there are ũC ∈ MC with ||ũC − ũ|| = o(1) as C → 0. It follows

||ũC − uT || ≤ ||uT − ũ|| + ||ũC − ũ|| (34)

= ||uT − u0|| + ||ũC − ũ|| − d (35)
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≤ ||uT − uC || + ||u0 − uC || + ||ũC − ũ|| − d. (36)

C can be chosen small enough so that ||ũC − ũ|| + ||u0 − uC || < d , which means that

||ũC − uT || < ||uT − uC ||, (37)

which contradicts the assumption that uC was a global minimizer to (9).

3.3 Gradient systems

In the case, where there is an associated potential,

N (u;μ) = ∇u F(u;μ), for someF : U × R
p → RwithF ∈ C3, (38)

the role of C as a bifurcation parameter is much easier to assess, and it will be shown that
minimization over degenerate equilibria is automatically accounted for.

It is assumed that the objective function J = ||u−uT || admits a structurally stable unique
global minimum u0 ∈ M0 with corresponding parameterμ0 = μ∗(u0), andM0 is a smooth
manifold in the neighborhood of that point. Structural stability means that the corresponding
Hessian ∇2 J (u0), viewed as a bilinear form on the tangent space of M0 at u0, must be
positive definite.

To study the structure of M0 and MC near the global minimizer in (4), a Lyapunov–
Schmidt decomposition is used. Let Y be the nullspace of ∇u N (u0, μ0) and denote by X its
orthogonal complement. Define coordinates x and y as the projection of u − u0 onto these
subspaces, so that there is an orthogonal matrix�, where (x, y) = �(u0 −uT ). Similarly let
f (x, y, μ) and g(x, y, μ) be the projection of N (u;μ) onto X and Y , respectively. Observe
that the system, written in new coordinates, retains the variational structure since

(
f
g

)
= ∇x,y F

′(x, y) ≡ ∇x,y F
(
�−1(x, y)T + u0

)
. (39)

The system of interest (7) can be written

f (x, y, μ) + C(xT − x) = 0, (40)

g(x, y, μ) + C(yT − y) = 0. (41)

Since ∇u N (u0, μ0)v = 0 for any v ∈ Y , fy(0, 0, μ0) = 0 = gy(0, 0, μ0), and (39) means
that gx = F ′

xy = fy so that gx (0, 0, μ0) = 0 also. (To simplify notation, derivatives are
to be interpreted tensorially, i.e. fxy = [∂2 f /∂xi∂ y j ]. Contraction over an index, where
unambiguous, will be indicated with a dot product). Since u0 is the minimizer of ||uT − u||
subject to (40-41), then (uT − u0) · v = 0 for any v ∈ Y . In new coordinates, this means that
yT = 0.

In (40), fx (0, 0, μ0) is nonsingular and therefore forC = 0, the implicit function theorem
provides a smooth map x∗(y, μ) for which f (x∗(y, μ), y, μ) = 0 in a neighborhood of
(x, y, μ) = (0, 0, μ0). Furthermore, it is supposed that the graph of x∗ coincides with M0

in this neighborhood; in other words, the coordinate y accounts for the hidden parameters.
This mapping has the following properties.

Lemma 2 The following hold:

(a) x∗
y (0, μ0) = 0,

(b) fyy(0, 0, μ0) = − fx (0, 00, μ0) · x∗
yy(0).
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Proof Differentiation of f (x∗(y, μ), y, μ0) = 0 leads to

fx · x∗
y + fy = 0, fx · x∗

yy + fxx · x∗
y · x∗

y + fyy = 0.

Setting x = y = 0 in each expression gives (a) and (b).

To ensure that MC can be constructed locally to u0, the following property is required:

Lemma 3 For gradient systems obeying (38), the matrix

I + gxy(0, 0, μ) · f −1
x (0, 0, μ0) · xT (42)

(where I is the identity) is positive definite.

Proof By (39) then gxy = fyy , so that using lemma 2(b),

gxy(0, 0, μ0) · f −1
x (0, 0, μ0) = −x∗

yy(0, μ0), (43)

(note the order of multiplication is not important since f −1
x is also self-adjoint). The prob-

lem (4) is equivalent to minimizing G(y, μ) ≡ ||xT − x∗(y, μ)||2 + ||y||2. It follows that
Gyy(0, μ0) = −x∗

yy(0) · xT + I is positive definite, which combined with (43) verifies (42).

Theorem 3 With the foregoing hypotheses, property (18) holds, and moreover MC can be
locally parameterized by μ for sufficiently small C.

Proof The system (40-41) describing MC has the form

0 = fx (0, 0, μ0) · x+C(xT − x)+ fμ(0, 0, μ0) · (μ−μ0)+O(||x ||2+||y||2+||μ−μ0||2),
(44)

and

0 = (gxy(0, 0, μ0)·x−C)·y+gμ(0, 0, μ0)·(μ−μ0)+O(||x ||2+||y||2+||μ−μ0||2). (45)

The implicit function theorem guarantees there is a smooth map x = x(y, μ;C) in a neigh-
borhood of y = 0, μ = μ0 and C = 0 solving (44) with

x= x(y, μ;C)=−f −1
x (0, 0, μ0)

(
fμ(0, 0, μ0) · (μ−μ0)+CxT

)
+O(||y||2+||μ−μ0||2+C2).

(46)
Inserting into (45) gives

0=−C
(
I+gxy(0, 0, μ) · f −1

x (0, 0, μ0) · xT + f −1
x (0, 0, μ0) fμ(0, 0, μ0) · (μ−μ0)

)
· y

+ gμ(0, 0, μ0) · (μ − μ0) + O(||y||2 + ||μ − μ0||2 + C2).

(47)
Provided ||μ − μ0|| = O(C2) and C is small, lemma 3 ensures the y-coefficient is non-
singular. The implicit function theorem may be used to again to determine a smooth solution
y = y(μ;C) = O(C) in the neighborhood of C = 0 and μ = μ0.

3.4 Non-variational problems

In cases where degenerate equilibria inM0 arise from a known continuous family of symme-
tries such as translation, setting C �= 0 may break the symmetry, constraining the solutions
of (9) to a lower dimensional (typically p-dimensional) manifold compared to M0. The
symmetry in (9) may be restored by redefining the set MC to be

MC = {w|N (Sσ (w), μ) + C(uT − Sσ (w)) = 0, μ ∈ P, σ ∈ �}, (48)
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where the symmetry Sσ : U → U is a smooth mapping satisfying S0(u) = u and
N (Sσ (u);μ) = N (u, μ). Typically, � is a subset of Rq or a compact manifold. For exam-
ple, for translation symmetry in two dimensions with periodic boundary conditions, � is the
two-dimensional torus T 2.

The problem in (9) may be reformulated to use the constraint (48) and the augmented
parameter set (μ, σ ). If the goal is to use the RMD algorithm to solve (4), then it remains
to check if property (18) holds with the redefinition (48). This question is highly problem
specific, and is reserved for future work. Section 6, however, explores a system without a
gradient structure and tests the proposed reformulation.

4 Example: the Swift–Hohenberg equation

As a first test of the method, consider the Swift–Hohenberg equation

ut = −(� + K 2)2u + αu + βu2 − γ u3 ≡ N (u;μ), (49)

which arises in many spatial pattern-forming applications Cross and Hohenberg (1993).
The parameter set considered here is μ = (K , α, β, γ ), and the spatial domain is a square
[0, 100]2, equipped with periodic boundary conditions.

Practical implementation requires an efficient way of solving (7), specifically to compute
the equilibrium map EC (). The simulations in this paper utilize spectral methods for spa-
tial discretization, and a semi-implicit, adaptive time-stepping procedure. Details of these
schemes are provided in the appendix.

In this problem, the linear system (12) in the projection-relaxation step has the form
Lv = w ≡ −dN/dμ( j) with

Lv = −(� + K 2)2v + (α − C)v + 2βuv − 3γ u2v. (50)

In two (or more) space dimensions, direct methods to solve this system become undesirable
because the associated matrices have a banded diagonal structure. In the context of a spec-
tral discretization, however, one can take advantage of the rapid inversion of the constant
coefficient part of the operator in (50). This suggests an iterative method

L−vn+1 = w − L+vn, (51)

where the operator L is split

L− = −(� + K 2)2 − r , L+ = (α − C + r) + 2βu − 3γ u2, (52)

and

r = sup
x

(
C − α − 2βu(x) + 3γ u(x)2

)
. (53)

Rapid convergence of this iterative scheme is seen in practice, except in cases where C is
particularly small.

4.1 Small noise target data

To test the method, a true (numerical) equilibrium was found using parameters
(K , α, β, γ ) = (1.1, 0.6, 0.3, 1.4) ≡ μexact by evolving from small random initial con-
ditions. The target pattern was then determined by adding 5% Gaussian noise (see Fig. 3).
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Fig. 3 Left: target data constructed from an equilibrium using random initial and adding 5% Gaussian noise;
Right: relative error in the parameter estimate as a function of the inverse interpolation parameter 1/C . All
three initial guesses (given by solid, dashed and dot-dashed curves) yield the same sequence of approximations

Three guesses for parameters were tried:μ = (.1, 0, 0, 0), (2,−5, 1, 4, ), and (3, 10, 10, 10).
These were selected somewhat arbitrarily, but within a range of reasonable possibilities, and
not too close to the exact parameter set. In this problem, the initial value for C was 20; the
other algorithm parameters were μ̃min = 10−3 and C f = 1.3.

For eachvalueofC , the relative parameter estimate error defined as ||μC−μexact ||/||μexact ||
was calculated. Figure 3 shows that the parameter estimate improves asC is decreased, essen-
tially recovering the exact parameters used to generate the data. There is only a difference in
the parameter estimate at the first step, suggesting that the PR algorithm did not encounter
multiple local minima. This is not at all surprising, since for large values of C , the optimiza-
tion problem is an approximation of the least squares regression (5), which necessarily has
a unique solution.

Numerous other initial parameter guesses and similar target data were also tried, with
nearly identical results. It should be noted that extreme guesses (e.g. K = 200) can lead to
numerical problems for the solution of (7), either because of timestepping instabilities or lack
of spatial resolution, which would be an expected limitation of most model problems. This
can potentially be rectified either by an ad-hoc procedure for selection of the initial guess, or
developing more robust methods for solution to (7).

4.2 Large noise and a comparison to theminimal residual formulation

A more extreme test was conducted using parameters μexact = (K , α, β, γ ) =
(1.1, 0.2,−0.5, 1). Again a true equilibriumwas found by evolving the equation from random
initial data, but in this case a significant amount of noise (50%) was added (Fig. 4).

Three arbitrarily chosen initial guesses for parameters were used, μ = (.1, 0, 5, 0),
(1, 1, 1, 1), and (.5,−1, 10, 8). The algorithm parameters were the same as above. Figure 4
shows how the parameter estimate improves as C is decreased. Notice that the estimate after
the first RMD iteration is quite poor, and only improves after a gradual reduction of C . The
intuitive reason for this is that noise in the input data becomes less important for smaller
values of C since the magnitude of the fidelity term in (10) is reduced.

It is worthwhile to compare the RMD estimates to those produced from the minimal resid-
ual formulation (5) alone. Even small amounts of noise will easily corrupt the computation of
derivatives in N (uT ;μ), and smoothing of the raw data uT is needed to produce reasonable
answers. In the context of a spatial spectral discretization, this can be accomplished with a
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Fig. 4 Left: target data constructed from an equilibrium using random initial and adding 50% noise; Right:
relative error in the parameter estimate as a function of 1/C . All three initial guesses (solid, dashed,dash-dot)
yield the same sequence of approximations

Fig. 5 Relative error of parameter
estimate using filtered residual
minimization, using the sharp
cutoff filter (solid), the
exponentially decaying filter
(dashed), and the algebraically
decaying filter (dash-dot)

low-pass filter defined by F−1g(k)F , where F is the (two dimensional) Fourier transform.
Three different specifications for the symbol g(k) were tried:

g(k) =

⎧
⎪⎨

⎪⎩

χ(|k| < k0), (sharp cutoff)

1/(1 + exp(A(|k| − k0)), (exponential cutoff)

1/(1 + |k|2/k20), (algebraic cutoff)

(54)

To give the filtering procedure the benefit of the doubt, the cutoff wavenumber k0 was varied.
For the exponential cutoff, the parameter A was chosen to obtain the best fit, which turned
out to be A = 4.

As in the preceding sections, the relative parameter estimate error was computed for each
filter type over a range of cutoff values. The results of least squares regression are shown
in Fig. 5. In general, parameter estimates were quite poor, regardless of the choice of cutoff
wavenumber. The only exceptionwas in a narrow range for the exponentially decaying cutoff,
but since k0 is not given to begin with, it is not clear how this would be determined absent
prior knowledge of μexact . In any case, the quality of estimates using regression alone are
not nearly as good as the RMD procedure.
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Fig. 6 Left: target data constructed from a transient state at time t = 30 with added noise; middle: the
equilibrium state, obtained by evolving to t = 108, which is far from the equilibrium; Right: the relative error
of the parameter estimate as the interpolation parameter C is varied

4.3 Transient target data

An even more extreme situation was examined where the data derives from a dynamically
transient pattern. This was obtained from evolving the equation from random initial data
with parameters (K , α, β, γ ) = (1.3, .7, .5, 1.5) up to t = 30, and then adding a significant
(50%) amount of noise. The time was chosen so that a recognizable pattern was generated,
but yet was very far from the true equilibrium (Fig. 6).

In this test, only the initial guess μ = (1, 0, 0, 0) was used, although other guesses of the
same order of magnitude produced similar results. The other algorithm parameters were the
same as the previous examples. The relative error (as defined above) of the parameter estimate
was measured as the interpolation parameter C was continually reduced (Fig. 6,right).

For larger values of C , the estimate was poor as is the previous cases. This largely reflects
the influence of noise, since the estimate in this regime is similar to the minimum residual
estimate. Lowering the value of C effectively filters the input data, and produces better
estimates. On the other hand, as C becomes very small, the fidelity to the input data is
eroded, and the estimate more reflects the parameters corresponding to a true equilibrium
closest to uT , which is not necessarily correlated with the parameters used to generate the
target data to begin with. In this case, the best choice for the interpolation parameter appears
to be finite, although presently it is not clear how to choose C in an optimal way.

5 Example: localized patterns in a polymer system

A multiphase model of complex polymers is
(

φA

φB

)

t
= �

(
−G�

(
φA

φB

)
+ ∇W (φA, φB)

)
+

(
φB − φA

φA − φB

)
. (55)

The dependent variables φA, φB represent densities of monomers in a block copolymer; a
detailed discussion of this model can be found in Glasner and Orizaga (2018). Here

W = σABφ2
Aφ2

B + σASφ
2
A(1 − φA − φB)2 + σBSφ

2
B(1 − φA − φB)2 + �φ2

Aφ2
B(1 − φA − φB)2,

(56)

and

G =
[

2σAS σAS + σBS − σAB

σAS + σBS − σAB 2σBS

]
. (57)
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The parameter � plays a minor qualitative role in the model, and is simply set to 50 in the
following numerical calculations, whereas surface energies (σAB , σAS, σBS) are part of the
parameter set to be estimated. It should be noted that the evolution is only well posed if G
is positive definite; this criteria defines the parameter region over which the optimization
problem is considered. The domain and boundary conditions are the same as in Sect. 4.

Written in the form (55), the system is not a gradient, at least with respect to the L2 metric.
The equilibrium problem, on the other hand, can be recast as

N (φA, φB;μ) = −G�

(
φA

φB

)
+ ∇W (φA, φB) + �−1

(
φB − φA

φA − φB

)
+

(
λA

λB

)
, (58)

where λA,B are undetermined Lagrange multipliers that can be treated as two extra system
parameters. The inverse Laplacian �−1 is defined via the Fourier transform û(k) of u(x) as
the inverse transform of û(k)/|k|2 (setting the k = 0 term to zero), and is easily handled in
the spectral discretization framework. Written in this form, (58) is a gradient system with
respect to the augmented potential

F =
∫

1

2

∣∣∣∣G
1/2∇

(
φA
φB

)∣∣∣∣
2

+ W (φA, φB ) + 1

2

∣∣∣�−1/2(φA − φB )

∣∣∣
2
dx + λA

∫
φA dx + λB

∫
φB dx .

(59)

The linear systems (12) are solved by the iterative method like (51), where the linear
operators are

L+ = ∇2W − s I , I ≡
[
1 0
0 1

]
, (60)

and

L− = −G� + (s − C)I − �−1 I2, I2 ≡
[
1 −1

−1 1

]
. (61)

The choice s = maxx σ(x) where σ(x) are principal eigenvalues of ∇2W (x) ensures that
L+ has positive eigenvalues, and guarantees convergence of the iterations. Other aspects of
the numerical computation are similar to Sect. 4.

5.1 Tests of parameter estimation

The method’s performance was tested for equilibria generated using the original dynamics
(55), and adding noise. In the first test, (σAS, σAB , σBS) = (4, 3, 4) and the initial condition
was a circular domain shape, divided into two semicircular subdomains (φA, φB) = (1, 0)
on one half and (0, 1) on the other half. Outside of these regions, it was necessary to set
(φA, φB) = (.03, .03) so that mass does not entirely flow out of the polymer phase domains.
After evolving the system to its final equilibrium configuration, noise was added (Fig. 7).
The additional exact parameters (λA, λB) = (.15, .15) were then determined via (58).

The results for data which have both small (10%) and large (50%) amounts of noise
are reported in Fig. 7. The initial parameter guesses were (σAS, σAB , σBS, λA, λB) =
(2, 8, 5, 0, 0), although other choices (within reason) gave similar results. The error of the
estimates became smaller asC was decreased, nearly converging to the original exact param-
eters in both test cases.

A test problem with a more elaborate domain configuration was also considered (Fig. 8).
The exact surface energy parameters were (σAS, σAB , σBS) = (2, 2, 2), the initial conditions
which generate the equilibrium state had random values between 0 and 1 within a circu-
lar patch, and a moderate amount of noise (10%) was added. The initial guess here was
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Fig. 7 Left top: target data with 10% added noise; right top: the relative error of the parameter estimate for
small noise data. Left bottom: target data constructed with 50% added noise; Right bottom: the relative error
for large noise data

Fig. 8 Left: multi-domain target data; Right: the relative error of the parameter estimate as a function of 1/C

(σAS, σAB , σBS, λA, λB) = (7, 7, 7, 0, 0). The results are very similar to the previous test,
where the parameter estimate becomes almost exact for C → 0.
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6 Example: A non-variational pattern forming system

As a final illustration of the parameter estimation methodology, we consider the Gray-Scott
reaction-diffusion model

ut = Du�u − uv2 + f (1 − u), (62)

vt = Dv�v + uv2 − ( f + k)v. (63)

This system has been widely studied because of its diverse pattern forming ability Pearson
(1993). The domain and boundary conditions are the same as before.

In addition to the explicit parameter set (Du, Dv, f , k), there are two hidden parameters
corresponding to translation invariance (τx , τy). These are included in the set of parameters
over which optimization is performed. It is convenient to rewrite (48) by changing spatial
variables so that the translation symmetry acts only on the target data (uT , vT ). This results
in the minimization of ||(u, v) − (uT , vT )|| subject to the constraint

0 = Du�u − uv2 + f (1 − u) + C[u − uT (x − τx , y − τy)], (64)

0 = Dv�v + uv2 − ( f + k)v + C[v − vT (x − τx , y − τy)], (65)

where u, v are evaluated at (x, y).
As in the other test problems, target data was obtained by choosing random initial data for

(62–63), evolving this system until some prescribed time, and in this case significant (50%)
noise was added. The system produces localized patterns which evolve on a rather slow time
scale. As a consequence, the state used for the target pattern was more of a transient than a
true equilibrium.

The explicit system parameters were Du = 2 × 10−3, Dv = 10−3, f = 0.060, and
k = 0.0609, and the initial guesses were Du = 0.1, Dv = 0.1, f = 0.1, k = 0.1, and
τx = 0 = τy . Figure 9 shows the target pattern before and after noise was added. It also
shows the relative error of the parameter estimate for noisy data; this quantity only measures
the difference of the four explicit system parameters. The algorithm was also used without
hidden parameters (Fig. 9, dashed curve), and it produced parameter estimates which were
nearly as good. Note that for large values of C , the algorithm failed to improve the estimate,
but eventually began to converge toward the true parameters when C became small enough.
In contrast to the example in Sect. 4.3, the transient nature of the target configuration did not
cause the estimate to eventually worsen as C became very small.

7 Conclusion

This paper introduced a constrained optimization formulation for parameter estimation
which combines aspects of previous approaches but avoids some of their difficulties. Effi-
cient algorithms for solving the associated optimization problems were also described. The
intractability of finding a global minimizer among numerous local minimizers in (4) appears
to be mitigated with this approach. Conversely, the difficulties of residual minimization (5)
in handling noisy data can be partially overcome as well.

The projection-relaxation algorithm appears to provide a robust method for locating min-
imizers to (9). Convergence of this algorithm was noted for a surprisingly wide range of
initial parameters, although performance became worse as noise was added. It would be
interesting to compare its efficiency and reliability to alternative approaches such as gradient
descent-type or Levenberg–Marquardt methods.
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Fig. 9 Left: transient state without noise; Middle: target obtained by adding 50% noise; Right: the relative
error of the parameter estimate as the interpolation parameter C is varied, both including hidden parameters
(solid) and without (dashed)

Although our method is presented as an attempt to relate the input data to exact steady
state solutions, parameter estimates can be quite reasonable even when the target data is a
slowly-evolving transient. The reasons for this are not entirely clear at present. For some
test problems there is an optimal value for the interpolation parameter C which provides the
best parameter estimate. More work should be done to understand how this value should be
selected.

The algorithms presented have several associated “meta-parameters” such as μ̃min and
the initial and final values of C whose choice is problem-specific. It would be advantageous
to have a systematic way of determining these, based on criteria for algorithmic efficiency
and accuracy of the estimates. In addition, heuristics for providing initial parameter guesses
would be helpful.

Perhaps the greatest virtue of the newmethod is dealingwith noisy inputs, sometimes even
to the point where the target data pattern is nearly unrecognizable or just a mere caricature
of an actual model solution. This seems to be closely tied to the mollifying nature of the
underlying evolution equation. In a sense, the equation itself acts as a filter, eliminating fine
scale noise in a very natural way. This same phenomenon might be useful when dealing with
the residual minimization formulation (5) alone and its sparsity-inducing counterparts.

Acknowledgements The author was supported through NSF awards DMS-1514689 and DMS-1908968.

Appendix

Here we provide details about the numerical methods employed in this paper. In light of
periodic boundary conditions, it is natural to employ a standard Fourier pseudo-spectral
discretization Trefethen (2000). For square domain [0, 2π]2, this approximation takes the
form

u ≈
N∑

kx=1

N∑

ky=1

û(kx , ky, t) exp
[
2π i

(
ω(kx )x + ω(ky)y

)]
,

whereω(kx ),ω(ky) are the correctly de-aliasedwavenumbers. The discrete Fourier transform
is used to compute û, and can be written as a linear map û = Fu. The Laplacian is therefore
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discretized as

�u ≈ F−1�Fu

where� is just the diagonal multiplication operator�û = −[(ω(kx )2 +ω(ky)2]û. Note that
any rational function of the Laplacian can be similarly computed by spectral mapping, for
example,

(� − c)−1u = F−1(� − cI )−1Fu.

We note that the discrete Fourier transform is easily parallelized; for the computations we
utilize MATLAB’s built-in support for GPU processing.

The discretization in time is based on semi-implicit approaches(e.g. Bertozzi et al. (2011);
Song (2016);Glasner andOrizaga (2016))which only require inversion of constant coefficient
operators. A first order method of this form is

(ui+1 − ui )/�t = N+(ui+1) + N−(u∗
i )

where ui is the i th timestep. Here N = N+ + N− is an operator splitting chosen so that
N+ is linear (typically involving the highest order derivatives) and can be rapidly inverted
by spectral means. The term u∗

i is a prediction for ui+1, which in the present set of examples
is provided by simple linear extrapolation. For gradient flows, this method can be shown to
be unconditionally stable when N+, N− are negative gradients of the convex and concave
parts of the energy Glasner and Orizaga (2016).

To expedite convergence to an equilibrium, the timestep �t is adapted to match the
dynamics at it slows. An easy way to accomplish this is to increase �t by some factor
(usually 1.5) when ||ui+1 − ui || is smaller than some tolerance. This is done until a large
time T is reached. Since the initial condition u0 for the operator EC (u0) is often already
close to an equilibrium, very few (typically 10 − 50) timesteps are ultimately required.
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