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Employment outcomes of resettled refugees depend strongly on where they are placed inside the host country.
While the United States sets refugee capacities for communities on an annual basis, refugees arrive and must
be placed over the course of the year. We introduce a dynamic allocation system based on two-stage stochastic
programming to improve employment outcomes. Our algorithm is able to achieve over 98 percent of the
hindsight-optimal employment compared to under 90 percent of current greedy-like approaches. This dramatic
improvement persists even when we incorporate a vast array of practical features of the refugee resettlement
process including indivisible families, batching, and uncertainty with respect to the number of future arrivals.
Our algorithm is now part of the Annie™ Moore optimization software used by a leading American refugee
resettlement agency.

1 INTRODUCTION

There are 26 million refugees around the world [29]. The United Nations High Commissioner for
Refugees (UNHCR) considers over 1.4 million to be in need of resettlement, that is, permanent
relocation to a third country [28]. Resettlement is mainly targeted at the most vulnerable refugees,
such as children at risk, survivors of violence and torture, and those with urgent medical needs.
Dozens of countries around the world resettle refugees, but every year the number of refugees
in need of resettlement far exceeds the number that is actually resettled. In 2019, around 63,000
refugees were resettled [28].
Historically, most hosting countries have paid little attention to which communities inside the

country the refugees are resettled to. However, there is a great deal of evidence that the initial local
resettlement destination dramatically affects the outcomes of refugees [5–8, 10, 12, 19, 25]. One
specific variable impacted by community placement is whether and when resettled refugees find
employment. Employment plays a key role in the successful integration of a refugee by “promoting
economic independence, planning for the future, meeting members of the host society, providing
opportunity to develop language skills, restoring self-esteem and encouraging self-reliance” [1].
As a result, in 2017, the American resettlement agency HIAS began to match refugees to com-

munities by seeking to maximize the total number of refugees who obtain employment soon after
arrival [2]. Refugees are allocated to HIAS over the course of the year, and HIAS must assign
these refugees to a community immediately and irrevocably. However, HIAS’s matching software
Annie™Moore (Matching and Outcome Optimization for Refugee Empowerment) allocates the
weekly batches of arriving refugees in a greedy way. That is, each batch of arrivals is allocated by
separately maximizing the expected employment of this batch, subject to not exceeding remaining
community capacities and subject to ensuring that refugees have access to relevant services. By
contrast, in order to optimize employment in such a dynamic setting, an algorithm must carefully
manage the capacities by weighing in every placement decision whether a slot of capacity is more
useful for placing the current refugee or a yet-unknown refugee arriving later in the year.
In this paper, we tackle the dynamics of refugee resettlement from an optimization viewpoint.

We design two algorithms—one based on stochastic programming and another based on Walrasian
equilibrium—that optimize the dynamic matching of refugees to communities in the United States.
Our resettlement model is rich and captures all of the relevant practical features of the refugee
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resettlement process including indivisible families of refugees, batching, and unknown numbers
of refugee arrivals. We evaluate the performance of our algorithms on HIAS data from 2014 until
2019. We show that both algorithms achieve over 98 percent of the hindsight-optimal employment
in all years compared to a greedy (myopic) algorithm which typically achieves only around 90
percent. This is quite remarkable because the two algorithms we deploy are only known to have
good theoretical properties in a rather unrealistic case of our model (with known arrival numbers
and without families or batching). We then describe how we implemented our algorithms within
Annie™.

1.1 Related Work

Several papers have studied theoretical models of refugee resettlement, which can be either static [13,
22, 26, 27] or dynamic [4, 11]. Inspired by wildly successful applications of matching theory, these
papers aim to match refugees to communities based on the preferences of the refugees, of the
communities, or of both, while satisfying constraints that are unique to the resettlement setting.
The data-driven approach that has been used for refugee resettlement in practice, however, is

quite different. Introduced by Bansak et al. [10], the approach seeks to place refugees (subject to
constraints) in a way that maximizes predicted employment. This consists of two components:
using machine learning to estimate the probability that a given refugee placed at a given community
would find employment, and using mathematical programming to perform the optimization. Ahani
et al. [2] adopted a similar approach to developAnnie™; they also pointed out the practical relevance
of indivisible families and the possibility of batching. Both papers seek to maximize employment
with respect to a current batch of refugees, without considering future arrivals; it is in this sense
that we think of deployed algorithms as greedy, and that is indeed our benchmark in this paper.

In very recent work that is independent from and concurrent to ours, Bansak [9] also considered
dynamic refugee resettlement; the algorithm obtaining the highest employment in that study
is equivalent to our two-stage stochastic programming formulation in the simplest setting. Our
model is much richer as we include non-unit family sizes, incompatibilities between families and
communities, and allow for uncertain arrival numbers. Moreover, Bansak encountered computa-
tional difficulties that we are able to avoid by leveraging several algorithmic ideas. As a result,
Bansak developed a large variety of algorithms that lead to lower employment in exchange for
better running time. He evaluated his algorithms on a single month of arrivals; by contrast, our
simulations are conducted over entire years, which becomes possible as our algorithms are many
times faster.

On a technical level, our matching problem closely resembles the online generalized assignment
problem [18] and its subproblem of display ads, which corresponds to matching individual refugees
rather than indivisible families. Given that the resettlement agencies have access to data on past
arrivals, refugee resettlement calls for algorithms that can capitalize on this data rather than for
algorithms that are designed to be robust against worst-case distributions of refugees [18, 23]. To
apply the most relevant algorithms [3, 15] we would have to assume that refugees can be partitioned
into few types, which would determine employment probabilities. However, our employment
predictions are based on more than 20 features, which makes this approach impractical in our
setting.We also note that the idea of using shadow prices to guide an onlinematchingwas previously
used by Devanur and Hayes [14] and by Vee et al. [30].
Further afield, our algorithms are related to previous work in kidney exchange. In particular,

Dickerson et al. [16] and Dickerson and Sandholm [17] developed algorithms that seek to optimize
the number of patients who received a kidney (or other objectives) despite uncertainty about
arrivals and departures of patients and donors over time. On a high level, our technical approach
is inspired by theirs in that in each stage we maximize immediate benefit minus a measure of
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“lost potential” for future benefit. To calculate this potential, however, the foregoing authors used
automated parameter-tuning algorithms, which we discarded early on as they performed poorly in
our experiments.

1.2 Organization of the Paper

This paper is organized as follows. In Section 2, we provide an overview of the US refugee reset-
tlement process. In Section 3, we outline our model of dynamic refugee matching. In Section 4,
we design one of our algorithms based on two-stage stochastic programming and show how it
performs in a baseline setting that ignores the indivisibility of families, batching, and uncertainty
of arrivals. In the next three sections, we layer on complexity toward our final setting: indivisible
families (Section 5), batching (Section 6), and unknown arrival numbers (Section 7). We then explain
how we implemented our approach within Annie™ in Section 8 and conclude in Section 9. In the
appendix, we describe a second algorithm and provide further empirical results.

2 INSTITUTIONAL BACKGROUND

The federal Office of Refugee Resettlement was created by the Refugees Act in 1980. The Act
authorized the President of the United States to set annual capacities for resettlement and established
funding rules. The resettlement process is managed by the US Refugee Admissions Program (USRAP)
of the US Department of State, in conjunction with a number of federal agencies across federal
departments as well as the International Organization for Migration and the UNHCR.

Applications for the resettlement program take place from outside of the US, typically in refugee
camps. The US government conducts security checks, medical screening, and performs cultural
orientation, which can take upwards of 18 months [21]. After clearance, USRAP decentralizes
the process of welcoming refugees to nine NGOs known as resettlement agencies, of which one is
HIAS. Each agency works with their own network of affiliates supported by local offices, as well as
religious entities like churches, synagogues or mosques, which serve as community liaisons for
refugees. Each agency typically works with dozens of affiliates, though the number of affiliates
can fluctuate over time. Some affiliates lack services to host certain kinds of refugees. For example,
certain affiliates do not have translators for non-English-speaking refugees or lack support for
single-parent families.

Agencies have no influence on what refugees are cleared for resettlement by USRAP or on when
the refugees might arrive. Resettlement agencies meet on a weekly or fortnightly basis in order to
allocate among themselves the refugees that have been cleared by USRAP. Refugees are usually
resettled with members of their family. Such an indivisible group of refugees is referred to as a
case. As a family can split when its members are fleeing their home country, some refugees who
are applying for resettlement might already have existing relatives or connections in the US. Such
cases with US ties are automatically resettled near their existing ties. All other refugees, referred to
free cases, can be resettled by any agency into any of the agency’s affiliates.
Each affiliate has an assigned annual capacity for the number of refugees (rather than cases) it

can admit in a given fiscal year.1 These capacities are approved by USRAP and, in theory, agencies
cannot exceed them. In practice, capacities can be slightly adjusted towards the end of the year or,
as in recent years, substantially revised in the course of the year. Since capacities limit the number
of refugees arriving in a fiscal year rather than allocated in it, and since there is typically a delay of
multiple months between the two events, the Department of State tells the resettlement agencies
an estimated arrival date for each cleared case. Agencies are assessed annually by USRAP on their

1Each fiscal year ranges from October 1 of the previous calendar year to September 30. For example, fiscal year 2017 ranges
from October 1, 2016 to September 30, 2017.
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performance in finding employment for refugees within 90 days of their arrival. Data on 90-day
employment is therefore diligently collected by the affiliates and monitored by the agencies.

3 MODEL

An instance of the matching problem first defines a set 𝐿 of affiliates. Each affiliate ℓ has a capacity
𝑐ℓ ∈ N≥0 ∪ {∞} of how many refugees it can host. We call a collection {𝑐ℓ }ℓ∈𝐿 of capacities for all
affiliates a capacity profile 𝒄 . To describe changes in capacity, it will be useful to manipulate the
capacity profiles as vectors. Specifically, we write 𝒄 − 𝒆ℓ to describe the capacity profile obtained
from 𝒄 by reducing the capacity of affiliate ℓ by 1.

On the other side of the matching problem is a set 𝑁 = {1, . . . , 𝑛} of cases. Each case 𝑖 represents
an indivisible family of 𝑠𝑖 ∈ N≥1 refugees. Furthermore, each case 𝑖 , for each affiliate ℓ , has
an employment score 𝑢𝑖,ℓ , which indicates the expected number of case members that will find
employment if the case is allocated to ℓ . Typically, these employment scores 𝑢𝑖,ℓ are real numbers
in [0, 𝑠𝑖 ], but we will also allow to set 𝑢𝑖,ℓ = −∞ to express that case 𝑖 is not compatible with
affiliate ℓ . We will refer to the combination of a case’s size and vector of employment scores as the
characteristics of the case. To ensure that the matching problem is always feasible, we will assume
that 𝐿 contains a special affiliate ⊥ that represents leaving a case unmatched, where 𝑢𝑖,⊥ = 0 for all
cases 𝑖 and 𝑐⊥ = ∞.2
We use the employment scores developed by Ahani et al. [2], and we give details on data

preprocessing and training in Appendix A. Throughout this paper, we consider these employment
scores as ground truth, which means that we evaluate algorithms directly based on the employment
scores. An evaluation of how accurately the employment scores predict employment outcomes is
outside of the scope of this paper, and we refer the reader to Ahani et al. for such an evaluation.

The goal of the matching problem is to allocate cases to affiliates such that the total employment,
that is, the sum of employment scores, is maximized, subject to not exceeding capacities. For a
set 𝐼 ⊆ 𝑁 and a capacity profile 𝒄 = {𝑐ℓ }ℓ∈𝐿 , define Matching(𝐼 , 𝒄) as the matching integer linear
program (ILP) below, where variables 𝑥𝑖,ℓ indicate whether case 𝑖 ∈ 𝐼 is matched to affiliate ℓ ∈ 𝐿:

maximize
∑︁
𝑖∈𝐼

∑︁
ℓ∈𝐿

𝑢𝑖,ℓ 𝑥𝑖,ℓ

subject to
∑︁
ℓ∈𝐿

𝑥𝑖,ℓ = 1 ∀𝑖 ∈ 𝐼∑︁
𝑖∈𝐼

𝑠𝑖 𝑥𝑖,ℓ ≤ 𝑐ℓ ∀ℓ ∈ 𝐿

𝑥𝑖,ℓ ∈ {0, 1} ∀𝑖 ∈ 𝐼 , ℓ ∈ 𝐿.

Let Opt(𝐼 , 𝒄) denote the optimal objective value ofMatching(𝐼 , 𝒄). The linear programming (LP)
relaxation ofMatching(𝐼 , 𝒄) is obtained by replacing the constraint 𝑥𝑖,ℓ ∈ {0, 1} by 0 ≤ 𝑥𝑖,ℓ ≤ 1 for
all 𝑖 ∈ 𝐼 , ℓ ∈ 𝐿. For a fixed matching, we define the match score of a case 𝑖 as its employment score
𝑢𝑖,ℓ𝑖 at the affiliate ℓ𝑖 where it is allocated; we will also refer to its match score per refugee, 𝑢𝑖,ℓ𝑖 /𝑠𝑖 .

Finally, cases arrive online, that is, they arrive one by one and, when case 𝑖 arrives, the decision of
which affiliate to place it in must be made irrevocably, before the characteristics of the subsequent

2For example, allowing cases to be unmatched is necessary since an arriving case might only be compatible with affiliates
whose capacity is already exhausted. When these situations occur in practice, such cases do not remain unmatched; instead,
capacities can be increased or case–affiliate incompatibilities overruled manually by the arrivals officer. For our sequence
of models, we report the fraction of matched refugees in Appendix C.4, and find that our algorithms do not lead to fewer
refugees being matched than in the greedy baseline. To lower the number of unmatched refugees at the cost of reducing
employment, one can add a constant reward per refugee to the 𝑢𝑖,ℓ with ℓ ≠ ⊥.
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arrivals 𝑖 + 1, . . . , 𝑛 are known.3 Thus, although an online matching algorithm must still produce
a matching whose indicator variables 𝑥𝑖,ℓ satisfy the constraints of Matching(𝑁, 𝒄), the total
employment

∑
𝑖∈𝑁,ℓ∈𝐿 𝑢𝑖,ℓ 𝑥𝑖,ℓ typically will not attain the benchmark Opt(𝑁, 𝒄) of the optimal

matching in hindsight. While we will not commit to a specific model of how the characteristics of
arriving cases are generated, these arrivals should be thought of as stochastic rather than worst-case,
and the distribution of case characteristics as changing slowly enough that sampling from recent
arrivals is a reasonable proxy for the distribution of future arrivals.
Throughout the following sections, we will consider a sequence of models, which incorporate

an increasing number of features of the real-world refugee allocation problem: in Section 4, we
consider traditional online bipartite matching, which results from requiring 𝑠𝑖 = 1 in the above
model; from Section 5 onward, we allow cases to have arbitrary size; from Section 6 onward, we
also allow cases to arrive in batches rather than one by one; in Section 7, we no longer assume that
the total number 𝑛 of arriving cases is known to the algorithm.

4 ONLINE BIPARTITE MATCHING (𝑠𝑖 = 1)
In this section, we will consider the special case of online bipartite (weighted) matching. We stress
that this classical problem does not capture key features of the refugee-allocation problem in
practice, which we will add in later sections. Instead, online bipartite matching serves as a starting
point for the development of our matching algorithm since the simplified model allows us to justify
our algorithmic approach by theoretical arguments. Later in the paper, we will empirically show
that the approach continues to work well in richer and more realistic settings.
Formally, this section considers the model defined in the previous section, with the restriction

that all cases consist of single refugees, i.e., that 𝑠𝑖 = 1 for all 𝑖 ∈ 𝑁 . Under this assumption, it is
well-known that the optimum matching for the ILP Matching(𝐼 , 𝒄) can be found by solving its LP
relaxation.

4.1 Algorithmic Approach

To motivate our algorithmic approach, we begin by describing why matching systems currently
deployed in practice lead to suboptimal employment. These systems assign cases greedily, which—
putting aside batching for now—means that an arriving case 𝑖 is matched to the affiliate ℓ with
highest employment score 𝑢𝑖,ℓ among those that have at least 𝑠𝑖 remaining capacity. The main
problem with greedy assignment is that it exhausts the capacity of the most desirable affiliates too
early. In particular, we observe on the real data that a large fraction of cases have their highest
employment score in the same affiliate ℓ∗, but that the size of the employment advantage of affiliate
ℓ∗ over the second-best affiliate varies. Since it only considers the highest-employment affiliate
for each case, greedy assignment will fill the entire capacity of ℓ∗ early in the year, including with
some cases that benefit little from this assignment. Consequently, cases that would particularly
profit from being placed in ℓ∗ but arrive later in the year no longer fit within the capacity.

Intuitively, the decision to match a case 𝑖 to an affiliate ℓ has two effects: the immediate increase
of the total employment by 𝑢𝑖,ℓ but also an opportunity cost for consuming ℓ’s capacity, which
might prevent profitable assignments for later arrivals. Since greedy assignment only considers the
former effect, it leaves employment on the table.

A better approach would be two-stage stochastic programming, which allocates an arriving case 𝑖
to the affiliate ℓ maximizing the sum of the immediate employment 𝑢𝑖,ℓ and the expected optimal
employment obtainable by matching the future arrivals subject to the remaining capacity. That is, if,
at the time of 𝑖’s arrival, the remaining capacities are given by 𝒄 , two-stage stochastic programming

3From Section 6 onward, cases will instead arrive in batches, which can be allocated simultaneously.
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allocates 𝑖 to the affiliate

argmax
ℓ∈𝐿:𝑐ℓ ≥𝑠𝑖

𝑢𝑖,ℓ + E
[
Opt

(
{𝑖 + 1, . . . , 𝑛}, 𝒄 − 𝑠𝑖 · 𝒆ℓ

) ]
,

where the expectation is taken over the characteristics of cases 𝑗 = 𝑖 + 1, . . . , 𝑛. Since adding a
constant term does not change the argmax, this can be rewritten as

= argmax
ℓ∈𝐿:𝑐ℓ ≥𝑠𝑖

𝑢𝑖,ℓ − E
[
Opt

(
{𝑖 + 1, . . . , 𝑛}, 𝒄

) ]
+ E

[
Opt

(
{𝑖 + 1, . . . , 𝑛}, 𝒄 − 𝑠𝑖 · 𝒆ℓ

) ]
= argmax

ℓ∈𝐿:𝑐ℓ ≥𝑠𝑖
𝑢𝑖,ℓ − E

[
Opt

(
{𝑖 + 1, . . . , 𝑛}, 𝒄

)
− Opt

(
{𝑖 + 1, . . . , 𝑛}, 𝒄 − 𝑠𝑖 · 𝒆ℓ

) ]
. (1)

Using our assumption that 𝑠𝑖 = 1, this can be simplified to

= argmax
ℓ∈𝐿:𝑐ℓ ≥1

𝑢𝑖,ℓ − E
[
Opt

(
{𝑖 + 1, . . . , 𝑛}, 𝒄

)
− Opt

(
{𝑖 + 1, . . . , 𝑛}, 𝒄 − 𝒆ℓ

) ]
.

Note that the expectation that is subtracted in either of the last two lines is exactly the expected
opportunity cost of reducing the capacity of ℓ by placing case 𝑖 there. This motivates our algorithmic
approach: in every time step, we first compute a potential 𝑝ℓ for each affiliate ℓ . Then, rather than
myopically maximizing the utility of the match as does greedy assignment, our algorithm PM
(“potential match”) myopically maximizes the utility of the current match minus the potential of
the capacity used, as shown in Algorithm 1. (Note that an affiliate ℓ can always be defined in Line 5
as, by assumption, 𝑐⊥ = ∞.)

ALGORITHM 1: PM(Potential)
Parameter: a subroutine Potential to determine affiliate potentials

1 initialize the capacities 𝑐ℓ for each affiliate ℓ ;
2 for 𝑡 = 1, . . . , 𝑛 do
3 observe the case size 𝑠𝑡 and the employment scores {𝑢𝑡,ℓ }ℓ ;
4 call Potential() to define a potential 𝑝ℓ for each affiliate ℓ ;
5 ℓ ← argmaxℓ∈𝐿:𝑐ℓ ≥𝑠𝑡 𝑢𝑡,ℓ − 𝑠𝑡 𝑝ℓ ;
6 allocate case 𝑡 to ℓ and set 𝑐ℓ ← 𝑐ℓ − 𝑠𝑡 ;

We estimate the expected value of the opportunity cost by averaging over a fixed number 𝑘 of
trajectories, each of which consists of randomly sampled characteristics of all arrivals 𝑖 + 1 through
𝑛. Since the characteristics of arriving refugees change over time, but since these changes tend to
be gradual, we draw these arrival characteristics uniformly with replacement from the arrivals in
the six months prior to the current allocation decision.

For each sampled trajectory, it remains to calculate the potential, which we would like to equal the
opportunity cost Opt

(
{𝑖 + 1, . . . , 𝑛}, 𝒄

)
−Opt

(
{𝑖 + 1, . . . , 𝑛}, 𝒄 − 𝒆ℓ

)
. Clearly, this could be computed

by solving O(|𝐿 |) matching problems. More easily still, celebrated results in matching theory [24]
show that the opportunity costs for all affiliates with remaining capacity can be computed as the
shadow prices of a single LP:

Fact 1. Fix a matching-problem instance, in which all cases 𝑖 have size 𝑠𝑖 = 1. In the LP relaxation
of Matching(𝑁, 𝒄), let {𝑝ℓ }ℓ∈𝐿 denote the unique element-wise maximal set of shadow prices for the
constraints

∑
𝑖∈𝑁 𝑠𝑖 𝑥𝑖,ℓ ≤ 𝑐ℓ . Then, for each ℓ with 𝑐ℓ ≥ 1,

𝑝ℓ = Opt
(
{𝑖 + 1, . . . , 𝑛}, 𝒄

)
− Opt

(
{𝑖 + 1, . . . , 𝑛}, 𝒄 − 𝒆ℓ

)
.
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This suggests the procedure Pot1 for computing potentials, which is shown in Algorithm 2. We
also develop a second method Pot2 for computing potentials, based on a slightly different matching
LP. This second methodology is motivated by a different theoretical argument, based on competi-
tive equilibria rather than stochastic programming. For conciseness, we give this justification in
Appendix B.

4.2 Empirical Evaluation

We evaluate the employment of our potential-based matching algorithm on real yearly arrivals at
HIAS. For each fiscal year, we consider all refugees who arrived in this period, and we consider
them in the order in which they were received for allocation by HIAS. For the capacities, we use
the year’s final, i.e., most revised, capacities.4 We also immediately take into account that affiliates
are restricted in which nationalities, languages, and family sizes they can accommodate, as well as
in whether they can host single parents.

ALGORITHM 2: Pot1(𝑘)
Parameter: 𝑘 ∈ N≥1, the number of trajectories per potential computation
Input: remaining capacities 𝒄 , the index 𝑡 of the last observed case, characteristics of cases arriving in the

past 6 months
Output: a set of potentials 𝑝ℓ for all affiliates ℓ

1 for 𝑗 = 1, . . . , 𝑘 do
2 for each 𝑖 = 𝑡 + 1, . . . , 𝑛, set 𝑠𝑖 and {𝑢𝑖,ℓ }ℓ to the size and employment scores of a random, recently

arrived case;
3 solve the following bipartite-matching LP:

maximize
𝑛∑︁

𝑖=𝑡+1

∑︁
ℓ∈𝐿

𝑢𝑖,ℓ 𝑥𝑖,ℓ

subject to
∑︁
ℓ∈𝐿

𝑥𝑖,ℓ = 1 ∀𝑖 = (𝑡+1), . . . , 𝑛

𝑛∑︁
𝑖=𝑡+1

𝑠𝑖 𝑥𝑖,ℓ ≤ 𝑐ℓ ∀ℓ ∈ 𝐿 (∗)

0 ≤ 𝑥𝑖,ℓ ∀𝑖 = (𝑡+1), . . . , 𝑛,∀ℓ ∈ 𝐿.

4 for each ℓ , set 𝑝 𝑗
ℓ
to the maximal shadow price5of the constraint (∗) for ℓ ;

5 set 𝑝ℓ ← (
∑𝑘

𝑗=1 𝑝
𝑗
ℓ
)/𝑘 for all ℓ ;

6 return {𝑝ℓ }ℓ∈𝐿 ;

The main way in which we deviate from reality in this experiment is accommodates the assump-
tion in this section that cases have unit size. To satisfy this assumption, we split each case of size
𝑠𝑖 > 1 into 𝑠𝑖 identical single-refugee cases with a 1/𝑠𝑖 fraction of the original employment scores.
In subsequent sections, we will repeat the experiments without this modification.

4When the number of refugees resettled in the fiscal year exceeds the official capacity, we use the the number of resettled
refugees instead. In these situations, HIAS negotiated an increase in capacity that is not always recorded in our data.
5One way of finding the maximal shadow price is to first solve the dual LP to find its objective value, then adding a constraint
that constrains the objective of the dual LP to be equal to this optimal objective value, and to finally maximize the sum of
dual variables 𝑝ℓ over this new restricted LP.
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We study 6 fiscal years, from 2014 to 2019. As affiliates closed and opened across these years, the
number of affiliates varies between 16 and 24 (not counting the unmatched affiliate ⊥). Finally, the
number of arriving refugees (cases) varies between 1,670 (640) and 4,150 (1,630) across fiscal years.
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Fig. 1. Total employment obtained by different algorithms, assuming that cases are split into multiple cases
of size 1. Capacities are the final capacities of the fiscal year. For the potential algorithms, total employment
is averaged over 10 random runs. The numbers in the bars denote the absolute total employment; the bar
height indicates the proportion of the optimum total employment in hindsight.

As shown in Fig. 1, even the greedy baseline obtains a total employment of between 89% and 92%
of Opt(𝑁, 𝒄), the optimum matching in hindsight. (One outlier is the year 2018, which we discuss
below.) Nevertheless, the greedy algorithm leads to between 50 and 100 fewer refugees finding
employment every year compared to what would have been possible in the optimum matching. Our
potential algorithms close a large fraction of this gap, obtaining between 98% and 99% of the optimal
total employment. This holds both for algorithms based on Pot1 and for those based on Pot2. Since
experiments in this model take much longer to run than those in subsequent models, we defer a
comparison between the two potential methods and between values of 𝑘 to Section 6.1, where we
can run the potential algorithms a sufficient number of times to discern smaller differences.

The fiscal year 2018 stands out from the others due to the fact that the greedy algorithm performs
on par with the potential algorithms, at 99% of the hindsight-optimal total employment. This is
easily explained by the fact that the capacities are much looser than in other fiscal years: whereas,
in all other fiscal years between 2014 and 2019, the number of arriving refugees amounts to between
84% (2019) and 97% (2016) of the final total capacity across all affiliates, this proportion is only 48%
in 2018. Since capacity is so abundant, the optimal matching will match a large fraction of cases to
their maximum-score affiliate, and the greedy matching is close to optimal.
We also compare to the employment obtained by the allocation chosen by HIAS (“historical”).

This comparison gives the historical matching a slight advantage, as HIAS sometimes overrides the
incompatibility between an affiliate and a case, which we do not allow any other algorithm to do.6
In Fig. 2, we investigate how the match score changes over the course of two fiscal years, 2016

and 2019, chosen to contain a year in which the greedy and historical baselines perform relatively
poorly and one in which they perform well. As the match score of subsequently arriving refugees
can be very different, these graphs are heavily smoothed over time. If arrivals were independently
drawn from a time-invariant distribution, we would expect the curve resulting from the hindsight
optimum to be approximately constant for each fiscal year, since how much employment the
optimum matching can extract from a case would be independent of the case’s arrival time. This
is not quite so, especially among the early refugees in fiscal year 2016 and the late refugees in fiscal
6In these cases, we estimate the employment achieved by the case using the regression rather than using 𝑢𝑖,ℓ = −∞.
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Fig. 2. Evolution of the per-refugee match score in order of arrival, for fiscal years 2016 and 2019 in the
experiment of Fig. 1 (split cases, final capacities). Consecutive match scores are smoothed using triangle
smoothing with width 500.
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Fig. 3. Remaining priced capacity at the time of arrival of different refugees, for fiscal years 2016 and 2019 in
the experiment of Fig. 1 (split cases, final capacities).

year 2019, which seem to have worse employment prospects than other refugees in the plot. For most
of each year, however, the curve of the hindsight optimum moves within a relatively narrow band.
The curves of both potential algorithms are nearly indistinguishable from one another, which

shows that the algorithms make very similar decisions. In 2016, these curves start out closely
tracking the curve of the optimal-hindsight matching, but fall behind for the last cases of the fiscal
year, which we observe in most fiscal years. The similarity of the curves over most of the year
indicates that our approach of sampling trajectories from past arrivals is nearly as useful as the
optimum algorithm’s perfect knowledge of future arrivals and that it leads to a similar trade-off
in extracting immediate employment versus preserving capacity for later arrivals. Of course, the
imperfect knowledge of the future incurs a small loss towards the end of the fiscal year, likely
because the amount of capacity reserved per affiliate does not perfectly match the demand, which
explains the gap in total employment between the hindsight optimum and the potential algorithms.
This typical end-of-year effect is not very pronounced in fiscal year 2019, likely because the final
arrivals of fiscal year 2019 have lower employment probabilities than what would be expected
based on past arrivals. Instead, the potential algorithms fall behind the optimum algorithm for
some period in the middle of the year, perhaps because they are reserving capacity for late arrivals
which the optimum already knows to hold little promise.

The most striking curve is that of the greedy algorithm, which lies above those of all other
algorithms in the first quarter of arrivals, but then falls clearly below the other curves in the second
half. This observation can be explained by the effect we predicted in the motivation of our potential
approach: the greedy algorithm extracts small additional gains in employment early in the arrival
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period, at the cost of prematurely consuming the capacity of the most desirable affiliates. Then, the
lack of capacity limits the match scores of later arrivals, resulting in an overall unfavorable trade-off.
This effect can be directly seen in Fig. 3, in which we visualize the amount of capacity remaining in
the most valuable affiliates. Specifically, looking at all arrivals of the fiscal year, we compute the
shadow prices of the matching LP. At any point in time, we can then weight the remaining capacity
by these prices to obtain a priced capacity. In Fig. 3, we see that the optimum-hindsight matching
and the potential algorithms use up the priced capacity at a roughly constant pace and essentially
consume it all. By contrast, the greedy algorithm uses up the capacity very quickly, such that at the
median refugee, only 22% (2016) or 17% (2019) of the priced capacity is left.
The historical matching made by HIAS does not have such obvious defects, but still falls short

in terms of total employment. In both reference years, the average employment moves in parallel
with the optimum matching, meaning that HIAS does not overly focus on extracting employment
at certain parts of the fiscal year at the expense of others. However, the average employment
consistently lies below that of the optimum and of the potential algorithms. We see in Fig. 3 that,
in 2019, HIAS started consuming the priced capacity at a near-constant pace very similar to that of
the optimum algorithm. Around the median arrival, however, the historical matching slowed down
its capacity consumption and ended up not consuming all priced capacity, which explains some
loss in total employment. One reason for this behavior might be that HIAS staff treat the last 9% of
the capacity as a reserve that they are more reluctant to use. In a year such as 2019, in which the
overall arrivals were only 84% of the total capacity, this heuristic might have actually kept much of
the reserve capacity free, including in the affiliates that could have generated higher employment.
By contrast, the total arrivals in 2016 amounted to 97% of the overall capacity, which could explain
why nearly all priced capacity was consumed in this year. The fact that, in 2016, the historical
assignment achieved lower average employment than the potential approaches despite using up
priced capacity in a similar pattern indicates that whom this capacity is allocated to throughout
the year was somewhat inefficient in terms of employment.

5 NON-UNIT CASES (𝑠𝑖 ≥ 1)
The most pressing aspect of refugee matching that we have ignored thus far is that many cases do
not consist of individual refugees. Instead, they consist of an entire family of refugees, which has
to be resettled to the same affiliate.
To accommodate cases consisting of multiple family members, we will from now drop the

assumption that the 𝑠𝑖 are 1. The main effect of this change is that the LP relaxation of the ILPs
Matching(𝐼 , 𝒄) can now be a proper relaxation. Indeed, the LP relaxation might allow for higher
objective values because it allows fractional solutions.7 As a result, our dual prices will no longer
exactly compute the marginal value of a unit of capacity. In any case, to retain the exact connection
to stochastic programming in Eq. (1), PM would have to subtract the opportunity cost of 𝑠𝑖 units of
capacity from 𝑢𝑖,ℓ , which might exceed 𝑠𝑖 times the opportunity cost of a single unit of capacity.
However, as the capacity of most affiliates is much larger than the size of a typical case, both

approximations can be expected to be relatively close, which is what we find empirically: we repeat
the experiment of the previous section, but without splitting up cases into individual refugees. The
results are nearly indistinguishable, which supports our decision to use LP relaxations even in the
setting with indivisible cases. The full figures are deferred to Appendix C.1.

7One can always find a fractional solution that splits cases into 1/𝑠𝑖 fractions similarly to what we did in the evaluation of
Section 4.2.
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6 BATCHING

A second aspect that we have not considered thus far is that HIAS does not actually process arriving
cases one by one, but in batches containing one or multiple cases. Most of these batches result from
the weekly meetings between the resettlement agencies, but smaller batches with urgent cases are
allocated between the weekly meetings.
The fact that cases arrive in batches does not make the problem harder; after all, a matching

algorithm that does not support batching can still be used by presenting the cases of each batch to
the algorithm one by one. As we will argue, however, batching represents an opportunity to improve
on this strategy: there is a (limited) opportunity to increase total employment and a (significant)
opportunity to reduce running time.

Concerning total employment, using a non-batching algorithm in a batching setting is wasteful
since it ignores potentially valuable information. Specifically, when the earliest cases of the batch
are allocated, a non-batching algorithm presumes that the characteristics of the other cases in the
batch are not yet known. Arguably, as the sizes of batches tend to be much smaller than the total
number of cases 𝑛, the amount by which this can increase total employment is likely to be limited.
As for running time, given that the matching algorithm receives no new information between

the first and last case of a batch, it seems reasonable not to recompute potentials within a batch. As
there tend to be 5 to 10 times more cases than batches and as the computation of potentials is the
bottleneck in the running time of the potential algorithms, this promises to substantially speed up
the algorithm.
In adapting our algorithm PM to batching, we will not change how we compute the potentials

𝑝ℓ . However, the algorithm now allocates all cases in the batch at once, still with the objective of
optimizing the immediate utility of the assignment less the sum of potentials consumed. Thus, our
extended algorithm PMB (“potentialmatch with batching”, Algorithm 3) allocates the current batch
according to the solution to a matching ILP, in which the utility of matching case 𝑖 to affiliate ℓ is
set to𝑢𝑖,ℓ −𝑠𝑖 𝑝ℓ . Note that, if all batches have size 𝑏 = 1, this algorithms coincides with our previous
algorithm PM. Moreover, PMB also generalizes the greedy algorithm previously implemented in
Annie™, which can be recovered by setting all potentials 𝑝ℓ to zero.

6.1 Empirical Evaluation
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Fig. 4. Total employment, where cases are not split and arrive in batches. Capacities are the final fiscal year
capacities. In contrast to Fig. 1, cases arrive in batches and the batching variants of greedy and the potential
algorithms are used. For the potential algorithms, the mean employment across 50 random runs is shown.

We repeat the experiment measuring the total employment obtained by the algorithms, this time
with the greedy algorithm and the potential algorithms allocating cases in batches. As shown in
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ALGORITHM 3: PMB(Potential)
Parameter: a subroutine Potential to determine affiliate potentials

1 initialize the capacities 𝑐ℓ for each affiliate ℓ ;
2 𝑡last ← 0; // index of last case in previous batch

3 while 𝑡last < 𝑛 do
4 observe the size 𝑏 of the current batch;
5 𝑡 ← 𝑡last + 𝑏; // index of last case in current batch

6 observe the case size 𝑠𝑖 and the employment scores {𝑢𝑖,ℓ }ℓ for all 𝑖 = (𝑡last+1), . . . , 𝑡 ;
7 call Potential() to define a potential 𝑝ℓ for each affiliate ℓ ;
8 let {𝑥𝑖,ℓ } be an optimal solution to the following bipartite-matching ILP with knapsack constraints:

maximize
𝑡∑︁

𝑖=𝑡last+1

∑︁
ℓ∈𝐿
(𝑢𝑖,ℓ − 𝑠𝑖 · 𝑝ℓ ) 𝑥𝑖,ℓ

subject to
∑︁
ℓ∈𝐿

𝑥𝑖,ℓ = 1 ∀𝑖 = (𝑡last + 1), . . . , 𝑡

𝑡∑︁
𝑖=𝑡last+1

𝑠𝑖 𝑥𝑖,ℓ ≤ 𝑐ℓ ∀ℓ ∈ 𝐿

𝑥𝑖,ℓ ∈ {0, 1} ∀𝑖 = (𝑡last + 1), . . . , 𝑡,∀ℓ ∈ 𝐿.

9 for 𝑖 = 𝑡last + 1, . . . , 𝑡 do
10 allocate case 𝑖 to unique affiliate ℓ where 𝑥𝑖,ℓ = 1;
11 𝑐ℓ ← 𝑐ℓ − 𝑠𝑖 ;
12 𝑡last ← 𝑡 ;

Fig. 4, the results again look very close to those in the restricted setting of online bipartite matching,
confirming that our algorithmic approach generalizes well not only to non-unit case sizes but also
to batching as it is used in practice.
Since processing entire cases in batches is much faster than processing cases (or individual

refugees) one by one, we are now in a position to run each potential algorithm many times and
analyze the distribution of total employments. As shown in Fig. 5, the total employment produced
by each potential algorithm is sharply concentrated, especially for 𝑘 ≥ 3.
Running each algorithm many times enables us to compare the relative performance of the

potential algorithms. Across both ways of computing potentials, and all fiscal years (with the
exception of 2018, where everything is very close together), we see a clear tendency that averaging
the potentials across more trajectories improves the employment outcome. These effects are
somewhat limited, though, as going from a single trajectory to nine trajectories improves the
median employment by less than half a percent of the hindsight optimum. As is to be expected,
there appears to be diminishing returns in increasing 𝑘 .
For 𝑘 held constant, we observe that the Pot2 variants quite consistently outperform the Pot1

variants; again with the exception of 2018, in which a small inversion of this trend can be seen.
While all potential algorithms perform very well, based on these results, we recommend the Pot2
potentials with a relatively large 𝑘 for practical implementation. Of course, increasing 𝑘 increases
the running time of the matching algorithm. However, since a resettlement agency computes only
one set of potentials per day, the algorithm runs in few seconds even for 𝑘 = 9 (see Appendix C.2).
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Fig. 5. Distribution of the total employment obtained by instantiating PMB with different potential methods
and different 𝑘 , in the experiment of Fig. 4 (whole cases, batching, final capacities) and over 50 random runs
per algorithm.

7 UNCERTAINTY IN THE NUMBER OF FUTURE ARRIVALS

Given that our algorithm PMB supports non-unit sized cases and batching, it might seem that we
are ready to replace the greedy algorithm in Annie™ by our potential algorithm. However, our
algorithm crucially relies on one piece of input that the greedy algorithm did not need, namely, the
total number of cases arriving in the fiscal year. This number determines the length of the sampled
trajectories, which can greatly impact the shadow prices and, thus, how the algorithm allocates
cases.
In principle, the information given to resettlement agencies should provide a fairly precise

estimate of how many cases are expected to arrive. Indeed, before the start of each fiscal year, the
US Department of State announces how many refugees it intends to resettle in that fiscal year, and
resettlement agencies are instructed to prepare for a certain fraction of this total number. In fact,
HIAS sets its affiliate capacities to sum up to 110% of this number of announced refugees, which is
intended to give local affiliates a good idea of how many refugees they will receive while affording
the resettlement agency some freedom in its allocation decisions.

7.1 Relying on Capacities

It is thus natural to run our potential algorithms under the assumption that the number of arriving
refugees will be 1/(110%) ≈ 91% of the total announced capacity.8 The result of this strategy
8To convert the number of remaining refugees into a number of cases, we divide by the average case size of recent arrivals
(over the years, this average size fluctuates between 2.4 and 2.6). While the number of refugees who have arrived is below
91% of the total capacity, this gives us a total number of cases 𝑛 for the algorithms. Once the number of arrivals exceeds 91%
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Fig. 6. Total employment, where cases are not split up and arrive in batches. The potential algorithms no
longer have access to the true number of arriving cases but assume that the arriving refugees amount to
91% of the total capacity. Capacities are the initial capacities of the fiscal year (except for historical). For the
potential algorithms, the mean employment across 50 random runs is shown.

is shown in Fig. 6. As we choose the initial, unrevised capacities, the employment scores of the
hindsight optimum and the greedy algorithm may differ from those in previous experiments,
which used the most revised capacities.9 In all fiscal years other than 2017 and 2018, the imprecise
knowledge of future arrivals deteriorates the approximation ratio of the potential algorithms, but
the potential algorithms continue to clearly outperform the greedy baseline, and they outperform
the historical matching on all years.
Putting aside the years of 2017 and 2018 for now, we investigate the fiscal years 2016 and 2019,

in which arrivals were highest and lowest relative to the announced capacity. In fiscal year 2016,
the total arrivals were particularly large relative to the initial capacity: the arrival numbers added
up to 100% of the initial capacity rather than 91%, which means that our potential algorithms
expected around 3,770 refugees to arrive rather than the 4,150 that ended up arriving. As a result,
the potential algorithms consume the priced capacity at an approximately constant rate, consuming
it all around the expected number of expected refugees (Fig. 7, bottom left). Up to this point, the
potential algorithms are more generous in consuming capacity than would be ideal given the actual
number of arriving cases, which is why the potential algorithms obtain a slightly higher average
employment over the first three quarters of arrivals (Fig. 7, top left) than the optimal matching in
hindsight. For refugees arriving after the 3,770 expected refugees, however, the capacity in the best
affiliates is used up, which is why the averaged employment sharply drops after this point.10
In 2019, by contrast, fewer refugees arrived than expected, only 86% of the total capacity. At

the bottom right of Fig. 7, it is visible that the potential algorithms consume priced capacity at
a slightly lower rate than the optimal algorithm in hindsight, as they aim to use up the capacity
around 2,440 refugees rather than the 2,310 who ended up arriving. This effect is reflected in the
average employment rates (top right), which lie below that of the optimal algorithm throughout
most of the year.11

of the total capacity, we make the algorithms assume that the current case is the last to arrive, that is, all subsequently
sampled trajectories have length zero.
9This means that the comparison to the historical algorithm is not quite on equal terms, since the latter is constrained by a
different set of capacities. In all fiscal years except for 2017 and 2018, the final capacities are element-wise larger than the
original capacities.
10Note that, due to the triangle smoothing, the drop starts dragging down the curve 500 arrivals before its actual start.
11The drop in employment probabilities at the end of the fiscal year affects all algorithms including the hindsight optimum
and must therefore be caused by an anomaly in arrival characteristics.
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Fig. 7. Evolution of the per-refugee match score and remaining priced capacity in order of arrival, for fiscal
years 2016 and 2019 and one run per algorithm in the experiment of Fig. 6 (whole cases, batches, initial
capacities, potential algorithms do not know 𝑛). Dotted line show how many refugees the potential algorithms
expect. Smoothing as in Fig. 2. Priced capacity is not shown for historical since it uses different capacities.

The fiscal years of 2017 and 2018 stand out due to the fact that the total number of arriving
refugees fell far short of the announced number reflected in the approved capacities: in 2017, arrivals
amounted to 65% of the approved capacities, while they amounted to only 46% in 2018. Both of
these years fall into the beginning of the Trump administration, which not only sharply reduced
the announced intake of resettled refugees, but furthermore abruptly halted the intake of refugees
from six predominantly Muslim countries starting from early 2017.

As the potential algorithm depicted in Fig. 8 severely overestimates how many cases will arrive, it
holds back much more priced capacity than would be optimal (bottom, solid lines). This causes the
potential algorithms to extract less employment throughout the year than the optimal algorithm
(top, solid lines). As observed in Section 4.2, the capacities in 2018 are so loose that the greedy
algorithm performs close to optimal.
In these two years, the US Department of State eventually reacted by correcting the expected

arrivals downward and instructing the resettlement agencies to reduce their capacities. In fiscal year
2017, this revision came quite late and ended up underestimating the arrivals: where the arrivals
amounted to only 65% of the initial capacities, they exceeded the revised total capacity at a level
of 103%, rather than amounting to the 91% that was intended. Even if imperfect, this signal that
arrivals are much lower than originally announced is still useful to the potential algorithms. Indeed,
in Fig. 8, the dashed curve corresponds to a potential algorithm that still starts out expecting 91% of
the initial capacities to arrive, but expects only 91% of the revised capacities to arrive from the point
on where they were announced (vertical line). While this information comes late, the algorithm
in fiscal year 2017 uses the new information to burn through the remaining priced capacity more
aggressively (bottom left), which allows for higher employment among refugees arriving after the
revision of arrival numbers (top left). As a result, the employment reaches 97% of the optimum in
hindsight, exceeding the value of 95% without the updated information that we showed in Fig. 6.
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Fig. 8. Evolution of the per-refugee match score and remaining priced capacity in order of arrival, for fiscal
years 2017 and 2018 in the experiment of Fig. 6 (whole cases, batches, initial capacities, potential algorithms
do not know 𝑛). Dashed line shows evolution if potential algorithm updates its expected arrival number at
time of capacity revision (dotted line).

By contrast, the revision in fiscal year 2018 did not yield much useful information; whereas
the arrivals amounted to 46% of the initial capacities, they still amounted to 48% of the revised
capacities. This seems to indicate that, even after half of the fiscal year’s refugees had already
been allocated, the administration overestimated the number of arriving refugees by a factor of
two. Because the revision barely changed the number of expected arrivals, giving the potential
algorithm access to this revised information does not have much effect (Fig. 8, right).

While we have considered the informational value of revisions above, our experiments have not
considered that these revisions actually reduced the allowable capacities. Although we include a
variant of the experiment in Appendix C.3, it is difficult to meaningfully compare the employment
achieved by different algorithms if the parameters of the matching problem are changed so drasti-
cally during the matching period. One particular challenge is that, while the amount of reduction
was extraneously decided, HIAS was involved in deciding which capacities to decrease, which was
done in a way that depended on previous allocation decisions.12 Since we only know the revised
capacities that were agreed upon, not the counterfactual revision of capacities that would be made,
the greedy algorithm and the potential algorithms might have already exceeded a reduced capacity
before it was announced. This means that the experiment rewards algorithms for greedily using up
the capacity in the best affiliates before the revision, which we do not expect to be a good policy in
practice. More generally, a substantial change in capacities is an exceptional situation, outside of
our model, and cannot be addressed by our algorithm alone without manual intervention.

7.2 Better Knowledge of Future Arrivals

In the previous subsection, we demonstrated that, even without outside supervision, our potential
algorithms lead to substantial improvements in total employment unless the announced capacities

12While the sum of capacities did not change much in fiscal year 2018, the capacities of some affiliates were substantially
decreased and those of others were substantially increased.
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Fig. 9. Monthly number of allocated refugees, disaggregated by fiscal year of arrival.

miss the eventual arrival numbers by a wide margin. Even in these typical years, however, more
accurate arrival predictions could increase the total employment on the order of percentage points
of the hindsight optimum. Obviously, more accurate information about arrivals would be even
more useful in years like 2017 and 2018, in which the official information is unreliable.
One approach would be to use time-series prediction to estimate the number of arrivals. For

instance, when the US Department of State revised the capacities for the fiscal year 2018 in January
2018 (several months into the fiscal year), the announcement that 2.5 times more refugees were still
to come than had already arrived might have raised some doubts. However, the graph of monthly
arrivals in Fig. 9 shows that late increases in arrival rates may actually happen as they did in fiscal
year 2016.13
A fundamental challenge that any data-driven approach faces is that there is very little data to

learn from. Indeed, while HIAS has data on hundreds of thousand of refugees, they only have data
on 15 fiscal years, which is, moreover, incomplete and smaller-scale in earlier years. Thus, there is
a limited foundation to learn about how arrival patterns change between years. This task becomes
especially difficult given that arrival numbers are heavily influenced by external events such as
elections, the emergence of humanitarian disasters, and by changes in immigration policy, which
cannot be deduced from past arrival patterns. Thus, while a time-series prediction approach might
lead to marginal improvements over naïvely expecting 91% of the capacity to arrive, past arrival
numbers are unlikely to give enough information to accurately predict future arrival numbers.
Fortunately, resettlement agencies such as HIAS already possess much richer information and

insights into the dynamics of refugee arrivals than a pure data approach would consider. In fiscal
year 2017, for example, HIAS foresaw a worsening climate for refugee resettlement immediately
after the November 2016 election14 and was aware of concrete plans to drastically reduce refugee
intake in January 2017,15 both before these changes were reflected in arrival numbers and before the
capacities were officially updated in March 2017. Similarly, HIAS continuously monitors domestic
politics and international crises for their potential impact on resettlement, and moreover it has
some limited insight into the resettlement pipeline, which allows it to prepare for changes in
arrivals. We therefore believe that, rather than building a sophisticated tool for predicting arrivals
in a fully autonomous manner, it is preferable to allow HIAS staff to override our prediction with
more advanced information.

13In fiscal year 2016, the number of arrivals after January 2016 was 1.6 times larger than the number that had arrived so far.
In the fiscal year of 2015, the number of refugees arriving after January 2015 was only 75% of that arriving before.
14https://www.hias.org/news/press-releases/hias-calls-president-elect-trump-respect-longstanding-refugee-policy
15https://www.hias.org/news/press-releases/trumps-planned-action-refugees-betrayal-american-values

https://www.hias.org/news/press-releases/hias-calls-president-elect-trump-respect-longstanding-refugee-policy
https://www.hias.org/news/press-releases/trumps-planned-action-refugees-betrayal-american-values
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8 IMPLEMENTATION IN ANNIE™MOORE

To enable HIAS to benefit from dynamic allocation via potentials, we have integrated new features
into its matching software Annie™Moore. A crucial design requirement is that HIAS staff must be
able to override the allocation recommendations of Annie™ when they are aware of requirements
outside of our model. From an interface-design perspective, the challenge is to visualize the effect of
such overrides on total employment, enabling HIAS staff to make informed trade-offs. In the original,
static model, this was easy enough: as the quality of a matching was just the total employment of
the current batch, the interface labeled each case–locality match with its associated employment
score, and staff could drag the case to other localities to see the respective employment scores. In a
dynamic setting, however, presenting only the employment scores may unintentionally encourage
HIAS staff to greedily use capacity in their overrides, at the expense of future arrivals.
As we illustrate in Fig. 10, the new interface of Annie™ augments the original interface with

information about affiliate potentials, thereby taking future arrivals into account. Specifically, the
background color of the tile for case 𝑖 encodes the adjusted employment score, that is, the original
employment score 𝑢𝑖,ℓ less the value 𝑠𝑖 𝑝ℓ of the total capacity consumed in affiliate ℓ .16 The fact
that the algorithm PMB always maximizes the sum of adjusted employment scores in its allocation
of the current batch means that the algorithm is explainable in terms of the information presented
to the user. In the interface, the green color spectrum indicates positive adjusted employment scores
(meaning that the employment score of the case outweighs the loss in future employment), while
the red color spectrum highlights negative adjusted scores (where a placement reduces future
employment by more than its employment score). Darker colors signify greater magnitudes.
In overriding the allocation recommended by Annie™, HIAS staff should be able to quickly

find alternative placements for a case that do not reduce immediate and future employment by
more than necessary. To support this workflow, our interface shows the adjusted employment
scores of a case across all affiliates at a glance: as shown in Fig. 11, upon dragging a particular
case tile from its current placement, all other case tiles temporarily fade in appearance, and the
shading of every affiliate tile temporarily assumes the adjusted employment score relative to
the selected case. By hovering a selected case tile over a new affiliate, the original (numeric)
employment score and the adjusted match score (background color of the case tile) dynamically
update. Moreover, incompatibilities with affiliates due to nationality, language, family size, and
single parent households can be seen via an exclamation mark in the lower left corner of the affiliate
tile. After dropping the case tile in a new affiliate, the background color for each affiliate returns to
its original blue shade, and all affiliate-tile exclamation marks disappear.
On a separate screen (not shown), Annie™ enables the entry of a prediction for total refugee

arrivals, as mentioned in Section 7.2. This estimate can be critical to inform the process of estimating
proper shadow prices, as at times HIAS is in a better position to give more accurate case arrival
predictions than officially announced capacities.

9 CONCLUSION

We have developed and implemented algorithms for dynamically allocating refugees in a way that
promotes refugees’ prospects of finding employment. These algorithms are grounded in theory
and perform very well when tested on real data.
While we have tested the algorithms as an autonomous system, the success of Annie™ in

increasing employment outcomes in practice will depend on how it performs in interaction with
HIAS resettlement staff. In Section 7.2, we already saw that the allocation decisions of Annie™
can greatly profit from human users providing better estimates of future arrivals. Human input is

16The employment scores of cases in affiliates are prominently retained in a text label.
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Fig. 10. Updated Annie™ Interface. Family tiles now show both original numerical employment scores of
families in affiliates, as well as the adjusted employment score by its shading. Green indicates positive adjusted
scores, red negative scores, and darker colors represent greater magnitudes.

Fig. 11. Moving a family tile. Other case tiles fade, and affiliate tiles are colored as per their adjusted employ-
ment scores in shades of green (positive) or red (negative). Exclamation marks indicate incompatibilities.

equally crucial in dealing with uncertainty in several other places: for example, HIAS staff might
intervene by correcting the arrival year of a case if the Department of State’s estimate seems off, or
they might increase some affiliates’ capacities late in the year if they anticipate that these capacities
can be increased. By allowing all parameters of the matching problem to be changed, Annie™ allows
HIAS resettlement staff to improve the matching using all available information.

Ideally, the human-in-the-loop system consisting of the matching algorithm and HIAS staff can
combine the strengths of both of its parts: On the one hand, the algorithms in Annie™ capitalize on
subtle patterns in employment data and manage capacity more effectively over the course of the
fiscal year. On the other hand, the expert knowledge of HIAS staff enables the system to handle the
uncertainty that is inherent in a matching problem involving the actions of multiple government
agencies, dozens of affiliates, and thousands of refugees. In light of the current administration’s
plan to increase refugee intake from 15,000 to 125,000,17 we foresee both parts playing a crucial role:
the increasing scale of the problem will make data-based algorithms more effective, and human
guidance will be necessary to navigate the evolving environment of a rapidly growing operation.
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A DATA PREPROCESSING AND EMPLOYMENT PREDICTION

We use arrival data directly collected by HIAS, recent as of Summer 2020. We drop entries in the
database missing crucial information: agent and case identifiers, the case’s pool (free or with US
ties), and the dates of birth, of allocation, and of arrival. We furthermore remove all cases that
were allocated before March 2011 since our employment prediction uses local unemployment data,
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which is incomplete before then. This last step removes 3.5% of refugees from fiscal year 2014, and
less than 1% of refugees from the subsequent fiscal years. Due to this removal, we do not include
fiscal years before 2014 in our analysis, for which a higher percentage of arrivals would have been
removed.

To predict employment scores, we train two separate LASSO models following the methodology
of Ahani et al. [2], one model for free cases and one for tied cases. Training separate models is
helpful since, as Ahani et al. note, tied cases find employment in different patterns due to existing
support networks. The regression is trained on cases allocated in fiscal years 2011 to 2019, where
the hyper-parameters are determined via cross validation before retraining on the whole time
range. Note that training on years that we evaluate on would be problematic for evaluating how
well the employment scores match the ground-truth employment. However, since our evaluations
measure how well the matching algorithms do relative to the given employment scores, training
on a wide range of years ensures that the employment scores are as accurate as possible.

B ALTERNATIVE POTENTIAL APPROACH

In Section 4.1, we presented a procedure for calculating potentials, termed Pot1, which was based
on the shadow prices of a matching LP. Here, we present a second such procedure Pot2, which is
based on a slightly different LP and has a different theoretical underpinnings:
• whereas the matching LP for Pot1 does not include the current batch, the current batch is
included in the LP for Pot2,
• whereas Pot1 uses the element-wise maximal set of shadow prices, Pot2 uses the element-wise
minimal one, and
• whereas Pot1 is motivated by two-stage stochastic programming, Pot2 is motivated by a
connection to Walrasian equilibria.

ALGORITHM 4: Pot2
Parameter: 𝑘 ∈ N≥1, the number of trajectories per potential computation
Input: remaining capacities 𝒄 , the index 𝑡 ′ + 1, . . . , 𝑡 of the cases in the current batch (see Algorithm 3),

characteristics of cases arriving in the 6 past months
Output: a set of potentials 𝑝ℓ for all affiliates ℓ

1 for 𝑗 = 1, . . . , 𝑘 do
2 for each 𝑖 = 𝑡 + 1, . . . , 𝑛, set 𝑠𝑖 and {𝑢𝑖,ℓ }ℓ to the size and employment scores of a random, recently

arrived case;
3 solve the following bipartite-matching LP:

maximize
𝑛∑︁

𝑖=𝑡 ′+1

∑︁
ℓ∈𝐿

𝑢𝑖,ℓ 𝑥𝑖,ℓ

subject to
∑︁
ℓ∈𝐿

𝑥𝑖,ℓ = 1 ∀𝑖 = (𝑡 ′+1), . . . , 𝑛

𝑛∑︁
𝑖=𝑡 ′+1

𝑠𝑖 𝑥𝑖,ℓ ≤ 𝑐ℓ ∀ℓ ∈ 𝐿 (∗)

𝑥𝑖,ℓ ≥ 0 ∀𝑖 = (𝑡 ′+1), . . . , 𝑛,∀ℓ ∈ 𝐿.

4 for each ℓ , set 𝑝 𝑗
ℓ
to the minimal shadow price of the constraint (∗) for ℓ ;

5 set 𝑝ℓ ← (
∑𝑘

𝑗=1 𝑝
𝑗
ℓ
)/𝑘 for all ℓ ;

6 return {𝑝ℓ }ℓ∈𝐿 ;
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The procedure is given in Algorithm 4, and it can be immediately plugged into PMB. Note that
the dual of the linear program in Line 3 looks as follows:

minimize
𝑛∑︁

𝑖∈𝑡 ′+1
𝑦𝑖 +

∑︁
ℓ∈𝐿

𝑝ℓ

subject to 𝑦𝑖 ≥ 𝑢𝑖,ℓ − 𝑠𝑖 𝑝ℓ ∀𝑖 = (𝑡 ′+1), . . . , 𝑛,∀ℓ ∈ 𝐿
𝑝ℓ ≥ 0 ∀ℓ ∈ 𝐿.

Suppose that 𝑠𝑖 = 1 for all 𝑖 ∈ 𝑁 , as we do in Section 4. Then, for any (non-fractional) optimal
matching 𝑥𝑖,ℓ in the primal, and any set of optimal dual variables 𝑝ℓ , it is well known (and follows
from complementary slackness) that the two form a Walrasian equilibrium. That is, if we consider
𝑢𝑖,ℓ as case 𝑖’s utility for being matched to affiliate ℓ , and if we imagine charging case 𝑖 a price
of 𝑝ℓ for being matched to affiliate ℓ , the optimal matching matches each case 𝑖 to an affiliate ℓ
maximizing the profit 𝑢𝑖,ℓ − 𝑝ℓ . Thus, if all trajectories perfectly predicted future arrivals, and if ties
were broken in a specific way in each step, equipping PM with the potentials of Pot2 would lead to
the optimal-employment matching.
Note that this justification also extends to batching (still assuming 𝑠𝑖 = 1), since the Walrasian

equilibrium shows that it is possible to maximize 𝑢𝑖,ℓ −𝑝𝑖 for all cases at once. Thus, if the trajectory
perfectly anticipates future arrivals, each optimal hindsight matching maximizes the matching ILP
allocating each batch in PMB.
When the shadow prices are chosen as the element-wise minimal set of shadow prices, work

by Hsu, Morgenstern, Rogers, Roth, and Vohra [20] gives arguments that PM with Pot2 should be
somewhat robust to tie breaking, assuming that employment scores satisfy a genericity condition.
In addition, they show that, for large matching problems, this matching algorithm should also be
robust if trajectories are drawn from the same i.i.d. distribution as the real set of future arrivals.18
Like the justification of the Pot2 potentials, this justification does not cleanly extend to cases

of non-unit size. Furthermore, there is no immediate theoretical justification for averaging these
prices over multiple trajectories, which has to be evaluated empirically.

C ADDITIONAL EXPERIMENTS

C.1 Employment Statistics for Non-Unit Cases without Batching

C.2 Timing

In the experiment of Section 6.1, we measure the running time for a call to PMB, which mainly
consists of the time of sampling the 𝑘 random trajectories, of computing the appropriate shadow
prices for each trajectory, and of solving the matching ILP. This time will generally increase the
more arrivals are expected in the remainder of the fiscal year since this determines the length of the
trajectory and the size of the LP whose duals must be computed. Additionally, batches consisting
of more cases should also increase running time since the matching ILP is larger for such batches.
Therefore, we benchmark the algorithms on fiscal year 2016, which saw the largest number of

arriving cases (1,628). Within this fiscal year, we aim to pick a batch that is both early and large,
which is a bit complicated by the fact that the earliest batches of the year are small. We choose a
batch of 31 cases, which comes early enough that 1,486 of the 1,628 cases of the fiscal year come
after it. This batch is the 17th largest out of the 168 batches of the year, and all preceding batches
are less than half as many cases.

18This mapping is not perfect since Hsu et al. show that capacities are not exceeded by much, rather than considering
cascading effects of refugees switching affiliates once their most preferred affiliate is at capacity. This problem could be
remedied by slightly reducing capacities in the computation of shadow prices.
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Fig. 12. Total employment obtained by different algorithms, with whole cases arriving rather than being split
up. Capacities are the final capacities of the fiscal year. For the potential algorithms, employment is averaged
over 10 random runs. The numbers in the bars denote the absolute total employment; the bar height indicates
the proportion of the optimum total employment in hindsight.
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Fig. 13. Evolution of the per-refugee match score in order of arrival, for fiscal years 2016 and 2019 in the
experiment of Fig. 12 (whole cases, final capacities). Match scores are smoothed using triangle smoothing
with width 500.
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Fig. 14. Remaining priced capacity at the time of arrival of different refugees, for fiscal years 2016 and 2019
and one random run per algorithm in the experiment of Fig. 12 (whole cases, final capacities).

For this batch, we measure the running time for PMB with potentials Pot1 and Pot2, each with
𝑘 ∈ {1, 5, 9}. Each reported running time is the average of 50 iterations and is measured on a 2017
MacBook Pro with a 3.1 GHz Dual-Core Intel Core i5 processor using Gurobi for solving LPs and
ILPs:
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Matching algorithm Running time

PMB(Pot1(𝑘 = 1)) 0.5 s
PMB(Pot1(𝑘 = 5)) 2.4 s
PMB(Pot1(𝑘 = 9)) 4.0 s
PMB(Pot2(𝑘 = 1)) 0.5 s
PMB(Pot2(𝑘 = 5)) 2.6 s
PMB(Pot2(𝑘 = 9)) 4.6 s

Given that a resettlement agency needs to execute the matching algorithm at most once per day,
these times are negligible. For low 𝑘 and an optimized implementation, it might even be possible to
support near real-time experimentation; for example, an Annie™ user could drag a slider to indicate
the expected number of arriving refugees, and could see how this would impact the recommended
allocation of the current batch.

C.3 Employment statistics if capacities are changed during the year

For the fiscal years 2017 and 2018, we run a version of the experiments in Section 7.1, in which the
capacities are actually reduced at the time they were revised. For the greedy algorithm and the
potential algorithms, this means that they are initially run using the initially announced capacities
(and the potential algorithms expect 91% of the initial total capacity to arrive). At the time the
capacity was revised, the capacity for the greedy algorithm and the potential algorithms is updated
to the revised capacity. If the revised capacity of an affiliate lies below what the algorithm already
used before the the point of revision, the capacity is frozen at current occupancy. As we argue in
the body of the paper, this gives the greedy algorithm an unfair advantage and makes the resulting
total employment hard to compare. The historical matching is roughly comparable since HIAS also
started out aiming for the full capacities and later aimed for the revised capacities. However, the
historical matching in 2017 actually made use of a fairly large end-of-year increase in capacity,
which the other algorithms do not have access to, and it profits from the fact that HIAS influenced
the change in capacity to match its prior allocation decisions. As a reference, we show optimal
matchings in hindsight both for the initial and for the revised capacities.
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respecting initial capacities, but capacities are changed at time of revision (except for historical). The potential
algorithms do not have access to the true number of arriving cases but assume that the arriving refugees
amount to 91% of the initial, then the revised capacity. For potential algorithms, a single random run is shown.
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C.4 Percentage of Matched Refugees

Here, we report the percentage of refugees (i.e., cases weighted by case size) that gets matched to a
real affiliate rather than the unmatched affiliate ⊥. In our implementation of PMB (Algorithm 3),
for a small constant 𝜖 , we add a weight of 𝜖 ·𝑠𝑖 for all variables 𝑥𝑖,ℓ indicating that a case 𝑖 is matched
to an affiliate ℓ ≠ ⊥, with the intention of breaking ties between optimal solutions in favor of
solutions that don’t leave more cases unmatched than necessary. This is particularly relevant since
some cases, for example those consisting of unaccompanied minors, have an employment score of
zero for all affiliates. This added constant (and the equivalent modification to PM) ensures that
whether these cases ever get matched does not depend on the implementation of the ILP solver.
Since we implement the greedy algorithm by setting potentials in PMB to zero, the same holds
true for greedy. Finally, a similar issue arises for the optimum matching in hindsight. For this, we
optimize total employment without further constraints on the number of matched refugees, but
then greedily add cases with zero unemployment where they fit throughout the year.
In particular, this means that the optimum is not an upper bound on how many people are

matched. Instead, it is the historical matching that matches 100% of refugees, but this comparison is
not on equal terms since the historical matching conforms to final capacities that were specifically
increased to fit all refugees and since it ignores some case–affiliate incompatibilities.

For the setting of online bipartite matching, we find in Fig. 16 that the potential algorithms are
roughly on par with the greedy algorithm when it comes to matching many refugees. The fact that
both greedy and potential algorithms tend to leave a single-digit percentage of refugees unmatched
can probably be explained by the many cases with family ties, which can only go in a single affiliate
and have to remain unmatched if this affiliate is full, which is hard to avoid without knowing future
arrivals. The optimum-hindsight matching does not have this problem, and therefore matches
around 2% of refugees more on average. The remaining gap to 100% can be explained by the greedy
matching of zero-employment cases, by the fact that the case–affiliate incompatibilities might not
allow to match all cases (which the historical matching is not bound by), and by genuine trade-offs
between matching more refugees and obtaining higher total employment.
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Fig. 16. Match percentages for the experiment in Fig. 1 (split cases, final capacities).

As for the total employment, the addition of non-unit case sizes (Fig. 17) and of batching (Fig. 18)
barely has any effect on the percentage of matched refugees.

In Fig. 19, the percentage of matched refugees by the optimummatching and the greedy algorithm
is lower in most years, which is due to the initial capacities being strictly tighter than the final
capacities on all years other than 2017 and 2018. The potential algorithms follow the same trend,
but visibly match particularly few refugees in fiscal years 2017 and 2018. Since these algorithms
vastly overestimate the arrival numbers due to the overly large capacities, they leave some refugees
unmatched in the expectation that this will benefit (spurious) later arrivals.
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Fig. 17. Match percentages for the experiment in Fig. 12 (whole cases, final capacities).
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Fig. 18. Match percentages for the experiment in Fig. 4 (whole cases, batching, final capacities).
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Fig. 19. Match percentages for the experiment in Fig. 6 (whole cases, batches, initial capacities, potential
algorithms do not know 𝑛).
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