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Abstract

Learning from label proportions (LLP) is a weakly supervised setting for classifi-
cation in which unlabeled training instances are grouped into bags, and each bag
is annotated with the proportion of each class occurring in that bag. Prior work
on LLP has yet to establish a consistent learning procedure, nor does there exist a
theoretically justified, general purpose training criterion. In this work we address
these two issues by posing LLP in terms of mutual contamination models (MCMs),
which have recently been applied successfully to study various other weak supervi-
sion settings. In the process, we establish several novel technical results for MCMs,
including unbiased losses and generalization error bounds under non-iid sampling
plans. We also point out the limitations of a common experimental setting for LLP,
and propose a new one based on our MCM framework.

1 Introduction

Learning from label proportions (LLP) is a weak supervision setting for classification in which
training data come in the form of bags. Each bag contains unlabeled instances and is annotated with
the proportion of instances arising from each class. Various methods for LLP have been developed,
including those based on support vector machines and related models [28, 39, 38, 26, 8, 18, 32],
Bayesian and graphical models [17, 14, 35, 25, 15], deep learning [19, 1, 12, 20, 36], clustering
[6, 34], and random forests [33]. In addition, LLP has found various applications including image
and video analysis [7, 18], high energy physics [9], vote prediction [35], remote sensing [19, 10],
medical image analysis [4], activity recognition [25], and reproductive medicine [15].

Despite the emergence of LLP as a prominent weak learning paradigm, the theoretical underpinnings
of LLP have been slow to develop. In particular, prior work has not established an algorithm for LLP
that is consistent with respect to a classification performance measure. Furthermore, there does not
even exist a general-purpose, theoretically grounded empirical objective for training LLP classifiers.

We propose a statistical framework for LLP based on mutual contamination models (MCMs), which
have been used previously as models for classification with noisy labels and other weak supervision
problems [30, 2, 21, 3, 16]. We use this framework to motivate a principled empirical objective for
LLP, prove generalization error bounds associated to two bag generation models, and establish univer-
sal consistency with respect to the balanced error rate (BER). The MCM framework further motivates
a novel experimental setting that overcomes a limitation of earlier experimental comparisons.

Related Work. Quadrianto et al. [27] study an exponential family model for labels given features,
and show that the model is characterized by a certain “mean map" parameter that can be estimated
in the LLP setting. They also provide Rademacher complexity bounds for the mean map and the
associated log-posterior, but do not address a classification performance measure. Patrini et al. [24]
extend the work of [27] in several ways, including a generalization error bound on the risk of a
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classifier. This bound is expressed in terms of an empirical LLP risk, a “bag Rademacher complexity,"
and a “label proportion complexity." The authors state that when bags are pure (LPs close to 0 or
1), the last of these terms is small, while for impure bags, the second term is small and the first
term increases. While this bound motivates their algorithms, it is not clear how such a bound would
imply consistency. Yu et al. [40] study the idea of minimizing the “empirical proportion risk" (EPR),
which seeks a classifier that best reproduces the observed LPs. They develop a PAC-style bound
on the accuracy of the resulting classifier under the assumption that all bags are very pure. Our
work is the first to develop generalization error analysis and universal consistency for a classification
performance measure, and we do so under a broadly applicable statistical model on bags.

The literature on LLP has so far yielded two general purpose training objectives that are usable
across a variety of learning models. The first of these, the aforementioned EPR, minimizes the
average discrepancy between observed and predicted LPs, where discrepancy is often measured by
absolute or squared error in the binary case [40, 36, 9], and cross-entropy in the multiclass case
[36, 12, 20, 4]. While [40] has been cited as theoretical support for this objective, that paper assumes
the bags are very pure, and even provides examples of EPR minimization failure when bags are
not sufficiently pure. We offer our own counterexample in the supplemental. The second is the
combinatorial objective introduced by [39] that incorporates the unknown labels as variables in the
optimization, and jointly optimizes a conventional classification empirical risk together with a term
(usually EPR) that encourages correctness of the imputed labels [39, 38, 19, 26, 8, 32, 33, 18, 12].
To our knowledge there is also no statistical theory supporting this objective. In contrast, we propose
a theoretically grounded, general purpose criterion for training LLP models.

We also mention that the vast majority of LLP methodology papers simulate data for LLP by taking a
classification data set, randomly shuffling the data, and sectioning off the data into bags of a given size.
This implies that the expected label proportions for all bags are the same, and as bag size increases,
all label proportions converge to the class prior probabilities. The case where all LPs are the same
is precisely the setting where LLP becomes intractable, and hence these papers report decreasing
performance with increasing bag size. In our experiments we propose an alternate sampling scheme
that avoids this issue.

Finally, we mention that in an earlier version of this work [31], we addressed LLP not through the
lens of MCMs, but using the label noise model of Natarajan et al. [22]. While that approach leads
to the same algorithm as shown in Alg. 1 below, the MCM framework is much more natural for
LLP, and the results in the present paper have also been extended considerably, e.g., to accommodate
within-bag instance dependencies.

Notation. Let X denote the feature space and {−1, 1} the label space. For convenience we often
abbreviate−1 and +1 by “-" and “+", and write {±} = {−,+}. A binary classification loss function,
or loss for short, is a function ` : R× {−1, 1} → R (we allow losses to take negative values). For
σ ∈ {±}, denote `σ(t) := `(t, σ). A loss ` is Lipschitz (continuous) if there exists L such that for
every σ ∈ {±}, and every t, t′ ∈ R, |`σ(t)− `σ(t′)| ≤ L|t− t′|. The smallest such L for which this
property holds is denoted |`|. Additionally, we define |`|0 := max(|`+(0)|, |`−(0)|).

A decision function is a measurable function f : X → R. The classifier induced by a decision
function f is the function x 7→ sign(f(x)). We will only consider classifiers induced by a decision
function. In addition, we will often refer to a decision function as a classifier, in which case we mean
the induced classifier. Let P+ and P− be the class-conditional distributions of the feature vector X ,
and denote P = (P−, P+). The performance measure considered in this work is the balanced error
rate (BER) which, for a given loss `, and class conditional distributions P = (P+, P−), is defined by
E`P (f) := 1

2EX∼P+
[`+(f(X))] + 1

2EX∼P− [`−(f(X))]. The BER is defined without reference to a
distribution of the label Y , and hence is invariant to changes in this distribution. The BER is a natural
frequentist counterpart to the misclassification rate, which associates a prior probability to each class.

For an integer n, denote [n] := {1, 2, . . . , n}. Given a sequence of numbers (ai)i∈[m], denote the
arithmetic and harmonic means by AM(ai) := 1

m

∑
i∈[m] ai and HM(ai) := ( 1

m

∑
i∈[m] a

−1
i )−1.

Finally, define the probability simplex ∆N := {w ∈ RN |wi ≥ 0 ∀i, and
∑
i wi = 1}.
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2 Mutual Contamination Models

In this section we define MCMs and present new technical results for learning from MCMs that
motivate our study of LLP in the next section, and which may also be of independent interest. We
will consider collections of instances X1, . . . , Xm ∼ γP+ + (1− γ)P−, where γ ∈ [0, 1] and m are
fixed. Foreshadowing LLP, we refer to such collections of instances as bags.

We adopt the following assumption on bag data generation, which has two options for modeling
within-bag dependencies. Suppose there areL total bags with sizes ni, i ∈ [L], proportions γi ∈ [0, 1],
and elements Xij , i ∈ [L], j ∈ [ni]. We assume

The distributions P+ and P− are the same for all bags. γi and mi may vary from bag to bag.
If i 6= r, then Xij and Xrs are independent ∀j, s. Furthermore, for all i,

(IIM) In the independent instance model, Xij
iid∼ γiP+ + (1− γi)P−;

(IBM) In the independent bag model, the marginal distribution of Xij is γiP+ + (1− γi)P−.

(IBM) allows the instances within each bag to be dependent. Furthermore, any dependence structure,
such as a covariance matrix, may change from bag to bag. (IIM) is a special case of (IBM) that
allows us to quantify the impact of bag size ni on generalization error.

2.1 Mutual Contamination Models and Unbiased Losses

Recall that P denotes the pair (P+, P−). Let κ = (κ+, κ−) be such that κ+ + κ− < 1. A mutual
contamination model is the pair Pκ := (Pκ+, P

κ
−) where

Pκ+ := (1− κ+)P+ + κ+P− and Pκ− := (1− κ−)P− + κ−P+.

Pκ+ and Pκ− may be thought of as noisy or contaminated versions of P+ and P−, respectively, where
the contamination arises from the other distribution. MCMs are common models for label noise
[30, 21, 3], where κσ may be interpreted as the label noise rates P(Y = −σ|Ỹ = σ), where Y and
Ỹ are the true and observed labels.

Let ` denote any loss for binary classification, such as the logistic loss. Given ` and κ define a new
loss `κ by

`κσ(t) :=
1− κ−σ

1− κ− − κ+
`σ(t)− κ−σ

1− κ− − κ+
`−σ(t), σ ∈ {±}.

This loss undoes the bias present in the mutual contamination model.
Proposition 1. Consider any P = (P+, P−), κ = (κ+, κ−) with κ+ + κ− < 1, and loss `. For any
f such that all four of the quantities EX∼P±`±(f(X)) exist and are finite, E`P (f) = E`κPκ(f).

This result mirrors a similar result established by Natarajan et al. [22] under a label-flipping model
for label noise, which is the other prominent model for random label noise besides the MCM. The
proof simply matches coefficients of EX∼P±`±(f(X)) on either side of the desired identity.

In the supplemental we offer a sufficient condition for `κ to be convex. We also show (as an aside)
that Prop. 1 enables a simple proof of a known result concerning symmetric losses, i.e., losses for
which `(t, 1) + `(t,−1) is constant, such as the sigmoid loss. In particular, symmetric losses are
immune to label noise under MCMs, meaning the original loss ` can be minimized on data drawn
from the MCM and still optimize the clean BER [21, 37, 5].

The significance of Prop. 1 is that E`P (f) is the quantity we want to minimize, while E`κPκ(f)
can be estimated given data from an MCM. In particular, given bags X+

1 , . . . , X
+
n+ ∼ Pκ+ and

X−1 , . . . , X
−
n− ∼ P

κ
−, Prop. 1 motivates minimizing the estimate of BER given by

Ê(f) :=
1

2n+

n+∑
j=1

`κ+(f(X+
j )) +

1

2n−

n−∑
j=1

`κ−(f(X−j )) =
1

2

∑
σ∈{±}

1

nσ

nσ∑
j=1

`κσ(f(Xσ
j ))

over f ∈ F , where F is some class of decision functions. Under our assumptions on the data, this
estimator is unbiased.
Proposition 2. Under (IBM) , for any f such that the quantities EX∼P±`±(f(X)) exist and are
finite, E[Ê(f)] = E`P (f).

3



2.2 Learning from Multiple Mutual Contamination Models

In the next section we view LLP in terms of a more general problem that we now define. Suppose we
are given N different MCMs. Each has the same true class-conditional distributions P+ and P−, but
possibly different contamination proportions κi = (κ+

i , κ
−
i ), i ∈ [N ]. Let Pκi = (Pκi+ , Pκi− ) denote

the ith MCM, and assume κ+
i + κ−i < 1. Now suppose that for each i ∈ [N ], we observe

X+
i1, . . . , X

+

in+
i

∼ Pκi+ := (1− κ+
i )P+ + κ+

i P−,

X−i1, . . . , X
−
in−i
∼ Pκi− := (1− κ−i )P− + κ−i P+.

The problem of learning from multiple mutual contamination models (LMMCM) is to use all of the
above data to design a single classifier that minimizes the clean BER E`P .

A natural approach to this problem is to minimize the weighted empirical risk

Êw(f) :=
N∑
i=1

wiÊi(f), where Êi(f) :=
1

2n+
i

n+
i∑

j=1

`κi+ (f(X+
ij )) +

1

2n−i

n−i∑
j=1

`κi− (f(X−ij ))

and w ∈ ∆N . By Prop. 1, under (IBM) each Êi(f) is an unbiased estimate of E`P (f), and therefore
so is Êw(f). This leads to the question whether we may set w to minimize some notion of “variance."
Intuitively, MCMs Pκi with less corruption should receive larger weights. We confirm this intuition
by quantifying “variance" in terms of generalization error, and choosing wi to optimize a general-
ization error bound (GEB). Our GEBs uses two weighted, multi-sample extensions of Rademacher
complexity, corresponding to (IIM) and (IBM) , that we now introduce.

Let S denote all the data Xσ
ij from N MCMs as described above.

Definition 3. Let F be a class of decision functions. Assume that supf∈F supx∈X |f(x)| <∞. For
any c ∈ RN≥0, define

RI
c(F) := ESE(εσij)

[
sup
f∈F

N∑
i=1

ci
∑
σ∈{±}

1

2nσi

nσi∑
j=1

εσijf(Xσ
ij)

]
, (1)

and

RB
c (F) := ESE((σi,Xi)∼P̂κi )i∈[N]

E(εi)

[
sup
f∈F

N∑
i=1

εicif(Xi)

]
, (2)

where εσij , εi
iid∼ unif({−1, 1}) are Rademacher random variables and P̂κi is the distribution that

selects σi ∼ unif({−1, 1}), and then draws Xi uniformly from Xσi
i,1, . . . , X

σi
i,n

σi
i

.

The inner two summations in (1) reflect an adaptation of the usual Rademacher complexity to the BER,
and the outer summation reflects the multiple MCMs. Eqn. (2) may be seen as a modification of (1)
where the inner two sums are viewed as an empirical expectation that is pulled out of the supremum.
If F satisfies the following, then RI

c(F) and RB
c (F) are bounded by tractable expressions.

(SR) There exist constants A and B such that supf∈F supx∈X |f(x)| ≤ A, and for all M ,
x1, . . . , xM ∈ X , and a ∈ RM≥0,

E(εi)

[
sup
f∈F

M∑
i=1

εiaif(xi)

]
≤ B

√√√√ M∑
i=1

a2
i .

As one example of an F satisfying (SR) , let k be a symmetric positive definite (SPD) kernel,
bounded1 by K, and let H be the associated reproducing kernel Hilbert space (RKHS). Let FkK,R
denote the ball of radius R, centered at 0, in H. As a second example, assume X ⊂ Rd and

1An SPD kernel k is bounded by K if
√
k(x, x) ≤ K for all x. For example, the Gaussian kernel

k(x, x′) = exp(−γ‖x− x′‖2) is bounded by K = 1.
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‖X‖2 := supx∈X ‖x‖2 < ∞, where ‖ · ‖2 is the Euclidean norm. Let α, β ∈ RM+ and denote
[x]+ = max(0, x). Define the class of two-layer neural networks with ReLU activation by

FNN
α,β = {f(x) = vT [Ux]+ : v ∈ Rh, U ∈ Rh×d, |vi| ≤ αi, ‖ui‖2 ≤ βi, i = 1, 2, . . . , h}.

Proposition 4. FkK,R and FNN
α,β satisfy (SR) with (A,B) = (RK,RK) and (A,B) =

(‖α‖2‖β‖2‖X‖2, 2〈α, β〉‖X‖2), respectively.

We emphasize that other classes F admit quantitative bounds on RI
c(F) and RB

c (F) that do not
necessarily conform to (SR) , and that can also be leveraged as we do below. We focus on (SR)
because the GEBs simplify considerably, making it possible to derive closed form expressions for the

optimal wi. Below we write
(SR)

≤ to indicate an upper bound that holds provided (SR) is true.

Our first main result establishes GEBs for LMMCM under both (IIM) and (IBM) .
Theorem 5. Let S collect all the data (Xσ

ij) from N MCMs with common base distributions P+, P−,
and contamination proportions κi = (κ+

i , κ
−
i ) satisfying κ−i + κ+

i < 1. Let F be a class of decision
functions such that A = supf∈F supx∈X |f(x)| < ∞, ` a Lipschitz loss, w ∈ ∆N , and δ > 0.
Under (IIM) , with probability ≥ 1− δ wrt the draw of S,

sup
f∈F

∣∣∣Êw(f)− E(f)
∣∣∣ ≤ 2RI

c(F) + C

√√√√ N∑
i=1

w2
i

n̄i(1− κ−i − κ
+
i )2

(SR)

≤ D

√√√√ N∑
i=1

w2
i

n̄i(1− κ−i − κ
+
i )2

(3)
where n̄i := HM(n−i , n

+
i ), ci = wi|`|/(1 − κ−i − κ+

i ), C = (1 + A|`|)
√

log(2/δ), and D =
2B|`|+ C. Under (IBM) , the same statement holds after replacing RI

c(F)→ RB
c (F) and n̄i → 1.

Several remarks are in order. Under (IIM) , even in the special case N = 1 without noise (κ−1 =
κ+

1 = 0) the result appears new, and amounts to an adaptation of the standard Rademacher complexity
bound to BER. The case N = 1 with noise can be used to prove consistency (with n̄1 → ∞) of
a discrimination rule for a single MCM given knowledge of, or consistent estimates of κ−1 , κ

+
1 .

Previous results of this type have analyzed MCMs via label-flipping models which are less natural
[3].

Because the result holds for any w ∈ ∆N , as long as the κi are known a priori, we may set w to
optimize the rightmost expressions in (3). This leads to optimal weights wi ∝ n̄i(1 − κ−i − κ

+
i )2

under (IIM) (here and below, replace n̄i by 1 for (IBM) ), which supports our claim that MCMs
with more information (larger samples, less noise) should receive more weight. With this choice
of weights, the summation in the bound reduces to 1

N HM(1/n̄i(1− κ−i − κ
+
i )2). In contrast, with

uniform weights wi = 1/N the summation equals 1
N AM(1/n̄i(1 − κ−i − κ

+
i )2). The harmonic

mean is much less sensitive to the presence of outliers, i.e., very noisy MCMs, than the arithmetic.
As an illustration, suppose N = 10, ni = n = 100, and for i < N , ρ+

i = ρ−i = 0.01, while
ρ+
N = ρ−N = 0.49. Then the ratio of arithmetic mean to harmonic mean exceeds 100.

3 Learning from Label Proportions

In learning from label proportions with binary labels, the learner has access to (b1, γ̂1), . . . , (bL, γ̂L),
where each bi is a bag of ni unlabeled instances, and each γ̂i ∈ [0, 1] is the proportion of instances
from class 1 in the bag. The goal is to learn an accurate classifier as measured by some performance
measure, which in our case we take to be the BER. This choice is already a departure from prior
work on LLP, which typically looks at misclassification rate (MCR). The BER is defined without
reference to a distribution of the label Y , and is thus invariant to changes in this distribution. In other
words, BER is immune to shifts in class prevalence, and hence to shifts in the distribution of label
proportions.

We adopt the following data generation model for bags. Each bag has a true label proportion
γi ∈ [0, 1]. For each i, let (Xij , Yij), j ∈ [ni], be random variables. The ith bag is formed from
(Xij)j∈[ni], and the observed or empirical label proportion is γ̂i = 1

ni

∑
j
Yij+1

2 . Let γ,Y , andX
be vectors collecting all of the values of γi, Yij , and Xij , respectively. We assume
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The distributions P+ and P− are the same for all bags. The γi may be random, and the sizes
ni are nonrandom. Conditioned on γ, if i 6= r, then Xij and Xrs are independent ∀j, s.
Furthermore, conditioned on γ, for bag i

(CIIM) In the conditionally independent instance model, Yij+1
2

iid∼ Bernoulli(γi) and condi-
tioned on Yi1, . . . , Yini , Xi1, . . . , Xini are independent with Xij ∼ PYij .

(CIBM) In the conditionally independent bag model, E[γ̂i] = γi and for each j, the distribu-
tion of Xij |Yi1, . . . , Yini is PYij .

Under (CIBM) , conditioned on γ, for bag i the labels Yi1, . . . , Yini may be dependent, and given
these labels the instances Xij may also be dependent. Furthermore, the dependence structure may
change from bag to bag. This means that given its label, the distribution of an instance is still
dependent on its bag, in contrast to prior work [27]. We also allow that the γi may be dependent, so
that without conditioning on γ, the bags themselves may be dependent.

As in the previous section, the significance of our model is that it provides for (conditionally) unbiased
estimates of BER as we describe below. Indeed, if we view γ as fixed, (CIIM) clearly implies (IIM)
(in fact, the two independent instance models are equivalent). However, it is not the case that (CIBM)
implies (IBM) – the introduction of the latent labels allows for a more general independent bag model
while still ensuring unbiased BER estimates. A strengthening of (CIBM) , namely

(CIBM’) For each j, E[
Yij+1

2 ] = γi and the distribution of Xij |Yi1, . . . , Yini is PYij

does imply (IBM) (still viewing γ as fixed), as we show in the supplemental.

In this section we propose to reduce LLP to the setting of the previous section by pairing the bags, so
that each pair of bags constitutes an MCM.

3.1 LLP when True Label Proportions are Known

We first consider the less realistic setting where the γi are deterministic and known. In this situation
we may reduce LLP to LMMCM by pairing bags. In particular, we re-index the bags and let (b−i , γ

−
i )

and (b+i , γ
+
i ) constitute the ith pair of bags, such that γ−i < γ+

i . The bags may be paired in any
way that depends on γ1, . . . , γL, subject to γ−i < γ+

i ∀i. We also assume the total number of bags is
L = 2N , so that the number of bag pairs is N .

If we set κi = (κ+
i , κ

−
i ) := (1− γ+

i , γ
−
i ), then we are in the setting of LMMCM described in the

previous setting. Furthermore, 1 − κ−i − κ
+
i = γ+

i − γ
−
i > 0. Therefore we may apply all of the

theory developed in the previous section without modification. Since γ is deterministic, (CIIM) and
(CIBM)’ imply (IIM) and (IBM) as discussed above, and we may simply apply Theorem 5 to obtain
GEBs for LLP. Choosing weights wi to minimize the (SR) form yields final bounds proportional
to the square root of 1

N HM(1/(n̄i(γ
+
i − γ

−
i )2)) = (

∑
i n̄i(γ

+
i − γ

−
i )2)−1 (under (CIBM’) replace

n̄i → 1). In the LLP setting, we may further optimize this bound by optimizing the pairing of bags.
This leads to an integer program known as the “maximum weighted (perfect) matching" problem. An
exact algorithm to solve it was given by Edmonds [13], and several approximate algorithms also exist
for large scale problems [11]. See supplemental for additional details.

If γ is random, and the γi are distinct (which occurs w. p. 1, e.g., if γ is jointly continuous), Theorem
5 still holds conditioned on γ, and therefore unconditionally by the law of total expectation.

Although the γi are typically unknown in practice, the above discussion still yields a useful algorithm:
simply “plug in” γ̂i for γi and proceed to minimize Êw(f) (with optimally paired bags and optimized
weights) over F . A description of the learning procedure, which we use in our experiments, is
presented in Algorithm 1.
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Algorithm 1 Plug-in approach to LLP via LMMCM (outline)
1: Input: (b1, γ̂1), . . . , (b2N , γ̂2N ), model class F , loss `, tuning parameters
2: procedure LLP-LMMCM
3: Solve weighted matching problem to find pairings maximizing

∑
i wi ∝ n̄i(γ̂

+
i − γ̂

−
i )2 (see

supplemental)
4: Set κi = (1− γ̂+

i , γ̂
−
i ) and optimal weights wi ∝ n̄i(γ̂+

i − γ̂
−
i )2

5: Minimize Êw(f) over F , perhaps with regularization

3.2 Consistent Learning from Label Proportions

When the true label proportions are not known, as is usually the case in practice, it is difficult to
establish consistency of the plug-in approach without restrictive assumptions. This is because the
γ̂i are random, and so there is always some nonnegligible probability that in each pair, the bag with
larger γi will be misidentified. This problem is especially pronounced for very small bag sizes. For
example, if two bags with γ1 = .45 and γ2 = .55 are paired, and the bag sizes are 8 with independent
labels, the probability that γ̂2 < γ̂1 is .26. One approach to overcoming this issue is to have the bag
sizes nσi tend to∞ asymptotically, in which case γ̂i

a.s.→ γi. This is a less interesting setting, however,
because the learner can discard all but one pair of bags and still achieve consistency using existing
techniques for learning in MCMs [3]. Furthermore, the bag size is often fixed in applications.

We propose an approach based on merging the original “small bags" to form “big bags," and then
applying the approach of Section 3.1. For convenience assume all original (small) bags have the same
size ni = n moving forward. Let K be an integer and assume N is a multiple of K for convenience,
N = MK. As before, let (bi, γ̂i), i ∈ [2N ], be the original, unpaired bags of size n. We refer to a
K-merging scheme as any procedure that takes the original unpaired bags of size n and combines
them, using knowledge of the γ̂i, to form paired bags of size nK. Let the paired bags be denoted
(B+

i , Γ̂
+
i ) and (B−i , Γ̂

−
i ), i ∈ [M ]. Let Iσi denote the original indices of the small bags comprising

Bσi , so that Bσi = ∪j∈I+i bi and Γ̂σi = 1
K

∑
j∈Iσi

γ̂σj .

We offer two examples of K-merging schemes. The first, called the blockwise-pairwise (BP) scheme,
simply takes the original small bags in their given order. The ith block of 2K consecutive small bags
are used to form the ith pair of big bags. This is done by considering consecutive, nonoverlapping
pairs of small bags and assigning the small bag with larger γ̂i to B+

i . Using notation, we define
I+
i = {j ∈ [2K(i − 1) + 1 : 2Ki] | j is odd and γ̂j ≥ γ̂j+1 or j is even and γ̂j ≥ γ̂j−1} and
I−i = [2K(i− 1) + 1 : 2Ki]\I+

i (ties may be broken arbitrarily). The blockwise-max (BM) scheme
is like BP, except that for each block of 2K small bags, the K small bags with largest γ̂j are assigned
to the positive bag. One can imagine more elaborate schemes that are not blockwise. We say that
scheme 1 dominates scheme 2 if, with probability 1, for every i, Γ̂+

i − Γ̂−i for scheme 1 is at least as
large as it is for scheme 2. For example, BM dominates BP.

Next, we form the modified weighted empirical risk. For each i ∈ [M ] and σ ∈ {±}, let (Xσ
ij),

j ∈ [nK], denote the elements of Bσi , and (Y σij ) the associated labels. Also set κ̂i = (1− Γ̂+
i , Γ̂

−
i ).

Let w ∈ ∆M such that wi ∝ (Γ̂+
i − Γ̂−i )2, and define

Ẽ(f) :=
M∑
i=1

wiẼi(f) where Ẽi(f) :=

 1

2n

∑
σ∈{±}

nK∑
j=1

`κ̂iσ (f(Xσ
ij))

 .
In the proof of Thm. 6, we show that under (CIBM) , with high probability, Ẽi(f) is an unbiased
estimate for E`P (f) when conditioned on γ and Y .

To state our main result we adopt the following assumption on the distribution of label proportions.

(LP) There exist ∆, τ > 0 such that the sequence of random variables Zj = 1{|γj−γj+1|<∆}
satisfies the following. For every J ⊆ [2N − 1], P(

∏
j∈J Zj = 1) ≤ τ |J|.

This condition is satisfied if the γi are iid draws from any non-constant distribution. However, it also
allows for the γi to be correlated. As one example, let (wj) be iid random variables with support
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⊇ [−1, 1]. (LP) is satisfied if γj+1 = γj +wj , where wj is the truncation of wj to [−γj , 1−γj ]. The
point of (LP) is that it offers a dependence setting where a one-sided version of Hoeffding’s inequality
holds, which allows us to conclude that with high probability, for all odd j ∈ [2N ], |γj − γj+1| ≥ ∆
for approximately N(1− τ) of the original pairs of small bags [23].

We now state our main result. Define Γ+
i = EY |γ [Γ̂+

i ] and Γ−i = EY |γ [Γ̂−i ].

Theorem 6. Let (LP) hold. Let ε0 ∈ (0,∆(1 − τ)). Let ` be a Lipschitz loss and let F satisfy
supx∈X ,f∈F |f(x)| ≤ A <∞. Let ε ∈ (0, ∆(1−τ)−ε0

1+∆ ] and δ ∈ (0, 1]. For the BP merging scheme,

under (CIIM) , with probability at least 1− δ − 2NK e
−2Kε2 with respect to the draw of γ,Y ,X ,

Γ̂+
i − Γ̂−i ≥ Γ+

i − Γ−i − ε ≥ ε0
and

sup
f∈F

∣∣∣Ẽ(f)− E(f)
∣∣∣ ≤ 2RI

c(F)+C

√
HM((Γ+

i − Γ−i − ε)−2)

2(N/K)n

(SR)

≤ D

√
HM((Γ+

i − Γ−i − ε)−2)

2(N/K)n
,

(4)
where ci = wi|`|/(Γ+

i −Γ−i − ε), C = (1 +A|`|)
√

log(2/δ), and D = 2B|`|+C. Under (CIBM),
the same bounds hold with the same probability if we substitute RI

c(F)→ RB
c (F) and n→ 1.

This result states that BP achieves essentially the same bound (modulo ε) as if we applied LMMCM
to the big bags with known Γ+

i ,Γ
−
i . We also note that there is no restriction on bag size n. A corollary

of this result also applies to any scheme that dominates BP, as we explain in the supplemental.

Theorem 6 implies a consistent learning algorithm for LLP under both (CIIM) and (CIBM) , using
any merging scheme that dominates BP. To achieve consistency the bound should tend to zero while
the confidence tends to 1, as N → ∞. Even with n fixed, this is true provided K → ∞ and
N/K →∞ as N →∞, such that N = O(Kβ) for some β > 0. Beyond that, standard arguments
may be applied to arrive at a formal consistency result. In the supplemental we state such a result for
completeness. Here the consistency is universal in that it makes no assumptions on P− or P+.

Our consistency result is for BER defined with an arbitrary loss `. If we desire consistency for BER
with 0-1 loss, but still want a tractable algorithm, we can achieve this by taking ` to be classification
calibrated, as discussed in the supplemental.

4 Experiments

The vast majority of LLP methodology papers simulate data for LLP by taking a classification data
set, randomly shuffling the data, and sectioning off the data into bags of a certain size. This implies
that the expected label proportions for all bags are the same, and as bag size increases, all label
proportions converge to the class prior probabilities. The case where all LPs are the same is precisely
the setting where LLP becomes intractable, and hence these papers report decreasing performance
with increasing bag size.

We propose an alternate sampling scheme inspired by our MCM framework.2 Each experiment is
based on a classification data set, a distribution of LPs, and the bag size n. For each dataset, the total
number of training instances T is fixed, so that the number of bags is T/n. We consider the Adult
(T = 8192) and MAGIC Gamma Ray Telescope (T = 6144) datasets (both available from the UCI
repository3), LPs that are iid uniform on [0, 1

2 ] and on [ 1
2 , 1], and bag sizes n ∈ {8, 32, 128, 512}. The

total number of experimental settings is thus 2× 2× 4 = 16. The numerical features in both datasets
are standardized to have 0 mean and unit variance, the categorical features are one-hot encoded.

We implement a method based on our general approach (see Algorithm 1) by taking ` to be the
logistic loss, F to be the RKHS associated to a Gaussian kernel k, and selecting f ∈ F by minimizing
Êw(f) + λ‖f‖2F . By the representer theorem [29], the minimizer of this objective has the form
f(x) =

∑
i αik(x, xi) where αi ∈ R and xi ranges over all training instances. Our Python

implementation uses SciPy’s L-BFGS routine to find the optimal αi. The kernel parameter is

2https://github.com/Z-Jianxin/Learning-from-Label-Proportions-A-Mutual-Contamination-Framework
3http://archive.ics.uci.edu/ml
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computed by 1
d∗V ar(X) where d is the number of features and V ar(X) is the variance of the data

matrix, and the parameter λ ∈ {1, 10−1, 10−2, . . . , 10−5} is chosen by 5-fold cross validation. We
tried the EPR as a criterion for model selection but found our own criterion to be better. For each
dataset, our implementation runs all 8 settings in roughly 50 minutes using 48 cores.

We compare against InvCal [28] and alter-∝SVM [39], the two most common reference methods in
LLP, using Matlab implementations provided by the authors of [39]. Those methods are designed to
optimize accuracy, whereas ours is designed to optimize BER. For a fair comparison, we employed a
third criterion. In particular, for each method we shift the decision function’s threshold to generate an
ROC curve and evaluate the area under the curve (AUC) using all data that was not used for training.
For each experimental setting, the reported AUC and standard deviation reflect the average results
over 5 randomized trials. Additional experimental details are found in the supplement.

The results are reported in Table 1. Bold numbers indicate that a method’s mean AUC was the
largest for that experimental setting. We see that for the smallest bag size, the methods all perform
comparably, while for larger bag sizes, LMMCM exhibits far less degradation in performance. Using
the Wilcoxon signed-rank test, we find that LMMCM outperforms InvCal and ∝SVM with p-value <
0.005.

In the supplement we present a variant of Table 1 where the number of bags N is fixed. This table
leads to similar conclusions.

Table 1: AUC. Column header indicates bag size.
Data set, LP dist Method 8 32 128 512

Adult,
[
0, 1

2

] InvCal 0.8720 ± 0.0035 0.8672 ± 0.0067 0.8537 ± 0.0101 0.7256 ± 0.0159
alter-∝SVM 0.8586 ± 0.0185 0.7394 ± 0.0686 0.7260 ± 0.0953 0.6876 ± 0.1219

LMMCM 0.8728 ± 0.0019 0.8693 ± 0.0047 0.8669 ± 0.0041 0.8674 ± 0.0040

Adult,
[

1
2 , 1
] InvCal 0.8680 ± 0.0021 0.8598 ± 0.0073 0.8284 ± 0.0093 0.7480 ± 0.0500

alter-∝SVM 0.8587 ± 0.0097 0.7429 ± 0.1473 0.8204 ± 0.0318 0.7602 ± 0.1215
LMMCM 0.8584 ± 0.0164 0.8644 ± 0.0052 0.8601 ± 0.0045 0.8500 ± 0.0186

MAGIC,
[
0, 1

2

] InvCal 0.8918 ± 0.0076 0.8574 ± 0.0079 0.8295 ± 0.0139 0.8133 ± 0.0109
alter-∝SVM 0.8701 ± 0.0026 0.7704 ± 0.0818 0.7753 ± 0.0207 0.6851 ± 0.1580

LMMCM 0.8909 ± 0.0077 0.8799 ± 0.0113 0.8753 ± 0.0157 0.8734 ± 0.0092

MAGIC,
[

1
2 , 1
] InvCal 0.8936 ± 0.0066 0.8612 ± 0.0056 0.8180 ± 0.0092 0.8215 ± 0.0136

alter-∝SVM 0.8689 ± 0.0135 0.8219 ± 0.0218 0.8179 ± 0.0487 0.7949 ± 0.0478
LMMCM 0.8911 ± 0.0083 0.8790 ± 0.0091 0.8684 ± 0.0046 0.8567 ± 0.0292

5 Conclusion

We have introduced a principled framework for LLP based on MCMs. We have developed several
novel results for MCMs, and used them to develop a statistically consistent procedure and an effective
practical algorithm for LLP. The most natural direction for future work is to extend to multiclass.

Broader Impact

LLP has been discussed as a model for summarizing a fully labeled dataset for public dissemination.
The idea is that individual labels are not disclosed, so some degree of privacy is retained. As we
show, consistent classification is still possible in this setting. If the two class-conditional distributions
are nonoverlapping, labels of training instances can be recovered with no uncertainty by an optimal
classifier. If the class-conditional distributions have some overlap, training instances in the nonover-
lapping region can still be labeled with no uncertainty, while training instances in the overlapping
regions can have their labels guessed with some uncertainty, depending on the degree of overlap.
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