

Minimum Membership Covering and Hitting

Joseph S B Mitchell^{a,1}, Supantha Pandit^{b,2,*}

^a*Stony Brook University, Stony Brook, New York, USA*

^b*Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, Gujarat, India*

Abstract

Set cover is a well-studied problem with application in many fields. A well-known variant of this problem is the Minimum Membership Set Cover problem: Given a set of points and a set of objects, the objective is to cover all points while minimizing the maximum number of objects that contain any one point. A dual of this problem is the Minimum Membership Hitting Set problem: Given a set of points and a set of objects, the objective is to stab all of the objects while minimizing the maximum number of points that an object contains. We study both of these variants in a geometric setting with various types of geometric objects in the plane, including axis-parallel line segments, axis-parallel strips, rectangles that are anchored on a horizontal line from one side, rectangles that are stabbed by a horizontal line, and rectangles that are anchored on one of two horizontal lines (i.e., each rectangle shares its top or its bottom edge (or both) with one of the input horizontal lines). For each of these problems we either prove NP-hardness or we give a polynomial-time algorithm. In particular, we show that it is NP-complete to decide whether there exists a solution with depth exactly 1 for either the Minimum Membership Set Cover or the Minimum

*Corresponding author

Email addresses: joseph.mitchell@stonybrook.edu (Joseph S B Mitchell), pantha.pandit@gmail.com (Supantha Pandit)

¹Support from the National Science Foundation (CCF-1526406, CCF-2007275) and the US-Israel Binational Science Foundation (project 2016116).

²This work was done when the author was at Stony Brook University, Stony Brook, New York, USA and partially supported by the Indo-US Science & Technology Forum (IUSSTF) under the SERB Indo-US Postdoctoral Fellowship scheme with grant number 2017/94, Department of Science and Technology, Government of India.

Membership Hitting Set problem. In addition, we study a generalized version of the Minimum Membership Hitting Set problem.

Keywords: Minimum membership set cover, Minimum membership hitting set, Anchored rectangles, NP-hard

¹ 1. Introduction

² The set cover problem is one of the fundamental problems in computer science and combinatorial optimization. This problem, and its many variants, play ³ an important role in modelling various problems arising in practical scenarios. ⁴ One of its variants is the *Minimum Membership Set Cover (MMSC)* problem, ⁵ which is defined in a geometric setting as follows.

Minimum Membership Set Cover (MMSC): Given a point set P and a set O of objects (regions), cover all the points in P with a subset $O' \subseteq O$ of objects such that the maximum depth of a point is minimized, where the *depth of a point* $p \in P$ is the number of objects in O' that contain it. We say that O' is a *cover* of P , and we let $d(O')$ denote the maximum depth of any point $p \in P$ with respect to O' .

⁷ A related problem that is “dual” to the *MMSC* problem is the *Minimum ⁸ Membership Hitting Set (MMHS)* problem, defined as follows.

Minimum Membership Hitting Set (MMHS): Given a point set P and a set O of objects (regions) determine a subset $P' \subseteq P$ of points stabbing (intersecting) all objects O such that the maximum depth of an object is minimized, where the *depth of an object* $o \in O$ is the number of points in P' that stab it. We say that P' is a *hitting set* of O , and we let $d(P')$ denote the maximum depth of any object $o \in O$ with respect to P' .

⁹ In addition to the above two problems, we consider a *generalized* version of ¹⁰ the *MMHS* problem, the *Generalized Minimum Membership Hitting Set (GMMHS)* ¹¹ problem, where, instead of a point set and an object set, we are given two sets

12 R (“red”) and B (“blue”) of objects. The objective is to stab (intersect) all of
13 the objects in B using a subset $R' \subseteq R$ such that the maximum number of red
14 objects in R' hitting any single object in B is minimized. The *MMHS* problem
15 is the special case of *GMMHS* in which the red objects R are points; the gener-
16 alization is that now R is not just a set of points but is a more general type of
17 region. We prove that even a very special case of *GMMHS* is NP-hard, namely
18 that in which the blue/red regions are horizontal/vertical line segments of unit
19 length.

20 **Applications and motivation:** The minimum membership set cover problem
21 is motivated by an application in interference reduction in wireless networks [1].
22 We are given a set of “clients”, which are served by some “servers”. Each server
23 has some transmission range within which it can serve clients. If a client is within
24 the ranges of more than one server, then the client experiences interference in
25 the signals it receives from the multiple servers. Therefore, one seeks to choose
26 a set of servers to serve all the clients such that the maximum interference of
27 any client is minimum possible.

28 The minimum membership set cover problem with rectangles anchored on
29 a horizontal line has an application to wireless coverage [2]. One is given a set
30 of clients (points) in the plane. There is a base station (a point) that serves
31 these clients. The base station uses a directional antenna to transmit beams (a
32 circular sector with angle θ and radius r) to the clients. The goal is to choose
33 a set of beams to serve all the clients such that the maximum interference of
34 any client is minimum possible. In [2], the authors show that this problem in
35 polar coordinate systems can be reduced to the minimum membership set cover
36 problem with rectangles anchored on a horizontal line.

37 *1.1. Previous Work*

38 The very well studied standard set cover problem is NP-hard. A simple
39 greedy heuristic gives a $O(\log n)$ -factor approximation, and it is NP-hard to
40 compute an approximation better than logarithmic [3]. The Minimum Mem-
41 bership Set Cover variant was first introduced by Kuhn et al. [1]. They

42 showed that the problem cannot be approximated better than $O(\log n)$ and
43 gave an algorithm achieving approximation factor $O(\log n)$. Erlebach and van
44 Leeuwen [4] considered the geometric variant of the problem, proving that for
45 unit squares and unit disks the problem is NP-hard and that there does not exist
46 a polynomial-time factor 2 approximation algorithm, unless P=NP. Further, for
47 unit squares, they provided a factor 5 approximation algorithm for the case in
48 which the optimum objective value is bounded by a constant. Recently, Nandy
49 et al. [5] reconsidered the same problem and gave polynomial-time algorithms
50 for both unweighted and weighted intervals on the real line. Also recently,
51 Narayanswami et al. [6], considered the problem of hitting a set of horizontal
52 segments with vertical segments while minimizing the number of times a vertical
53 segment is hit by the chosen horizontal segments. They showed that this prob-
54 lem is NP-hard and cannot be approximated better than factor 2. Further, if
55 the segments are of unbounded length (i.e., they are lines), then it can be solved
56 in polynomial time (see also [7] for this algorithm and some generalizations of
57 this problem). In a somewhat different, but related, direction, *capacitated geo-*
58 *metric set cover instances have been studied, e.g., the capacitated discrete unit*
59 *disk cover, in which we seek a minimum-cardinality subset of a given set of unit*
60 *disks in order to cover a given set of points, with an upper bound (capacity*
61 *constraint, α) on how many points can be covered by any one disk; for $\alpha \geq 3$ the*
62 *problem is NP-complete, and a PTAS (polynomial-time approximation scheme)*
63 *is known [8].*

64 Closely related to the set cover problem is the maximum coverage problem.
65 Here, a universe set U , a collection C of subsets of U , and a positive integer
66 k is given; the goal is to find at most k sets from C that cover a maximum
67 number of elements from U . This problem is also NP-hard and has a $(1 - \frac{1}{e})$
68 factor (greedy) approximation algorithm [9]. The geometric set cover problem
69 in \mathbb{R}^2 is NP-hard for several simple classes of objects, such as disks [10], squares
70 [10], etc. However, the same problem on a real line \mathbb{R} is solvable in $O(n \log n)$
71 time. There is a PTAS for geometric set cover instances with unit disks and
72 unit squares as objects [11]. Another variant of the set cover problem is the

73 *unique cover problem*: given a set P of points and a set T of objects in the
74 plane, the objective is to find a subset $T' \subseteq T$ of objects such that the objects
75 T' cover a maximum number of points whose depth is exactly 1. This problem
76 is NP-hard for both unit disks and unit squares [4]. For unit disks, a 4.31-factor
77 approximation algorithm is available for the unique cover problem [12], and for
78 unit squares a PTAS exists [13].

79 Recently, Mehrabi [14] considered a variant of the set cover problem, called
80 the *unique set cover problem*. Here also the input is a set P of points and a set
81 T of objects in the plane; the goal is to find a subset $T' \subseteq T$ of objects such
82 that the number of points whose depth is exactly 1 is maximized. He showed
83 that this problem is NP-complete for unit disks and unit squares in the plane.
84 Further, for unit squares he designed a PTAS using a mod-one transformation
85 trick of Chan and Hu for the red-blue set cover problem [15]. Another related
86 problem is the weighted depth problem [16, 17, 18], where the input is a set
87 P of points and a set T of n weighted boxes; the goal is to find a point whose
88 depth is maximum. In \mathbb{R}^d , this problem can be solved in time $O(n^d)$ [16].

89 **1.2. Our Contributions: Overview**

90 In this paper we present the following results.

91 **Minimum Membership Set Cover (MMSC) problem**

92 We give a polynomial-time algorithm for deciding if there exists a cover
93 with depth one for the *MMSC* problem with objects that are rectangles
94 anchored on a horizontal line. In contrast, we show that if the objects
95 are rectangles that intersect a horizontal line (versus that are anchored,
96 sharing a side with a horizontal line), the *MMSC* problem is NP-hard.
97 We also prove NP-hardness for the cases of objects that are axis-parallel
98 strips or rectangles anchored on two horizontal lines.

99 **Minimum Membership Hitting Set (MMHS) problem**

100 We give a polynomial-time algorithm for deciding if there exists a hitting
101 set with depth one for the *MMHS* problem with objects that are rectangles

102 anchored on a horizontal line. In contrast, we show that if the objects are
103 rectangles that intersect a horizontal line, the *MMHS* problem is NP-hard.
104 We also prove NP-hardness for the cases of objects that are axis-parallel
105 strips or rectangles anchored on two horizontal lines.

106 **Generalized Minimum Membership Hitting Set (*GMMHS*) problem**

107 We show that *GMMHS*, with object sets B , R given as unit-length hori-
108 zontal/vertical line segments, is NP-hard; even deciding if a solution exists
109 with depth one is NP-complete. We also give a 5-approximation algorithm
110 if the optimal objective function is bounded by a constant.

111 It is noted that, in all of our NP-completeness proofs, we prove that it is
112 NP-complete to decide whether there exists a solution with depth exactly 1.
113 Since the depth is an integer, any approximation algorithm returns a solution
114 greater than or equal to 2. Thus, each of the problems shown to be NP-complete
115 does not have a polynomial-time algorithm with approximation factor smaller
116 than 2 (unless P=NP).

117 *Equivalence of *MMSC* and *MMHS* with unit disks/squares.* There is a connec-
118 tion (equivalence) between the *MMSC* and *MMHS* problems where the input
119 objects are either unit disks or unit squares. Consider the case of unit squares.
120 Given an instance $C = (P, T)$ of the *MMSC* problem, with a set P of points and
121 a set T of unit squares, we consider a “dual” instance, H , of a *MMHS* prob-
122 lem whose regions are specified by the set of unit squares centered on the points
123 $p \in P$, and whose points are specified as the center points of the squares $t \in T$. We
124 then note that determining a solution to the *MMSC* problem C is equivalent to
125 determining a solution to the *MMHS* problem H . Thus, we conclude, by apply-
126 ing the results in [4, 5]: The *MMHS* problem is NP-complete with unit squares
127 and unit disks and there exists a 5-approximation for the *MMHS* problem with
128 unit squares where the optimal objective value is bounded by a constant.

129 1.3. Definitions and Notations

130 In the *3SAT* problem we are given a *CNF* formula ϕ with n variables
131 $\mathcal{X} = x_1, x_2, \dots, x_n$ and m clauses $\mathcal{C} = \{C_1, C_2, \dots, C_m\}$ where each clause is a
132 disjunction of exactly 3 literals, and the objective is to decide whether there is a
133 truth assignment to variables such that ϕ is satisfiable. This problem is known
134 to be NP-complete [19]. In the planar version of this problem, each variable
135 and clause represents a vertex and there is an edge between a variable vertex
136 and a clause vertex if and only if the corresponding clause contains the corre-
137 sponding literal. Finally, the resulting bipartite graph is planar. This problem
138 is called the *Planar-3SAT* problem and Lichtenstein [20] proved that this prob-
139 lem is also NP-complete. Later on, Knuth and Raghunathan [21] showed that
140 every instance of the *Planar-3SAT* problem can be represented using the fol-
141 lowing rectilinear representation. The variables are placed on a horizontal line
142 and the clauses containing 3 legs each connecting those variables either from
143 above or below the horizontal line such that no two clause legs intersect. This
144 problem is called the *Rectilinear-Planar-3SAT* problem and is also NP-complete
145 [21]. A *Positive-1-in-3SAT* problem is a *3SAT* problem, however the objective
146 is different: here, the objective is to decide whether there is a truth assignment
147 to the variables such that exactly one literal per clause is true. Schaefer [22]
148 proved that this problem is NP-complete. This problem can be represented using
149 the rectilinear representation as defined above; we refer to it as the *Rectilinear-*
150 *Positive-Planar-1-in-3SAT* problem (see Figure 1). Mulzer and Rote [23] proved
151 that it is also NP-complete.

152 We now define some terminology. Let $\mathcal{C}_{\text{above}} \subseteq \mathcal{C}$ be the set of clauses in
153 a *PP1in3SAT* formula ϕ that connect to the variables from above. Similarly,
154 let $\mathcal{C}_{\text{below}} \subseteq \mathcal{C}$ be the set of clauses that connect to the variables from below.
155 For each variable x_i , $1 \leq i \leq n$, we order the clauses in $\mathcal{C}_{\text{above}}$ left to right that
156 connect x_i . Let $C_\ell \in \mathcal{C}_{\text{above}}$ be a clause containing the three variables x_i , x_j ,
157 and x_k . Then, according to the ordering defined above, we assume that C_ℓ is
158 the ℓ_1 -, ℓ_2 -, and ℓ_3 -th clause for the variables x_i , x_j , and x_k , respectively. For
159 example, the clause C_3 is a 3-rd, 1-st, and 1-st clause for the variables x_3 , x_4 ,

160 and x_5 , respectively, in the $PP1in3SAT$ instance in Figure 1. We also say that
161 the clause C_ℓ connects to x_i by left, to x_j by middle, and to x_k by right legs.

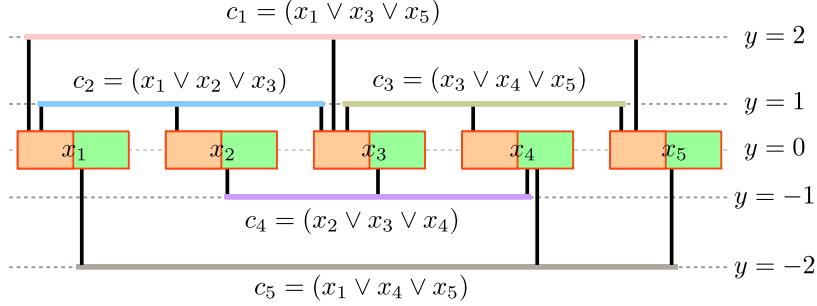


Figure 1: Representation of a *Rectilinear-Positive-Planar-1-in-3SAT* problem.

162 **2. Minimum Membership Set Cover Problem**

163 *2.1. Rectangles Anchored on a Horizontal Line*

164 We observe that, in polynomial time, one can decide if there exists a cover
165 of depth one for the *MMSC* problem with rectangles anchored on a horizontal
166 line from one side (*MMSCRAHL*). The idea is as follows. We assign a weight to
167 each rectangle, given by the number of points it contains. Now we have an input
168 of a set of weighted rectangles anchored on a horizontal line and a set of points.
169 We now find, for this instance, a maximum independent set of rectangles (no
170 two of them share a point), using the algorithm described by Chan and Grant
171 [24] (the *pack-regions* problem). This requires polynomial time. Next, we verify
172 in $O(1)$ time whether or not the size of the maximum independent set is equal
173 to the number of points. If this is true, then we ensure that there is a cover of
174 the points with depth exactly 1.

175 *2.2. Axis-Parallel Strips*

176 In this section we prove that the *MMSC* problem with axis-parallel strips
177 (*MMSCS*) is NP-hard. We give a reduction from the Positive-1-in-3SAT (*P1in3SAT*)
178 problem (see Section 1.3 for the definition). Let ϕ be a *P1in3SAT* formula. We

179 generate an instance $Z(S, P)$ of the *MMSCS* problem from ϕ in the following
180 way, where S is a set of strips and P is a set of points.

181 **Variable gadget:** For variable x_i , the gadget consists of one vertical strip
182 v_i , one horizontal strip h_i , and a point p_i . The point is covered by both v_i and
183 h_i (see Figure 2). Clearly, either v_i or h_i will cover p_i with depth one. We
184 assume that choosing h_i makes x_i true, while choosing v_i makes x_i false.

185 **Overall Structure:** We place the variable gadgets (points) along a diagonal
186 line. For each clause we take a vertical bounded *region*. The clause gadgets
187 are placed sequentially one by one to the right of the variable gadgets, and
188 each gadget is confined to its corresponding region. Between two consecutive
189 variable horizontal strips there is an *empty space*, where we place some points
190 corresponding to the clauses.

191 **Clause gadget:** Let $C_\ell = (x_i \vee x_j \vee x_k)$ be a clause. For this clause, we take 5
192 points $p_i^\ell, p_j^\ell, p_k^\ell, p_1^\ell, p_2^\ell$ and 4 vertical strips $q^\ell, r^\ell, s^\ell, t^\ell$ (see Figure 2). The points
193 p_i^ℓ, p_j^ℓ , and p_k^ℓ are corresponding to the variables x_i, x_j and x_k respectively and
194 are placed inside the strips h_i, h_j , and h_k respectively. The other two points p_1^ℓ
195 and p_2^ℓ are placed in any empty space between the variable horizontal strips of
196 x_i, x_j (i.e., between h_i and h_j) and x_j, x_k (i.e., between h_j and h_k) respectively.
197 Points $\{p_i^\ell, p_1^\ell\}$ are contained in q^ℓ . Similarly, $\{p_1^\ell, p_j^\ell\}$, $\{p_j^\ell, p_2^\ell\}$, and $\{p_2^\ell, p_k^\ell\}$ are
198 contained in r^ℓ, s^ℓ , and t^ℓ , respectively. These 5 points and 4 rectangles are
199 strictly contained inside the vertical region of C_ℓ (Figure 2).

200 This completes the description of details of the construction, for a given
201 instance, ϕ , of *P1in3SAT*. Finally, we note that the construction can be done
202 in time that is polynomial in the size of the formula ϕ . We now utilize this
203 construction to prove the following theorem.

204 **Theorem 1.** *The MMSCS problem is NP-hard.*

205 *Proof.* We prove that, ϕ is satisfiable (i.e., exactly one literal is true per clause)
206 if and only if $Z(P, S)$ has a solution of depth one. Assume that ϕ has an
207 assignment such that exactly one literal per clause is true. If x_i is true then
208 select h_i ; otherwise, select v_i . Now, for each clause, exactly one of $p_i^\ell, p_j^\ell, p_k^\ell$ is

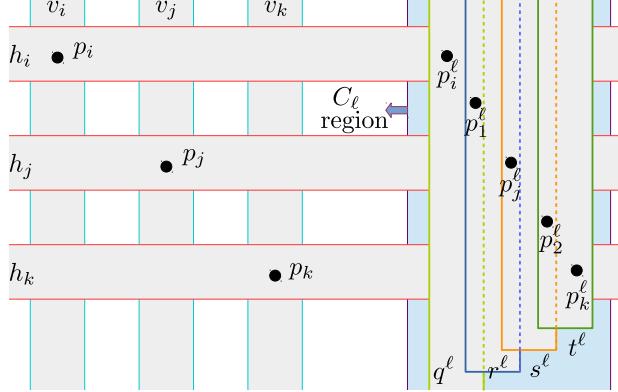


Figure 2: Gadgets of variables x_i, x_j, x_k , and clause C_ℓ and their interaction.

209 covered by the solution. Hence, the remaining 4 points are covered by exactly
 210 two strips with depth one.

211 On the other hand, assume that there is a cover of the points with depth
 212 one. Now, for each variable gadget, to cover p_i we need one of the two strips
 213 h_i or v_i . We set variable x_i to be true if h_i is in the solution; otherwise, we
 214 set x_i to be false. Now consider any clause C_ℓ . Since the depth of the solution
 215 (indeed a cover of all points) is one, exactly one of $p_i^\ell, p_j^\ell, p_k^\ell$ corresponding to C_ℓ
 216 is covered by a variable horizontal strip. We set this variable to be true. Hence,
 217 exactly one literal per clause is true in ϕ . \square

218 **Corollary 1.** *The MMSC problem with rectangles each anchored on one of two
 219 orthogonal lines (MMSCRATOL) is NP-hard. (Consider a vertical line $x = -M$
 220 and a horizontal line $y = -M$, for M sufficiently large; then very tall or very
 221 wide rectangles anchored on these lines are axis-parallel strips.)*

222 *2.3. Rectangles Intersecting a Horizontal Line*

223 In this section we prove that the MMSC problem with rectangles intersecting a horizontal line (MMSCRHIL) is NP-hard. The reduction is from the
 224 *PP1in3SAT* problem [23]. From an arbitrary instance ϕ of the *PP1in3SAT* prob-

226 lem, we construct an instance Z of the *MMSCRIHL* problem, where the rect-
227 angles in Z intersect a horizontal line L .

228 **Variable gadget:** The gadget for the variable x_i consists of $12m$ rectangles
229 $\{1, 2, \dots, 12m\}$ and $12m - 1$ points $\{p_1, p_2, \dots, p_{12m-1}\}$ (see Figure 3(a)), where
230 m is the number of clauses in ϕ . The points are along the top edges of the
231 rectangles. The 1-st and the $12m$ -th rectangles contain the points p_1 and p_{12m-1} ,
232 respectively, and the j -th rectangle contains the p_{j-1} -th and p_j -th points, for $2 \leq$
233 $j \leq 12m - 1$. We note that the first $6m$ rectangles $\{1, 2, \dots, 6m\}$ are responsible
234 for the clauses in $\mathcal{C}_{\text{above}}$, whereas the next $6m$ rectangles $\{6m+1, 6m+2, \dots, 12m\}$
235 are responsible for the clauses in $\mathcal{C}_{\text{below}}$. All of the rectangles are intersecting a
236 horizontal line L . Now, in order to cover all of the points while minimizing the
237 depth, we have only two distinct optimal solutions: either all even-numbered or
238 all odd-numbered rectangles with depth exactly one. This gives the truth value
239 of the variable x_i .

240 **Clause gadget:** We first modify the *PP1in3SAT* problem in the following
241 way. Note that the variables of ϕ are placed on a horizontal line ($y = 0$). We
242 move the variables vertically up such that they are placed on a horizontal line
243 $y = m + 1$ (above the y -values of all the clauses in $\mathcal{C}_{\text{above}}$) (see Figure 4). The
244 clauses in $\mathcal{C}_{\text{above}}$ are placed above L and below the line $y = m + 1$ while connecting
245 the same set of variables as before. Note that these clauses now connect the
246 variables from below. On the contrary, the clauses in $\mathcal{C}_{\text{below}}$ are placed below L
247 and still connect to the same set of variables from below.

248 Let us now consider the set $\mathcal{C}_{\text{above}}$ of clauses. Notice that, in the definition of
249 the *PP1in3SAT* problem these clauses can be ordered in increasing y -direction
250 (see Figure 1). Here we reverse the order of the clauses (see Figure 3(b)). Now
251 for each clause $C \in \mathcal{C}_{\text{above}}$ we take a *rectangular box* whose top boundary is the
252 segment of C in the modified construction. The bottom boundary of the box
253 touches the line L . Each box has a thin strip along the top edge of that box,
254 called the *tape* of that clause. Similarly, we reverse the order of the clauses
255 in $\mathcal{C}_{\text{below}}$ and for each clause C we take a box whose bottom boundary is the
256 segment of C in the modified construction. The top boundary of the box touches

257 the line L . Now here the tape is along the bottom boundary of each box.

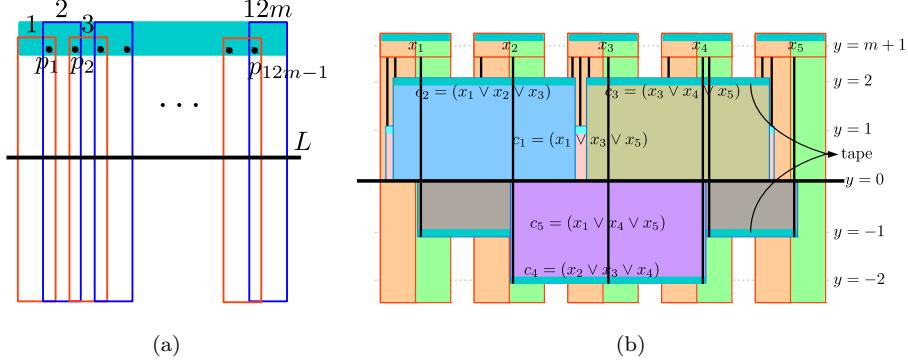


Figure 3: (a) A variable gadget. (b) Position of the clause gadgets.

258 Let $C_\ell = (x_i \vee x_j \vee x_k)$ be a clause in $\mathcal{C}_{\text{above}}$. We say that x_i is a *left*, x_j is a
 259 *middle*, and x_k is a *right* variable for C_ℓ . We take 5 points; point p_i^ℓ correspond-
 260 ing to x_i , points $p_j^\ell, q_j^\ell, r_j^\ell$ corresponding to x_j , and point p_k^ℓ correspond-
 261 ing to x_k ; and 4 rectangles $s_1^\ell, s_2^\ell, s_3^\ell, s_4^\ell$. The rectangle s_1^ℓ covers the points $\{p_i^\ell, p_j^\ell\}$, s_2^ℓ
 262 covers the points $\{p_i^\ell, q_j^\ell\}$, s_3^ℓ covers the points $\{p_j^\ell, p_k^\ell\}$, and s_4^ℓ covers the points
 263 $\{r_j^\ell, p_k^\ell\}$ (see Figure 4). The rectangles are placed inside the box and the points
 264 are placed inside the tape of C_ℓ .

265 **Variable and clause interaction:** We now describe the placement of the
 266 clause rectangles and points with respect to the variable rectangles. Let $1, 2, \dots$
 267 be the left to right order the clauses in $\mathcal{C}_{\text{above}}$ that connect to the variable x_i .
 268 In this order, assume that C_ℓ be the ℓ_1 -, ℓ_2 -, and ℓ_3 -th clause for the variables
 269 x_i , x_j , and x_k respectively. Then we do the following.

270 \rightsquigarrow Since x_i is a left variable in C_ℓ , place the point p_i^ℓ inside the $(6\ell_1 - 2)$ -th
 271 rectangle of the gadget of x_i .

272 \rightsquigarrow Since x_j is a middle variable in C_ℓ , place the point p_j^ℓ inside the $(6\ell_2 - 2)$ -th
 273 rectangle of the gadget of x_j . Also place the point q_j^ℓ and r_j^ℓ inside the
 274 $(6k - 3)$ -th and $(6k - 1)$ -th rectangles of the gadget of x_j .

275 \rightsquigarrow Since x_k is a right variable in C_ℓ , place the point p_k^ℓ inside the $(6\ell_3 - 2)$ -th

276 rectangle of the gadget of x_k .

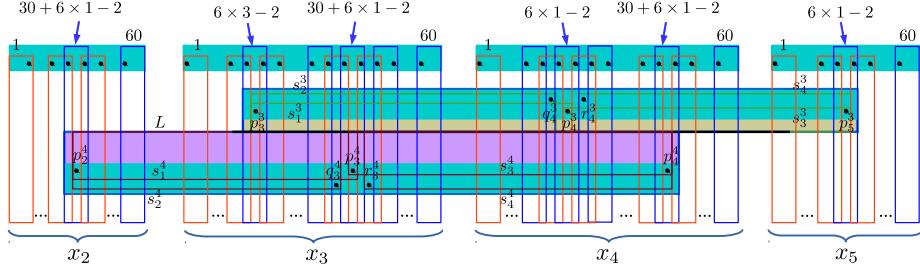


Figure 4: Interaction between the variable and clause gadgets. We demonstrate the interaction of C_3 and C_4 with the variables in the $P1in3SAT$ instance in Figure 1.

277 A similar construction can be made for the clauses in \mathcal{C}_{below} , but using the
 278 last $6m$ rectangles in the variable gadgets. See Figure 4 for the construction
 279 described above. We now prove the following theorem.

280 **Theorem 2.** *The MMSCRIHL problem is NP-hard.*

281 *Proof.* We prove that exactly one literal is true in every clause of ϕ if and only
 282 if the MMSCRIHL problem has a cover of depth 1. Assume that there is an
 283 assignment to the variables of ϕ that satisfies exactly one literal per clause. For
 284 a variable x_i , if it is true, then select the even indexed rectangles; otherwise,
 285 select the odd indexed rectangles from the gadget of x_i . Let us consider a clause
 286 $C_\ell = (x_i \vee x_j \vee x_k)$. Since exactly one literal per clause is true, exactly one of p_i^ℓ
 287 or p_j^ℓ , or p_k^ℓ is covered by a variable rectangle. Clearly, the remaining points in
 288 the clause gadget are covered by the clause rectangles with depth one.

289 In the reverse direction, assume that the MMSCRIHL problem has a cover
 290 of depth 1. To cover the points in a variable gadget and in order to make their
 291 depth 1, there are only two possibilities to select the rectangles. We set the
 292 variable x_i to be true if all even indexed rectangles are selected from the gadget
 293 of x_i ; otherwise, set x_i to be false. Now consider a clause $C_\ell = (x_i \vee x_j \vee x_k)$.
 294 Now in C_ℓ , if more than one literal is true then the depth of a point in the
 295 gadget of C_ℓ will be more than 1. If the clause is not satisfiable then also either

296 at least one point is not covered or there will be a point whose depth will be
 297 more than one. The only possibility is exactly one literal per clause is true.
 298 Hence, the theorem. \square

299 *2.4. Rectangles Anchored on Two Horizontal Lines*

300 In this section we prove that the *MMSC* problem with rectangles anchored
 301 on two horizontal lines (*MMSCRATHL*) is NP-hard. We give a reduction from
 302 the *PP1in3SAT* problem [23].

303 **Variable gadget:** To construct the variable gadget (see Figure 5(a)) of
 304 x_i , we first take two parallel lines L_1 and L_2 . We consider $12m$ points on two
 305 imaginary horizontal lines l_1 and l_2 in between L_1 and L_2 where each of l_1
 306 and l_2 contains $6m$ points. We also consider $12m$ rectangles $1, 2, \dots, 12m$. The
 307 rectangles $1, 2, \dots, 6m$ are anchored on the line L_2 and the remaining rectangles
 308 are anchored on the line L_1 . The i -th rectangle covers exactly two points p_i and
 309 p_{i+1} , for $1 \leq i \leq 12m - 1$ and the rectangle $12m$ covers the points p_{12m} and p_1 .
 310 Now in order to cover all the points while minimizing the depth, we have only
 311 two different optimal solutions; either all even numbered or all odd numbered
 312 rectangles with depth exactly 1. This gives the truth value of the variable x_i .

313 **Clause gadget:** We first consider the set \mathcal{C}_{below} of clauses in ϕ . These
 314 clauses can be ordered in decreasing y -direction (see Figure 1). Now for each
 315 clause $C \in \mathcal{C}_{below}$ we take a *rectangular box* whose top boundary is the segment
 316 of C . The bottom boundary of the box touches the line L_2 . Each box has a thin
 317 strip along the top edge of that box, called the *tape* of that clause. Similarly,
 318 we construct the boxes and tapes for the clauses for \mathcal{C}_{above} . See Figure 5(b).

319 The placement of the clause points and rectangles is similar to the placement
 320 of the clause points and rectangles described in Section 2.3. The clause structure
 321 is exactly the same as in Section 2.3. For a clause $C_\ell = (x_i \vee x_j \vee x_k)$ in
 322 \mathcal{C}_{below} with x_i , x_j , and x_k as *left*, *middle*, and *right* variable, we take 5 points;
 323 point p_i^ℓ corresponding to x_i , points $p_j^\ell, q_j^\ell, r_j^\ell$ corresponding to x_j , and point p_k^ℓ
 324 corresponding to x_k ; and 4 rectangles $s_1^\ell, s_2^\ell, s_3^\ell, s_4^\ell$. The rectangle s_1^ℓ cover the
 325 points $\{p_i^\ell, p_j^\ell\}$, s_2^ℓ cover the points $\{p_i^\ell, q_j^\ell\}$, s_3^ℓ cover the points $\{p_j^\ell, p_k^\ell\}$, and

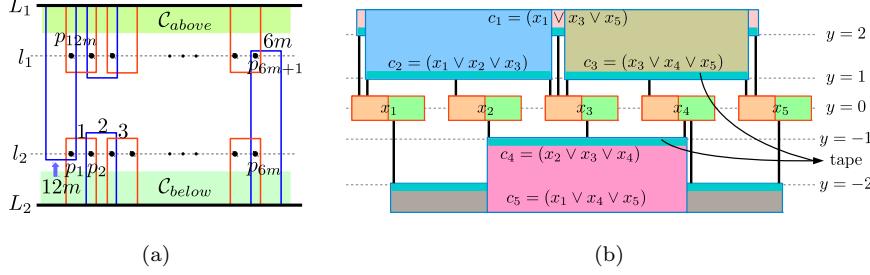


Figure 5: (a) A variable gadget. The clause gadgets are placed inside the shaded regions that are anchored on either L_1 or L_2 . (b) Position of the clause gadgets.

326 s_4^ℓ cover the points $\{r_j^\ell, p_k^\ell\}$. The rectangles are placed inside the box and the
 327 points are placed inside the tape of C_ℓ .

328 **Variable and clause interaction:** Observe that, the way the clauses in
 329 \mathcal{C}_{above} are connected to the variables in Section 2.3 (Figure 3(b)), here the
 330 same way the clauses in \mathcal{C}_{below} are connected to the variables. Therefore, the
 331 interaction between the variables and the clauses is similar to that in Section 2.3,
 332 but now here we consider a clause $C \in \mathcal{C}_{below}$ instead of a clause $C \in \mathcal{C}_{above}$. As
 333 in the proof of Theorem 2, we conclude:

334 **Theorem 3.** *The MMSCRATHL problem is NP-hard.*

335 **3. Minimum Membership Hitting Set Problem**

336 **3.1. Rectangles Anchored on a Horizontal Line**

337 We observe that in polynomial time one can decide if there exists a hitting set
 338 of depth one for the *MMHS* problem with rectangles anchored on a horizontal
 339 line from one side (*MMHSRAHL*). The idea is similar to that applied in Section
 340 2.1. Here we assign a weight to each point, given by the number of rectangles
 341 it stabs. Now we have an input of a set of rectangles anchored on a horizontal
 342 line and a set of weighted points. We find, for this instance, a maximum weight
 343 set of points (no two of them share a rectangle), using the algorithm described
 344 by Chan and Grant [24] (the *pack-points* problem); this takes polynomial time.

345 Next, we verify in $O(1)$ time whether or not the size of the solution is equal to
346 the number of rectangles. If this is true, then we know that there is a hitting
347 set for the instance with depth exactly 1.

348 *3.2. Axis-Parallel Strips*

349 We prove that the *MMHS* problem with axis-parallel strips (*MMHSS*) is NP-
350 hard using a reduction from the *P1in3SAT* problem. We generate an instance
351 $Z(S, P)$ of the *MMHSS* problem from ϕ , an instance of the *P1in3SAT* problem.

352 The gadget for a variable x_i includes $2m-1$ horizontal strips $\{1, 2, \dots, 2m-1\}$
353 and $2m$ points $\{p_1, p_2, \dots, p_{2m}\}$. The j -th strip contains the points p_j and p_{j+1} ,
354 for $1 \leq j \leq 2m-1$ (see Figure 6(a)). The points are on a vertical line. However,
355 we move some of the points to the right to some clause gadgets at later stage.
356 It is observed that there are exactly two different sets of points, either all even
357 indexed or all odd indexed, which stab all the strips with depth exactly 1. We
358 stack the variable gadgets vertically from top to bottom.

359 The gadget for a clause C_ℓ is a vertical strip v^ℓ . The clause gadgets are
360 placed one after another to the right of the points corresponding to the variable
361 gadgets.

362 For each variable, we order the clauses that contains it. Let C_ℓ be a clause
363 that contains x_i, x_j, x_k , then according to this ordering we say that C_ℓ is a ℓ_1 -th,
364 ℓ_2 -th, and ℓ_3 -th clause for x_i, x_j , and x_k respectively. Now for the clause C_ℓ we
365 move the three points $p_{2\ell_1}, p_{2\ell_2}$, and $p_{2\ell_3}$ in the horizontal orientation from the
366 gadgets of x_i, x_j , and x_k respectively to inside v^ℓ .

367 Clearly, the number of strips and points are polynomial with respect to the
368 number of variables and clauses in ϕ . Hence the construction can be done in
369 polynomial time. We now prove the following theorem.

370 **Theorem 4.** *The *MMHSS* problem is NP-hard.*

371 *Proof.* We prove that exactly one literal is true in each clause of ϕ if and only
372 if Z has a hitting set with depth exactly 1. For variable x_i , we choose even
373 indexed points if x_i is true, else choose odd indexed points. This clearly stabs

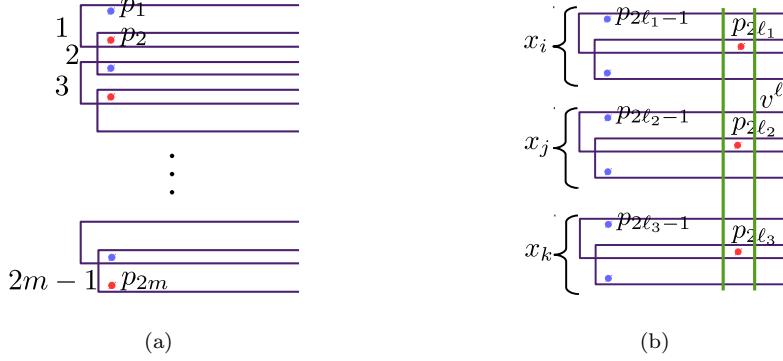


Figure 6: (a) Variable gadget. (b) Clause gadget and its interaction with variable gadgets.

374 all variable strips with depth 1. Since exactly one literal is true in each clause
 375 of ϕ , exactly one point will stab a clause strip. On the other hand assume
 376 that there is a hitting set of points with depth exactly 1. Now stabbing all the
 377 variable strips with depth 1 requires either all even or all odd indexed points.
 378 So we set x_i to be true if even indexed points are selected; otherwise, set x_i to
 379 be false. Since the depth of the hitting set is 1, exactly one point in a clause
 380 strip is selected. \square

381 *3.3. Rectangles Intersecting a Horizontal Line*

382 In this section we show that the *MMHS* problem with rectangles intersecting
 383 a horizontal line (*MMHSRIHL*) is NP-hard. Here we give a reduction from the
 384 *PP1in3SAT* problem.

385 The variable gadget is similar to the variable gadget defined in Section 3.2,
 386 but now there are $4m-1$ strips, $\{1, 2, \dots, 4m-1\}$, and $4m$ points, $\{p_1, p_2, \dots, p_{4m}\}$
 387 instead of $2m-1$ strips and $2m$ points. These strips are now vertical and they
 388 are bounded above and below so that they become rectangles. Further, they are
 389 intersecting a horizontal line L . Recall that the j -th strip contains the points p_j
 390 and p_{j+1} , for $1 \leq j \leq 4m-1$. It is now clear that there are exactly two different
 391 sets of points, $P_1^i = \{p_1, p_3, \dots, p_{4m-1}\}$ and $P_1^i = \{p_2, p_4, \dots, p_{4m}\}$, that stab all
 392 the rectangles such that the depth of the solution is exactly 1.

393 The clause gadget is similar to that in Section 2.3, but now, for each clause,
 394 the rectangular box of Section 2.3 is itself a rectangle, and each rectangle has
 395 a tape (a rectangle corresponding to a clause in \mathcal{C}_{above} has a tape along its
 396 top boundary, and a rectangle corresponding to a clause in \mathcal{C}_{below} has a tape
 397 along its bottom boundary). We now use a similar process as in Section 3.2
 398 to shift (vertically) points from the variable gadgets to the tapes of the clause
 399 rectangles.

400 Let $C_\ell = (x_i \vee x_j \vee x_k)$ be a clause in \mathcal{C}_{above} . As in Section 2.3, assume that
 401 x_i is a left, x_j is a middle, and x_k is a right variable for C_ℓ . Also let C_ℓ be the
 402 ℓ_1 -, ℓ_2 -, and ℓ_3 -th clause for x_i , x_j , and x_k respectively.

403 We now move the three points $p_{2\ell_1}$, $p_{2\ell_2}$, and $p_{2\ell_3}$ in the vertical orientation
 404 from the gadgets of x_i , x_j , and x_k respectively to inside the tape of the clause
 405 C_ℓ . A similar construction can be done for the the clauses in \mathcal{C}_{below} , however,
 406 the points $\{p_{2m+1}, p_{2m+2}, \dots, p_{4m}\}$ are responsible for these clauses and shifted
 407 vertically to the tapes of the clause rectangles accordingly.

408 Clearly the construction is made in polynomial time in terms of the size of
 409 the formula. Since no two tapes contain points corresponding to two different
 410 clauses, as in the proof of Theorem 4, we conclude the following theorem.

411 **Theorem 5.** *The MMHSRIHL problem is NP-hard.*

412 *3.4. Rectangles Anchored on Two Horizontal Lines*

413 We show that the MMHSRATHL problem is NP-hard. Here, also we give a
 414 reduction from the PP1in3SAT problem.

415 The variable gadget is identical to the variable gadget in Section 2.4; how-
 416 ever, here we take $4m + 8$ points $\{p_1, p_2, \dots, p_{4m+8}\}$ on two imaginary hori-
 417 zontal lines l_1 and l_2 , with $2m + 4$ points each. We also take $4m + 8$ rectangles
 418 $\{1, 2, \dots, 4m+8\}$ such that $2m+4$ rectangles $\{1, 2, \dots, 2m+4\}$ are anchored on L_2
 419 and the remaining $2m+4$ rectangles $\{2m+5, 2m+6, \dots, 4m+8\}$ are anchored on
 420 the line L_1 . Clearly, there are two optimal sets of points, $P_1^i = \{p_1, p_3, \dots, p_{4m+7}\}$
 421 and $P_1^i = \{p_2, p_4, \dots, p_{4m+8}\}$, stabbing the rectangles with depth exactly 1.

422 The clause gadgets are also identical to the clause gadgets in Section 2.4
423 with the difference that each rectangular box is a rectangle itself that contains
424 a tape (rectangles corresponding to clauses in \mathcal{C}_{below} have a tape along their top
425 boundaries, and rectangles corresponding to clauses in \mathcal{C}_{above} have a tape along
426 their bottom boundaries).

427 The variable clause interaction is made by vertically shifting some points
428 from the variable gadgets to this tape (similar to Section 3.3). Observe that
429 in Section 3.3 we describe the interaction for the clauses in \mathcal{C}_{above} . Here we
430 consider the clauses in \mathcal{C}_{below} due to the similar reason as in Section 2.4.

431 Similar to the proof of Theorem 4 and Theorem 5, we conclude with the
432 following theorem.

433 **Theorem 6.** *The MMHSRATHL problem is NP-hard.*

434 **4. The GMMHS problem of Stabbing Horizontal Unit Segments with**
435 **Vertical Unit Segments**

436 **NP-hardness:** We prove that the *GMMHS* problem of stabbing horizontal unit
437 segments by vertical unit segments (*GMMHSUSeg*) is NP-hard. The reduction
438 is from the *PP1in3SAT* problem.

439 **Variable gadget:** Each variable gadget consists of a *variable chain* and at
440 most $2m$ *clause chains*, each corresponding to a clause leg that connects to a
441 variable.

442 **Variable chain:** Each variable chain consists of $8m + 2$ unit horizontal segments
443 $\{h_1, h_2, \dots, h_{8m+2}\}$ positioned like a rectangular fashion (see Figure 7). The seg-
444 ments $\{h_1, h_2, \dots, h_{4m}\}$ are on a horizontal line and are responsible for connect-
445 ing the clause chains to the variable chain from above. Similarly, the segments
446 $\{h_{4m+2}, h_{4m+3}, \dots, h_{8m+1}\}$ are on another horizontal line and are responsible for
447 connecting the clause chains to the variable chain from below.

448 **Clause chains:** Let C_ℓ be a clause in \mathcal{C}_{above} that connects the variables x_i , x_j ,
449 and x_k through left, middle, and right legs respectively. Then for a left or mid-
450 dle, or right leg, we construct a *left* or *middle*, or *right* chain respectively. The

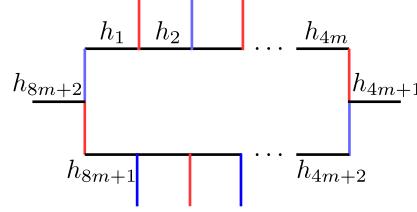


Figure 7: A variable gadget.

451 left and middle chains are depicted in Figure 8(a) and Figure 8(b) respectively.
 452 The right chain is similar to the left chain but flipped vertically.

453 Let us consider a clause $C \in \mathcal{C}_{\text{above}}$ that is a ℓ -th clause for the variable x_i .
 454 In the variable chain of x_i , we shift the $h_{4\ell-2}$ -th segment slightly left and the
 455 $h_{4\ell-1}$ -th segment slightly right (see Figure 8(c)). Place the chain for C above
 456 these two segments such that h' and $h_{4\ell-2}$ are stabbed by a vertical segment
 457 and h'' and $h_{4\ell-1}$ are stabbed by another vertical segment. Note that for each
 458 variable at most $2m$ chains are connected with its variable chain, at most m from
 459 either above or below. The variable chain and at most $2m$ left, middle, or right
 460 chains together form a big circular like arrangements of segments, called *big-*
 461 *cycle*. Note that, this big-cycle contains an even number of both horizontal and
 462 vertical segments and along the cycle at most 2 consecutive horizontal segments
 463 are stabbed by a vertical segment. We now have the following observation.

464 **Observation 1.** *For each variable gadget, there are two optimal solutions, ei-*
 465 *ther all red or all blue vertical segments each of size half of the total number of*
 466 *vertical segments present in a big-cycle.*

467 **Clause gadget:** Let $C_\ell \in \mathcal{C}_{\text{above}}$ be a clause that contains x_i , x_j , and x_k . The
 468 gadget for C_ℓ is a single horizontal segment h^ℓ . The position of h^ℓ with respect
 469 to the three chains corresponding to x_i , x_j , and x_k is shown in Figure 8(d).

470 This completes the construction. Note that this construction can be done in
 471 polynomial time with respect to the number of the variables and clauses in ϕ .

472 **Theorem 7.** *The GMMHSUSeg problem is NP-hard.*

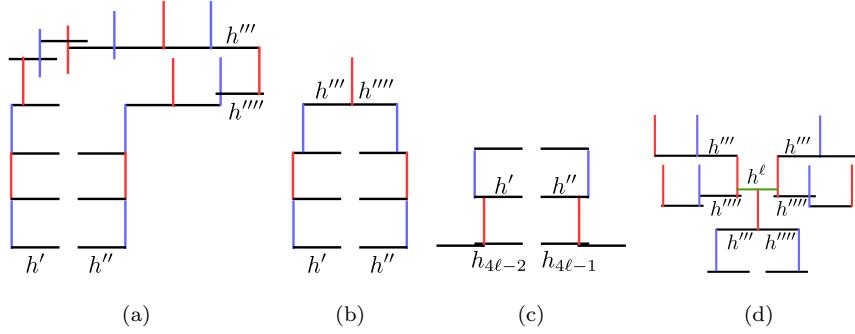


Figure 8: (a) A left chain. (b) A middle chain. (c) Attaching a clause chain to a variable chain. (d) Clause gadget and connection with the three variable gadgets.

473 *Proof.* We prove that exactly one literal per clause in ϕ is true if and only if the
 474 *GMMHSUSeg* problem has a solution with depth exactly 1. Assume that there
 475 exists a truth assignment of the variables of ϕ such that exactly one literal per
 476 clause in ϕ is true. Now consider a variable, say x_i . If x_i is true, we select all red
 477 vertical segments; otherwise, we select all blue vertical segments. Clearly the
 478 depth of any segment corresponding to any variable is exactly 1. Since in any
 479 clause, say C_ℓ exactly one literal is true, the segment h^ℓ is stabbed by exactly
 480 one vertical red segment corresponding to the true literal. Hence, the depth of
 481 the solution is exactly 1.

482 On the other hand, assume that there exists a solution to the *GMMH-*
 483 *SUSeg* problem with depth exactly 1. To stab all the horizontal segments in
 484 a variable gadget requires either all red or all blue vertical segments in order to
 485 keep the depth 1. Therefore, we set variable x_i to be true if all red segments
 486 are selected in the solution; otherwise, we set x_i to be true. Now we show
 487 that this assignment makes exactly one literal per clause of ϕ true. Consider a
 488 clause C_ℓ . Since the depth of the solution is exactly 1, exactly one of the three
 489 red segments corresponding to the three variables of C_ℓ that stab h^ℓ is selected
 490 in the solution. That means we set only that variable of C_ℓ to be true whose
 491 corresponding red segment stabs h^ℓ . This completes the proof. \square

492 4.0.1. *Approximation for the GMMHSUSeg problem:*

493 First we convert this problem to the *MMHS* problem with unit squares.
494 Let H and V be given sets of unit horizontal and vertical segments. For each
495 horizontal segment $h \in H$, take a unit square $t_h \in T$ such that the bottom
496 boundary of t_h coincides with h and for each vertical segment $v \in V$, take the
497 top endpoint, $p_v \in P$ of v . Clearly, finding a set $V' \subseteq V$ that stabs all the
498 horizontal segments in H while minimizing the number of times a segment in
499 H is stabbed by segments in V' is equivalent to finding a set of points $P' \subseteq P$
500 that stabs all the unit squares in T while minimizing the number of points in P'
501 that is contained in a unit square in T . (We remark that this reduction shows
502 that the *MMHS* problem with unit squares is NP-hard, from our Theorem 7
503 (the NP-hardness of the *GMMHSUSeg* problem), giving an alternative (to [4])
504 proof of this fact.)

505 Since for unit squares the *MMHS* and *MMSC* problems are dual to each
506 other, the above reduction, together with the approximation algorithm given in
507 [4], yields the following result.

508 **Theorem 8.** *There exists a 5-approximation for the GMMHSUSeg problem
509 when the optimal objective value is bounded by a constant.*

510 **5. Conclusion**

511 In this paper we considered the Minimum Membership Set Cover (*MMSC*)
512 and Minimum Membership Hitting Set (*MMHS*) problems. We considered var-
513 ious classes of geometric objects, including axis-parallel strips, rectangles an-
514 chored on a horizontal line, rectangles anchored on two parallel horizontal lines,
515 and rectangles intersected by a horizontal line. For the *MMSC* and *MMHS* prob-
516 lems with rectangles anchored on a horizontal line, we showed that the existence
517 of solutions with depth exactly one can be solved in polynomial time. A natural
518 open question is to design polynomial-time algorithms or proving NP-hardness
519 for these problems (*MMSC* and *MMHS*) in this anchored rectangle setting. The
520 *MMSC* and *MMHS* problems with other classes of geometric objects mentioned

521 above are NP-hard. We also considered a generalized version of the Minimum
522 Membership Hitting Set problem, the Generalized Minimum Membership Hit-
523 ting Set problem (*GMMHS*) on axis-parallel unit segments, and proved that it
524 is NP-hard. This problem admits a 5-approximation when the optimal objective
525 value is bounded by a constant. Designing an approximation algorithm without
526 any constraint or improving the factor are open questions.

527 **References**

528 [1] F. Kuhn, P. von Rickenbach, R. Wattenhofer, E. Welzl, A. Zollinger, Inter-
529 ference in cellular networks: The minimum membership set cover problem,
530 in: COCOON, 2005, pp. 188–198.

531 [2] F. Y. Chin, H.-F. Ting, Y. Zhang, Variable-size rectangle covering, in:
532 COCOA, 2009, pp. 145–154.

533 [3] R. Raz, S. Safra, A sub-constant error-probability low-degree test, and
534 a sub-constant error-probability PCP characterization of NP, in: STOC,
535 1997, pp. 475–484.

536 [4] T. Erlebach, E. J. van Leeuwen, Approximating geometric coverage prob-
537 lems, in: SODA, 2008, pp. 1267–1276.

538 [5] S. C. Nandy, S. Pandit, S. Roy, Covering points: Minimizing the maximum
539 depth, in: CCCG, 2017, pp. 37–42.

540 [6] N. S. Narayanaswamy, S. M. Dhannya, C. Ramya, Minimum membership
541 hitting sets of axis parallel segments, in: COCOON, 2018, pp. 638–649.

542 [7] M. Dom, J. Guo, R. Niedermeier, S. Wernicke, Red-blue covering problems
543 and the consecutive ones property, J. Comput. Geom. 6 (3) (2008) 393 –
544 407.

545 [8] P. K. Mishra, S. K. Jena, G. K. Das, S. Rao, Capacitated discrete unit disk
546 cover, Discrete Applied Mathematics 285 (2020) 242–251.

547 [9] D. S. Hochbaum (Ed.), Approximation Algorithms for NP-hard Problems,
 548 PWS Publishing Co., USA, 1997.

549 [10] R. J. Fowler, M. S. Paterson, S. L. Tanimoto, Optimal packing and covering
 550 in the plane are NP-complete, *Inf. Process. Lett.* 12 (3) (1981) 133 – 137.

551 [11] N. H. Mustafa, S. Ray, Improved results on geometric hitting set problems,
 552 *Discrete & Computational Geometry* 44 (4) (2010) 883–895.

553 [12] T. Ito, S. Nakano, Y. Okamoto, Y. Otachi, R. Uehara, T. Uno, Y. Uno,
 554 A 4.31-approximation for the geometric unique coverage problem on unit
 555 disks, in: *ISAAC*, 2012, pp. 372–381.

556 [13] T. Ito, S. Nakano, Y. Okamoto, Y. Otachi, R. Uehara, T. Uno, Y. Uno, A
 557 polynomial-time approximation scheme for the geometric unique coverage
 558 problem on unit squares, *Comput. Geom.* 51 (2016) 25–39.

559 [14] S. Mehrabi, Geometric unique set cover on unit disks and unit squares, in:
 560 *CCCG*, 2016, pp. 195–200.

561 [15] T. M. Chan, N. Hu, Geometric red-blue set cover for unit squares and
 562 related problems, *Computational Geometry* 48 (5) (2015) 380 – 385, spe-
 563 cial Issue on the 25th Canadian Conference on Computational Geometry
 564 (CCCG).

565 [16] T. M. Chan, Klee’s measure problem made easy, in: *FOCS*, 2013, pp. 410–
 566 419.

567 [17] A. Backurs, N. Dikkala, C. Tzamos, Tight hardness results for maximum
 568 weight rectangles, in: *ICALP*, 2016, pp. 81:1–81:13.

569 [18] J. Barbay, T. M. Chan, G. Navarro, P. Pérez-Lantero, Maximum-weight
 570 planar boxes in $O(n^2)$ time (and better), *Inf. Process. Lett.* 114 (8) (2014)
 571 437 – 445.

572 [19] M. R. Garey, D. S. Johnson, Computers and Intractability; A Guide to the
573 Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA,
574 1990.

575 [20] D. Lichtenstein, Planar formulae and their uses, SIAM Journal on Com-
576 putting 11 (2) (1982) 329–343.

577 [21] D. E. Knuth, A. Raghunathan, The problem of compatible representatives,
578 SIAM Journal on Discrete Mathematics 5 (3) (1992) 422–427.

579 [22] T. J. Schaefer, The complexity of satisfiability problems, in: STOC, 1978,
580 pp. 216–226.

581 [23] W. Mulzer, G. Rote, Minimum-weight triangulation is NP-hard, J. ACM
582 55 (2) (2008) 11:1–11:29.

583 [24] T. M. Chan, E. Grant, Exact algorithms and APX-hardness results for
584 geometric packing and covering problems, Comput. Geom. 47 (2, Part A)
585 (2014) 112 – 124.