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Abstract—We propose a new nonconvex framework for blind
multiple signal demixing and recovery. The proposed Riemann
geometric approach extends the well known constant modulus
algorithm to facilitate grant-free wireless access. For multiple
signal demixing and recovery, we formulate the problem as
non-convex problem optimization problem with signal orthog-
onality constraint in the form of Riemannian Orthogonal CMA
(ROCMA). Unlike traditional stochastic gradient solutions that
require large data samples, parameter tuning, and careful ini-
tialization, we leverage Riemannian geometry and transform the
orthogonality requirement of recovered signals into a Riemannian
manifold optimization. Our solution demonstrates full recovery of
multiple access signals without large data sample size or special
initialization with high probability of success.

Index Terms—Blind demixing, grant-free access, signal recov-
ery, Riemannian manifolds, optimization, non-convex.

I. INTRODUCTION

Recent advances in next generation networking technologies
are poised to ubiquitously connect the full spectrum of sensors,
devices, and computers to facilitate future development of
smart cities and smart agriculture, among other applications.
These exciting developments, known collectively as Internet
of Things (IoT), promise significant benefits in a plethora
of fields including health care, farming, environmental sci-
ence, infrastructure, energy efficiency, transportation, safety
and sustainability. In this work, we focus on the technical
challenge of grant-free wireless access for a large number of
low complexity wireless devices.

Generally, wireless networks are based on either random
access (e.g., WiFi networks) or controlled scheduling (e.g.,
4G-LTE cellular networks). Contention based random access
schemes, such as the CSMA-CA protocol adopted in IEEE
802.11a/g/n/ac, possess the advantage of simplicity but suf-
fer from lower spectrum efficiency due to access collision
when the number of active devices is large. Controlled user
scheduling based on centralized access grants can achieve high
spectrum efficiency but require more elaborate network-user
interaction such as random access and contention resolution,
and would incur higher energy consumption for many low
power devices.

A typical IoT application involves sporadic communications
between a significant number transceivers, triggered by exter-
nal events, in order to save energy. This prompts the need for
low-latency communications and the ability to support these
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links in the performance-constrained scenario of typical IoT
transceivers, in particular, in terms of bandwidth efficiency.

In grant-free access, multiple signals could collide at the
receiving node. Although these colliding signals can utilize
specialized pilots or training signals as their unique charac-
teristics to be exploited for signal separation, there are at
least two problems. First, the training signals would consume
precious device energy and network bandwidth to transmit but
carry no payload data. Second, to reduce training overhead,
shorter pilots should be used. However, there are at most N
orthogonal training sequences of length N . Thus, large number
of IoT devices pose challenges to both spectrum and energy
efficiency.

Blind equalization has been a staple idea in terms of
achieving this goal by diminishing the impact of pilots or
preambles, aiming to reduce their impact in the overall band-
width efficiency. Among blind equalization algorithms, the
Constant Modulus Algorithm (CMA) presented by Godard
[1] in the 1980s is often considered the most widespread
technique due to its computational simplicity and practical
effectiveness [2], [3]. However, one of its major drawbacks
in practical applications is the presence of local extrema -
due to the action of additive noise- and its slow convergence
[3]–[5]. CMA-based grant free signal recovery typically apply
traditional adaptive algorithms such as stochastic descent to
find optimum parameters of an underlying linear system for
signal recovery. Such solutions would require finely tuning of
e.g., normalization and stepsize for satisfactory convergence.

There have been extensive works on CMA and other related
formulations aimed at overcoming their drawbacks. Several
recent works have proposed different approaches for tackling
CMA-based optimization problems. One interesting approach
is the transformation of CMA-based equalization to a convex
problem, via Semidefinite relaxation [6]–[8], which provides
global convergent solutions in a lifted higher dimensional
parameter space that are further projected to the original
solution space. There are also other relaxation approaches,
such as using the trace (nuclear) norm as surrogate for the
rank-1 constrain imposed on the CMA problem when defined
in terms of matrices [9]. As with any relaxation approach,
CMA based on convex relaxation relies on the expectation
that the convex problem yields solutions that can be projected
to near optimum CMA solutions. Additionally, the problem
size grows polynomially with increasing parameter size of the
linear system and poses severe practical challenges in many
scenarios.

Other line of works include analytical solution to CMA
[10], [11]. These solutions and its variants [12], [13] do
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have convergence ambiguity owing to the algebraic solution.
However, they are much more complex and cannot work with
QAM source signals that do not exhibit the same modulus
(magnitude) such as 16-QAM. There are also multistage
schemes [14], that depend heavily on the estimation error
being close to the MMSE estimate in earlier stages, or the
error accumulates through different stages [15].

In the present paper, we present a new Riemannian per-
spective with which we redefine the orthogonality require-
ment of different combiners as a Riemannian manifold. Any
optimization procedure that solves the blind signal recovery
problem is now an unconstrained optimization problem over a
Riemannian manifold. The Riemannian geometric formulation
has been extensively studied in recent years [16] and has
been successfully applied to several domains, such aslow-rank
matrix decomposition [17], singular value decomposition [18],
phase retrieval [19], blind signal demixing [20], dictionary
learning [21], among others. As we shall show, it presents a
promising direction for improving CMA and related algorithm
for blind signal recovery in grant-free network access.

Section II presents the signal model for blind signal recov-
ery, the formulation of the optimization problem, and some
comments on the nature of these. Section III introduces the
Riemannian geometry two proposed optimization schemes.
Section IV details theoretical convergence properties and
complexity analysis of this technique. Section V presents
numerical simulations on each scenario, and finally Section VI
summarizes our conclusions.

Notations: In the following, vectors and matrices will be
denoted with small and capital boldface letters, such as z
and Z respectively. Sets are denoted with calligraphic capital
letters. Complex conjugation is denoted with z. For a complex
scalar a, we use Re(a), Im(a), |a| and ∠(a) to denote its real
part, imaginary part, magnitude and angle, respectively. The
transpose, element-wise complex conjugation and conjugate
transpose are denoted by zT, z and zH, respectively. The
Hermitian and skew-Hermitian parts of a matrix Z are denoted
as herm(Z) = 0.5(Z + ZH) and skew(Z) = 0.5(Z − ZH).
The Euclidean norm of vectors and spectral norm of matrices
is denoted by ‖ · ‖, and the Frobenius norm of matrices is
denoted by ‖·‖F . Finally, diag(z) represents a diagonal matrix
that uses elements of vector z on its diagonal, and we define
the operator ddiag(Z) which yields a diagonal matrix which
only retains the diagonal elements of Z.

II. SYSTEM MODEL

A. Grant-Free Blind Signal Recovery and Demixing

We consider the signal recovery of multiple users in an
access group in a grant-free access system, as depicted in
Fig.1. In particular, all potential uplink users in each access
group have acquired network timing such that their uplink
transmission bursts would span one given set of receiver time
slots. Users in each designated access group may randomly
transmit within their shared channel in terms of allocated time
or frequency resources. Appropriate coding and rate-matching
is utilized by all source nodes to have equal number of data
symbols K within each access group and burst. Furthermore,
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Fig. 1: L sources share a common resource block and transmit
independent signals to a host station with M antennas through
an unknown physical channel. The host receiver aims to use a
linear W to recover L sources with little mutual interference.

we design systems such that with very high probability or
certainty that the number of single-antenna active nodes L
shall fall below the number of diversity antennas M at
the receiver node. In particular, the receiver node does not
necessarily know L. Since the receiver recovers multiple user
signals during blind demixing without prior knowledge of their
identities, the receiver can utilize user-ID scrambled CRC to
check which recovered user signal belongs to which user,
similar to the blind detection of PDCCH by users using RNTI-
scrambled CRC in LTE or 5G [22], [23].

To summarize, we define the received signal vector xk, the
transmitted signal vector sk, and the flat fading channel H ,
respectively, as

xk =

 x1[k]
...

xM [k]

 , sk =

s1[k]
...

sL[k]

 , H =

 h11 · · · h1L

... . . . . . .
hM1 · · · hML

 .
(1)

Then the received signal vector can be written as

xk =Hsk + nk, (2)

where the MIMO channel matrix H ∈ CM×L is assumed to
have full column rank L (with L ≤ M ) and nk ∈ CM is
the vector of additive white Gaussian noises (AWGN) in that
resource block, of the same size as xk in Eq.(1).

In blind multiple signal demixing and recovery, we are
interested in deriving J simultaneous demixers wj ∈ CM ,
j ∈ {1, . . . , J} that allow the recovery of J sources with
minimal interference, each tuned to a distinct signal. We can
also write W = [w1 w2 · · ·wJ ] as the receiver blind
demixing parameter matrix such that

yk =

w
H
1
...
wH
J

xk =W Hxk =

ŝ`1 [k]...
ŝ`J [k]

 , `j ∈ {1, . . . , L}.

(3)
Note that the receiver has explicit knowledge on neither the
unknown channels H nor the number of active sources L,
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except for the statistical properties and the constellation of
each source signal. Additionally, we need to ensure that the
demixers do not merely restore the same source signal for only
a small subset of sources, possibly with different phases or
delays [3]. Therefore, when considering simultaneous multiple
signal recovery, additional constraints must be enforced for
demixers wj , j ∈ {1, . . . , J} to recover different source
signals. Without loss of generality, we consider J ≤ L and
we shall also consider the case when accurate estimation of
the number of access users is achieved such that J = L.

B. Constant Modulus Algorithm

The problem of blind signal recovery has been extensively
studied before. In particular, Godard [1] proposed what was
later known [2] as the constant modulus algorithm (CMA)
to adaptively find a single optimum demixer w ∈ CM by
minimizing the mean CM cost for equalization:

E{[|yk|2 −R2]
2}, R2 =

E{|s`[k]|4}
E{|s`[k]|2}

. (4)

It is known that CMA can be applied to i.i.d. signals using
QAM constellations of arbitrary size and magnitude [3]. More-
over, even by setting R2 = 1, CMA still converges such that
its output recovers QAM source signal with a simple scalar,
without affecting signal integrity. In batch implementation, the
single-source CM cost can be rewritten as

f(w) =
1

2K

K∑
k=1

(
|xH
kw|2 −R2

)2

, (5)

which is a smooth real-valued nonconvex function of w. Note
that f presents phase invariance, i.e., if ŵ is a solution that
minimizes f(ŵ), then the entire set W(ŵ) = {eiθŵ : θ ∈
[0, 2π]} contains equivalent solutions that achieve the same
minimum f(ŵ).

C. Simultaneous Multiple Signal Recovery in Demixing

The CMA has been adapted in the past for simultaneous
recovery of multiple independent source signals. In these
applications, the first step is to define a cumulative demixing
cost consisting of J copies of CM costs:

f(W ) =
1

2K

J∑
j=1

K∑
k=1

(
|xH
kwj |2 −R2

)2

. (6)

The full blind demixing cost is a function of the J blind
demixers W . The joint blind demixing problem is to optimize
multiple solution vectors Ŵ = [ŵ1, · · · , ŵJ ] that jointly
minimize the cumulative CM cost of (6).

This cumulative CM cost by itself cannot guarantee that
the recovered signals are indeed from different sources. In
fact, even if every one column vector of Ŵ captures the same
signal source, the cumulative CM cost of (6) is still minimized
and cannot prevent such solutions. For this reason, it is clear
that the cumulative CM cost of (6) is non-convex and is in
fact multi-modal. Hence, the challenge lies in the practical
need that distinct source signals be recovered by the J solution
vectors of Ŵ .

Several approaches that aim to enforce the demixers to re-
cover different signals in what is called MIMO blind recovery.
Specifically, many works would add regularization term(s)
to the cost function (6) to penalize against the recovery of
identical signals by more than one solution vectors in Ŵ . In
[24], [25], for example the authors proposed adding a norm of
joint cumulants for such source separation objective. Another
MIMO CMA approach [26] uses the real part of equalized
signals as regularization.

Despite their demonstrated successes, regularization ap-
proaches exhibit some drawbacks. First, the regularizing term
typically requires a scalar weigth that must tuned, often by trial
and error. There is no performance guarantee under various
possible scenarios. Second, different regularization approaches
might lead to different solutions and performance, while
no solution is consistently better than others. Additionally,
regularizing terms often increase the computation complexity
as regularized cost functions would either require additional
computations or delicate non-convex optimization steps. Fi-
nally, regularizing terms proposed in the literature generally
are limited to promote pairwise signal orthogonality instead of
multi-lateral signal orthogonality, and also require more data
samples to successfully suppress mutual interferences.

In our approach based on Riemann Geometry, we enforce
signal orthogonality among demixer outputs by directly re-
stricting the solution space. Recall the definition of W as
joint demixer matrix. Due to the phase invariance of the CM
cost function, the optimal solution satisfies Ŵ HH = P with
P ∈ CJ×L a generalized permutation matrix (whose non-
zero entries are complex numbers with unit magnitude), i.e.,
PP H = I . Here I denotes identity matrix of appropriate size.
We therefore write the join signal recovery constraint as

Ŵ HHHHŴ = I. (7)

However, the blind receiver node has no knowledge of
the channel H . Therefore, we can leverage source signal
orthogonality and white noise property to estimateHHH from
the sample covariance matrix of the data vectors xk:

RX =
1

K

K∑
k=1

xkx
H
k

K→∞−−−−→ E{RX} =HHH + σ2I. (8)

Note that, in the absence of noise, the rank of matrix
HHH ∈ CM×M is L (L ≤ M ), i.e., the rank of H . Thus,
we formulate the optimization problem for multiple signal
recovery as orthogonal constant modulus algorithm (OCMA):

min f(W ) =
1

4K

K∑
k=1

∥∥ddiag(W HXkW )−R2I
∥∥2

F

(9a)

s.t. W HRXW = I. (9b)

We first note that the Euclidean gradient of f(W ) is

∇W f(W ) =
1

K

K∑
k=1

XkW
(
ddiag(W HXkW )−R2I

)
,

(10a)
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and for a matrix E of the same size as W , the directional
derivative of f(W ) in direction E is

D
(
∇W f(W )

)
[E]

=
1

K

( K∑
k=1

XkW ddiag(W HXkE +EHXkW )

+XkE
(
ddiag(W HXkW )−R2I

))
. (10b)

D. Estimating the Number of Active Sources for Demixing

Because of the number of active sources L may vary in
practice, the literature has often assumed that L is known.
However, in grant-free access, such assumption would not be
practical, since, at best, we would only be able to limit the
maximum number of simultaneous users according synchro-
nization and slotted scheduling. Thus we shall first present an
approach to estimate the number of active sources.

Given that H has rank L ≤ M , the sample covariance
matrix RX in restriction (9b) is not strictly positive definite
in the absence of noise. Thus, the restriction cannot be directly
defined as a Riemannian manifold. In noisy scenarios and
with several data samples, the sample covariance matrix will
likely be positive definite, but would probably be numerically
ill-conditioned as its condition number might be very large.
However, in both cases we can extract a strictly positive
definite matrix from the sample covariance matrix from its
rank-L approximation.

We first estimate the number of transmitted signals embed-
ded in the received data via Minka’s Laplace method [27],
and let the result be L. Let the SVD of the channel matrix
H = UΣV H, with U ∈ U(M), and V ∈ U(L), i.e.,

H = [UL U
⊥
L ]

[
ΣL

0(M−L)×L

]
V H = ULΣLV

H ,

UL ∈ ST(M × L) ,U⊥L ∈ ST
(
M × (M − L)

)
,

ΣL = diag(σ1, . . . , σL), (11)

where ST(M × L) = {A ∈ CM×L : AHA = IL} is the
complex Stiefel manifold of orthonormal L-frames in CM
[18], [28].

First, consider the ergodic noiseless scenario (i.e. RX =
E{RX}),

HHH = UΣΣHUH = ULΣLΣH
LU

H
L = ULΛHUH

L . (12)

From the above decomposition, we can obtain U and Σ, but
not V . Also, note that Λ = ΣLΣH

L is diagonal with positive
entries because H is full-column rank, and both UL,U⊥L are
full-column rank.

In the noisy case with infinite samples, we have

HHH + σ2I = UΣΣHUH + σ2I

= U
(
ΣΣH + σ2I

)H
UH = UΛ1U

H , (13)

and we let Λ equal to the diagonal matrix whose elements
are the L largest diagonal components of Λ1 − σ2I , with
corresponding eigenvector matrix UL. This approach is very

similar to the so-called probabilistic PCA [29], which obtains
the principal components of data and a generative model.

However, even when Minka’s Laplace method is known
for having satisfactory performance in the limited sample
regime, it relies on the assumption of Gaussian signals and
might fail to properly estimate the number of sources with
discrete modulations. All independent sources contribute with
a significant component of the sample covariance matrix,
related to its significant eigenvalues, whereas noise will only
have minor contributions in other directions as their related
eigenvalues are much smaller in high SNR regimes.

For an under-estimated L, the L-rank approximation of
the sample covariance matrix would likely fail to capture all
relevant directions of the channel, leading to mutual signal
interference in signal recovery. Therefore, we compute the
normalized L-rank approximation error∥∥RX −ULΛUH

L

∥∥
‖RX‖

(14)

for comparison against a preset threshold εr to decide whether
L needs to be increased in a update. We also update the L-
rank approximation of the sample covariance matrix. Our test
results to be shown later demonstrate the general reliablity of
this rank estimation method for demixing.

III. ROCMA: A RIEMANNIAN MANIFOLD OPTIMIZATION
FRAMEWORK

The Riemannian framework for optimization on manifolds
[16] has gained a lot of attention owing to the capability to
handle problems with a real-valued objective function defined
on a constrained space,

minimize
M∈Cm×n

f(M) s.t. M ∈M, (15)

Note that the (nonlinear) spaceM might not be well-defined
in terms of addition, continuity, and/or other properties which
are typically exploited by regular optimization approaches in
Euclidean spaces. The main idea is to redefine the problem
as an unconstrained optimization problem over a manifold.
Manifolds are topological spaces that, equipped with a metric,
locally resemble Euclidean spaces of equal dimension size,
but might be remarkably different globally. Some manifold
examples include spheres, the set of rotations, the set of
positive semidefinite matrices, the set of fixed-rank matrices,
and Stiefel manifolds, among many others.

In this section, we first obtain a suitable Riemannian man-
ifold representation of the ROCMA problem (9). Next, we
further exploit the obtained Riemanniand manifold to define a
quotient Riemannian manifold, which allows us to tackle the
phase invariance of the demixers directly in the optimization
process.

A. Redefining the Geometry of Signal Recovery

Our goal here is to find a suitable geometry that encodes
the orthogonality condition of demixers in the search space of
Problem (9). Even with a method to estimate the number of
sources L, we derive a general version of the geometry where
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the receiver attempts to recover J ≤ L sources. Considering
Eq.(12) in restriction (9b), we have

IJ = Ŵ HHHHŴ = Ŵ HULΣLΣH
LU

H
LŴ

=
(
UH
LŴ

)H
Λ
(
UH
LŴ

)
= Y HΛY , (16)

which defines the complex scaled Stiefel manifold of

STΛ(L× J) = {Y ∈ CL×J : Y HΛY = IJ}. (17)

This Stiefel manifold defines the set of orthonormal J
frames in CL through the scaling of Λ, and is a generalization
of the complex Stiefel manifold ST(L× J) (see [28] for the
notion of scaled Stiefel manifold in the real case). Now, recall
that UL ∈ ST(M × L); and therefore we have

Y = UH
LW ⇐⇒ W = ULY . (18)

Hence, by means of this transformation of the optimizing
variable W by UL, we obtain a Riemannian manifold rep-
resentation of restriction (9b) as M = STΛ(L × J) that
we can use for optimization purposes. From our solution,
we obtain the demixer matrix directly with a one-to-one
scaling by UL. The variable transformation (18) implies the
need to rewrite the cost function, Euclidean gradient, and
directional derivatives of the gradient. Defining zk = UH

Lxk
and Zk = zkz

H
k = UH

LXkUL, we have a new cost function

g(Y ) =
1

4K

K∑
k=1

∥∥ddiag(Y HZkY )−R2I
∥∥2

F
, (19)

whose Euclidean gradient is

∇Y g(Y ) =
1

K

K∑
k=1

ZkY
(
ddiag(Y HZkY )−R2I

)
, (20)

and the directional derivative of (20) in direction E is

D
(
∇Y g(Y )

)
[E] =

1

K

K∑
k=1

ZkY ddiag(Y HZkE +EHZkY )

+ZkE
(
ddiag(Y HZkY )−R2I

)
. (21)

To optimize Y over M, we need to first define the linear
space that approximates the manifold around a point Y , which
is called the tangent space at Y and is denoted as TYM. For
M = STΛ(L× J), the tangent space is

TXM = {G ∈ CL×J : G =XΩ +X⊥A,

Ω = −ΩH ∈ CJ×J ,A ∈ C(L−J)×J}. (22)

In other words, XHΛG = Ω is skew-Hermitian.
We can now define length in the tangent space with a

Riemannian metric dY , which is a smooth inner product
defined at each element Y for elements of the tangent space
TYM. In our case, we use a scaled version of the real-trace
metric, given by

dY (E,C) = Re
(
Tr(EHΛC)

)
, E,C ∈ TYM. (23)

We also define a projection to the tangent space, which
allows to restrict optimization only in the directions of interest,

which indeed belong to the tangent space. For G ∈ M, the
projection operator is

ProjTY (G) = G− Y herm
(
Y HΛG

)
∈ TYM , (24)

which enables us to define the Riemannian gradient and Rie-
mannian Hessian from the Euclidan gradient and its directional
derivative, respectively.

For optimization purposes, the motion along the manifold
from point Y in a given direction E is given by a retraction
RY (E), which in our case corresponds to the polar retraction
for the complex scaled Stiefel manifold [28]

RSt
X(G) = (X +G)

(
(X +G)HΛ(X +G)

)− 1
2

= (X +G)
(
I +GHΛG

)− 1
2 . (25)

B. Riemannian Quotient Geometry
In the context of Riemannian manifold optimization, quo-

tient Riemannian manifolds are used to define a manifold that
presents invariance of the cost function or the representation
of the manifold itself [30]. It can be defined by equipping
the original or ambient manifold with an equivalence relation
between its points to describr the aforementioned invariance.

Let ∼ be such an equivalence relation, i.e., Y ∼ Y0 denotes
that Y and Y0 are equivalent in terms of the invariance of
interest. Thus, we can identify equivalent points to Y as one
single set known as equivalence class, denoted as

[Y ] = {Y0 ∈M : Y0 ∼ Y }. (26)

The Riemannian quotient manifold is the set of equivalence
classes:

M =M/∼=
{
[Y ] : Y ∈M

}
. (27)

A quotient manifold is an abstract space whose elements are
subsets of the ambient manifold. However, the use of quotient
manifolds in Riemannian optimization has additional advan-
tages, such as the ability of obtaining a strictly positive definite
Hessian by neglecting directions related to the cost function
invariance, and potential reduction of problem dimensionality
by applying a simple representation of the elements in the
space. Even in a case when there is no such representation
and the ambient manifold is used for computational purposes,
the quotient geometry is theoretically important to establish
convergence properties of second-order methods that rely on
the positive definiteness of the Hessian on the manifold.

Now, recall that the cost function (9a) presents unimodular
phase invariance in each demixer such that for each demixer
wj , a rotated demixer eiθwj , θ ∈ [0, 2π] yields the same cost
value. When considering multiple demixers in W , we want
to describe unimodular phase invariance on each of the J
demixers simultaneously. Let U(1)×J the group of diagonal
unitary matrices of size J , i.e.

U(1)×J =
{
D ∈ U(J) :D = diag

(
eiθ1 · · · eiθJ

)}
.

Thus, the group action of U(1)×J defines an equivalence
relation between demixer matrices. The corresponding equiv-
alence class is then

[W ] =
{
WD :D ∈ U(1)×J

}
,
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Fig. 2: Representation of the ambient manifold M and quo-
tient manifold M. The tangent space TYM is divided into
a vertical space VY (in green) and a horizontal space HY

(in red), which contains the relevant search directions ηHY
.

These directions correspond to tangent directions η[Y ] at the
point [Y ] in the quotient manifold.

and by means of (18), we have that WD = ULY D. In other
words, we can rewrite the equivalence class in terms of Y as

[Y ] =
{
Y D :D ∈ U(1)×J

}
, (28)

and we obtain a Riemannian quotient manifold that considers
the cost function invariance as

M =M/U(1)×J . (29)

The quotient manifold M is an abstract space, and re-
quires matrix representations in the computational space M.
Fortunately, an element Yq on the quotient manifold can be
represented by an element Y in the computational space. Thus,
every geometry-related operation over the quotient manifold
can be defined in terms of elements and operations in the
computational space.

We now look for a representation of the tangent space of
the quotient manifold TYM using the tangent vectors of the
ambient manifold M. We accomplish this by characterizing
the tangent space TYM as the direct sum of two orthogonal
spaces: the vertical space VY , which contains the directions
tangent to the equivalence classes, and the horizontal space
HY , which contains the tangent directions orthogonal to
the vertical space. That is, the horizontal space contains
the directions of interest in terms of optimization, and the
tangent vectors of the quotient manifold can be represented as
vectors of the horizontal space of the ambient manifold. This
forms a Riemannian submersion from the quotient manifold
to the computational space, thereby defining a correspondence
between elements of the quotient space and elements of the
computational space [16]. Figure 2 shows a depiction of the
quotient manifold geometry and its relation to the ambient
manifold.

Let D : R → U(1)×J be a path in the equivalence class
such that D(0) = I . The vertical space is given by vectors
of the form XD′(0) where vectors D′(t) are tangent to
U(1)×J , whose tangent set corresponds to the Lie algebra

of unitary diagonal matrices τ (J), consisting of diagonal
imaginary matrices of size J × J . Therefore,

VY =
{
Y T : T ∈ τ (J)

}
= {Y T : T ∈ CJ×J imaginary diagonal}, (30)

and the horizontal space is then given by

HY =
(
VY
)⊥

(31)
= {G ∈ TYM : 〈G,F 〉 = 0 ∀F ∈ VY }
= {G ∈ TYM : 〈G,Y T 〉 = 0 ∀T ∈ τ (J)}
= {G ∈ TYM : Re

(
Tr(GHΛY T )

)
= 0 ∀T ∈ τ (J)}

and thus Y HΛG is skew-Hermitian with zero diagonal, to be
orthogonal to any T ∈ τ (J). This is equivalent to state that
the projection to horizontal space is given by

ProjHY (E) = ProjTY (E)− Y ddiag
(
Y HΛProjTY (E)

)
= E − Y herm

(
Y HΛE

)
− Y ddiag

(
skew(Y HΛE)

)
. (32)

Finally, the retraction for the quotient manifold corresponds
to the retraction on the ambient manifold, restricted to the
horizontal space. We can see that the polar retraction depends
only on the equivalence class:

RSt
[Y ](G) = RSt

Y D(G)

= (Y D +GD)
(
IJ + (GD)HΛGD

)− 1
2

= RSt
Y (G)D =

[
RSt

Y (G)
]
. (33)

Consequently, we can effectively optimize over the quotient
manifold M using representatives from the ambient manifold
M. Table I summarizes the geometric definitions of the
quotient manifold M used in ROCMA. Readers interested in
additional details of the quotient manifold discussions may
refer to [30, Section 9.9].

C. Riemannian Optimization for Blind Signal Recovery

We use a Riemannian Trust-Region (RTR) algorithm, which
is a second-order optimization approach with superlinear con-
vergence rate [31]. First, the algorithm searches a direction E
on the horizontal space HY . At each iteration we solve the
trust-region subproblem with Y ∈M

Q : minimize
E∈HY

q(E)

s.t. dY (E,E) ≤ δ2 (34)

where E is in the horizontal space of iterate Y and δ denotes
the trust region radius. The cost function is given by

q(E) = dY
(
E, gradY g(Y )

)
+

1

2
dY
(
E,HessY g(Y )[E]

)
(35)

in which gradY g(Y ) denotes the Riemannian gradient and
HessY g(Y )[E] denotes the Riemannian Hessian, each ob-
tained by projecting their Euclidean counterparts to the hori-
zontal space of the ambient manifold.

We can now define the ROCMA algorithm as summarized
in Algorithm 1. Succinctly, we first initialize by estimating
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TABLE I: Riemannian geometry definitions required for manifold optimization of ROCMA.

Name Definition
Computational space M STΛ(L× L)
Quotient space M =M/∼ STΛ(L× L)/U(1)×L

Riemannian metric dY dY (E,C) = Re
(
Tr(EHΛC)

)
Horizontal space HY HY = {Y T : T ∈ t(L)}
Horizontal space projection ProjHY ProjHY (E) = E − Y herm

(
Y HΛE

)
− Y ddiag

(
skew(Y HΛE)

)
Riemannian gradient gradY g gradY g(E) = ProjHY

(
∇Y g(E)

)
Riemannian Hessian HessY g HessY g(Y )[E] = ProjHY

(
DY g(Y )[E]

)
Retraction RY RY (E) = (X +E)

(
IJ +EHΛE

)−0.5

the number of sources L, perform an L-rank eigendecompo-
sition that removes noise contribution in eigenvalues, and by
corroborating that the L-rank approximation is close to the
sample covariance matrix to adjust L if needed. After scaling
the data vectors, we define cost function, quotient Riemannian
manifold, and geometry operations. Thereafter, we determine
Riemannian Trust Regions: in each iteration we solve the trust-
regions subproblem Q in the horizontal space of the current
iterate, obtaining a descent direction E in the horizontal space
HY , whose magnitude is given by the size of the accepted
trust region [16]. The subsequent solution iterate is computed
using the retraction of E, which brings the result back to
the manifold. Once the algorithm converges, we compute the
demixer matrix by scaling the obtained solution with UL.

Algorithm 1 Riemannian Orthogonal CMA (ROCMA)

Given: xk ∈ CM , k ∈ {1, . . . ,K}, trust region radius δ,
low-rank approximation tolerance εr
A) Source estimation:

1: Estimate number of independent sources L with Minka’s
Laplace method

2: Obtain L largest eigenvalues and corresponding eigenvec-
tors of sample covariance matrix RX to construct L-rank
approximation RX =

∑
k xkx

H ≈ ULΛUH
L

3: while ‖RX −ULΛUH
L‖ > εr‖RX‖ do

4: L = L+ 1
5: Update Λ and UL with next eigenvalue/eigenvector
6: end while

B) Initialization:
7: Define variables zk = UH

Lxk and objective function g
8: Define Riemannian manifold M = STΛ(L× J)/U(1)×J

with metric dY , projection ProjHY , retraction RY

C) Riemannian Trust Regions:
9: while not converged do

10: Obtain descent direction Et by solving Q in HYt

11: Yt+1 = RYt

(
Et

)
12: end while
13: Wfinal = ULYfinal

A known algorithm to solve the trust-region subproblem Q
based in a truncated Conjugate Gradient approach is available
as Algorithm 11 in [16, Section 7.3]. The manifold opti-
mization toolbox Manopt [32] implements a variation of this
algorithm. We use this open-source toolbox Manopt in our
implementation of Algorithm 1 by leveraging its flexibility for

selectable choices of stopping criteria, tolerances, and other
parameters.

IV. PERFORMANCE AND THEORETICAL ANALYSIS

A. Convergence Conditions and Properties of CMA

The global convergence properties of CMA for PAM and
QAM modulations in noiseless scenarios are well known [3,
Chapters 4, 7]. The case of SIMO-CMA blind equalizers,
also known as fractionally-spaced CMA or CMA-FSE (when
applied to blind equalization scenarios), correspond to the case
of recovering the transmitted signal via multiple antennas (for
blind beamforming) or an oversampled equalizer (for blind
equalization). The CMA-FSE equalizer has guaranteed global
convergence as long as the subchannels have no common
zeros, when using an equalizer with memory length larger
than the order of the channel [33].

MIMO-CMA equalizers are an extension of CMA-FSE,
where multiple sources are transmitting independent sources,
and we adaptively find an equalizer that recovers one signal
with minimal multi-user interference and minimum ISI [25],
[34]. Global convergence of MIMO-CMA equalizers have
similar requirements as the case of CMA-FSE equalizers,
which in turn is equivalent to have the channel convolution
matrix H with full column rank. Thus, channel matrix H of
full-column rank provides guaranteed global convergence in
noiseless scenarios.

Multiple source recovery is a special case of the multiple
source recovery scheme presented [25] with zero-ISI sub-
channels, and therefore global convergence is also guaranteed
under similar conditions. Hence, in the following we will
always assume that the channel matrix H has full-column
rank. Moreover, under noisy transmissions, it is well known
that one effect of low additive channel noise is the addition of
local minima to the cost function in the vicinity of the global
solution [35], [36].

B. Known Results and Uses of Riemannian Optimization

Riemannian manifold optimization with different solvers,
such as Riemannian Trust-Regions, has well-known conver-
gence guarantees [31] over several classical manifolds, such
as the Stiefel manifold and the generalized Stiefel manifold,
[28], the Grassmannian manifold [16], and many others. These
properties also apply to the quotient Riemannian manifolds,
as the computational space is still the ambient manifold [16].
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Since the geometry of the CMA cost function is well-behaved,
in terms of its strong convexity near desired solutions and
bounded curvature [37], the proposed Riemannian optimiza-
tion will also have the well known convergence guarantees
both globally and locally. In particular, Riemannian Trust
regions will converge superlinearly [31].

Additionally, some existing works have also analyzed the
particular case of cost functions that are mathematically sim-
ilar to Eq.(19). These works present scenarios closely related
to the constant modulus portion of the OCMA problem, but
did not exploit the (scaled) orthogonality of several solutions
in the problem geometry. In [38] the authors optimize over
the Stiefel manifold to maximize the diagonal terms of a
matrix quadratic form for joint diagonalization, which is
similar to the CMA cost function by setting R2 = 0. Another
work [39] tackles the phase retrieval problem by defining a
manifold geometry with the so-called fixed-norms manifold.
Our proposed ROCMA generalizes the existing works and
leverage the desired convergence properties of Riemannian
manifold optimization.

C. Computational Complexity

We can estimate the computational complexity of the
ROCMA algorithm by analyzing each step of Algorithm 1.
In particular, the Riemannian Trust-Region step considers the
iterations needed for convergence and also the iterations of
each call to the trust-region subproblem algorithm. In the
following, we refer to the former as outer iterations, and the
latter as inner iterations.

1) The source estimation step is dominated by the compu-
tational cost of Minka’s Laplace method, with a cost of
O(ML), and a number of eigendecompositions, which
can be obtained iteratively with a cost of O(M3).

2) The computational cost of initialization is dominated
by obtaining zk via scaling, with a computational cost
of O(MLK). Other computations have negligible cost,
used mainly for defining geometry operations.

3) The cost of an inner iteration is dominated by the
computation of Riemannian Hessian, which has a cost of
O(L2K). Other operations are linear over the samples
with a cost of O(LK), or linear over averages at a cost
of O(L).

4) The cost of an outer iteration is dominated by the cost of
the total inner iterations required in the particular outer
iteration It. Thus, this dominant component requires
O(L2KIt). The Riemannian retraction RY has a cost of
O(L3), whereas other operations are linear over scalars
and have a cost of O(1). The final scaling by UL has a
cost of O(ML2).

Considering the major dominant computation of the aforemen-
tioned steps, Table II summarizes the complexity of ROCMA
in each step.

V. SIMULATION RESULTS

A. Definitions

We test our proposed ROCMA in a multi-user signal re-
covery setup. We consider L sources, each transmitting K

TABLE II: Computational complexity of ROCMA.

ROCMA Steps Total cost
Estimate L O(ML)
Iterative eigendecomposition RY O(M3)
Define zk O(MLK)
RTR outer iteration O(L3 + L2KIt)
Final scaling O(ML2)

independent symbols from a regular QAM constellation with
unit average energy. The central receiver node has M receive
antennas whereas each transmit node as a single antenna. The
channels H are modeled as stationary Rayleigh with i.i.d.
entries Hml ∼ N (0, 1

2 )+ iN (0, 1
2 ), under i.i.d. additive white

Gaussian noise nk. All noise are independent of the channel
and data signals. Our tests are performed over different values
of average SNR at the receiver.

To measure the performance of the algorithm, we define the
total normalized interference (NTI) for each of the recovered
sources, defined by

NTIj =

∑
i |Cij |2 −maxi |Cij |2

maxi |Cij |2
(36)

where C =HHW represents the final demixed channel ma-
trix, with its columns corresponding to each channel-demixer
pair. Unless otherwise stated, we average 1000 runs per SNR
value.

Out setting does not include initialization, and so ROCMA
is initialized randomly. We also note that the Manopt RTR
algorithm does not require a predetermined number of itera-
tions or a fixed stepsize since it uses a stopping criterion and
backtracking for the trust-regions subproblem.

B. Numerical Test Results

We test the source recovery capabilities of ROCMA, un-
der different system sizes, different number of samples, and
different QAM constellations.

Figure 3 presents the probability of successful recovery of
a multiple sources with respect to the number of samples,
for different system sizes and an SNR of 20dB. We test both
QPSK and 16-QAM modulations. After ROCMA, we define
success as the event that all demixers attain an NTI smaller
than -20dB. RSMR achieves successful recovery with high
probability with a reasonable number of samples for both
modulation schemes, even for a rather large system size.

The number of samples that guarantee recovery with high
probability grows with both modulation order and system size.
Clearly, the system size demonstrates a stronger impact on the
required number of data samples.

Using the minimum number of samples that achieves 100%
of success probability in each setting, we compute the average
(normalize) total interference of all demixers per outer itera-
tion of ROCMA. Because of fading channels, random noises,
and random signals, we are also interested in examining
the distribution of the computational complexity over Monte
Carlo simulations. Thus, we decide to use the number of
iterations where the algorithm achieves successful recovery
of all sources (as defined above) to characterize the speed
of convergence. In particular, we define the fastest recovery
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(a) M × L = 8× 4.

(b) M × L = 16× 9.

Fig. 3: Probability of successful recovery for all demixers
using ROCMA vs. number of samples K. Each scenario is
simulated 1000 times for each system size and modulation
scheme.

set as the tests that attain successful recovery with the least
number of iterations (representing 3-5% of the simulations),
the slowest recovery set as the tests that take the most number
of iterations (representing 2-13% of the simulations). We
also consider the faster convergence subset as the subset by
discarding the slowest recovery subset (the faster 87-97% of
all recovery results).

Figures 4 and 5 present these numerical evaluation for two
systems of sizes M × L = 8× 4 and 16× 9, respectively. In
all cases, the average over all simulations closely resembles
the average over the faster subset, which indicates that the
bias of the slowest recovery subset is rather insignificant in
terms of average convergence. When comparing the fastest
and slowest recovery sets, our results appear to demonstrate
significant variability in computational speed. However, the
number of outer iterations does not vary drastically.

In comparison the traditional gradient descent implementa-

tions of CMA, which usually require thousands of iterations
but at least hundreds of samples (in either batch or stochastic
implementation) to achieve similar performance, the ROCMA
is quite efficient and steady in computation complexity and
reliably recovers the QAM data sources.

C. Constellation of QAM Signal Recovery

To further visualize the performance of our proposed
ROCMA, Figure 6 illustrates the recovered constellations of
all active sources at one time instant upon convergence. The
system size is M × L = 16 × 9 and the 9 signals are all
16-QAM modulation. We selected an experiment with median
performance among all tests using the number of samples K
that guarantees 100% of successful recovery of all signals (up
to a phase rotation) based on results in Fig. 3. As seen from
Figure 6, all 9 QAM sources have been successfully recov-
ered within 12 total iterations. Their 16-QAM constellations
illustrate open-eye diagrams to guarantee error free recovery
of the 9 different sources.

VI. CONCLUSION

In this paper, we present a new approach for blind multiple
signal recovery that trades off computational complexity with
speed and high probability of successful recovery. This is
achieved by means of minimizing a Constant-Modulus Algo-
rithm cost function with Riemannian optimization, such that
the orthogonality of different demixers is embedded in the
geometry of a Riemannian manifold. We derive this geometry
and obtain the geometrical definitions that allow to minimize
over the manifold as the search space of the optimization
problem. The results of our approach show high probability of
successful recovery of all sources with a reasonable number of
samples, for rather large system sizes and different modulation
schemes.

Future research paths include the adaptation for multiple
source recovery and equalization over ISI fading channels,
a stochastic or mini-batch reformulation of the algorithm,
and the definition of new geometrical perspectives that could
exploit information from forward error correction procedures.
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