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Abstract

Set cover is a well-studied problem with application in many fields. A well-
known variant of this problem is the Minimum Membership Set Cover problem:
Given a set of points and a set of objects, the objective is to cover all points
while minimizing the maximum number of objects that contain any one point.
A dual of this problem is the Minimum Membership Hitting Set problem: Given
a set of points and a set of objects, the objective is to stab all of the objects while
minimizing the maximum number of points that an object contains. We study
both of these variants in a geometric setting with various types of geometric
objects in the plane, including axis-parallel line segments, axis-parallel strips,
rectangles that are anchored on a horizontal line from one side, rectangles that
are stabbed by a horizontal line, and rectangles that are anchored on one of
two horizontal lines (i.e., each rectangle shares its top or its bottom edge (or
both) with one of the input horizontal lines). For each of these problems we
either prove NP-hardness or we give a polynomial-time algorithm. In particular,
we show that it is NP-complete to decide whether there exists a solution with

depth exactly 1 for either the Minimum Membership Set Cover or the Minimum
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Membership Hitting Set problem. In addition, we study a generalized version
of the Minimum Membership Hitting Set problem.
Keywords: Minimum membership set cover, Minimum membership hitting

set, Anchored rectangles, NP-hard

1 1. Introduction

2 The set cover problem is one of the fundamental problems in computer sci-
s ence and combinatorial optimization. This problem, and its many variants, play
4+ an important role in modelling various problems arising in practical scenarios.
s One of its variants is the Minimum Membership Set Cover (MMSC) problem,

¢ which is defined in a geometric setting as follows.

Minimum Membership Set Cover (MMSC): Given a point set P and
a set O of objects (regions), cover all the points in P with a subset O’ ¢ O
of objects such that the maximum depth of a point is minimized, where the
depth of a point p € P is the number of objects in O’ that contain it. We
say that O is a cover of P, and we let d(O") denote the maximum depth
of any point p € P with respect to O’.

7 A related problem that is “dual” to the MMSC problem is the Minimum
s Membership Hitting Set (MMHS) problem, defined as follows.

Minimum Membership Hitting Set (MMHS): Given a point set P
and a set O of objects (regions) determine a subset P’ ¢ P of points stabbing
(intersecting) all objects O such that the maximum depth of an object is
minimized, where the depth of an object o € O is the number of points in P’
that stab it. We say that P’ is a hitting set of O, and we let d(P’) denote

the maximum depth of any object o € O with respect to P’.

0 In addition to the above two problems, we consider a generalized version of
0 the MMHS problem, the Generalized Minimum Membership Hitting Set (GMMHS)

u  problem, where, instead of a point set and an object set, we are given two sets
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R (“red”) and B (“blue”) of objects. The objective is to stab (intersect) all of
the objects in B using a subset R’ € R such that the maximum number of red
objects in R hitting any single object in B is minimized. The MMHS problem
is the special case of GMMHS in which the red objects R are points; the gener-
alization is that now R is not just a set of points but is a more general type of
region. We prove that even a very special case of GMMHSis NP-hard, namely
that in which the blue/red regions are horizontal/vertical line segments of unit
length.
Applications and motivation: The minimum membership set cover problem
is motivated by an application in interference reduction in wireless networks [1J.
We are given a set of “clients”, which are served by some “servers”. Each server
has some transmission range within which it can serve clients. If a client is within
the ranges of more than one server, then the client experiences interference in
the signals it receives from the multiple servers. Therefore, one seeks to choose
a set of servers to serve all the clients such that the maximum interference of
any client is minimum possible.

The minimum membership set cover problem with rectangles anchored on
a horizontal line has an application to wireless coverage [2]. One is given a set
of clients (points) in the plane. There is a base station (a point) that serves
these clients. The base station uses a directional antenna to transmit beams (a
circular sector with angle 6 and radius r) to the clients. The goal is to choose
a set of beams to serve all the clients such that the maximum interference of
any client is minimum possible. In [2], the authors show that this problem in
polar coordinate systems can be reduced to the minimum membership set cover

problem with rectangles anchored on a horizontal line.

1.1. Previous Work

The very well studied standard set cover problem is NP-hard. A simple
greedy heuristic gives a O(logn)-factor approximation, and it is NP-hard to
compute an approximation better than logarithmic [3]. The Minimum Mem-

bership Set Cover variant was first introduced by Kuhn et al. [I]. They
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showed that the problem cannot be approximated better than O(logn) and
gave an algorithm achieving approximation factor O(logn). Erlebach and van
Leeuwen [4] considered the geometric variant of the problem, proving that for
unit squares and unit disks the problem is NP-hard and that there does not exist
a polynomial-time factor 2 approximation algorithm, unless P=NP. Further, for
unit squares, they provided a factor 5 approximation algorithm for the case in
which the optimum objective value is bounded by a constant. Recently, Nandy
et al. [5] reconsidered the same problem and gave polynomial-time algorithms
for both unweighted and weighted intervals on the real line. Also recently,
Narayanswami et al. [6], considered the problem of hitting a set of horizontal
segments with vertical segments while minimizing the number of times a vertical
segment is hit by the chosen horizontal segments. They showed that this prob-
lem is NP-hard and cannot be approximated better than factor 2. Further, if
the segments are of unbounded length (i.e., they are lines), then it can be solved
in polynomial time (see also [7] for this algorithm and some generalizations of
this problem). In a somewhat different, but related, direction, capacitated geo-
metric set cover instances have been studied, e.g., the capacitated discrete unit
disk cover, in which we seek a minimum-cardinality subset of a given set of unit
disks in order to cover a given set of points, with an upper bound (capacity
constraint, o) on how many points can be covered by any one disk; for @ > 3 the
problem is NP-complete, and a PTAS (polynomial-time approximation scheme)
is known [g].

Closely related to the set cover problem is the maximum coverage problem.
Here, a universe set U, a collection C' of subsets of U, and a positive integer
k is given; the goal is to find at most k sets from C that cover a maximum
number of elements from U. This problem is also NP-hard and has a (1 - é)
factor (greedy) approximation algorithm [9]. The geometric set cover problem
in IR? is NP-hard for several simple classes of objects, such as disks [I0], squares
[10], etc. However, the same problem on a real line IR is solvable in O(nlogn)
time. There is a PTAS for geometric set cover instances with unit disks and

unit squares as objects [II]. Another variant of the set cover problem is the
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unique cover problem: given a set P of points and a set T of objects in the
plane, the objective is to find a subset 7" ¢ T of objects such that the objects
T’ cover a maximum number of points whose depth is exactly 1. This problem
is NP-hard for both unit disks and unit squares [4]. For unit disks, a 4.31-factor
approximation algorithm is available for the unique cover problem [12], and for
unit squares a PTAS exists [13].

Recently, Mehrabi [I4] considered a variant of the set cover problem, called
the unique set cover problem. Here also the input is a set P of points and a set
T of objects in the plane; the goal is to find a subset 77 ¢ T of objects such
that the number of points whose depth is exactly 1 is maximized. He showed
that this problem is NP-complete for unit disks and unit squares in the plane.
Further, for unit squares he designed a PTAS using a mod-one transformation
trick of Chan and Hu for the red-blue set cover problem [I5]. Another related
problem is the weighted depth problem [I6] 17, [I8], where the input is a set
P of points and a set T of n weighted boxes; the goal is to find a point whose

depth is maximum. In IR?, this problem can be solved in time O(n¢) [16].

1.2. Our Contributions: Ouerview

In this paper we present the following results.

Minimum Membership Set Cover (MMSC) problem
We give a polynomial-time algorithm for deciding if there exists a cover
with depth one for the MMSC problem with objects that are rectangles
anchored on a horizontal line. In contrast, we show that if the objects
are rectangles that intersect a horizontal line (versus that are anchored,
sharing a side with a horizontal line), the MMSC problem is NP-hard.
We also prove NP-hardness for the cases of objects that are axis-parallel

strips or rectangles anchored on two horizontal lines.

Minimum Membership Hitting Set (MMHS) problem
We give a polynomial-time algorithm for deciding if there exists a hitting

set with depth one for the MMHS problem with objects that are rectangles
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anchored on a horizontal line. In contrast, we show that if the objects are
rectangles that intersect a horizontal line, the MMHS problem is NP-hard.
We also prove NP-hardness for the cases of objects that are axis-parallel

strips or rectangles anchored on two horizontal lines.

Generalized Minimum Membership Hitting Set (GMMHS) problem
We show that GMMHS, with object sets B, R given as unit-length hori-
zontal/vertical line segments, is NP-hard; even deciding if a solution exists
with depth one is NP-complete. We also give a 5-approximation algorithm

if the optimal objective function is bounded by a constant.

It is noted that, in all of our NP-completeness proofs, we prove that it is
NP-complete to decide whether there exists a solution with depth exactly 1.
Since the depth is an integer, any approximation algorithm returns a solution
greater than or equal to 2. Thus, each of the problems shown to be NP-complete
does not have a polynomial-time algorithm with approximation factor smaller

than 2 (unless P=NP).

Equivalence of MMSC and MMHS with unit disks/squares. There is a connec-
tion (equivalence) between the MMSC and MMHS problems where the input
objects are either unit disks or unit squares. Consider the case of unit squares.
Given an instance C = (P, T) of the MMSC problem, with a set P of points and
a set T of unit squares, we consider a “dual” instance, H, of a MMHS prob-
lem whose regions are specified by the set of unit squares centered on the points
p € P, and whose points are specified as the center points of the squarest € T'. We
then note that determining a solution to the MMSC problem C' is equivalent to
determining a solution to the MMHS problem H. Thus, we conclude, by apply-
ing the results in [4, [B]: The MMHS problem is NP-complete with unit squares
and unit disks and there exists a 5-approximation for the MMHS problem with

unit squares where the optimal objective value is bounded by a constant.
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1.8. Definitions and Notations

In the 3SAT problem we are given a CNF formula ¢ with n variables
X=x1,29,...,x, and m clauses C = {C1,Cq,...,Cy,} where each clause is a
disjunction of exactly 3 literals, and the objective is to decide whether there is a
truth assignment to variables such that ¢ is satisfiable. This problem is known
to be NP-complete [I9]. In the planar version of this problem, each variable
and clause represents a vertex and there is an edge between a variable vertex
and a clause vertex if and only if the corresponding clause contains the corre-
sponding literal. Finally, the resulting bipartite graph is planar. This problem
is called the Planar-3SAT problem and Lichtenstein [20] proved that this prob-
lem is also NP-complete. Later on, Knuth and Raghunathan [21] showed that
every instance of the Planar-3SAT problem can be represented using the fol-
lowing rectilinear representation. The variables are placed on a horizontal line
and the clauses containing 3 legs each connecting those variables either from
above or below the horizontal line such that no two clause legs intersect. This
problem is called the Rectilinear-Planar-3SAT problem and is also NP-complete
[21]. A Positive-1-in-3SAT problem is a 3SAT problem, however the objective
is different: here, the objective is to decide whether there is a truth assignment
to the variables such that exactly one literal per clause is true. Schaefer [22]
proved that this problem is NP-complete. This problem can be represented using
the rectilinear representation as defined above; we refer to it as the Rectilinear-
Positive- Planar-1-in-3SAT problem (see. Mulzer and Rote [23] proved
that it is also NP-complete.

We now define some terminology. Let Cypope S C be the set of clauses in
a PP1in3SAT formula ¢ that connect to the variables from above. Similarly,
let Cpeiow € C be the set of clauses that connect to the variables from below.
For each variable z;, 1 <i < n, we order the clauses in Cgpope left to right that
connect x;. Let Cy € Capove be a clause containing the three variables z;, x;,
and xy. Then, according to the ordering defined above, we assume that Cy is
the £1-, £2-, and £3-th clause for the variables x;, z;, and x, respectively. For

example, the clause C3 is a 3-rd, 1-st, and 1-st clause for the variables 3, x4,



w and x5, respectively, in the PP1in3SAT instance in We also say that
11 the clause Cy connects to x; by left, to z; by middle, and to z; by right legs.

Cc1 = (CL‘l V 3 \/CL‘5)

y=2

ey = (1 Vag Vx3) cs = (z3 Vg Vas) .

| | 1 | | v

Lo | 4 || 4 || 4 || s | y=0

| | | I
C4=($2VI3\/CE4)

y=-2

cs = (1 VagVas)

Figure 1: Representation of a Rectilinear-Positive-Planar-1-in-8SAT problem.

12 2. Minimum Membership Set Cover Problem

163 2.1. Rectangles Anchored on a Horizontal Line

164 We observe that, in polynomial time, one can decide if there exists a cover
165 of depth one for the MMSC problem with rectangles anchored on a horizontal
s line from one side (MMSCRAHL). The idea is as follows. We assign a weight to
17 each rectangle, given by the number of points it contains. Now we have an input
s of a set of weighted rectangles anchored on a horizontal line and a set of points.
1o We now find, for this instance, a maximum independent set of rectangles (no
o two of them share a point), using the algorithm described by Chan and Grant
wm [24] (the pack-regions problem). This requires polynomial time. Next, we verify
w2 in O(1) time whether or not the size of the maximum independent set is equal
w3 to the number of points. If this is true, then we ensure that there is a cover of

s the points with depth exactly 1.

ws 2.2. Awis-Parallel Strips

176 In this section we prove that the MMSC problem with axis-parallel strips

v (MMSCS) is NP-hard. We give a reduction from the Positive-1-in-3SAT (P1in3SAT)
s problem (see for the definition). Let ¢ be a P1in3SAT formula. We
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generate an instance Z(S, P) of the MMSCS problem from ¢ in the following
way, where S is a set of strips and P is a set of points.

Variable gadget: For variable z;, the gadget consists of one vertical strip
v;, one horizontal strip h;, and a point p;. The point is covered by both v; and
hi (see . Clearly, either v; or h; will cover p; with depth one. We
assume that choosing h; makes x; true, while choosing v; makes z; false.

Overall Structure: We place the variable gadgets (points) along a diagonal
line. For each clause we take a vertical bounded region. The clause gadgets
are placed sequentially one by one to the right of the variable gadgets, and
each gadget is confined to its corresponding region. Between two consecutive
variable horizontal strips there is an empty space, where we place some points
corresponding to the clauses.

Clause gadget: Let Cy = (z;vxjvry) be a clause. For this clause, we take 5
points pf,pﬁ,pi,pf,pﬁ and 4 vertical strips ¢¢, ¢, s°, t* (see . The points
pf, p§7 and pi are corresponding to the variables x;, x; and x, respectively and
are placed inside the strips h;, hj, and hy respectively. The other two points pli
and p4 are placed in any empty space between the variable horizontal strips of
x;, x; (i.e., between h; and h;) and x;, xy (i.e., between h; and hy) respectively.
Points {pf,p%} are contained in ‘. Similarly, {pf,pﬁ}, {p?,pg}, and {p5,p}} are

£

contained in 7¢, s, and t’, respectively. These 5 points and 4 rectangles are

strictly contained inside the vertical region of Cy .

This completes the description of details of the construction, for a given
instance, ¢, of P1in3SAT. Finally, we note that the construction can be done
in time that is polynomial in the size of the formula ¢. We now utilize this

construction to prove the following theorem.
Theorem 1. The MMSCS problem is NP-hard.

Proof. We prove that, ¢ is satisfiable (i.e., exactly one literal is true per clause)
if and only if Z(P,S) has a solution of depth one. Assume that ¢ has an
assignment such that exactly one literal per clause is true. If x; is true then

select h;; otherwise, select v;. Now, for each clause, exactly one of pf ,pf,pi is
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Figure 2: Gadgets of variables x;, ;, %, and clause Cp and their interaction.

covered by the solution. Hence, the remaining 4 points are covered by exactly
two strips with depth one.

On the other hand, assume that there is a cover of the points with depth
one. Now, for each variable gadget, to cover p; we need one of the two strips
h; or v;. We set variable x; to be true if h; is in the solution; otherwise, we
set x; to be false. Now consider any clause Cy. Since the depth of the solution
(indeed a cover of all points) is one, exactly one of pf, pﬁ, pi corresponding to Cp
is covered by a variable horizontal strip. We set this variable to be true. Hence,

exactly one literal per clause is true in ¢. O

Corollary 1. The MMSC problem with rectangles each anchored on one of two
orthogonal lines (MMSCRATOL) is NP-hard. (Consider a vertical line x = —M
and a horizontal line y = —M, for M sufficiently large; then very tall or very

wide rectangles anchored on these lines are axis-parallel strips.)

2.8. Rectangles Intersecting a Horizontal Line

In this section we prove that the MMSC problem with rectangles inter-
secting a horizontal line (MMSCRIHL) is NP-hard. The reduction is from the
PP1in3SAT problem [23]. From an arbitrary instance ¢ of the PP1in3SAT prob-

10



226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

lem, we construct an instance Z of the MMSCRIHL problem, where the rect-
angles in Z intersect a horizontal line L.

Variable gadget: The gadget for the variable x; consists of 12m rectangles
{1,2,...,12m} and 12m -1 points {p1,pa, ..., p12m-1} (see[Figure 3(a)), where
m is the number of clauses in ¢. The points are along the top edges of the
rectangles. The 1-st and the 12m-th rectangles contain the points p; and p12m,-1,
respectively, and the j-th rectangle contains the p;_;-th and p;-th points, for 2 <
j £12m—1. We note that the first 6m rectangles {1,2,...,6m} are responsible
for the clauses in Cypove, whereas the next 6m rectangles {6m+1,6m+2,...,12m}
are responsible for the clauses in Cpejo- All of the rectangles are intersecting a
horizontal line L. Now, in order to cover all of the points while minimizing the
depth, we have only two distinct optimal solutions: either all even-numbered or
all odd-numbered rectangles with depth exactly one. This gives the truth value
of the variable x;.

Clause gadget: We first modify the PP1in3SAT problem in the following
way. Note that the variables of ¢ are placed on a horizontal line (y = 0). We
move the variables vertically up such that they are placed on a horizontal line
y =m+ 1 (above the y-values of all the clauses in Capove) (see . The
clauses in Cupore are placed above L and below the line y = m+1 while connecting
the same set of variables as before. Note that these clauses now connect the
variables from below. On the contrary, the clauses in Cpejo, are placed below L
and still connect to the same set of variables from below.

Let us now consider the set Cupove Of clauses. Notice that, in the definition of
the PP1in3SAT problem these clauses can be ordered in increasing y-direction
(see . Here we reverse the order of the clauses (see . Now
for each clause C' € Cupope We take a rectangular box whose top boundary is the
segment of C' in the modified construction. The bottom boundary of the box
touches the line L. Each box has a thin strip along the top edge of that box,
called the tape of that clause. Similarly, we reverse the order of the clauses
in Cpejow and for each clause C we take a box whose bottom boundary is the

segment of C' in the modified construction. The top boundary of the box touches

11
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the line L. Now here the tape is along the bottom boundary of each box.

_ : :
112 P12fn—1

b = (21 V 22|V 23)

L b1 = (21V|23

s = (21 V

(a) (b)
Figure 3: (a) A variable gadget. (b) Position of the clause gadgets.

Let Cy = (z; va; v ay) be a clause in Capope. We say that z; is a left, x; is a
middle, and xy, is a right variable for Cy. We take 5 points; point p§ correspond-
ing to x;, points p?,qf ,rf corresponding to x;, and point pf; corresponding to
zy; and 4 rectangles s¢, 55,55, 54. The rectangle s¢ covers the points {pﬁpﬁ}, 55
covers the points {pf, q]e }, s covers the points {pg7 p.}, and sf covers the points
{rf, Py} (see . The rectangles are placed inside the box and the points
are placed inside the tape of Cy.

Variable and clause interaction: We now describe the placement of the
clause rectangles and points with respect to the variable rectangles. Let 1,2,...
be the left to right order the clauses in Cgpove that connect to the variable z;.
In this order, assume that C, be the £1-, £5-, and /3-th clause for the variables

x;, *j, and xy, respectively. Then we do the following.

~ Since x; is a left variable in Cy, place the point pf inside the (6¢; — 2)-th
rectangle of the gadget of x;.

~ Since z; is a middle variable in Cy, place the point pﬁ inside the (6/5—2)-th
rectangle of the gadget of x;. Also place the point qf and rf inside the
(6k — 3)-th and (6k — 1)-th rectangles of the gadget of z;.

~ Since zy, is a right variable in Cy, place the point p, inside the (6¢3 —2)-th

12
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3046x1—2 6x3_2 30+6x1-2 6x1-2 30+6x1-2 6x1—2
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52 4

Figure 4: Interaction between the variable and clause gadgets. We demonstrate the interaction

of C3 and C4 with the variables in the P1in3SAT instance in

A similar construction can be made for the clauses in Cpejo, but using the
last 6m rectangles in the variable gadgets. See Figure [ for the construction

described above. We now prove the following theorem.
Theorem 2. The MMSCRIHL problem is NP-hard.

Proof. We prove that exactly one literal is true in every clause of ¢ if and only
if the MMSCRIHL problem has a cover of depth 1. Assume that there is an
assignment to the variables of ¢ that satisfies exactly one literal per clause. For
a variable x;, if it is true, then select the even indexed rectangles; otherwise,
select the odd indexed rectangles from the gadget of x;. Let us consider a clause
Cy = (z; vajvay). Since exactly one literal per clause is true, exactly one of Pt
or pﬁ, or pf; is covered by a variable rectangle. Clearly, the remaining points in
the clause gadget are covered by the clause rectangles with depth one.

In the reverse direction, assume that the MMSCRIHL problem has a cover
of depth 1. To cover the points in a variable gadget and in order to make their
depth 1, there are only two possibilities to select the rectangles. We set the
variable z; to be true if all even indexed rectangles are selected from the gadget
of x;; otherwise, set ; to be false. Now consider a clause Cy = (x; v x; V xy).
Now in Cp, if more than one literal is true then the depth of a point in the

gadget of Cy will be more than 1. If the clause is not satisfiable then also either

13
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at least one point is not covered or there will be a point whose depth will be
more than one. The only possibility is exactly one literal per clause is true.

Hence, the theorem. O

2.4. Rectangles Anchored on Two Horizontal Lines

In this section we prove that the MMSC problem with rectangles anchored
on two horizontal lines (MMSCRATHL) is NP-hard. We give a reduction from
the PP1in3SAT problem [23].

Variable gadget: To construct the variable gadget (see of
xi, we first take two parallel lines L; and Lo. We consider 12m points on two
imaginary horizontal lines /; and ls in between L; and Lo where each of Iy
and [5 contains 6m points. We also consider 12m rectangles 1,2,...,12m. The
rectangles 1,2,...,6m are anchored on the line L, and the remaining rectangles
are anchored on the line L;. The i-th rectangle covers exactly two points p; and
Pi+1, for 1 <4 <12m —1 and the rectangle 12m covers the points pi2,, and p;.
Now in order to cover all the points while minimizing the depth, we have only
two different optimal solutions; either all even numbered or all odd numbered
rectangles with depth exactly 1. This gives the truth value of the variable x;.

Clause gadget: We first consider the set Cpeioy Of clauses in ¢. These
clauses can be ordered in decreasing y-direction (see . Now for each
clause C € Cpejony We take a rectangular boxr whose top boundary is the segment
of C. The bottom boundary of the box touches the line Ls. Fach box has a thin
strip along the top edge of that box, called the tape of that clause. Similarly,
we construct the boxes and tapes for the clauses for Cypove. See

The placement of the clause points and rectangles is similar to the placement
of the clause points and rectangles described in[Section 2.3] The clause structure
is exactly the same as in For a clause Cy = (z; v &; v ag) in
Chelow With z;, x;, and zy, as left, middle, and right variable, we take 5 points;
point pf corresponding to x;, points pﬁ, qf ,rf corresponding to z;, and point pf;
corresponding to xy; and 4 rectangles s, sg,sg,sﬁ. The rectangle s¢ cover the

points {pf,pﬁ}7 s4 cover the points {pf,qf}, s% cover the points {p?,pf;}, and
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Figure 5: (a) A variable gadget. The clause gadgets are placed inside the shaded regions that

are anchored on either Ly or La. (b) Position of the clause gadgets.

sﬁ cover the points {rf, pi}. The rectangles are placed inside the box and the

points are placed inside the tape of Cp.

Variable and clause interaction: Observe that, the way the clauses in

Capove are connected to the variables in [Section 2.3 (Figure 3(b)|), here the

same way the clauses in Cpejoy are connected to the variables. Therefore, the
interaction between the variables and the clauses is similar to that in|Section 2.3|

but now here we consider a clause C' € Cpeoq instead of a clause C € Cupope. AS

in the proof of we conclude:

Theorem 3. The MMSCRATHL problem is NP-hard.

3. Minimum Membership Hitting Set Problem

3.1. Rectangles Anchored on a Horizontal Line

We observe that in polynomial time one can decide if there exists a hitting set
of depth one for the MMHS problem with rectangles anchored on a horizontal
line from one side (MMHSRAHL). The idea is similar to that applied in Section
Here we assign a weight to each point, given by the number of rectangles
it stabs. Now we have an input of a set of rectangles anchored on a horizontal
line and a set of weighted points. We find, for this instance, a maximum weight
set of points (no two of them share a rectangle), using the algorithm described

by Chan and Grant [24] (the pack-points problem); this takes polynomial time.
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Next, we verify in O(1) time whether or not the size of the solution is equal to
the number of rectangles. If this is true, then we know that there is a hitting

set for the instance with depth exactly 1.

8.2. Auxis-Parallel Strips

We prove that the MMHS problem with axis-parallel strips (MMHSS) is NP-
hard using a reduction from the P1in3SAT problem. We generate an instance
Z (S, P) of the MMHSS problem from ¢, an instance of the P1in3SAT problem.

The gadget for a variable z; includes 2m-1 horizontal strips {1,2,...,2m-1}
and 2m points {p1,p2,...,P2m}. The j-th strip contains the points p; and p;1,
for 1<j<2m—1 (see . The points are on a vertical line. However,
we move some of the points to the right to some clause gadgets at later stage.
It is observed that there are exactly two different sets of points, either all even
indexed or all odd indexed, which stab all the strips with depth exactly 1. We
stack the variable gadgets vertically from top to bottom.

The gadget for a clause Cy is a vertical strip v*

. The clause gadgets are
placed one after another to the right of the points corresponding to the variable
gadgets.

For each variable, we order the clauses that contains it. Let Cy be a clause
that contains x;, z;, z), then according to this ordering we say that Cj is a £1-th,
lo-th, and f3-th clause for z;,x;, and ), respectively. Now for the clause C; we
move the three points pay, , Par,, and pae, in the horizontal orientation from the
gadgets of x;,x;, and xj respectively to inside vt

Clearly, the number of strips and points are polynomial with respect to the

number of variables and clauses in ¢. Hence the construction can be done in

polynomial time. We now prove the following theorem.
Theorem 4. The MMHSS problem is NP-hard.

Proof. We prove that exactly one literal is true in each clause of ¢ if and only
if Z has a hitting set with depth exactly 1. For variable x;, we choose even

indexed points if z; is true, else choose odd indexed points. This clearly stabs
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Figure 6: (a) Variable gadget. (b) Clause gadget and its interaction with variable gadgets.

all variable strips with depth 1. Since exactly one literal is true in each clause
of ¢, exactly one point will stab a clause strip. On the other hand assume
that there is a hitting set of points with depth exactly 1. Now stabbing all the
variable strips with depth 1 requires either all even or all odd indexed points.
So we set x; to be true if even indexed points are selected; otherwise, set x; to
be false. Since the depth of the hitting set is 1, exactly one point in a clause

strip is selected. O

3.3. Rectangles Intersecting a Horizontal Line

In this section we show that the MMHS problem with rectangles intersecting
a horizontal line (MMHSRIHL) is NP-hard. Here we give a reduction from the
PP1in3SAT problem.

The variable gadget is similar to the variable gadget defined in
but now there are 4m—1 strips, {1,2,...,4m-1}, and 4m points, {p1,p2,. .., Pam }
instead of 2m — 1 strips and 2m points. These strips are now vertical and they
are bounded above and below so that they become rectangles. Further, they are
intersecting a horizontal line L. Recall that the j-th strip contains the points p;
and pj41, for 1 <j <4m—1. It is now clear that there are exactly two different
sets of points, P{ = {p1,p3,---,Pam-1} and P} = {pa,p4, ..., Pam}, that stab all
the rectangles such that the depth of the solution is exactly 1.
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The clause gadget is similar to that in but now, for each clause,
the rectangular box of is itself a rectangle, and each rectangle has
a tape (a rectangle corresponding to a clause in Cupove has a tape along its
top boundary, and a rectangle corresponding to a clause in Cpejoy has a tape
along its bottom boundary). We now use a similar process as in
to shift (vertically) points from the variable gadgets to the tapes of the clause
rectangles.

Let C¢ = (z; va; vay) be a clause in Capope. As in assume that
x; is a left, x; is a middle, and =z}, is a right variable for Cy. Also let C; be the
£1-, £2-, and {3-th clause for z;, x;, and xj, respectively.

We now move the three points pay,, pae,, and pag, in the vertical orientation
from the gadgets of x;,x;, and z, respectively to inside the tape of the clause
Cy. A similar construction can be done for the the clauses in Cpejow, however,
the points {pom+1, P2m+2, - - -, Pam ; are responsible for these clauses and shifted
vertically to the tapes of the clause rectangles accordingly.

Clearly the construction is made in polynomial time in terms of the size of
the formula. Since no two tapes contain points corresponding to two different

clauses, as in the proof of we conclude the following theorem.

Theorem 5. The MMHSRIHL problem is NP-hard.

8.4. Rectangles Anchored on Two Horizontal Lines

We show that the MMHSRATHL problem is NP-hard. Here, also we give a
reduction from the PP1in3SAT problem.

The variable gadget is identical to the variable gadget in how-
ever, here we take 4m + 8 points {p1,p2,...,Pam+s} on two imaginary hori-
zontal lines [; and ls, with 2m + 4 points each. We also take 4m + 8 rectangles
{1,2,...,4m+8} such that 2m+4 rectangles {1,2,...,2m+4} are anchored on Lo
and the remaining 2m +4 rectangles {2m+5,2m+6,...,4m+8} are anchored on
the line L. Clearly, there are two optimal sets of points, Pf ={p1,p3,- -+, Pam+7}
and P} = {p2,p4,---,Pamss}, stabbing the rectangles with depth exactly 1.
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The clause gadgets are also identical to the clause gadgets in
with the difference that each rectangular box is a rectangle itself that contains
a tape (rectangles corresponding to clauses in Cpeo, have a tape along their top
boundaries, and rectangles corresponding to clauses in Cypone have a tape along
their bottom boundaries).

The variable clause interaction is made by vertically shifting some points
from the variable gadgets to this tape (similar to . Observe that
in we describe the interaction for the clauses in Cypove. Here we
consider the clauses in Cpejo, due to the similar reason as in

Similar to the proof of [Theorem 4] and [Theorem 5| we conclude with the

following theorem.

Theorem 6. The MMHSRATHL problem is NP-hard.

4. The GMMHS problem of Stabbing Horizontal Unit Segments with
Vertical Unit Segments

NP-hardness: We prove that the GMMHS problem of stabbing horizontal unit
segments by vertical unit segments (GMMHSUSeg) is NP-hard. The reduction
is from the PP1in3SAT problem.

Variable gadget: Each variable gadget consists of a wariable chain and at
most 2m clause chains, each corresponding to a clause leg that connects to a
variable.

Variable chain: Each variable chain consists of 8m + 2 unit horizontal segments
{h1,ha,..., hgmi2} positioned like a rectangular fashion (see . The seg-
ments {hy, ha, ..., ham} are on a horizontal line and are responsible for connect-
ing the clause chains to the variable chain from above. Similarly, the segments
{ham=+2, ham+3, - - -, hgm+1 } are on another horizontal line and are responsible for
connecting the clause chains to the variable chain from below.

Clause chains: Let Cy be a clause in Cqpove that connects the variables z;, x;,
and xj through left, middle, and right legs respectively. Then for a left or mid-

dle, or right leg, we construct a left or middle, or right chain respectively. The
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Figure 7: A variable gadget.

left and middle chains are depicted in [Figure 8(a)|and |[Figure 8(b)| respectively.

The right chain is similar to the left chain but flipped vertically.

Let us consider a clause C € Cupove that is a ¢-th clause for the variable x;.
In the variable chain of x;, we shift the hgs_o-th segment slightly left and the
hye-1-th segment slightly right (see [Figure 8(c)). Place the chain for C' above
these two segments such that h’ and hyp_s are stabbed by a vertical segment
and h" and hg_q are stabbed by another vertical segment. Note that for each
variable at most 2m chains are connected with its variable chain, at most m from
either above or below. The variable chain and at most 2m left, middle, or right
chains together form a big circular like arrangements of segments, called big-
cycle. Note that, this big-cycle contains an even number of both horizontal and
vertical segments and along the cycle at most 2 consecutive horizontal segments

are stabbed by a vertical segment. We now have the following observation.

Observation 1. For each variable gadget, there are two optimal solutions, ei-
ther all red or all blue vertical segments each of size half of the total number of

vertical segments present in a big-cycle.

Clause gadget: Let Cy € Copove be a clause that contains ;, x;, and zj. The

gadget for Oy is a single horizontal segment h¢. The position of h’ with respect

to the three chains corresponding to x;, x;, and zj, is shown in [Figure 8(d

This completes the construction. Note that this construction can be done in

polynomial time with respect to the number of the variables and clauses in ¢.

Theorem 7. The GMMHSUSeg problem is NP-hard.
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Figure 8: (a) A left chain. (b) A middle chain. (c) Attaching a clause chain to a variable

chain. (d) Clause gadget and connection with the three variable gadgets.

Proof. We prove that exactly one literal per clause in ¢ is true if and only if the
GMMHSUSeqg problem has a solution with depth exactly 1. Assume that there
exists a truth assignment of the variables of ¢ such that exactly one literal per
clause in ¢ is true. Now consider a variable, say x;. If x; is true, we select all red
vertical segments; otherwise, we select all blue vertical segments. Clearly the
depth of any segment corresponding to any variable is exactly 1. Since in any
clause, say C; exactly one literal is true, the segment h is stabbed by exactly
one vertical red segment corresponding to the true literal. Hence, the depth of
the solution is exactly 1.

On the other hand, assume that there exists a solution to the GMMH-
SUSeg problem with depth exactly 1. To stab all the horizontal segments in
a variable gadget requires either all red or all blue vertical segments in order to
keep the depth 1. Therefore, we set variable x; to be true if all red segments
are selected in the solution; otherwise, we set x; to be true. Now we show
that this assignment makes exactly one literal per clause of ¢ true. Consider a
clause Cy. Since the depth of the solution is exactly 1, exactly one of the three
red segments corresponding to the three variables of Cy that stab A’ is selected
in the solution. That means we set only that variable of Cy to be true whose

corresponding red segment stabs h’. This completes the proof. O
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4.0.1. Approximation for the GMMHSUSeqg problem:

First we convert this problem to the MMHS problem with unit squares.
Let H and V be given sets of unit horizontal and vertical segments. For each
horizontal segment h € H, take a unit square t; € T such that the bottom
boundary of t;, coincides with h and for each vertical segment v € V, take the
top endpoint, p, € P of v. Clearly, finding a set V' ¢ V that stabs all the
horizontal segments in H while minimizing the number of times a segment in
H is stabbed by segments in V' is equivalent to finding a set of points P’ ¢ P
that stabs all the unit squares in T while minimizing the number of points in P’
that is contained in a unit square in 7. (We remark that this reduction shows
that the MMHS problem with unit squares is NP-hard, from our Theorem
(the NP-hardness of the GMMHSUSeyg problem), giving an alternative (to [4])
proof of this fact.)

Since for unit squares the MMHS and MMSC problems are dual to each
other, the above reduction, together with the approximation algorithm given in

[4], yields the following result.

Theorem 8. There exists a 5-approrimation for the GMMHSUSeg problem

when the optimal objective value is bounded by a constant.

5. Conclusion

In this paper we considered the Minimum Membership Set Cover (MMSC)
and Minimum Membership Hitting Set (MMHS) problems. We considered var-
ious classes of geometric objects, including axis-parallel strips, rectangles an-
chored on a horizontal line, rectangles anchored on two parallel horizontal lines,
and rectangles intersected by a horizontal line. For the MMSC and MMHS prob-
lems with rectangles anchored on a horizontal line, we showed that the existence
of solutions with depth exactly one can be solved in polynomial time. A natural
open question is to design polynomial-time algorithms or proving NP-hardness
for these problems (MMSC and MMHS) in this anchored rectangle setting. The
MMSC and MMHS problems with other classes of geometric objects mentioned

22



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

above are NP-hard. We also considered a generalized version of the Minimum

Membership Hitting Set problem, the Generalized Minimum Membership Hit-

ting Set problem (GMMHS) on axis-parallel unit segments, and proved that it

is NP-hard. This problem admits a 5-approximation when the optimal objective

value is bounded by a constant. Designing an approximation algorithm without

any constraint or improving the factor are open questions.
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