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Abstract

Set cover is a well-studied problem with application in many fields. A well-

known variant of this problem is the Minimum Membership Set Cover problem:

Given a set of points and a set of objects, the objective is to cover all points

while minimizing the maximum number of objects that contain any one point.

A dual of this problem is the Minimum Membership Hitting Set problem: Given

a set of points and a set of objects, the objective is to stab all of the objects while

minimizing the maximum number of points that an object contains. We study

both of these variants in a geometric setting with various types of geometric

objects in the plane, including axis-parallel line segments, axis-parallel strips,

rectangles that are anchored on a horizontal line from one side, rectangles that

are stabbed by a horizontal line, and rectangles that are anchored on one of

two horizontal lines (i.e., each rectangle shares its top or its bottom edge (or

both) with one of the input horizontal lines). For each of these problems we

either prove NP-hardness or we give a polynomial-time algorithm. In particular,

we show that it is NP-complete to decide whether there exists a solution with

depth exactly 1 for either the Minimum Membership Set Cover or the Minimum
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Membership Hitting Set problem. In addition, we study a generalized version

of the Minimum Membership Hitting Set problem.

Keywords: Minimum membership set cover, Minimum membership hitting

set, Anchored rectangles, NP-hard

1. Introduction1

The set cover problem is one of the fundamental problems in computer sci-2

ence and combinatorial optimization. This problem, and its many variants, play3

an important role in modelling various problems arising in practical scenarios.4

One of its variants is the Minimum Membership Set Cover (MMSC) problem,5

which is defined in a geometric setting as follows.6

Minimum Membership Set Cover (MMSC ): Given a point set P and

a set O of objects (regions), cover all the points in P with a subset O′ ⊆ O

of objects such that the maximum depth of a point is minimized, where the

depth of a point p ∈ P is the number of objects in O′ that contain it. We

say that O′ is a cover of P , and we let d(O′) denote the maximum depth

of any point p ∈ P with respect to O′.

A related problem that is “dual” to the MMSC problem is the Minimum7

Membership Hitting Set (MMHS) problem, defined as follows.8

Minimum Membership Hitting Set (MMHS): Given a point set P

and a setO of objects (regions) determine a subset P ′ ⊆ P of points stabbing

(intersecting) all objects O such that the maximum depth of an object is

minimized, where the depth of an object o ∈ O is the number of points in P ′

that stab it. We say that P ′ is a hitting set of O, and we let d(P ′) denote

the maximum depth of any object o ∈ O with respect to P ′.

In addition to the above two problems, we consider a generalized version of9

theMMHS problem, theGeneralized Minimum Membership Hitting Set (GMMHS)10

problem, where, instead of a point set and an object set, we are given two sets11
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R (“red”) and B (“blue”) of objects. The objective is to stab (intersect) all of12

the objects in B using a subset R′ ⊆ R such that the maximum number of red13

objects in R′ hitting any single object in B is minimized. The MMHS problem14

is the special case of GMMHS in which the red objects R are points; the gener-15

alization is that now R is not just a set of points but is a more general type of16

region. We prove that even a very special case of GMMHS is NP-hard, namely17

that in which the blue/red regions are horizontal/vertical line segments of unit18

length.19

Applications and motivation: The minimum membership set cover problem20

is motivated by an application in interference reduction in wireless networks [1].21

We are given a set of “clients”, which are served by some “servers”. Each server22

has some transmission range within which it can serve clients. If a client is within23

the ranges of more than one server, then the client experiences interference in24

the signals it receives from the multiple servers. Therefore, one seeks to choose25

a set of servers to serve all the clients such that the maximum interference of26

any client is minimum possible.27

The minimum membership set cover problem with rectangles anchored on28

a horizontal line has an application to wireless coverage [2]. One is given a set29

of clients (points) in the plane. There is a base station (a point) that serves30

these clients. The base station uses a directional antenna to transmit beams (a31

circular sector with angle θ and radius r) to the clients. The goal is to choose32

a set of beams to serve all the clients such that the maximum interference of33

any client is minimum possible. In [2], the authors show that this problem in34

polar coordinate systems can be reduced to the minimum membership set cover35

problem with rectangles anchored on a horizontal line.36

1.1. Previous Work37

The very well studied standard set cover problem is NP-hard. A simple38

greedy heuristic gives a O(logn)-factor approximation, and it is NP-hard to39

compute an approximation better than logarithmic [3]. The Minimum Mem-40

bership Set Cover variant was first introduced by Kuhn et al. [1]. They41
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showed that the problem cannot be approximated better than O(logn) and42

gave an algorithm achieving approximation factor O(logn). Erlebach and van43

Leeuwen [4] considered the geometric variant of the problem, proving that for44

unit squares and unit disks the problem is NP-hard and that there does not exist45

a polynomial-time factor 2 approximation algorithm, unless P=NP. Further, for46

unit squares, they provided a factor 5 approximation algorithm for the case in47

which the optimum objective value is bounded by a constant. Recently, Nandy48

et al. [5] reconsidered the same problem and gave polynomial-time algorithms49

for both unweighted and weighted intervals on the real line. Also recently,50

Narayanswami et al. [6], considered the problem of hitting a set of horizontal51

segments with vertical segments while minimizing the number of times a vertical52

segment is hit by the chosen horizontal segments. They showed that this prob-53

lem is NP-hard and cannot be approximated better than factor 2. Further, if54

the segments are of unbounded length (i.e., they are lines), then it can be solved55

in polynomial time (see also [7] for this algorithm and some generalizations of56

this problem). In a somewhat different, but related, direction, capacitated geo-57

metric set cover instances have been studied, e.g., the capacitated discrete unit58

disk cover, in which we seek a minimum-cardinality subset of a given set of unit59

disks in order to cover a given set of points, with an upper bound (capacity60

constraint, α) on how many points can be covered by any one disk; for α ≥ 3 the61

problem is NP-complete, and a PTAS (polynomial-time approximation scheme)62

is known [8].63

Closely related to the set cover problem is the maximum coverage problem.64

Here, a universe set U , a collection C of subsets of U , and a positive integer65

k is given; the goal is to find at most k sets from C that cover a maximum66

number of elements from U . This problem is also NP-hard and has a (1 − 1
e
)67

factor (greedy) approximation algorithm [9]. The geometric set cover problem68

in IR2 is NP-hard for several simple classes of objects, such as disks [10], squares69

[10], etc. However, the same problem on a real line IR is solvable in O(n logn)70

time. There is a PTAS for geometric set cover instances with unit disks and71

unit squares as objects [11]. Another variant of the set cover problem is the72
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unique cover problem: given a set P of points and a set T of objects in the73

plane, the objective is to find a subset T ′ ⊆ T of objects such that the objects74

T ′ cover a maximum number of points whose depth is exactly 1. This problem75

is NP-hard for both unit disks and unit squares [4]. For unit disks, a 4.31-factor76

approximation algorithm is available for the unique cover problem [12], and for77

unit squares a PTAS exists [13].78

Recently, Mehrabi [14] considered a variant of the set cover problem, called79

the unique set cover problem. Here also the input is a set P of points and a set80

T of objects in the plane; the goal is to find a subset T ′ ⊆ T of objects such81

that the number of points whose depth is exactly 1 is maximized. He showed82

that this problem is NP-complete for unit disks and unit squares in the plane.83

Further, for unit squares he designed a PTAS using a mod-one transformation84

trick of Chan and Hu for the red-blue set cover problem [15]. Another related85

problem is the weighted depth problem [16, 17, 18], where the input is a set86

P of points and a set T of n weighted boxes; the goal is to find a point whose87

depth is maximum. In IRd, this problem can be solved in time O(nd) [16].88

1.2. Our Contributions: Overview89

In this paper we present the following results.90

Minimum Membership Set Cover (MMSC ) problem91

We give a polynomial-time algorithm for deciding if there exists a cover92

with depth one for the MMSC problem with objects that are rectangles93

anchored on a horizontal line. In contrast, we show that if the objects94

are rectangles that intersect a horizontal line (versus that are anchored,95

sharing a side with a horizontal line), the MMSC problem is NP-hard.96

We also prove NP-hardness for the cases of objects that are axis-parallel97

strips or rectangles anchored on two horizontal lines.98

Minimum Membership Hitting Set (MMHS) problem99

We give a polynomial-time algorithm for deciding if there exists a hitting100

set with depth one for theMMHS problem with objects that are rectangles101
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anchored on a horizontal line. In contrast, we show that if the objects are102

rectangles that intersect a horizontal line, the MMHS problem is NP-hard.103

We also prove NP-hardness for the cases of objects that are axis-parallel104

strips or rectangles anchored on two horizontal lines.105

Generalized Minimum Membership Hitting Set (GMMHS) problem106

We show that GMMHS , with object sets B, R given as unit-length hori-107

zontal/vertical line segments, is NP-hard; even deciding if a solution exists108

with depth one is NP-complete. We also give a 5-approximation algorithm109

if the optimal objective function is bounded by a constant.110

It is noted that, in all of our NP-completeness proofs, we prove that it is111

NP-complete to decide whether there exists a solution with depth exactly 1.112

Since the depth is an integer, any approximation algorithm returns a solution113

greater than or equal to 2. Thus, each of the problems shown to be NP-complete114

does not have a polynomial-time algorithm with approximation factor smaller115

than 2 (unless P=NP).116

Equivalence of MMSC and MMHS with unit disks/squares. There is a connec-117

tion (equivalence) between the MMSC and MMHS problems where the input118

objects are either unit disks or unit squares. Consider the case of unit squares.119

Given an instance C = (P,T ) of the MMSC problem, with a set P of points and120

a set T of unit squares, we consider a “dual” instance, H, of a MMHS prob-121

lem whose regions are specified by the set of unit squares centered on the points122

p ∈ P , and whose points are specified as the center points of the squares t ∈ T . We123

then note that determining a solution to the MMSC problem C is equivalent to124

determining a solution to the MMHS problem H. Thus, we conclude, by apply-125

ing the results in [4, 5]: The MMHS problem is NP-complete with unit squares126

and unit disks and there exists a 5-approximation for the MMHS problem with127

unit squares where the optimal objective value is bounded by a constant.128
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1.3. Definitions and Notations129

In the 3SAT problem we are given a CNF formula ϕ with n variables130

X=x1, x2,. . .,xn and m clauses C = {C1,C2, . . . ,Cm} where each clause is a131

disjunction of exactly 3 literals, and the objective is to decide whether there is a132

truth assignment to variables such that ϕ is satisfiable. This problem is known133

to be NP-complete [19]. In the planar version of this problem, each variable134

and clause represents a vertex and there is an edge between a variable vertex135

and a clause vertex if and only if the corresponding clause contains the corre-136

sponding literal. Finally, the resulting bipartite graph is planar. This problem137

is called the Planar-3SAT problem and Lichtenstein [20] proved that this prob-138

lem is also NP-complete. Later on, Knuth and Raghunathan [21] showed that139

every instance of the Planar-3SAT problem can be represented using the fol-140

lowing rectilinear representation. The variables are placed on a horizontal line141

and the clauses containing 3 legs each connecting those variables either from142

above or below the horizontal line such that no two clause legs intersect. This143

problem is called the Rectilinear-Planar-3SAT problem and is also NP-complete144

[21]. A Positive-1-in-3SAT problem is a 3SAT problem, however the objective145

is different: here, the objective is to decide whether there is a truth assignment146

to the variables such that exactly one literal per clause is true. Schaefer [22]147

proved that this problem is NP-complete. This problem can be represented using148

the rectilinear representation as defined above; we refer to it as the Rectilinear-149

Positive-Planar-1-in-3SAT problem (see Figure 1). Mulzer and Rote [23] proved150

that it is also NP-complete.151

We now define some terminology. Let Cabove ⊆ C be the set of clauses in152

a PP1in3SAT formula ϕ that connect to the variables from above. Similarly,153

let Cbelow ⊆ C be the set of clauses that connect to the variables from below.154

For each variable xi, 1 ≤ i ≤ n, we order the clauses in Cabove left to right that155

connect xi. Let Cℓ ∈ Cabove be a clause containing the three variables xi, xj ,156

and xk. Then, according to the ordering defined above, we assume that Cℓ is157

the ℓ1-, ℓ2-, and ℓ3-th clause for the variables xi, xj , and xk, respectively. For158

example, the clause C3 is a 3-rd, 1-st, and 1-st clause for the variables x3, x4,159
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and x5, respectively, in the PP1in3SAT instance in Figure 1. We also say that160

the clause Cℓ connects to xi by left, to xj by middle, and to xk by right legs.161

Figure 1: Representation of a Rectilinear-Positive-Planar-1-in-3SAT problem.

2. Minimum Membership Set Cover Problem162

2.1. Rectangles Anchored on a Horizontal Line163

We observe that, in polynomial time, one can decide if there exists a cover164

of depth one for the MMSC problem with rectangles anchored on a horizontal165

line from one side (MMSCRAHL). The idea is as follows. We assign a weight to166

each rectangle, given by the number of points it contains. Now we have an input167

of a set of weighted rectangles anchored on a horizontal line and a set of points.168

We now find, for this instance, a maximum independent set of rectangles (no169

two of them share a point), using the algorithm described by Chan and Grant170

[24] (the pack-regions problem). This requires polynomial time. Next, we verify171

in O(1) time whether or not the size of the maximum independent set is equal172

to the number of points. If this is true, then we ensure that there is a cover of173

the points with depth exactly 1.174

2.2. Axis-Parallel Strips175

In this section we prove that the MMSC problem with axis-parallel strips176

(MMSCS) is NP-hard. We give a reduction from the Positive-1-in-3SAT (P1in3SAT)177

problem (see Section 1.3 for the definition). Let ϕ be a P1in3SAT formula. We178
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generate an instance Z(S,P ) of the MMSCS problem from ϕ in the following179

way, where S is a set of strips and P is a set of points.180

Variable gadget: For variable xi, the gadget consists of one vertical strip181

vi, one horizontal strip hi, and a point pi. The point is covered by both vi and182

hi (see Figure 2). Clearly, either vi or hi will cover pi with depth one. We183

assume that choosing hi makes xi true, while choosing vi makes xi false.184

Overall Structure: We place the variable gadgets (points) along a diagonal185

line. For each clause we take a vertical bounded region. The clause gadgets186

are placed sequentially one by one to the right of the variable gadgets, and187

each gadget is confined to its corresponding region. Between two consecutive188

variable horizontal strips there is an empty space, where we place some points189

corresponding to the clauses.190

Clause gadget: Let Cℓ = (xi∨xj∨xk) be a clause. For this clause, we take 5191

points pℓi , p
ℓ
j , p

ℓ
k, p

ℓ
1, p

ℓ
2 and 4 vertical strips qℓ, rℓ, sℓ, tℓ (see Figure 2). The points192

pℓi , p
ℓ
j , and pℓk are corresponding to the variables xi, xj and xk respectively and193

are placed inside the strips hi, hj , and hk respectively. The other two points pℓ1194

and pℓ2 are placed in any empty space between the variable horizontal strips of195

xi, xj (i.e., between hi and hj) and xj , xk (i.e., between hj and hk) respectively.196

Points {pℓi , p
ℓ
1} are contained in qℓ. Similarly, {pℓ1, p

ℓ
j}, {p

ℓ
j , p

ℓ
2}, and {p

ℓ
2, p

ℓ
k} are197

contained in rℓ, sℓ, and tℓ, respectively. These 5 points and 4 rectangles are198

strictly contained inside the vertical region of Cℓ (Figure 2).199

This completes the description of details of the construction, for a given200

instance, ϕ, of P1in3SAT. Finally, we note that the construction can be done201

in time that is polynomial in the size of the formula ϕ. We now utilize this202

construction to prove the following theorem.203

Theorem 1. The MMSCS problem is NP-hard.204

Proof. We prove that, ϕ is satisfiable (i.e., exactly one literal is true per clause)205

if and only if Z(P,S) has a solution of depth one. Assume that ϕ has an206

assignment such that exactly one literal per clause is true. If xi is true then207

select hi; otherwise, select vi. Now, for each clause, exactly one of pℓi , p
ℓ
j , p

ℓ
k is208
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Figure 2: Gadgets of variables xi, xj , xk, and clause Cℓ and their interaction.

covered by the solution. Hence, the remaining 4 points are covered by exactly209

two strips with depth one.210

On the other hand, assume that there is a cover of the points with depth211

one. Now, for each variable gadget, to cover pi we need one of the two strips212

hi or vi. We set variable xi to be true if hi is in the solution; otherwise, we213

set xi to be false. Now consider any clause Cℓ. Since the depth of the solution214

(indeed a cover of all points) is one, exactly one of pℓi , p
ℓ
j , p

ℓ
k corresponding to Cℓ215

is covered by a variable horizontal strip. We set this variable to be true. Hence,216

exactly one literal per clause is true in ϕ.217

Corollary 1. The MMSC problem with rectangles each anchored on one of two218

orthogonal lines (MMSCRATOL) is NP-hard. (Consider a vertical line x = −M219

and a horizontal line y = −M , for M sufficiently large; then very tall or very220

wide rectangles anchored on these lines are axis-parallel strips.)221

2.3. Rectangles Intersecting a Horizontal Line222

In this section we prove that the MMSC problem with rectangles inter-223

secting a horizontal line (MMSCRIHL) is NP-hard. The reduction is from the224

PP1in3SAT problem [23]. From an arbitrary instance ϕ of the PP1in3SAT prob-225
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lem, we construct an instance Z of the MMSCRIHL problem, where the rect-226

angles in Z intersect a horizontal line L.227

Variable gadget: The gadget for the variable xi consists of 12m rectangles228

{1,2, . . . ,12m} and 12m− 1 points {p1, p2, . . . , p12m−1} (see Figure 3(a)), where229

m is the number of clauses in ϕ. The points are along the top edges of the230

rectangles. The 1-st and the 12m-th rectangles contain the points p1 and p12m−1,231

respectively, and the j-th rectangle contains the pj−1-th and pj-th points, for 2 ≤232

j ≤ 12m− 1. We note that the first 6m rectangles {1,2, . . . ,6m} are responsible233

for the clauses in Cabove, whereas the next 6m rectangles {6m+1,6m+2, . . . ,12m}234

are responsible for the clauses in Cbelow. All of the rectangles are intersecting a235

horizontal line L. Now, in order to cover all of the points while minimizing the236

depth, we have only two distinct optimal solutions: either all even-numbered or237

all odd-numbered rectangles with depth exactly one. This gives the truth value238

of the variable xi.239

Clause gadget: We first modify the PP1in3SAT problem in the following240

way. Note that the variables of ϕ are placed on a horizontal line (y = 0). We241

move the variables vertically up such that they are placed on a horizontal line242

y = m + 1 (above the y-values of all the clauses in Cabove) (see Figure 4). The243

clauses in Cabove are placed above L and below the line y =m+1 while connecting244

the same set of variables as before. Note that these clauses now connect the245

variables from below. On the contrary, the clauses in Cbelow are placed below L246

and still connect to the same set of variables from below.247

Let us now consider the set Cabove of clauses. Notice that, in the definition of248

the PP1in3SAT problem these clauses can be ordered in increasing y-direction249

(see Figure 1). Here we reverse the order of the clauses (see Figure 3(b)). Now250

for each clause C ∈ Cabove we take a rectangular box whose top boundary is the251

segment of C in the modified construction. The bottom boundary of the box252

touches the line L. Each box has a thin strip along the top edge of that box,253

called the tape of that clause. Similarly, we reverse the order of the clauses254

in Cbelow and for each clause C we take a box whose bottom boundary is the255

segment of C in the modified construction. The top boundary of the box touches256
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the line L. Now here the tape is along the bottom boundary of each box.257

(a) (b)

Figure 3: (a) A variable gadget. (b) Position of the clause gadgets.

Let Cℓ = (xi ∨ xj ∨ xk) be a clause in Cabove. We say that xi is a left , xj is a258

middle, and xk is a right variable for Cℓ. We take 5 points; point pℓi correspond-259

ing to xi, points pℓj , q
ℓ
j , r

ℓ
j corresponding to xj , and point pℓk corresponding to260

xk; and 4 rectangles sℓ1, s
ℓ
2, s

ℓ
3, s

ℓ
4. The rectangle s

ℓ
1 covers the points {pℓi , p

ℓ
j}, s

ℓ
2261

covers the points {pℓi , q
ℓ
j}, s

ℓ
3 covers the points {pℓj , p

ℓ
k}, and sℓ4 covers the points262

{rℓj , p
ℓ
k} (see Figure 4). The rectangles are placed inside the box and the points263

are placed inside the tape of Cℓ.264

Variable and clause interaction: We now describe the placement of the265

clause rectangles and points with respect to the variable rectangles. Let 1,2, . . .266

be the left to right order the clauses in Cabove that connect to the variable xi.267

In this order, assume that Cℓ be the ℓ1-, ℓ2-, and ℓ3-th clause for the variables268

xi, xj , and xk respectively. Then we do the following.269

↝ Since xi is a left variable in Cℓ, place the point pℓi inside the (6ℓ1 − 2)-th270

rectangle of the gadget of xi.271

↝ Since xj is a middle variable in Cℓ, place the point p
ℓ
j inside the (6ℓ2−2)-th272

rectangle of the gadget of xj . Also place the point qℓj and rℓj inside the273

(6k − 3)-th and (6k − 1)-th rectangles of the gadget of xj .274

↝ Since xk is a right variable in Cℓ, place the point p
ℓ
k inside the (6ℓ3 −2)-th275
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rectangle of the gadget of xk.276

Figure 4: Interaction between the variable and clause gadgets. We demonstrate the interaction

of C3 and C4 with the variables in the P1in3SAT instance in Figure 1.

A similar construction can be made for the clauses in Cbelow, but using the277

last 6m rectangles in the variable gadgets. See Figure 4 for the construction278

described above. We now prove the following theorem.279

Theorem 2. The MMSCRIHL problem is NP-hard.280

Proof. We prove that exactly one literal is true in every clause of ϕ if and only281

if the MMSCRIHL problem has a cover of depth 1. Assume that there is an282

assignment to the variables of ϕ that satisfies exactly one literal per clause. For283

a variable xi, if it is true, then select the even indexed rectangles; otherwise,284

select the odd indexed rectangles from the gadget of xi. Let us consider a clause285

Cℓ = (xi ∨xj ∨xk). Since exactly one literal per clause is true, exactly one of pℓi286

or pℓj , or p
ℓ
k is covered by a variable rectangle. Clearly, the remaining points in287

the clause gadget are covered by the clause rectangles with depth one.288

In the reverse direction, assume that the MMSCRIHL problem has a cover289

of depth 1. To cover the points in a variable gadget and in order to make their290

depth 1, there are only two possibilities to select the rectangles. We set the291

variable xi to be true if all even indexed rectangles are selected from the gadget292

of xi; otherwise, set xi to be false. Now consider a clause Cℓ = (xi ∨ xj ∨ xk).293

Now in Cℓ, if more than one literal is true then the depth of a point in the294

gadget of Cℓ will be more than 1. If the clause is not satisfiable then also either295
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at least one point is not covered or there will be a point whose depth will be296

more than one. The only possibility is exactly one literal per clause is true.297

Hence, the theorem.298

2.4. Rectangles Anchored on Two Horizontal Lines299

In this section we prove that the MMSC problem with rectangles anchored300

on two horizontal lines (MMSCRATHL) is NP-hard. We give a reduction from301

the PP1in3SAT problem [23].302

Variable gadget: To construct the variable gadget (see Figure 5(a)) of303

xi, we first take two parallel lines L1 and L2. We consider 12m points on two304

imaginary horizontal lines l1 and l2 in between L1 and L2 where each of l1305

and l2 contains 6m points. We also consider 12m rectangles 1,2, . . . ,12m. The306

rectangles 1,2, . . . ,6m are anchored on the line L2 and the remaining rectangles307

are anchored on the line L1. The i-th rectangle covers exactly two points pi and308

pi+1, for 1 ≤ i ≤ 12m − 1 and the rectangle 12m covers the points p12m and p1.309

Now in order to cover all the points while minimizing the depth, we have only310

two different optimal solutions; either all even numbered or all odd numbered311

rectangles with depth exactly 1. This gives the truth value of the variable xi.312

Clause gadget: We first consider the set Cbelow of clauses in ϕ. These313

clauses can be ordered in decreasing y-direction (see Figure 1). Now for each314

clause C ∈ Cbelow we take a rectangular box whose top boundary is the segment315

of C. The bottom boundary of the box touches the line L2. Each box has a thin316

strip along the top edge of that box, called the tape of that clause. Similarly,317

we construct the boxes and tapes for the clauses for Cabove. See Figure 5(b).318

The placement of the clause points and rectangles is similar to the placement319

of the clause points and rectangles described in Section 2.3. The clause structure320

is exactly the same as in Section 2.3. For a clause Cℓ = (xi ∨ xj ∨ xk) in321

Cbelow with xi, xj , and xk as left , middle, and right variable, we take 5 points;322

point pℓi corresponding to xi, points p
ℓ
j , q

ℓ
j , r

ℓ
j corresponding to xj , and point pℓk323

corresponding to xk; and 4 rectangles sℓ1, s
ℓ
2, s

ℓ
3, s

ℓ
4. The rectangle sℓ1 cover the324

points {pℓi , p
ℓ
j}, s

ℓ
2 cover the points {pℓi , q

ℓ
j}, s

ℓ
3 cover the points {pℓj , p

ℓ
k}, and325
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(a) (b)

Figure 5: (a) A variable gadget. The clause gadgets are placed inside the shaded regions that

are anchored on either L1 or L2. (b) Position of the clause gadgets.

sℓ4 cover the points {rℓj , p
ℓ
k}. The rectangles are placed inside the box and the326

points are placed inside the tape of Cℓ.327

Variable and clause interaction: Observe that, the way the clauses in328

Cabove are connected to the variables in Section 2.3 (Figure 3(b)), here the329

same way the clauses in Cbelow are connected to the variables. Therefore, the330

interaction between the variables and the clauses is similar to that in Section 2.3,331

but now here we consider a clause C ∈ Cbelow instead of a clause C ∈ Cabove. As332

in the proof of Theorem 2, we conclude:333

Theorem 3. The MMSCRATHL problem is NP-hard.334

3. Minimum Membership Hitting Set Problem335

3.1. Rectangles Anchored on a Horizontal Line336

We observe that in polynomial time one can decide if there exists a hitting set337

of depth one for the MMHS problem with rectangles anchored on a horizontal338

line from one side (MMHSRAHL). The idea is similar to that applied in Section339

2.1. Here we assign a weight to each point, given by the number of rectangles340

it stabs. Now we have an input of a set of rectangles anchored on a horizontal341

line and a set of weighted points. We find, for this instance, a maximum weight342

set of points (no two of them share a rectangle), using the algorithm described343

by Chan and Grant [24] (the pack-points problem); this takes polynomial time.344
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Next, we verify in O(1) time whether or not the size of the solution is equal to345

the number of rectangles. If this is true, then we know that there is a hitting346

set for the instance with depth exactly 1.347

3.2. Axis-Parallel Strips348

We prove that theMMHS problem with axis-parallel strips (MMHSS ) is NP-349

hard using a reduction from the P1in3SAT problem. We generate an instance350

Z(S,P ) of the MMHSS problem from ϕ, an instance of the P1in3SAT problem.351

The gadget for a variable xi includes 2m−1 horizontal strips {1,2, . . . ,2m−1}352

and 2m points {p1, p2, . . . , p2m}. The j-th strip contains the points pj and pj+1,353

for 1 ≤ j ≤ 2m − 1 (see Figure 6(a)). The points are on a vertical line. However,354

we move some of the points to the right to some clause gadgets at later stage.355

It is observed that there are exactly two different sets of points, either all even356

indexed or all odd indexed, which stab all the strips with depth exactly 1. We357

stack the variable gadgets vertically from top to bottom.358

The gadget for a clause Cℓ is a vertical strip vℓ. The clause gadgets are359

placed one after another to the right of the points corresponding to the variable360

gadgets.361

For each variable, we order the clauses that contains it. Let Cℓ be a clause362

that contains xi, xj , xk, then according to this ordering we say that Cℓ is a ℓ1-th,363

ℓ2-th, and ℓ3-th clause for xi, xj , and xk respectively. Now for the clause Cℓ we364

move the three points p2ℓ1 , p2ℓ2 , and p2ℓ3 in the horizontal orientation from the365

gadgets of xi, xj , and xk respectively to inside vℓ.366

Clearly, the number of strips and points are polynomial with respect to the367

number of variables and clauses in ϕ. Hence the construction can be done in368

polynomial time. We now prove the following theorem.369

Theorem 4. The MMHSS problem is NP-hard.370

Proof. We prove that exactly one literal is true in each clause of ϕ if and only371

if Z has a hitting set with depth exactly 1. For variable xi, we choose even372

indexed points if xi is true, else choose odd indexed points. This clearly stabs373
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(a) (b)

Figure 6: (a) Variable gadget. (b) Clause gadget and its interaction with variable gadgets.

all variable strips with depth 1. Since exactly one literal is true in each clause374

of ϕ, exactly one point will stab a clause strip. On the other hand assume375

that there is a hitting set of points with depth exactly 1. Now stabbing all the376

variable strips with depth 1 requires either all even or all odd indexed points.377

So we set xi to be true if even indexed points are selected; otherwise, set xi to378

be false. Since the depth of the hitting set is 1, exactly one point in a clause379

strip is selected.380

3.3. Rectangles Intersecting a Horizontal Line381

In this section we show that the MMHS problem with rectangles intersecting382

a horizontal line (MMHSRIHL) is NP-hard. Here we give a reduction from the383

PP1in3SAT problem.384

The variable gadget is similar to the variable gadget defined in Section 3.2,385

but now there are 4m−1 strips, {1,2, . . . ,4m−1}, and 4m points, {p1, p2, . . . , p4m}386

instead of 2m − 1 strips and 2m points. These strips are now vertical and they387

are bounded above and below so that they become rectangles. Further, they are388

intersecting a horizontal line L. Recall that the j-th strip contains the points pj389

and pj+1, for 1 ≤ j ≤ 4m − 1. It is now clear that there are exactly two different390

sets of points, P i
1 = {p1, p3, . . . , p4m−1} and P i

1 = {p2, p4, . . . , p4m}, that stab all391

the rectangles such that the depth of the solution is exactly 1.392

17



The clause gadget is similar to that in Section 2.3, but now, for each clause,393

the rectangular box of Section 2.3 is itself a rectangle, and each rectangle has394

a tape (a rectangle corresponding to a clause in Cabove has a tape along its395

top boundary, and a rectangle corresponding to a clause in Cbelow has a tape396

along its bottom boundary). We now use a similar process as in Section 3.2397

to shift (vertically) points from the variable gadgets to the tapes of the clause398

rectangles.399

Let Cℓ = (xi ∨ xj ∨ xk) be a clause in Cabove. As in Section 2.3, assume that400

xi is a left, xj is a middle, and xk is a right variable for Cℓ. Also let Cℓ be the401

ℓ1-, ℓ2-, and ℓ3-th clause for xi, xj , and xk respectively.402

We now move the three points p2ℓ1 , p2ℓ2 , and p2ℓ3 in the vertical orientation403

from the gadgets of xi, xj , and xk respectively to inside the tape of the clause404

Cℓ. A similar construction can be done for the the clauses in Cbelow, however,405

the points {p2m+1, p2m+2, . . . , p4m} are responsible for these clauses and shifted406

vertically to the tapes of the clause rectangles accordingly.407

Clearly the construction is made in polynomial time in terms of the size of408

the formula. Since no two tapes contain points corresponding to two different409

clauses, as in the proof of Theorem 4, we conclude the following theorem.410

Theorem 5. The MMHSRIHL problem is NP-hard.411

3.4. Rectangles Anchored on Two Horizontal Lines412

We show that the MMHSRATHL problem is NP-hard. Here, also we give a413

reduction from the PP1in3SAT problem.414

The variable gadget is identical to the variable gadget in Section 2.4; how-415

ever, here we take 4m + 8 points {p1, p2, . . . , p4m+8} on two imaginary hori-416

zontal lines l1 and l2, with 2m + 4 points each. We also take 4m + 8 rectangles417

{1,2, . . . ,4m+8} such that 2m+4 rectangles {1,2, . . . ,2m+4} are anchored on L2418

and the remaining 2m+4 rectangles {2m+5,2m+6, . . . ,4m+8} are anchored on419

the line L1. Clearly, there are two optimal sets of points, P i
1 = {p1, p3, . . . , p4m+7}420

and P i
1 = {p2, p4, . . . , p4m+8}, stabbing the rectangles with depth exactly 1.421
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The clause gadgets are also identical to the clause gadgets in Section 2.4422

with the difference that each rectangular box is a rectangle itself that contains423

a tape (rectangles corresponding to clauses in Cbelow have a tape along their top424

boundaries, and rectangles corresponding to clauses in Cabove have a tape along425

their bottom boundaries).426

The variable clause interaction is made by vertically shifting some points427

from the variable gadgets to this tape (similar to Section 3.3). Observe that428

in Section 3.3 we describe the interaction for the clauses in Cabove. Here we429

consider the clauses in Cbelow due to the similar reason as in Section 2.4.430

Similar to the proof of Theorem 4 and Theorem 5, we conclude with the431

following theorem.432

Theorem 6. The MMHSRATHL problem is NP-hard.433

4. The GMMHS problem of Stabbing Horizontal Unit Segments with434

Vertical Unit Segments435

NP-hardness: We prove that the GMMHS problem of stabbing horizontal unit436

segments by vertical unit segments (GMMHSUSeg) is NP-hard. The reduction437

is from the PP1in3SAT problem.438

Variable gadget: Each variable gadget consists of a variable chain and at439

most 2m clause chains, each corresponding to a clause leg that connects to a440

variable.441

Variable chain: Each variable chain consists of 8m+ 2 unit horizontal segments442

{h1, h2, . . . , h8m+2} positioned like a rectangular fashion (see Figure 7). The seg-443

ments {h1, h2, . . . , h4m} are on a horizontal line and are responsible for connect-444

ing the clause chains to the variable chain from above. Similarly, the segments445

{h4m+2, h4m+3, . . . , h8m+1} are on another horizontal line and are responsible for446

connecting the clause chains to the variable chain from below.447

Clause chains: Let Cℓ be a clause in Cabove that connects the variables xi, xj ,448

and xk through left, middle, and right legs respectively. Then for a left or mid-449

dle, or right leg, we construct a left or middle, or right chain respectively. The450
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Figure 7: A variable gadget.

left and middle chains are depicted in Figure 8(a) and Figure 8(b) respectively.451

The right chain is similar to the left chain but flipped vertically.452

Let us consider a clause C ∈ Cabove that is a ℓ-th clause for the variable xi.453

In the variable chain of xi, we shift the h4ℓ−2-th segment slightly left and the454

h4ℓ−1-th segment slightly right (see Figure 8(c)). Place the chain for C above455

these two segments such that h′ and h4ℓ−2 are stabbed by a vertical segment456

and h′′ and h4ℓ−1 are stabbed by another vertical segment. Note that for each457

variable at most 2m chains are connected with its variable chain, at mostm from458

either above or below. The variable chain and at most 2m left, middle, or right459

chains together form a big circular like arrangements of segments, called big-460

cycle. Note that, this big-cycle contains an even number of both horizontal and461

vertical segments and along the cycle at most 2 consecutive horizontal segments462

are stabbed by a vertical segment. We now have the following observation.463

Observation 1. For each variable gadget, there are two optimal solutions, ei-464

ther all red or all blue vertical segments each of size half of the total number of465

vertical segments present in a big-cycle.466

Clause gadget: Let Cℓ ∈ Cabove be a clause that contains xi, xj , and xk. The467

gadget for Cℓ is a single horizontal segment hℓ. The position of hℓ with respect468

to the three chains corresponding to xi, xj , and xk is shown in Figure 8(d).469

This completes the construction. Note that this construction can be done in470

polynomial time with respect to the number of the variables and clauses in ϕ.471

Theorem 7. The GMMHSUSeg problem is NP-hard.472
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(a) (b) (c) (d)

Figure 8: (a) A left chain. (b) A middle chain. (c) Attaching a clause chain to a variable

chain. (d) Clause gadget and connection with the three variable gadgets.

Proof. We prove that exactly one literal per clause in ϕ is true if and only if the473

GMMHSUSeg problem has a solution with depth exactly 1. Assume that there474

exists a truth assignment of the variables of ϕ such that exactly one literal per475

clause in ϕ is true. Now consider a variable, say xi. If xi is true, we select all red476

vertical segments; otherwise, we select all blue vertical segments. Clearly the477

depth of any segment corresponding to any variable is exactly 1. Since in any478

clause, say Cℓ exactly one literal is true, the segment hℓ is stabbed by exactly479

one vertical red segment corresponding to the true literal. Hence, the depth of480

the solution is exactly 1.481

On the other hand, assume that there exists a solution to the GMMH-482

SUSeg problem with depth exactly 1. To stab all the horizontal segments in483

a variable gadget requires either all red or all blue vertical segments in order to484

keep the depth 1. Therefore, we set variable xi to be true if all red segments485

are selected in the solution; otherwise, we set xi to be true. Now we show486

that this assignment makes exactly one literal per clause of ϕ true. Consider a487

clause Cℓ. Since the depth of the solution is exactly 1, exactly one of the three488

red segments corresponding to the three variables of Cℓ that stab hℓ is selected489

in the solution. That means we set only that variable of Cℓ to be true whose490

corresponding red segment stabs hℓ. This completes the proof.491
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4.0.1. Approximation for the GMMHSUSeg problem:492

First we convert this problem to the MMHS problem with unit squares.493

Let H and V be given sets of unit horizontal and vertical segments. For each494

horizontal segment h ∈ H, take a unit square th ∈ T such that the bottom495

boundary of th coincides with h and for each vertical segment v ∈ V , take the496

top endpoint, pv ∈ P of v. Clearly, finding a set V ′ ⊆ V that stabs all the497

horizontal segments in H while minimizing the number of times a segment in498

H is stabbed by segments in V ′ is equivalent to finding a set of points P ′ ⊆ P499

that stabs all the unit squares in T while minimizing the number of points in P ′500

that is contained in a unit square in T . (We remark that this reduction shows501

that the MMHS problem with unit squares is NP-hard, from our Theorem 7502

(the NP-hardness of the GMMHSUSeg problem), giving an alternative (to [4])503

proof of this fact.)504

Since for unit squares the MMHS and MMSC problems are dual to each505

other, the above reduction, together with the approximation algorithm given in506

[4], yields the following result.507

Theorem 8. There exists a 5-approximation for the GMMHSUSeg problem508

when the optimal objective value is bounded by a constant.509

5. Conclusion510

In this paper we considered the Minimum Membership Set Cover (MMSC )511

and Minimum Membership Hitting Set (MMHS ) problems. We considered var-512

ious classes of geometric objects, including axis-parallel strips, rectangles an-513

chored on a horizontal line, rectangles anchored on two parallel horizontal lines,514

and rectangles intersected by a horizontal line. For theMMSC andMMHS prob-515

lems with rectangles anchored on a horizontal line, we showed that the existence516

of solutions with depth exactly one can be solved in polynomial time. A natural517

open question is to design polynomial-time algorithms or proving NP-hardness518

for these problems (MMSC andMMHS ) in this anchored rectangle setting. The519

MMSC and MMHS problems with other classes of geometric objects mentioned520
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above are NP-hard. We also considered a generalized version of the Minimum521

Membership Hitting Set problem, the Generalized Minimum Membership Hit-522

ting Set problem (GMMHS ) on axis-parallel unit segments, and proved that it523

is NP-hard. This problem admits a 5-approximation when the optimal objective524

value is bounded by a constant. Designing an approximation algorithm without525

any constraint or improving the factor are open questions.526
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