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Abstract. In this work, we construct a minimum action method for dynamical systems with4

constant time delays. Minimum action method (MAM) plays an important role in seeking the most5

probable transition pathway induced by small noise. There exist two formulations of minimum ac-6

tion method: one is the geometric formulation based on the Maupertuis principle; and the other one7

is the temporal formulation. The geometric formulation relies on the conservation of Hamiltonian8

corresponding to the Freidlin-Wentzell action functional. For systems with time delays, the Hamil-9

tonian does not conserve due to the explicit dependence on the time delay, which implies that the10

geometric MAM is not applicable. We work with the temporal formulation of MAM for problems11

with time delays. By defining an auxiliary path, we remove the optimization with respect to time12

through the optimal linear time scaling. The pointwise correspondence between the auxiliary path13

and the delayed transition path is dealt with by a penalty term included into the action functional.14

The action functional is then discretized by the finite element method, and strategies for h-adaptive15

mesh refinement have been developed. Numerical examples have been presented to demonstrate the16

effectiveness of our algorithm.17

1. Introduction. As differential equations are used to model the dynamics in18

the real world, scientists and engineers want to make their models more realistic.19

Noting that the imperfect environment makes random perturbations ubiquitous in20

physical, chemical, biological and engineering applications, we may consider stochas-21

tic differential equations (SDEs) instead of deterministic ones by including random22

noise. One critical phenomenon beyond the deterministic models is the transition in23

the configuration space despite of the small noise amplitude. Such a transition may24

rarely occur but have extreme impact. Many important application problems can be25

considered as a small-noise-induced transition, e.g., non-equilibrium interface growth26

[7, 24], regime change in climate [35], switching in biophysical network [33], hydrody-27

namic instability [30, 31], wetting transitions on patterned surfaces [36] etc. Another28

way for model generalization is to include time delays into the system, which means29

that the dynamics may depend on not only the current state but also the past ones. A30

typical example is a mathematical model that regulates the self-driving vehicles [18].31

Other applications include communication networks [3, 4], networked control systems32

[15, 34], traffic model and control [19], etc. We also note that model reduction re-33

sults in low-order time-delay systems [13, 14]. In this paper, we seek numerically34

the most probable transition pathway induced by small noise in a time-delay system.35

This technique can be applied to study phase transitions in physical and biological36

applications. For example, experimental evidence of an absorbing phase transition37

was given recently for a bistable semiconductor laser with long delayed optoelectronic38

feedback and multiplicative noise [6].39

To study the small-noise-induced transitions in dynamical systems, Freidlin and40

Wentzell introduced the large deviations theory for differential equations [8]. It gives41

a rigorous mathematical framework to quantify the probability of these rare events42

and to find the most possible transition path, which correspond to the minimum and43

the minimizer, respectively, of the so called Freidlin-Wentzell (F-W) action functional.44

Due to the lack of analytical solution, minimizing the F-W action functional numer-45
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ically becomes critical from the application point of view. For a general dynamical46

system perturbed by small noise47

dXt = b(Xt) dt+
√
ε dWt, (1.1)

where ε is a small positive number and Wt is a standard Wiener process in Rn, we48

have the following optimization problem:49

ST∗(φ∗t ) = inf
T∈R+

inf
φ0=x1,
φT=x2

ST (φt), (1.2)

where50

ST (φt) =
1

2

∫ T

0

|φ̇t − b(φt)|2 dt (1.3)

is the F-W action functional and φ∗t defined on [0, T ∗] is the minimizer among all51

transition paths φt connecting the two states x1 and x2 on the time interval [0, T ].52

The optimization problem (1.2) corresponds to the quasi-potential defined in equa-53

tion (2.2). φ∗t is often called the minimal action path (MAP), and numerical algo-54

rithms that approximate φ∗t are in general called minimum action method (MAM) [5].55

Available MAMs include: adaptive MAM (aMAM) [37, 26, 27, 25], geometric MAM56

(gMAM) [16, 9, 10], and MAM with optimal linear time scaling (tMAM) [28, 29, 32].57

Consider the stochastic differential equation with a discrete time delay 0 < τ <∞58 {
dXt = b(Xt,Xt−τ )dt+

√
εdWt, t ∈ (0, T ],

Xt = ϕ(t), t ∈ [−τ, 0].
(1.4)

Some results on large deviation of SDEs with constant time delays can be found in59

[1, 20, 21]. The F-W action functional for equation (1.4) is defined as60

Sτ,T (φt) =
1

2

∫ T

0

∣∣∣φ̇t − b(φt,φt−τ )
∣∣∣2 dt. (1.5)

In this work, we focus on the optimization problem (1.2) with respect to the F-W61

action functional (1.5), i.e.,62

Sτ,T∗(φ∗t ) = inf
T∈R+

inf
φ0=x1,
φT=x2

Sτ,T (φt), (1.6)

It is not straightforward to generalize the available MAMs to deal with the time-delay63

systems. First of all, gMAM is not applicable. We note that gMAM is based on the64

Maupertuis principle, which means that a geodesic metric on the surface of constant65

Hamiltonian can be used to represent the action functional. However, the existence66

of an explicit time delay implies that the Hamiltonian is not conservative any more,67

meaning that the assumption of gMAM is not valid. We then need to work with68

time as the parameterization parameter. Both aMAM and tMAM can be employed.69

Considering that tMAM is more general than aMAM in the sense that aMAM is not70

able to deal with the case that T ∗ is finite, we focus on the generalization of tMAM71

in this paper.72

In addition to the numerical difficulties for systems without time delays (see [32]),73

we need to pay attention to some extra difficulties induced by the time delay. First,74
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the dynamical behavior of a time-delay system can be significantly different compared75

to a system without time delays. This implies that the initial guess of the optimization76

problem (1.6) should also depend on τ . Second, the change in the regularity of the77

solution of a time-delay system needs to be taken into account when we choose the78

approximation space and adaptivity strategy. Third, the optimal linear time scaling79

for time-delay systems is the root of a highly nonlinear equation, meaning that the80

uniqueness of the solution is not guaranteed such that a straightforward application81

of tMAM is not robust. Fourth, the time delay makes the problem nonlocal, meaning82

that the efficiency deserves some attention.83

The main trick we use is the introduction of an auxiliary path ψt such that we84

can consider the minimization of85

Sτ,T (φt,ψt) =
1

2

∫ T

0

∣∣∣φ̇t − b(φt,ψt)∣∣∣2 dt
subject to the constraint ψt = φt−τ . With respect to φt and ψt, the time delay86

does not show explicitly in the F-W action functional, meaning that the procedure of87

tMAM can be readily applied. To deal with the pointwise constraint ψt = φt−τ , we88

will include a penalty term in the action functional. Generally speaking, we decrease89

the complexity of the problem by increasing the dimensionality, where the number of90

unknowns is doubled. We then use finite elements to discretize the action functional,91

and an a posteriori error estimator based on the derivative recovery technique to92

guide the h-adaptivity. For now we do not look into the p-adaptivity because of the93

possible low regularity of the MAP, although such a low regularity might be local.94

Since the dynamical behavior may change significantly with respect to τ , we propose95

to increase the time delay from zero, where we assume a good initial guess is known96

for the minimization of Sτ,T with τ = 0. Then the minimizer of Sτ,T will be used as97

the initial guess for the minimization of Sτ+δτ,T such that the algorithm will be more98

robust. Furthermore, we will interweave the increment of τ and the mesh refinement99

to increase the efficiency.100

The rest of this paper is organized as follows. We recall the tMAM in Section101

2. The penalty method for the time-delay systems combined with some analysis is102

developed in Section 3. In Section 4, we provide a detailed discussion on the finite103

element discretization and the adaptivity strategy. Numerical results are given in104

Section 5 followed by a discussion section.105

2. Minimum action method with optimal linear time scaling (tMAM).106

We briefly recall the tMAM for dynamical systems perturbed by small noise [28].107

Consider the following stochastic ODE:108

dXt = b(Xt) +
√
εdWt, (2.1)

where ε is a small positive number, and Wt ∈ Rn is a standard Wiener process.109

To address the most probable transition path from x1 to x2 induced by the small110

perturbations, we consider the quasi-potential:111

V (x1,x2) = inf
T>0

inf
φ0=x1,
φT=x2.

[
ST =

1

2

∫ T

0

|φ̇t − b(φt)|2dt

]
, (2.2)

where ST is called Freidlin-Wentzell action functional and the minimizer of ST is112

called the minimal action pathway (MAP). According to the large deviation principle113
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(LDP), we know that114

Pr(transition from x1 to the vicinity of x2) ≈ Ce−
V (x1,x2)

ε , (2.3)

when ε is small enough. The LDP also implies that the MAP is the most probable115

transition pathway (MPP), which is also called the maximum likelihood transition116

pathway (MLP). The tMAM was introduced in [28] to deal with the optimization117

problem in equation (2.2) required by the quasi-potential. The basic idea of tMAM is118

to remove the optimization parameter T by replacing it with an optimal linear time119

scaling120

T̂ (φ̄s) =
‖φ̄′s‖L2(Γ1)

‖b(φ̄s)‖L2(Γ1)

. (2.4)

where φ̄s = φt=sT , i.e., the time is mapped linearly from ΓT = [0, T ] to Γ1 = [0, 1],121

and ′ indicates the derivative with respect to the rescaled parameterization parameter122

s. The most straightforward way to obtain T̂ (φ̄s) is to solve the following subproblem123

for any given φ̄s with s ∈ [0, 1]124

T̂ (φ̄s) = arg min
T>0

T

2

∫ 1

0

|T−1φ̄s − b(φ̄s)|2ds,

which admits a unique solution given by T̂ (φ̄s). Another way to obtain T̂ is the zero-125

Hamiltonian constraint used in geometric minimum action method (gMAM). Taking126

the Legendre transform of the integrand of ST with respect to φ̇t, we obtain the127

Hamiltonian128

H(φ,p) = bTp+
1

2
pTp. (2.5)

The conservation H ≡ 0 yields the following pointwise constraint on the transition129

path [16]130

|φ̇t| = |b(φt)|, ∀t. (2.6)

In terms of the variable s, the zero-Hamiltonian constraint becomes131

|φ̄′s|T−1 = |b(φ̄s)|, ∀s ∈ [0, 1].

Integrating the above equation, we also obtain equation (2.4). The zero-Hamiltonian132

constraint (2.6) actually defines a nonlinear mapping between time and the geodesic133

metric on the surface H ≡ 0.134

Replacing T in equation (2.2) with the optimal linear time scaling T̂ (φ̄s), the135

optimization problem for the quasi-potential is reformulated as136

min
φ̄0=x1,
φ̄1=x2.

[
ST̂ =

T̂

2

∫ 1

0

|T̂−1φ̄′s − b(φ̄s)|2ds

]
. (2.7)

If the optimal transition time is finite, this rescaled optimization problem is equivalent137

to the original one; If the optimal transition time is infinite, the rescaled optimiza-138

tion problem can still be used in the sense that the discrete version of the rescaled139

optimization problem is always well-posed. When there exists at least one critical140
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point on the MAP, the optimal transition time is ∞. However, the discretization of141

the action functional can introduce a natural regularization such that the optimal142

transition time for the discrete action functional is always finite. Then an optimal143

linear time scaling always exists for the discrete action functional. The convergence144

analysis of a finite element discretization of ST̂ can be found in [32].145

The main numerical difficulty for the optimization problem (2.7) can be explained146

by the Euler-Lagrange (E-L) equation associated with ST̂ :147

T̂−2(φ̄s)φ̄
′′
s + T̂−1(φ̄s)

(
(∇φ̄sb)

T −∇φ̄sb
)
φ̄′s − (∇φ̄sb)

Tb = 0. (2.8)

When the optimal transition time is large, the E-L equation can be regarded as a sin-148

gularly perturbed problem. In other words, the solution has boundary/internal layers,149

which means that adaptive discretization is necessary for numerical approximation.150

We have developed an hp-adaptive minimum action method based on a posteriori er-151

ror estimate in [29] to approximate the optimization problem (2.7), where the optimal152

convergence rate of the finite element approximation has been recovered.153

3. Penalty method for a dynamical system with time delays. We now154

consider the following stochastic ODE subject to a constant time delay155 {
dXt = b(Xt,Xt−τ )dt+

√
εdWt, t ∈ (0, T ],

Xt = ϕ(t), t ∈ [−τ, 0],
(3.1)

where 0 < τ <∞ indicates the time delay. The solution of a time-delay system is not156

uniquely defined by the sole knowledge of the pointwise initial condition at t = 0 but157

by a functional initial condition ϕ(·) defined over the interval [−τ, 0] [12]. In some158

literature, this is also referred to as a memory effect. Due to the dependence on a159

function instead of a point, equation (1.4) is not a finite-dimensional system, but an160

infinite-dimensional one. The Freidlin-Wentzell action functional for problem (1.4) is161

defined as [20, 21].162

Sτ,T (φt) =
1

2

∫ T

0

∣∣∣φ̇t − b(φt,φt−τ )
∣∣∣2 dt. (3.2)

We intend to consider the following double-layered optimization problem163

inf
T>0

inf
φ(0)=x1,
φ(T )=x2

Sτ,T (φt) (3.3)

to seek the most probable transition in the sense of large deviation. Due to the explicit164

dependence on τ , the Hamiltonian will not be conservative, implying that the gMAM165

is not applicable for this problem.166

We work with the temporal formulation of MAM. In particular, we intend to167

generalize the tMAM described in the previous section to deal with the optimization168

problem (3.3). Letting t = sT , we rewrite Sτ,T as169

Sτ,T (φt) = Sτ (T, φ̄s) =
T

2

∫ 1

0

|T−1φ̄′s − b(φ̄s, φ̄s−τ/T )|2ds. (3.4)

We will use 〈v,w〉 to indicate the inner product of vectors v,w ∈ Rn, and 〈g1(s), g2(s)〉s170

to indicate the inner product of vector functions g1(s), g2(s) ∈ Rn defined for s ∈ [0, 1].171

More specifically,172

〈g1(s), g2(s)〉s =

∫ 1

0

〈g1(s), g2(s)〉ds.
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For any given φs, the optimization of Sτ (T, φ̄s) with respect to T , i.e., ∂TSτ (T, φ̄s) =173

0, yields that174

∂TSτ (T, φ̄s) =
1

2
〈b, b〉s −

1

2
T−2〈φ̄′s, φ̄′s〉s − 〈∇̂bφ̄′ŝT−1τ, T−1φ̄′s − b〉s = 0, (3.5)

where we write φ̄s−τ/T = φ̄ŝ and let ∇̂b indicate the gradient with respect to φ̄ŝ.175

It is seen that this is a nonlinear equation of T for any given φ̄s. In particular, the176

subscript ŝ is a function of T . In contrast to the systems without time delays, the177

optimal linear time scaling given by equation (3.5) might not be unique. Although178

a root-finding algorithm is always possible, it is difficult to clarify the robustness of179

such a strategy.180

To define a unique optimal linear time scaling for time-delay systems, we introduce181

an auxiliary path ψ̄s, which is also defined on [0, 1] and satisfies the following point-182

wise constraint:183

ψ̄s = φ̄ŝ = φ̄s−τ/T . (3.6)

The action functional is rewritten as184

Sτ (φ̄s, ψ̄s) =
T

2

∫ 1

0

|T−1φ̄′s − b(φ̄s, ψ̄s)|2ds. (3.7)

Assuming that φ̄s and ψ̄s are independent, there exists a unique optimal linear time185

scaling satisfying ∂TSτ (φ̄s, ψ̄s) = 0, i.e.,186

T̂ (φ̄s, ψ̄s) =
〈φ̄′s, φ̄′s〉

1/2
s

〈b(φ̄s, ψ̄s), b(φ̄s, ψ̄s)〉1/2s

(3.8)

for any given φ̄s and ψ̄s, which actually shares the same form as T̂ defined in equation187

(2.4) for dynamical systems without time delays. To deal with the constraint (3.6),188

we add a penalty term into the action functional and define189

Ŝτ (φ̄s, ψ̄s) =
T̂

2

∫ 1

0

|T̂−1φ̄′s − b(φ̄s, ψ̄s)|2ds+
β2

2

∫ 1

0

|ψ̄s − φ̄ŝ|2ds, (3.9)

where 0 6= β ∈ R and φ̄ŝ = φ̄s−τ/T̂ . Instead of minimizing the original action190

functional, we will work with its penalized form Ŝτ (φs,ψs). More specifically, we will191

consider the following optimization problem:192

min
φ̄s∈H1

Γ1
,ψ̄s∈L2

Γ1
,

φ̄0=x1, φ̄1=x2

Ŝτ (φ̄s, ψ̄s). (3.10)

3.1. Calculus of variation for Ŝτ . For convenience, we split Ŝτ to two parts:193

Ŝτ (φ̄s, ψ̄s) = Ja(φ̄s, φ̄
′
s, ψ̄s) + Jp(φ̄s, φ̄ŝ, ψ̄s),

corresponding to the two integrals respectively in equation (3.9), i.e.,194

Ja =
T̂

2

∫ 1

0

|T̂−1φ̄′s − b(φ̄s, ψ̄s)|2ds, Jp =
β2

2

∫ 1

0

|ψ̄s − φ̄ŝ|2ds,
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where the dependence of Jp on φ̄s is reflected through the relation ŝ = s − τ/T̂ .195

Consider two test functions δφ̄s ∈ H1
Γ1

with δφ̄s|s=0 = δφ̄s|s=1 = 0, and δψ̄s ∈ L2
Γ1

.196

We first look at Ja. Note that we can treat T̂ in Ja as a constant because
∂T̂J

a = 0 by the definition of T̂ . Then δJa can be easily obtained as〈
δJa

δφ̄′s
, δφ̄′s

〉
s

= 〈T̂−1φ̄′s − b, δφ̄′s〉s,〈
δJa

δφ̄s
, δφ̄s

〉
s

= −T̂ 〈(∇φ̄sb)
T(T̂−1φ̄′s − b), δφ̄s〉s,〈

δJa

δψ̄s
, δψ̄s

〉
s

= −T̂ 〈(∇ψ̄sb)
T(T̂−1φ̄′s − b), δψ̄s〉s.

We now look at Jp. In contrast to Ja, we need to take into account the contribution197

from the first-order variation of T̂ for Jp, which is198

∂T̂J
pδT̂ = −τβ

2

T̂
〈ψ̄s − φ̄ŝ, φ̄′ŝ〉sδT̂ = BδT̂ ,

where199

B = −τβ
2

T̂
〈ψ̄s − φ̄ŝ, φ̄′ŝ〉s, (3.11)

and δT̂ can be obtained from equation (3.8) as200

δT̂ =
〈φ̄′s, δφ̄′s〉s
T̂ 〈b, b〉s

−
T̂ 〈(∇φ̄sb)

Tb, δφ̄s〉s
〈b, b〉s

−
T̂ 〈(∇ψ̄sb)

Tb, δψ̄s〉s
〈b, b〉s

. (3.12)

Fixing T̂ , we have 〈
δJp

δψ̄s
, δψ̄s

〉
s

∣∣∣∣
T̂

= β2〈ψ̄s − φ̄ŝ, δψ̄s〉s
∣∣
T̂
,〈

δJp

δφ̄ŝ
, δφ̄ŝ

〉
s

∣∣∣∣
T̂

= − β2〈ψ̄s − φ̄ŝ, δφ̄ŝ〉s
∣∣
T̂
.

Combining all the above information, we obtain the first-order variation of Ŝτ as

δŜτ (δφ̄s, δψ̄s)

=〈T̂−1φ̄′s − b, δφ′s〉s +
B

T̂ 〈b, b〉s
〈φ̄′s, δφ̄′s〉s

− T̂ 〈(∇φ̄sb)
T(T̂−1φ̄′s − b), δφ̄s〉s −

BT̂ 〈(∇φ̄sb)
Tb, δφ̄s〉s

〈b, b〉s
(3.13)

− T̂ 〈(∇ψ̄sb)
T(T̂−1φ̄′s − b), δψ̄s〉s −

BT̂ 〈(∇ψ̄sb)
Tb, δψ̄s〉s

〈b, b〉s
+ β2〈ψ̄s − φ̄ŝ, δψ̄s〉s

− β2〈ψ̄s − φ̄ŝ, δφ̄ŝ〉s.

Choosing the test functions δφ̄s and δψ̄s from a finite element space, we will develop201

a numerical solver for problem (3.10) in section 4.202
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3.2. Change of variable. Although the constraint that the Hamiltonian is con-203

servative does not hold for time-delay systems, a related constraint can be found204

through the change of variable. We look at the following formulation of the action205

functional206

Sτ (φt,ψt) =
1

2

∫ T

0

|φ̇t − b(φt,ψt)|2dt, (3.14)

subject to the constraint ψt = φt−τ . Consider a change of variable α = α(t). We
have

Sτ (φt,ψt) =
1

2

∫ α(T )

α(0)

|φ′αt′(α)−1 − b(φα,ψα)|2t′(α)dα

=
1

2

∫ α(T )

α(0)

(|b(φα,ψα)|2t′ + |φ′α|2(t′)−1)dα−
∫ α(T )

α(0)

〈b,φ′α〉dα

≥
∫ α(T )

α(0)

|b(φα,ψα)||φ′α|dα−
∫ α(T )

α(0)

〈b,φ′α〉dα, (3.15)

where ′ indicates the derivative with respect to α. To achieve the lower bound of Sτ ,207

the equality in the last step will hold when208

|φ′α| = t′(α)|b(φα,ψα)|, ∀α (3.16)

or209

|φ̇| = |b(φt,ψt)|, ∀t. (3.17)

Taking into account the constraint ψt = φt−τ , the function t(α) is given by the210

following differential equation211

dt

dα
=

|φ′α(t)|
|b(φα(t),φα(t−τ))|

. (3.18)

Without loss of generality, we assume that α indicates the arc length. Starting from212

φα there exist many different ways to define t(α), since a particle can travel along213

the curve at a varying speed. However, the condition (3.17) yields a particular way to214

parameterize the path with respect to time such that the action functional can reach215

its lower bound in equation (3.15). Let216

α̂(t) =

∫ 0

t

|ϕ̇t|dt, ∀t ∈ [−τ, 0]. (3.19)

The initial condition of equation (3.18) can be defined as217

t = α̂−1(α).

for α ∈ [−
∫ 0

−τ |ϕ̇|dt, 0]. Note that for any α1 > α2, t1 = α̂−1(α1) ≥ α̂−1(α2) = t2,218

which implies that219

α(t− τ) < α(t).

Thus in terms of α, equation (3.18) is a delayed differential equation when τ > 0.220

The delay given by α(t)− α(t− τ) is time dependent although τ is a constant.221
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The constraint (3.17) is a necessary condition satisfied by the minimizer of the222

action functional, which specifies the relation between the time and a more effective223

parameterization for the MAP. With respect to α, there also exist infinitely many224

curves connecting x1 and x2, among which the MAP will be sought. However, due225

to the existence of time delay τ , we are not able to obtain a closed formulation of226

the action functional with respect to α. This is the main reason that gMAM is not227

applicable.228

4. Finite element approximation. For dynamical systems without time de-229

lays, we provided in [32] a finite element approximation framework for the discretiza-230

tion of the action functional, where the well-posedness of optimizing ST and the231

convergence of the linear finite element approximation of the MAP have been ana-232

lyzed. We also showed in [29] that the tMAM based on the adaptive finite element233

approximation is able to recover the optimal convergence rate for both h-refinement234

and hp-refinement (see Section 4.3) no matter that the optimal transition time is finite235

or infinite. In this work, we will use finite elements to discretize Ŝτ , where we pay236

particular attention to the effectiveness of the penalty method that deals with the237

time delays.238

4.1. Approximation spaces. Consider a partition of the interval Γ1 = [0, 1]:239

Th : 0 = s0 < s1 < · · · < sN = 1.

Let R = [−1, 1] be a reference element and Fei an affine mapping from the element240

ei = [si, si+1], i = 0, 1, . . . , N − 1, to the reference element R. Then in each element241

ei, we can define a linear space spanned by polynomials242

W p
ei = {v : v ◦ F−1

ei ∈Pp(R)}, (4.1)

where Pp(R) denotes the set of polynomials of degree up to p over R. In particular,243

we choose Pp(R) = span{θ̃i(s̃)}mi=0, where244

θ̃i(s̃) =


1−s̃

2 , i = 0,
1+s̃

2 , i = 1,
1−s̃

2
1+s̃

2 P 1,1
i−2(s̃), 2 ≤ i ≤ m,

(4.2)

where P 1,1
i (s̃) denotes orthogonal Jacobi polynomials of degree i with respect to the245

weight function (1− s̃)(1 + s̃) [17]. The polynomial order of θ̃i is equal to i for i ≥ 2.246

Let us call θ̃0 the left boundary mode and θ̃1 the right boundary mode. All interior247

modes with i ≥ 2 are equal to zero at the element boundaries.248

With the partition Th, we define the following finite element approximation space249

for φ̄s:250

W p
h =

{
v : v ∈ Rn, vi ∈ H1(Γ1), vi|ej ∈W (p)

ej , v(0) = x1, v(1) = x2

}
⊂H1(Γ1; Rn),

where i = 1, . . . , n, and j = 0, . . . , N − 1. For ψ̄s, we use the same approximate space251

by removing the constraints at the starting and ending points:252

V ph =
{
v : v ∈ Rn, vi ∈ L2(Γ1), vi|ej ∈W (p)

ej

}
⊂ L2(Γ1; Rn).

We then discretize problem (3.10) as253

min
(φ̄h,s,ψ̄h,s)∈Wp

h⊗V
p
h

Ŝτ,h = Ŝτ (φ̄h,s, ψ̄h,s). (4.3)
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Let us order the finite element basis functions defined on Th from 0 to M +1, and254

let φ̄h,s and ψ̄h,s have the following representations in W p
h and V ph , respectively,255

φ̄h,s =

M∑
i=1

φiθW,i,s + x1θW,0,s + x2θW,M+1,s, ψ̄h,s =

M+1∑
i=0

ψiθV,i,s,

where θW,0,s and θW,M+1,s for φ̄h,s indicate the left boundary mode in element e0256

and the right boundary mode in element eN−1, respectively. Although we use the257

same finite element basis functions to define W p
h and V ph , we still differentiate them258

for clarity by adding subscripts ·W and ·V . The first-order variation of Ŝτ given259

in equation (3.13) gives the gradient of the discrete action functional Ŝτ,h. More260

specifically,261

∂Ŝτ,h
∂φi,j

= δŜτ (θW,i,sej ,0),
∂Ŝτ,h
∂ψi,j

= δŜτ (0, θV,i,sej), (4.4)

where δŜτ is given in equation (3.13), and ej is the unit vector in Rn with its jth262

component being 1 and the rest being 0. To this end, we obtain an unconstrained opti-263

mization problem, for which a gradient-type optimization algorithm such as L-BFGS,264

nonlinear conjugate gradient method, etc., can be employed to seek the approximate265

MAP.266

Remark 4.1. One popular strategy to reduce the possibility of ill conditioning267

induced by the penalty term in equation (3.9) is the augmented Lagrangian method,268

which introduces explicit Lagrange multiplier estimates for the constraint [22]. In this269

work, we do not employ the augmented Lagrangian method not only for simplicity270

but also due to the observation that the pointwise constraint (3.6) cannot be achieved271

exactly in the finite element space W p
h ⊗ V

p
h , where the same mesh is used for both272

W p
h and V ph .273

Remark 4.2. We include more details about equation (4.4):

∂Ŝτ,h
∂φi,j

=〈T̂−1φ̄′h,s − b, θ′W,i,sej〉s −
B

T̂ 〈b, b〉s
〈φ′h,s, θ′W,i,sej〉s

− T̂ 〈(∇φ̄h,sb)
T(T̂−1φ̄′h,s − b), θW,i,sej〉s −

BT̂ 〈(∇φ̄h,sb)
Tb, θW,i,sej〉s

〈b, b〉s
− β2〈ψ̄h,s − φ̄h,ŝ, θW,i,ŝej〉s, i = 1, . . . ,M, (4.5)

and

∂Ŝτ,h
∂ψi,j

=− T̂ 〈(∇ψ̄h,sb)
T(T̂−1φ̄′h,s − b), θV,i,sej〉s −

BT̂ 〈(∇ψ̄h,sb)
Tb, θV,i,sej〉s

〈b, b〉s
+ β2〈ψ̄h,s − φ̄h,ŝ, θV,i,sej〉s, i = 0, . . . ,M + 1, (4.6)

where B is given in equation (3.11).274

Remark 4.3. From the optimization point of view, we should increase the value of275

the penalty parameter gradually to achieve a better approximation. Since the pointwise276

constraint (3.6) cannot be exactly satisfied in the approximation space, the penalty277

parameter cannot be too large, otherwise, the action term may be overwhelmed by the278

penalty term. In other words, a lower bound of the penalty parameter is expected to279

achieve the convergence of the numerical solution. This problem will be left for future280
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study. In this work we simply increase the penalty parameter to examine the possible281

improvement. See remark 4.6 and more discussions about adaptivity in section 4.4.2.282

283

4.2. The computation of gradient. The time delay introduces some complex-284

ities for the computation of the gradient ∇Ŝτ,h. It is seen in equations (4.5) and (4.6)285

that there exist some terms, such as 〈φ̄h,ŝ, θV,i,sej〉s, that may not be achieved within286

one element due to the existence of time delay no matter that the mesh is uniform287

or not. Among all the inner products needed for the gradient, we only look at two288

cases that are related to time delay: 1) The time delay is in the transition path φ̄h,s289

or ψ̄h,s, e.g., 〈φ̄h,ŝ, θV,i,sej〉s, and 2) the time delay is in the basis functions, e.g.,290

〈ψ̄h,s, θW,i,ŝej〉s. For these two cases, information from different regions is requested291

for integration. These two cases are illustrated by figures 4.1 and 4.2, where we use292

two identical horizontal lines to indicate the mesh shared by the transition path φ̄h,s293

and the basis function θV,i,s.294

Let us first assume that the delay exists in the transition path and consider
〈φ̄h,ŝ, θV,i,sej〉s. The basis function θV,i,s is defined on a certain element, say ek. For

integration, we need the information of the path on [sk−τ/T̂ , sk+1−τ/T̂ ]. First of all,
T̂ depends on φ̄h,s and ψ̄h,s, meaning that interval [sk−τ/T̂ , sk+1−τ/T̂ ] varies at each

optimization iteration. Second, the boundaries of the interval [sk − τ/T̂ , sk+1 − τ/T̂ ]
are, in general, not grid points, see the illustration in figure 4.1. To achieve the
integration, we need to know how the interval [sk − τ/T̂ , sk+1 − τ/T̂ ] overlaps with
previous elements. For the scenario in figure 4.1, it is seen that the interval has
overlap with three elements. In contrast to the case without time delays, the inner
product involves three elements instead of one. This means on each element, we may
need to compute the Gauss-type quadrature points for a subinterval, one of whose
boundaries is an interior point of this element. These information cannot be pre-
computed on the reference element. In reality, we can maintain a list for each element
[sk, sk+1], which contains all the elements that have overlap with [sk − τ/T̂ , sk+1 −
τ/T̂ ], and will be updated for each optimization iteration after T̂ is updated. For
example, suppose that θV,i,s is located in element ek. Let s_backward[i][j] be a
two-dimensional array, where i = 0, . . . , N − 1 indicates the element index and j
indicates the elements that have overlap with [si− τ/T̂ , si+1− τ/T̂ ]. In figure 4.1, we
have s_backward[k][j]=k-1-j, j = 0, 1, 2, such that

〈φ̄h,ŝ, θV,i,sej〉s = 〈φ̄h,ŝ, θV,i,sej〉s
∣∣
ŝ∈ek−1

+ 〈φ̄h,ŝ, θV,i,sej〉s
∣∣
ŝ∈ek−2

+ 〈φ̄h,ŝ, θV,i,sej〉s
∣∣
ŝ∈ek−3

.

We now assume that delay exists in the basis function, illustrated by figure 4.2,295

and consider the inner product 〈φ̄h,s, θV,i,ŝej〉s. We let θV,i,s be a bubble function, i.e.,296

nonzero on one element and zero elsewhere. It is seen that although θV,i,s = 0 on the297

element [sk, sk+1] in which we take information of φ̄h,s, the inner product is not zero298

due to the time delay, i.e., θV,i,ŝ 6= 0 on [sk − τ/T̂ , sk+1 − τ/T̂ ]. In particular, due to299

the compact support of θV,i,s, the valid part for integration, given by the thicker line in300

figure 4.2, is the only part of the element on which the non-zero part of θV,i,s is defined.301

If we use θV,i,s as a reference instead of φ̄h,s, we need to know that what elements have302

overlap with [sk + T̂ , sk+1 + T̂ ]. Similar to the previous case, we can maintain a list303

for each element and update it as soon as T̂ is updated. We still assume that θV,i,s is304

located in element ek. This time we define a two-dimensional array s_forward[i][j]305

where i indicates the element index while j indicates the elements that have overlap306
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θV,i,s

φ̄h,ŝ τ/T̂

Fig. 4.1. The inner product of a basis function and a delayed path.

θV,i,s

φ̄h,s

τ/T̂θV,i,ŝ

Fig. 4.2. The inner product of a delayed basis function and the path.

with [si + τ/T̂ , si+1 + τ/T̂ ]. In figure 4.2, we have s_forward[k][j]=k+2+j, j = 0, 1.307

Thus308

〈φ̄h,s, θV,i,ŝej〉s = 〈φ̄h,s, θV,i,ŝej〉s
∣∣
s∈ek+2

+ 〈φ̄h,s, θV,i,ŝej〉s
∣∣
s∈ek+3

.

309

Remark 4.4. It is seen that due to the variation and the time delay, the com-310

putation of the gradient is much more complicated than the cases without time delays311

[28]. On the other hand, we note that the finite element basis θV,i,s is much more312

flexible to deal with the time delay than other types of discretization, such as the finite313

difference method, in the sense that the basis function itself is able to carry the effect314

of time delay.315

4.3. Mesh refinement. Mesh refinement is an important issue for MAM for-316

mulated with respect to time. Due to the existence of both slow and fast dynamics,317

the non-uniform mesh is a necessity for an accurate approximation. Simply speaking,318

the mesh for the transition path φ̄s should be consistent with the dynamics [28]. In319

the region of slow dynamics, the element size can be larger while in the region of fast320

dynamics, the element size should be small. For problems without time delays, this321

physically-based adaptivity criterion was further refined by a regularity-consistent a322

posteriori error estimator in [29].323

In our penalized action functional for time-delay systems, we define an auxiliary324

path ψ̄s = φ̄ŝ=s−τ/T̂ . From the approximation point of view, the mesh for φ̄s on [0, 1−325

τ/T̂ ] should be comparable to the mesh of ψ̄s on [τ/T̂ , 1]. If one non-uniform mesh is326

used for both φ̄s and ψ̄s, it is difficult to achieve such a translation invariance. The327

simplest solution is to use different meshes for φ̄s and ψ̄s, which certainly introduces328

more computation cost. We note that if τ � T̂ , it may still be reasonable to use the329

same mesh for both φ̄s and ψ̄s.330
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4.3.1. A posteriori error estimator. We have two choices here for mesh re-331

finement: 1) φ̄h,s and ψ̄h,s use the same mesh, and 2) φ̄h,s and ψ̄h,s use different332

meshes. For both choices, we can use the derivative-recovery technique, which was333

developed in [29] for tMAM and dynamical systems without time delays, to obtain a334

posteriori error estimate for φ̄h,s. The reason we can achieve this is that the a poste-335

riori error estimator in [29] only depends on the regularity of the path, in other words,336

it does not depend explicitly on the problem itself. For the first choice, we can con-337

struct an element-wise error indicator as follows. Suppose that we have an estimated338

solution φ̂h,s given by the derivative-recovery technique, which is more accurate than339

φ̄h,s in a certain sense. We define an error estimator ηek on element ek = [sk, sk+1]:340

η1,ek = |φ̂h,s − φ̄h,s|H1(D)

∣∣∣
ek

+ |ψ̄h,s − φ̄h,s−τ/T̂ |L2(D)

∣∣∣
ek
, (4.7)

where the first term in ηek is the estimated error of φ̄h,s on ek, and the second term341

measures the deviation from the point-wise constraint (3.6). For the second choice,342

we first update the mesh for φ̄h,s using the error indicator343

η2,ek = |φ̂h,s − φ̄h,s|H1(D)

∣∣∣
ek
, (4.8)

where we only keep the first term in η1,ek , and then generate the mesh for ψ̄h,s(s)344

according to the constraint ψ̄s = φ̄ŝ. More specifically, we can use the mesh of345

[0, 1 − τ/T̂ ] for φ̄h,s as the mesh of [τ/T̂ , 1] for ψ̄h,s(s). The mesh of [0, τ/T̂ ] for346

ψ̄h,s can be easily generated according to the initial condition. Compared to the347

first choice, the second choice is more expensive since a global operation is needed to348

project ψ̄h,s from the old mesh to the new one. In this work, we will only consider349

the first choice, where only local projection is needed after the mesh is refined.350

We now outline the computation of η1,ek , and more details can be found in [29].351

For robustness, we only consider h-refinement, meaning that we split one element352

to two equal elements if it is associated with a relatively large error estimate η1,ek .353

Assume that φ̄h,s ∈ W p
h . Then the pth order derivative φ̄

(p)
h,s ∈ Rn is a piecewise354

constant vector. The derivative recovery with respect to φ̄
(p)
h,s consists of two steps.355

The first step is a projection step, where we define a projection operator Qh such that356

〈Qhφ̄(p)
h,s, ϕ̄h,s〉s = 〈φ̄(p)

h,s, ϕ̄h,s〉s, ∀ϕh,s ∈W 1
h . (4.9)

In other words, we project a piecewise constant function onto the linear finite element357

space for each component of φ̄
(p)
h,s. The second step is a smoothing step using the358

operator Sh = I − λ−1Ah, where I is an identity operator, Ah : W 1
h → W 1

h is359

uniquely determined by360

〈Ahϕ̄h,s, ξ̄h,s〉s = 〈ϕ̄′h,s, ξ̄′h,s〉s + 〈ϕ̄h,s, ξ̄h,s〉s, ∀ϕ̄h,s, ξ̄h,s ∈W 1
h , (4.10)

and λ = ρ(Ah) ' h−2 with h being the element size. We then have the recovered361

pth-order derivative Rφ̄(p)
h,s = Smh Qhφ̄

(p)
h,s, where m is the number of smoothing steps.362

Roughly speaking, we will use Rφ̄(p)
h,s to replace the p-th order derivative φ̄

∗(p)
s of the363

exact or reference solution φ̄∗s.364

We now use Rφ̄(p)
h,s to construct a piecewise polynomial ˜̄φh,s of degree p+ 1 such365

that366

˜̄φh,s − φ̄h,s
∣∣∣
ek

= diag(c)(I − Pp)ϕ̄ek,p+1
h,s , (4.11)
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where c ∈ Rn, ϕ̄ek,p+1
h,s = θ̃p+1◦F−1

ek
(s)[1, 1, . . . , 1]T ∈ Rn, and θ̃p+1◦F−1

ek
(s) is the local367

polynomial basis of degree p+1 defined on element ek, and Pp indicates a L2 projection368

operator onto the space span{θ̃p+1 ◦F−1
ek

(s)}pi=0 since the local basis functions are not369

mutually orthogonal. We then use the approximation ˜̄φ
(p+1)
h,s ≈ (Rφ̄(p)

h,s)
′ to determine370

the coefficient vector c. To this end, we can define the error indicator371

η2
1,ek

= α2
ek
| ˜̄φh,s − φ̄h,s|2H1(D)

∣∣∣
ek

+ β2|ψ̄h,s − φ̄h,s−τ/T̂ |
2
L2(D)

∣∣∣
ek
, (4.12)

where the coefficient αek satisfies372

αek =
‖(I −R)φ̄

(p)
h,s‖L2(D)

∣∣∣
ek

‖ ˜̄φ
(p)
h,s − φ̄

(p)
h,s‖L2(D)

∣∣∣
ek

.

The total error is defined as373

η1 =

(
N−1∑
k=0

η2
ek

)1/2

. (4.13)

Let J = {i|0 ≤ i ≤ N − 1} be the set of indices of all finite elements. We look for a374

subset Ĵ ⊂ J such that for rη ∈ (0, 1],375

rη
∑
i∈J

η2
ei ≤

∑
i∈Ĵ

η2
ei . (4.14)

To uniquely specify Ĵ , we choose the elements that have the largest estimated error,376

i.e.,377

min
i∈Ĵ

ηei ≥ max
i∈J\Ĵ

ηei .

This is sometimes referred to as Dörfler’s marking strategy. Then all elements whose378

indices belong to Ĵ will be refined to two equidistant elements, i.e., h-refinement.379

Let Mold be the number of degrees of freedom (DOFs) of the old mesh, and MD the380

number of DOFs after h-refinement based on the Döfler’s marking strategy.381

4.3.2. Maintaining constraint (3.17). The constraint (3.17) is a necessary
condition satisfied by the MAP. To measure the deviation from this constraint, we
define the following elementwise indicator as in [29]:

θ2
ei =

∫ T̂ si+1

T̂ si

(|φ̇h,t| − |b|)2dt

= T̂

∫ si+1

si

(T̂−1|φ̄′h,s| − |b|)2ds, i = 0, 1, . . . , N − 1. (4.15)

Let θmax and θmin be the maximum and minimum values of θei respectively. If the raito382

θmax/θmin is larger than a threshold θc, we will implement h-refinement in elements383

with large θi such that the deviation from the constraint (3.17) is not too skewed.384

More specifically, we will refine the element with the largest θei until (M −MD) ≥385

rM (MD −Mold). In other words, after refining the mesh according to ηei , we add386

rM (MD−Mold) more DOFs by refining the mesh according to θei . We usually choose387

rM = 10% [29].388

To this end, we can define an h-adaptive tMAM for time-delay systems, see Al-389

gorithm 1.390
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Algorithm 1 h-adaptive tMAM for time-delay systems.

Solve problem (3.10) to obtain φ̄∗,0h,s and ψ̄∗,0h,s on the initial partition T 0
h .

while ε > εtol do
Compute ηei , αei .
Define the set Ĵ in equation (4.14).
for ei with i ∈ Ĵ do

Refine element ei to two equidistant elements.
end for
if θmax/θmin > θc then

while M −MD ≤ rM (MD −Mold) do
Do h-refinement for the element with largest θei .
Set the local indicator θei = 0 for child elements.

end while
end if
Solve problem (3.10) using the new partition T k+1

h to obtain MAP φ̄∗,k+1
h,s and

ψ̄∗,k+1
h,s .

ε←
(
Sτ (φ̄∗,kh,s, ψ̄

∗,k
h,s)− Sτ (φ̄∗,k+1

h,s , ψ̄∗,k+1
h,s )

)
/Sτ (φ̄∗,k+1

h,s , ψ̄∗,k+1
h,s ).

end while

4.4. The delay parameter. Intuitively, when the memory goes further to the391

past, i.e., τ is larger, the problem itself will become more nonlinear. One obvious392

effect of a larger τ on the computation is that the computation of gradient is more ex-393

pensive since one element is correlated to more other elements. More importantly, the394

delay can significantly change the dynamical behavior, which makes the optimization395

problem (3.10) more ill-conditioned.396

4.4.1. The effect of delay on stability. We illustrate the effect of delay on397

stability using the following linear system:398 {
ẋt = Axt +Bxt−τ , t ∈ [0, T ],
xt = θ(t), t ∈ [−τ, 0],

(4.16)

where we assume that the linear system is stable when the time delay τ = 0. In other399

words, we assume that (A+B) is normal and (A+B) + (A+B)T is negative definite400

such that when τ = 0401

|xt|2 = 〈eCtx0, e
Ctx0〉 = 〈e(C+CT)tx0,x0〉 ≤ |x0|

∣∣∣e(C+CT)tx0

∣∣∣→ 0, as t→∞,

where C = A + B. Equation (4.16) can be solved by the method of steps, where402

the solution is obtained on the time intervals [iτ, (i+ 1)τ ] with i = 0, 1, . . . using the403

information in the previous interval as the initial condition. For example, for t ∈ [0, τ ],404

we can integrate equation (4.16) to obtain405

xt = eAtx0 +

∫ t

0

eA(t−q)Bxq−τdq. (4.17)

Once we obtain xt with t ∈ [0, τ ], we can use the same formula to compute xt with
t ∈ [τ, 2τ ]. This process can be repeated to obtain xt with t ∈ [−τ,∞). Consider the
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Laplace transform of equation (4.16):

s̃X̃s̃ − θ(0) = AX̃s̃ +B

[
e−s̃τX̃s̃ +

∫ 0

−τ
e−ŝ(q+τ)θ(q)dq

]
,

where X̃s̃ is the Laplace transform of xt. We have406

X̃s̃ = (s̃I −A− e−s̃τB)−1

[
θ(0) +B

∫ 0

−τ
e−ŝ(q+τ)θ(q)dq

]
. (4.18)

We define the following characteristic function407

g(s̃; e−τs̃) = (s̃I −A− e−s̃τB). (4.19)

For a certain delay τ , if408

g(s̃; e−τs̃) 6= 0, ∀s̃ ∈ C̄+, (4.20)

where C̄+ is the closed right half complex plane, we say the system is stable (see409

definition 2.1 in [11]). When τ is beyond a certain threshold, the condition (4.20)410

may fail and the system loses its stability. Although the main numerical difficulties411

for approximation remain similar no matter that the system is stable nor not, the dy-412

namics may change significantly as τ increases, which makes it challenging to propose413

a good initial path for the optimization iteration. Let us illustrate this issue using an414

example.415

Example 4.5. Consider416

A =

[
−2 0
0 −0.9

]
, B =

[
−1 0
−1 −1

]
.

Apparently when τ = 0, the system is stable. We now increase the time delay with417

the following initial conditions:418

x1,t = t2 + 0.1, x2,t = −t2 + 0.1.

It can be verified through equation (4.20), (0, 0) will lose its stability when τ ' 6.1725.419

In figure 4.3, we compared the dynamics given by different time delays. It is seen that420

as τ increases the trajectory of the delayed system changes significantly. If we use the421

points (0.1, 0.1) and (0, 0) as the starting and ending points for the minimum action422

method, the minimizer should be consistent with the trajectory. For the case τ = 0,423

we can use a linear path as the initial guess to obtain the trajectory. However, for424

the case τ = 0.8, we are not able to obtain the trajectory starting from a linear initial425

guess.426

4.4.2. Growing the MAP. To alleviate the possible difficulties in the initial-427

ization of tMAM for time-delay systems, we propose a simple strategy: growing the428

MAP of a time-delay system from the case that τ = 0. The strategy is illustrated429

in figure 4.3. Let (0, 0) indicate the coarsest mesh with zero time delay and (1, 1)430

indicates the finest mesh with the desired time delay, where the coordinates are un-431

derstood as a degree for the corresponding task. We then need to select a pathway432

from (0, 0) to (1, 1). There exist many choices for such a purpose. Two simplest433

choices include: 1) fully refine the mesh first for τ = 0 and then increase the time434

delay from 0 to τ , and 2) increase the time delay from 0 to τ on the coarse mesh and435
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time delay, and the ending point (1, 1) indicates the finest mesh with the desired time delay.

then implement mesh refinement. Both choices are not effective. For the first choice,436

we do not know if the fine mesh for τ = 0 is sufficient for τ 6= 0; For the second437

choice, a coarse mesh is obviously not able to handle the possible complexity induced438

by the time delay (see figure 4.3). In this work, we pick a zigzag pathway close to439

the straight line from (0, 0) to (1, 1), which interweaves the mesh refinement and the440

increasing of the time delay, see figure 4.4 and Algorithm 2.441

Remark 4.6. The idea of Algorithm 2 can also be applied to the penalty parameter442

β such that we can interweave the mesh refinement and the increment of β to obtain443

more accuracy and efficiency.444

5. Numerical experiments. In this section, we present some numerical exper-445

iments to demonstrate the effectiveness of our algorithm. For verification, we mainly446

use the MAM to approximate the trajectory of an unperturbed system, along which447

the action functional is zero. Considering the regularity of the solution of ordinary448
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Algorithm 2 Adaptive tMAM for time-delay systems by interweaving h-refinement
and the increment in time delay.

Choose an initial partition T old
h = T new

h , and a step size ∆τ . Let N = τfinal/∆τ ,
τ = 0 and ε = 1.
for k ← 1 to N do
τ ← τ + ∆τ
Solve problem (3.10) to obtain φ̄∗,oldh,s and ψ̄∗,oldh,s on partition T old

h .
if ε > εtol then

Refine the partition using Algorithm 1 to obtain new partition T update
h .

Solve problem (3.10) using the partition T update
h to obtain φ̄∗,updateh,s and

ψ̄∗,updateh,s .

ε←
∣∣∣Sτ (φ̄

∗,update
h,s , ψ̄

∗,update
h,s )− Sτ (φ̄∗,oldh,s , ψ̄∗,oldh,s )

∣∣∣ /Sτ (φ̄
∗,update
h,s , ψ̄

∗,update
h,s ).

T old
h ← T new

h .

T new
h ← T update

h .
else

Solve problem (3.10) using the new partition T new
h to obtain φ̄∗,newh,s and ψ̄∗,newh,s .

ε←
∣∣∣Sτ (φ̄∗,newh,s , ψ̄∗,newh,s )− Sτ (φ̄∗,oldh,s , ψ̄∗,oldh,s )

∣∣∣ /Sτ (φ̄∗,newh,s , ψ̄∗,newh,s ).

end if
end for
while ε > εtol do

Implement Algorithm 1 to refine the mesh.
end while

differential equations with constant time delays [2], the main characteristics is the449

propagation of discontinuities at time iτ , i = 0, 1, 2, . . .. At t = 0, we usually have450

θ̇(0)− 6= ẋ+
0 (see equation (4.16)), where − and + indicate the left and right deriva-451

tive respectively. At t = τ , the jump in ẋ0 will induce a jump in ẍτ although ẋτ is452

continuous. In general, the derivative jump at t = 0 will propagate along the inte-453

gration interval and give rise to subsequent discontinuity points at t = iτ where the454

solution is smoothed out more and more. As a consequence, even the force term is455

C∞, the solution xt is simply C1-continuous. Based on such an observation, we only456

consider linear finite elements in the numerical experiments if the convergence rate457

is needed. However, since the regularity of the solution is improved as the evolution458

time t increases, high-order finite elements are in general more efficient. In MATLAB,459

the trajectory φdt can be computed by the subroutine dde23() [23].460

5.1. Adaptivity behavior. We consider a simple linear system with time de-461

lays:462 {
dXt = AXt +BXt−τdt+

√
εdWt, t ∈ [0, T ],

Xt = θ(t), t ∈ [−τ, 0].
(5.1)

Let463

A =

[
a −b
b a

] [
λ1 0
0 λ2

] [
a b
−b a

]
, B =

[
−1 0
0 −1

]
,

with a = 1/3, b =
√

8/3, λ1 = −5, and λ2 = −1. We use the MATLAB solver dde23464

to compute a trajectory φdt for the unperturbed system.465
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Fig. 5.1. The convergence of tMAM with adaptive h-refinement and uniform h-refinement.
Linear finite elements are used for discretization. The penalty parameter is fixed as β = 1.0. The
bulk parameter for adaptivity is rη = 0.4. The optimal convergence rate is N−2. The initial coarse
mesh is given by six equidistant linear finite elements. Left: convergence rates of adaptive tMAMs;
Right: the distribution of element size of the adaptive mesh.

5.1.1. Small time delay. We first look at the case that the time delay is rela-466

tively small using Algorithm 1. We consider equation (5.1) with the following initial467

conditions:468

θ(t) = [0.5et, 0.5et]T. (5.2)

Let τ = 0.05. Let the starting point be φdt=0 = (0.5, 0.5)T and the ending point be469

φdt=10 ≈ (9.5 × 10−8, 2.5 × 10−7)T such that the minimizer of the action function is470

φdt with t ∈ [0, T ∗ = 10]. Note that φdt=∞ = (0, 0) is a stable fixed point for the471

unperturbed system. Due to the fact that φdt=10 ≈ φdt=∞, seeking the minimizer φdt472

with t ∈ [0, T ∗ = 10] shares similar difficulties to the case that T ∗ =∞. For this case,473

we simply use a linear path as the initial guess. In figure 5.1, we plot the convergence474

behavior of tMAM with adaptive h-refinement and uniform h-refinement on the left,475

and the distribution of element size of the adaptive mesh on the right. First, the476

uniform refinement achieves algebraic convergence with a rate that is smaller than477

the optimal one O(N−2p). Since xt is C1-continuous, the optimal convergence rate478

is achievable for p = 1. This is similar to the results for systems without time delays479

[32]. More specifically, equation (2.8) becomes degenerate as the optimal integration480

time goes to infinity, and uniform refinement is not able to achieve the optimal con-481

vergence rate for this kind of problems. Note that this issue is independent of the time482

delay. Second, the adaptive h-refinement based on the a posteriori error estimate can483

significantly improve the convergence rate. For the problem studied, the optimal rate484

has actually been recovered. Third, the element size |ei| = |si − si−1| becomes larger485

as the path approaches the stable fixed point (0, 0), which means that the a posteriori486

error estimator effectively captures the fact that the regularity is low in the region of487

fast dynamics [29].488

5.1.2. Large time delay. We now look at the application of Algorithm 2 to489

the case that the time delay is relatively large. The initial condition θ(t) is the same490

as the previous case except that the time delay changes from τ = 0.05 to τ = 1.491

In figure 5.2, we plot the trajectories φdt for τ = 0.05, 1. Compared to a small time492

delay, the large time delay τ = 1 introduces dramatic oscillations when the trajectory493

converges to (0, 0), which makes the linear path not effective as an initial guess for494
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the minimum action method. In other words, starting from the linear path, the495

optimization solver will converge to a local minimizer that is not the solution. Let496

φdt=10 be the ending point. Starting from τ = 0.05 and an initial linear path, we497

increase τ by 1−0.05
10 = 0.095 after each mesh refinement. After τ = 1 is reached, we498

keep refining the mesh until the prescribed tolerance in action function is achieved.499

In figure 5.3, we compare the exact solution and the approximate solution given by500

Algorithm 2. It is seen that Algorithm 2 works effectively, which captures not only the501

overall path but also the details around (0, 0). From plot (a) to (d), the characteristic502

scale of the path decays approximately from O(1) to O(10−3), where all abrupt turns503

in the path, except the last one shown in plot (d), have been well captured.504

5.2. Phase transition problem. We add a pair of time-delay terms to a classi-505

cal physical model to look at the effect of time delay on phase transition. We consider506

the following modified Maier-Stein model [16]:507 {
dXt = (Xt −X3

t − βXtY
2
t − 1

2 (Xt−τ −Xt))dt+
√
εdW x

t

dYt = −(Yt +X2
t Yt + 1

2 (Yt−τ − Yt))dt+
√
εdW y

t
, (5.3)

where W x
t and W y

t are independent Wiener processes and β > 0 is a parameter.508

When τ = 0, the original Maier-Stein (MS) model will be recovered. In this work, the509

delayed terms are only added for numerical purpose without any physical motivations.510

The original Maier-Stein model has two stable fixed points: a1 = (−1, 0)T and511

a2 = (1, 0)T, and one saddle point a3 = (0, 0)T. We choose τ such that the stability512

of ai, i = 1, 2, 3, remains the same. For numerical experiments, we set β = 10. We513

start with a coarse mesh with 6 quadratic elements, and increase the time delay τ514

from 0.05 to 1, and increase the penalty parameter β from 10 to 200. We increase τ515

and β at the same time for each mesh refinement, where the maximum values of both516

τ and β are reached in 10 steps. Let us write Ŝτ (φ̄s, ψ̄s) = Ŝτ,action + Ŝτ,penalty, where517

Ŝτ,action =
T̂

2

∫ 1

0

|T̂−1φ̄′s − b(φ̄s, ψ̄s)|2ds, Ŝτ,penalty =
β2

2

∫ 1

0

|ψ̄s − φ̄ŝ|2ds.

For the approximated MAP, we have
Ŝτ,penalty

Ŝτ,action
≈ 10−4, meaning that the constraint is518

sufficiently enforced. In figure 5.4, we compare the most probable transition paths519
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approximate one. (b)-(c). Close-up view of the region enclosed by the rectangle in the previous plot.

of the MS model and the modified MS model with τ = 1, where the grid points520

correspond to the finite element mesh. On the one hand, the transition mechanism521

is similar for both cases, where both MAPs approach the saddle point first and then522

follow the unstable manifold to the other fixed point; on the other hand, the effect523

of the time delay is substantial, where the actions of the MAPs are 0.34 and 0.18,524

respectively, for the cases without and with time delays although it seems that the525

MAPs do not differentiate that much. It is seen that in the right plot of figure 5.4,526

the MAP does not exactly reach the saddle point (0, 0), which is mainly due to the527

fact that the number of finite elements is relatively small. The saddle point will be528

captured better by setting the tolerance εtol in Algorithms 1 and 2 smaller such that529

more elements will be constructed around the saddle point. More discussions about530

the approximation around unknown critical points can be found in [25, 29]. The531

relation between the action of the MAP and the time delay has been plotted in figure532

5.5. For the problem studied, as the time delay increases, the action of the MAP533

decreases, meaning that the time delay makes the transition easier for the problem534

studied, see equation (2.3). The relation between different forms of time delay and535

the action of the MAP is in general an open question, which deserves further studies.536

In figure 5.6, we plotted the convergence behavior of h-adaptive tMAM with linear537

elements, i.e., p = 1, for the MS model. The reference solution is computed by h-538

adaptive tMAM with 2584 linear elements. The initial coarse mesh has 3 elements.539
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Starting from τ = 0 and β = 10, we increase τ by 1−0
10 and β by 300−10

10 before each540

mesh refinement until the desired values τ = 1 and β = 300 are reached. The bulk541

parameter is rη = 0.5 for mesh refinement. Data have been collected when τ = 1 and542

β = 300. It is seen in figure 5.6 that the overall convergence rate agrees well with the543

optimal rate O(N−2) in terms of the error of the action functional.544

6. Summary and discussions. In this work, we have developed a minimum545

action method to seek the most probable transition path in systems with constant time546

delays. Since the Hamiltonian is not conservative any more, the Maupertuis principle547

does not apply, and we need to work with the action functional formulated with respect548

to time. We define an auxiliary path ψt = φt−τ such that the action functional will not549

depend on τ explicitly, which means that we can use a simple optimal linear scaling to550

remove the optimization with respect to T . The constraints ψt = φt−τ will be enforced551

through a quadratic penalty term included in the original action functional. Adaptive552

discretization is necessary for the minimum action method formulated with respect553

to time. We have adapted a posteriori error estimate, developed in [29] for systems554
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without time delays, for our problem by including the difference ψt−φt−τ into the error555

indicator. Another difficulty comes from large time delays, which may significantly556

change the dynamics. For the optimization iteration in the minimum action method,557

the initial guess that is valid for the systems without time delays may not work any558

more. To deal with this issue, we consider a sequence of time delays, where the time559

delay increases gradually. More specifically, we interweave the mesh refinement and560

the increment of time delay such that the MAP will grow from a coarse mesh for a561

system without time delays to a fine adaptive mesh for a system with a desired time562

delay. Preliminary numerical results have verified the effectiveness of the proposed563

strategy. Many possible improvements can be made, e.g., the augmented Lagrangian564

method can be employed for the optimization, and different meshes can be used for φt565

and ψt, etc. Theoretical issues, such as the convergence of the approximated solution566

and the choice of the penalty parameter, etc., need to be analyzed. The study on567

these issues will be reported elsewhere.568
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