
 1 © 2020 by ASME 

 
Proceedings of the ASME 2020  

International Design Engineering Technical Conferences 
and Computers and Information in Engineering Conference 

IDETC/CIE2020 
August 16-19, 2020, St. Louis, MO, USA 

 
 

IDETC2020-22661 

DESIGN OF TRUSTWORTHY CYBER-PHYSICAL-SOCIAL SYSTEMS  
WITH DISCRETE BAYESIAN OPTIMIZATION 

 
 

Yan Wang 
Woodruff School of Mechanical Engineering 

Georgia Institute of Technology 
Atlanta, GA 30332, USA 

ABSTRACT 
Cyber-physical-social systems (CPSS) with highly 

integrated functions of sensing, actuation, computation, and 
communication are becoming the mainstream consumer and 
commercial products. The performance of CPSS heavily relies 
on the information sharing between devices. Given the extensive 
data collection and sharing, security and privacy are of major 
concerns. Thus one major challenge of designing those CPSS is 
how to incorporate the perception of trust in product and systems 
design. Recently a trust quantification method was proposed to 
measure trustworthiness of CPSS by quantitative metrics of 
ability, benevolence, and integrity. In this paper, the applications 
of ability and benevolence metrics in design optimization of 
CPSS architecture are demonstrated. A Bayesian optimization 
method is developed to perform trust based CPSS network 
design, where the most trustworthy network with respect to a 
reference node can be selected to collaborate and share 
information with.  
 
Keywords: Cyber-Physical-Social Systems; Probabilistic Graph 
Model; Trust; Ability; Benevolence; Integrity; Bayesian 
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1. INTRODUCTION 

Cyber-physical systems (CPS) are physical devices that 
have highly integrated functions of sensing, actuation, 
computation, and communication. Currently both consumer and 
commercial products are becoming more intelligent with the 
implementations of them as CPS. These CPS devices have 
sensors embedded and can collect data of the surrounding 
environment. The data are shared between those devices, which 
help human users as well as the devices themselves to make 
individual decisions in a highly distributed fashion. The 
decisions will be executed with the control unit. These devices 
are the essential elements for smart home, smart city, intelligent 
manufacturing, personalized medicine, autonomous and safe 

transportation, omnipresent energy supplies, and many other 
applications. Given the ubiquity of CPS and their interaction and 
seamless integration with human society, they are also termed as 
cyber-physical-social systems (CPSS).  

The design of CPSS is challenging because various factors 
and constraints in the cyber, physical, and social dimensions of 
design space need to be considered. There are unique challenges 
in CPSS design, such as sustainability, reliability, resilience, 
interoperability, adaptability, bio-compatibility, flexibility, and 
safety in the physical subspace. There are also principles of 
human-in-the-loop, data-driven design, co-design, scalability, 
usability, and security that need to be considered in the cyber 
subspace. In social subspace, the perceptions of risk, trust, and 
privacy, as well as memory capacity and emotion of users need 
to be incorporated. 

The rapid growth of CPSS requires engineers to adopt a new 
design for connectivity principle. Different from tradition 
products, CPSS devices heavily rely on information sharing with 
each other to be functioning. Those devices form the Internet of 
Things (IoT). How to consider the connectivity related issues in 
product design therefore is new to engineers. Particularly, each 
CPSS device constantly collects data and shares them with other 
devices in the networks. Information security and privacy 
become critical issues in designing such massively networked 
systems. At the high-level application layer, decisions of what 
data can be collected, where data are stored, who can access the 
data, which portion of data can be shared, etc. need to be made 
during the software design. These decisions will simultaneously 
affect hardware and mechanism design as well as product safety. 
The effectiveness of their performance critically depends on 
what and how they share among each other. Trust is an important 
design feature for these systems to work together. Therefore, 
designing the intelligent decision making and decision support 
subsystems for CPSS need to incorporate the trust aspect in the 
social dimension, as trustworthiness can affect the design of the 
policies for security and privacy. 



 2 © 2020 by ASME 

Furthermore, trust is critical for human users of these CPSS 
devices whose personal information are likely to be collected and 
shared by the devices. The users’ perceptions of trust about the 
systems can affect the effectiveness of human-device 
interactions. Thus designing trustworthy CPSS devices and 
systems is an important task for design engineers.  

Trust has been extensively studied in the domains of 
psychology, organizational behavior, marketing, and computer 
science. However, most studies remain conceptual and 
qualitative. Quantitative measurements of trustworthiness are 
needed when the concept is applied in engineering design and 
optimization. Some quantitative studies of trust have been 
conducted in computer science, where trustworthiness is mostly 
quantified by quality of service (QoS), e.g. success rate as well 
as consistency in packet forwarding and other transactions, in 
network communication. The reputations in user ratings and 
recommendations online were also used. These metrics are 
quantities only in cyber design space. There is still lack of 
trustworthiness metrics in both cyber and social design spaces, 
which are important to guide the design of trustworthy CPSS at 
the levels of network architecture and devices.  

In this work, the perception of trust is quantified and applied 
in CPSS architecture design, where the collaboration network of 
a particular node can be optimized based on trustworthiness 
criteria. The quantitative trustworthiness metrics are based on the 
recently proposed ability-benevolence-integrity (A-B-I) model 
[1]-[3], where trustworthiness is quantified by the cyber-social 
metrics of ability, benevolence, and integrity. Ability shows how 
well a trustee party is capable of doing what it claims to perform. 
Benevolence indicates whether the motivation of the trustee is 
purely for the benefit of itself. Integrity measures if the trustee 
does what it claims to. Based on a mesoscale probabilistic graph 
model [4][5] of CPSS, the perceptions of ability, benevolence, 
and integrity can be quantified with the probabilities of good 
judgements for the nodes as well as the information 
dependencies among nodes. In this paper, we further 
demonstrate how to apply the quantitative trustworthy metrics as 
the design criteria in network architecture design and 
optimization. The design criteria are used as the utilities to 
identify an optimal subset of nodes in the network that one 
particular node can trust and collaborate with.  

Here, a discrete Bayesian optimization method is developed 
to solve the combinatorial optimization problem. Bayesian 
optimization is a robust global optimization scheme that 
incorporates uncertainty in the searching process. Different from 
other global optimization approaches such as the commonly used 
genetic algorithms, simulated annealing, and other heuristic 
algorithms, Bayesian optimization performs search based on a 
surrogate model of the objective function. The surrogate, usually 
a Gaussian process regression model, keeps the search history in 
memory as opposed to other “memoryless” heuristic algorithms. 
In addition, an acquisition function is constructed and used to 
guide the searching or sequential sampling process. It is designed 
to strike a good balance between exploration and exploitation. 
During sequential sampling, the surrogate of objective function 
is continuously updated with new samples based on the Bayesian 

belief update. Therefore the searching process in Bayesian 
optimization can be accelerated with the properly designed 
surrogate model and acquisition function. This provides unique 
advantages in discrete optimization over traditional heuristic 
algorithms, especially for complex combinatorial problems 
where exhaustive search in the discrete solution space is 
computationally prohibitive. In our discrete Bayesian 
optimization method for the combinatorial problem of network 
optimization, a new distance kernel is developed to measure the 
similarity between networks. 

In the remainder of this paper, the existing work of system-
level design of CPSS, discrete Bayesian optimization, and trust 
quantification approaches are reviewed in Section 2, where the 
probabilistic graph model of CPSS is also introduced. In Section 
3, the metrics of ability and benevolence in the A-B-I trust model 
are introduced. The discrete Bayesian optimization method is 
described in Section 4. The application of Bayesian optimization 
to the CPSS network architecture design is demonstrated with 
ability and benevolence metrics as the utilities.  

2. BACKGROUND 

Here an overview of CPSS system-level design is given. The 
existing research on discrete Bayesian optimization and trust 
quantification are reviewed. The probabilistic graph model of 
CPSS which the A-B-I model is based upon is also introduced. 

2.1 Systems level design of CPSS 
Network connectivity is essential for CPSS. A standalone 

CPSS device cannot perform the functions which it is designed 
for. Compared to traditional products, the design of CPSS 
requires engineers to have better understanding of the systems 
level behaviors [7], from conceptual design to design 
optimization of multidisciplinary and hierarchical architecture 
[8]. Given the evolution nature of cyber and physical 
technologies, adaptability that enables the capabilities of self-
learning, self-organization, and context awareness is important 
to design open systems that can evolve along technology 
advancement [6]. With the complexity of the CPSS networks 
grows to billions of nodes, it is impossible to ensure all nodes are 
free from compromise or breakdown. Node compromise and 
subnet disruption should be treated as daily norms. Therefore the 
emphasis of CPSS networks and systems should be more on the 
ability to recover from breakdown, instead of preventing its 
breakdown. That is, resilience (the ability to recover) is more 
important than reliability (the ability to stay functioning) in 
designing systems of CPSS [4][5].  

Some systems modeling methods and tools have been 
applied for CPSS design and analysis, such as hybrid discrete-
event and continuous simulations [12]-[14], inductive constraint 
logic programming [15], abductive reasoning [16], hybrid timed 
automaton [17], ontologies [18], information schema [19], UML 
[20], SysML [21], and information dynamics modeling [22]. The 
high-dimensional design space of CPSS includes not only the 
cyber and physical subspaces, but also the social subspace. The 
modalities for human-system interaction [10], context awareness 
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and personalized human-system communication [11], as well as 
trusted collaboration [1]-[3] have been studied.  

2.2 Bayesian optimization for discrete problems 
Bayesian optimization has been widely used in the 

continuous domain and only recently gained more attention in 
the discrete domains, such as in solving mixed-integer problems 
[41,42]. The straightforward extension of Bayesian optimization 
from continuous domain to discrete domain is just treating 
discrete variables as continuous ones and round the variable 
values to the closest integers during the searching process. For 
instance, Baptista and Poloczek [44] proposed a quadratic 
acquisition function for combinatorial problems and converted 
the binary variables to high-dimensional vectors during the 
searching process. The solutions are then projected back to the 
binary space. However, this approach may fail to identify the true 
optimum and be trapped in the local region because there is a 
mismatch between the true discontinuous objective function and 
the assumed continuous acquisition function. Zaefferer et al. [43] 
replaced the continuous distance with discrete distance measures 
and compared the performance using the expected improvement 
acquisition function. Garrido-Merchán and Hernández-Lobato 
[45] developed an input variable transformation to ensure the 
distance between any two discrete variables remain unchanged 
in evaluating kernels when the variables perturb into the 
continuous space. Zhang et al. [46] proposed a new kernel 
function based on the position distance for permutation problems 
and the prior knowledge about similarity in the problems. The 
sparse Gaussian process model is used to reduce the 
computational cost of kernel update. 

2.3 Trust quantification for CPS 
Conceptually, trust is the willingness to be vulnerable to 

another. It is a different concept from security. Security is critical 
for trust. However, security along cannot guarantee the 
trustworthiness. For instance, although security protocols can 
ensure data are not intercepted during transmission, they provide 
no guarantee against the misuse by the receiving party or against 
fraud by the transmitting party. In recent studies in computer 
science, trust was quantified with reputation, ratings, and user 
recommendations in information systems and social networks 
[23,24]. It was also measured by QoS, routing and delivery 
success rates, and consistency of data forwarding in computer 
networks and sensor networks [25,26]. Probability [27-29], 
imprecise probability [30,31], and fuzzy logic [32-34] have been 
applied to quantify the human perception of trust. 

To quantify trustworthiness of CPS, Chen et al. [35] 
developed a fuzzy model of trust based on the reputation of 
communication efficiency. Al-Hamadi and Chen [36] calculated 
trust from user ratings aggregated from different time periods 
and different locations. Xu et al. [37] used the weighted average 
of direct user experiences and other’s recommendations to 
evaluate the trust of edge computing devices. Tao et al. [38] 
measured the sensor data trustworthiness with the consistency 
with reference data sets. Junejo et al. [39] quantified 
trustworthiness of CPS nodes by QoS measurements. 

Different from the above, we developed a quantitative 
approach with multi-faceted metrics of ability, benevolence, and 
integrity [1]-[3], which has been qualitatively studied in social 
organization [40]. In the quantitative A-B-I model, ability 
characterizes a node’s capabilities of sensing, reasoning, and 
influence to other nodes based on its probability of correct 
predictions as well as those of other nodes due to the information 
shared by this node. Benevolence characterizes the motivation of 
a node for its information sharing. Integrity is related to the 
traditional cyber and physical security and can be quantified 
from QoS. 

In order to build large-scale networks, trustworthiness 
should be treated as transferrable quantities so that it can be 
propagated in scalable systems. With the quantitative measures 
of trustworthiness, the risk of deploying CPSS can be quantified 
and assessed more thoroughly in highly complex networks 
where a global view of the networks is impossible to obtain.  

2.4 Probabilistic graph model of CPSS 
The probabilistic graph model [2][5] is an abstraction of 

CPSS networks at the mesoscale. It captures the sensing, 
computing, and communication capabilities of CPSS by the 
prediction probabilities for all nodes in a CPSS network and the 
pair-wise reliance probabilities between nodes as the extent of 
information dependency and mutual influences. The model is 
illustrated in Figure 1. The prediction and reliance probabilities 
of nodes are defined as follows. 

 

 
FIGURE 1: Probabilistic graph model of CPSS networks. 

A probabilistic graph ࣡ ൌ ሺࣰ, ࣟ, ࣪,࣬ሻ consists of a set of 
vertices ࣰ ൌ ሼݒ௞ሽ and a set of directed edges ࣟ ൌ ሼሺݒ௜,  .௝ሻሽݒ
Each node ݒ௞ is associated with a prediction probability ݌௞ ∈
࣪, and each directed edge ሺݒ௜,  ௝ሻ is associated with a relianceݒ
probability ݌௜௝ ∈ ࣬ . The prediction probability that the k-th 
node detects the true state of world ߠ is 
 ܲሺݔ௞ ൌ ሻߠ ൌ  ௞  (1)݌
where ݔ௞ is the state variable. Without loss of generality, here 
we only consider binary-valued state variables ( ൌ 	or	ߠ ്  . (ߠ
State variables with multiple discrete values can be easily 
extended. Continuous variables can be discretized in a digital 
computing environment. 

With binary-valued state variables, we can define P-reliance 
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as the probability that the j-th node predicts the true state of 
world given that the i-th node predicts correctly. We also define 
Q-reliance probability  
 ܲ൫ݔ௝ ൌ ௜ݔหߠ ് ൯ߠ ൌ  ௜௝  (3)ݍ
as the probability that the j-th node predicts the true state of 
world given that the i-th node does not predict the same.  

The state variables contain the results from sensing. The 
values can be updated because of computing or reasoning. 
Therefore the prediction probabilities capture the sensing and 
computing functionalities, whereas the reliance probabilities 
indicate the functionality of communication. The random state 
variables with binary values can be extended to multiple values 
or continuous. For instance, one sensor measures a value which 
follows some distribution, as in prediction probability.  If there 
are a finite set of possible values ሼߠଵ, … ,  .ሽ for state variables்ߠ
The prediction probability ܲሺݔ௞ ൌ  ௡ሻ and reliance probabilityߠ
ܲ൫ݔ௝ ൌ ௜ݔ௡หߠ ൌ ௠൯, where 1ߠ ൑ ݉, ݊ ൑ ܶ, can be enumerated 
similarly.  

The edges in the probabilistic graph are directional. The 
neighbors of each node can be further differentiated as source 
nodes or destination nodes, as illustrated in Figure 2. For one 
node, its source nodes are those sending information to this node, 
whereas the destination nodes are those receiving information 
from it. When receiving different cues from source nodes, a CPS 
node can update its prediction probability to reflect its perception 
of the world. The aggregation of prediction probabilities 
sensitively depends on the rules of information fusion during the 
prediction update.  

 
FIGURE 2: Source and destination nodes with respect to node j 
are differentiated. 

If ܲሺݔ௞ሻ and ܲሺݔ௞
஼ሻ denote the probabilities of a positive 

and a negative prediction from node k respectively, we define the 
best-case fusion rule as 
ܲᇱሺ௫ೖሻ ൌ 1 െ ൫1 െ ܲሺݔ௞ሻ൯∏ ܲሺݔ௜ሻ൫1 െ ܲሺݔ௞|ݔ௜ሻ൯

ெು
௜ୀଵ  

∏ ܲሺݔ௝
஼ሻ൫1 െ ܲሺݔ௞|ݔ௝

஼ሻ൯ெಿ
௝ୀଵ    (4) 

where node k updates its prediction based on its own current 
prediction and those cues from its ܯ௉ ൅ܯே source nodes, out 
of which ܯ௉ of the source nodes provide positive predictions 
whereas ܯே  of them provide negative predictions, ܲሺݔ௞|ݔ௜ሻ 
indicates the probability that a positive message from node i 
leads to a positive prediction of node k, and ܲሺݔ௞|ݔ௝

஼ሻ is the 
probability that a negative message from node j leads to a 

positive prediction of node k. Therefore, if any of the cues from 
the source nodes is positive, the prediction of the node is 
positive. Some variations of this fusion rules exist. For instance, 
the previous prediction from itself can be either included or 
excluded during the update.  

Similarly, the worst-case fusion rule can be defined as 
ܲ′ሺݔ௞ሻ ൌ ܲሺݔ௞ሻ∏ ܲሺݔ௜ሻܲሺݔ௞|ݔ௜ሻ

ெು
௜ୀଵ ∏ ܲሺݔ௝

஼ሻܲሺݔ௞|ݔ௝
஼ሻெಿ

௝ୀଵ   (5) 
That is, if any of the cues from the source nodes is negative, the 
prediction of the node is negative. The Bayesian fusion rule is 
defined as 

ܲᇱሺݔ௞ሻ ൌ
௉ሺ௫ೖሻ୫ୟ୶ౌ

ቄሺ௉ሺ௫ೖሻሻ
ೝ൫ଵି௉ሺ௫ೖሻ൯

ೄషೝ
ቅ

ሺ௉ሺ௫ೖሻሻೝ൫ଵି௉ሺ௫ೖሻ൯׬
ೄషೝ

ௗ௉
   (6) 

where the prediction of the node is updated to ܲ′ from prior 
prediction ܲ , and out of S cues that the neighboring nodes 
provide, ݎ  of them provide are positive, if the maximum 
likelihood principle is taken. 

The probabilistic graph model provides a system level 
abstraction and a mesoscale description of CPSS networks, 
where information exchange and aggregation are captured. 
Prediction and reliance probabilities can be easily obtained in a 
physical system from the collected historical data. The prediction 
probability of a node can be based on data collected by its 
sensing and reasoning units. It can be estimated as the frequency 
of correct prediction. The reliance probabilities can be estimated 
similarly from the frequencies of positive and negative 
predictions by the neighboring nodes given the node’s own 
prediction. For instance, in sensor networks, the prediction 
probability associated with a node can be estimated as the ratio 
of the number of packets sent by this node to a baseline reference 
number that the best performer sends as the upper limit. The P-
reliance probability for each path can be estimated as the ratio of 
the number of packets received by the destination to the number 
sent by the source [5]. If no experimental data are available, 
subjective estimations from domain experts can be elicited. 
Probability elicitation is well known in both practice and 
literature. Standard procedures are usually taken to elicit 
probabilities associated with some events from domain experts 
as subjective estimates. 

3. THE A-B-I TRUST MODEL 

 Based on the probabilistic graph model, the trust metrics of 
ability and benevolence can be calculated. The ability of a CPSS 
node is measured with its capability of performing correct 
predictions and making right decisions from the perspectives of 
sensing and computation, as well as its influence to other nodes. 
The benevolence is measured by how willing it is to share 
information reciprocally and the motivation of sharing from the 
perspective of communication. The integrity of a CPSS node is 
closely related to the cybersecurity and can be evaluated with 
consistency, frequency of compromises, QoS, and other security 
measurements. 

Here only the metrics of ability and benevolence are 
summarized. They will be used as the utilities to demonstrate the 
network optimization. Since integrity has been studied 
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extensively in cybersecurity, ability and benevolence can show 
the uniqueness of our proposed trust measurements. The 
complete description of the A-B-I trust model as well as the 
illustrations of the metrics and their use for detecting malicious 
attacks can be found in Ref.[2].  

3.1 Ability 
The ability of a CPSS node is evaluated by its capability of 

prediction and its influence to other nodes. The capability of 
prediction for a node is measured by its capabilities of data 
collection and reasoning based on data obtained from its 
neighbors, quantified by the prediction probability and reliance 
probabilities perceived by others, as well as the precisions of the 
perceptions. The influence to others is quantified by how 
influential its information shared to others is in their decision 
making.  

The perceived ability of node j with the consideration of its 

prediction capability is ܣ௝ሺߠሻ ൌ ℙቀܲ൫ݔ௝ ൌ ൯ቁߠ , where ℙሺ⋅ሻ 
denotes perception. Suppose that all perceptions follow Gaussian 
distributions. The prediction capability can be quantified by its 
mean  
 ॱ൫ܣ௝ሺߠሻ൯ ൌ  ௝,  (7)݌
and its variance 
  ॽ൫ܣ௝ሺߠሻ൯ ൌ ௝߬

ିଵ.  (8) 
That is, if a node has a higher prediction capability with less 
variability than others, it is more trustworthy. 

Based on the directions of information sharing between 
nodes, the neighboring nodes for each node in the network are 
categorized as source nodes and destination nodes, as illustrated 
in Figure 2. With respect to node j, the set of source nodes that 
share information with node j is denoted as ௝࣭ ൌ ሼݒ௜|ሺݒ௜, ௝ሻݒ ∈
ࣟሽ, and the set of destination nodes that receive information from 
node j is denoted as ௝ࣞ ൌ ሼݒ௞|ሺݒ௝, ௞ሻݒ ∈ ࣟሽ. 

The perceptions about the P- and Q-reliance probabilities for 
nodes i and j are related to the information processing capability 
of node j. A high P-reliance probability indicates that node j can 
absorb knowledge quickly. A high Q-reliance probability shows 
that node j can have good judgement even in a noisy and 
uncertain situation. We simplify the notations as ܮ௜௝ ൌ

ℙቀܲ൫ݔ௝ ൌ ௜ݔหߠ ൌ ൯ቁߠ  and ܮ௜௝
௖ ൌ ℙቀܲ൫ݔ௝ ൌ ௜ݔหߠ ്  ൯ቁߠ

respectively.  They are assumed to follow Gaussian 
distributions with means ॱ൫ܮ௜௝|ܣ௝൯ ൌ ௜௝݌  and ॱ൫ܮ௜௝

௖ ௝൯ܣ| ൌ
௜௝ݍ , and variances ॽ൫ܮ௜௝|ܣ௝൯ ൌ ߬௜௝,௣

ିଵ  and ॽ൫ܮ௜௝
௖ ௝൯ܣ| ൌ ߬௜௝,௤

ିଵ , 
respectively.   

The perceived ability of node j with the considerations of 
both capabilities of prediction and information processing is then 
quantified with mean 

ॱ൫ܣ௝ሺߠ|ࣦሺା௝ሻሻ൯ ൌ
ఛೕ௣ೕା∑ ఛ೔ೕ,೛௣೔ೕ೔∈࣭ೕ

ା∑ ఛ೔ೕ,೜௤೔ೕ೔∈࣭ೕ

ఛೕା∑ ఛ೔ೕ,೛೔∈࣭ೕ
ା∑ ఛ೔ೕ,೜೔∈࣭ೕ

  (9) 

and variance 

ॽ൫ܣ௝ሺߠ|ࣦሺା௝ሻሻ൯ ൌ ቀ ௝߬ ൅ ∑ ߬௜௝,௣௜∈࣭ೕ ൅ ∑ ߬௜௝,௤௜∈࣭ೕ ቁ
ିଵ

  (10) 

based on Bayes’ rule of belief update. Bayesian belief update is 
an intuitive way to combine multiple factors.  

Leadership should be regarded as one’s ability. Here, it is 
estimated as its influence to others by sharing information. The 
perceived ability of node j with the considerations of its 
prediction capability and influence is quantified with mean 

ॱ൫ܣ௝ሺߠ|ࣦሺି௝ሻሻ൯ ൌ
ఛೕ௣ೕା∑ ఛೕೖ,೛௣ೕೖೖ∈ࣞೕ

ା∑ ఛೕೖ,೜ሺଵି௤ೕೖሻೖ∈ࣞೕ

ఛೕା∑ ఛೕೖ,೛ೖ∈ࣞೕ
ା∑ ఛೕೖ,೜ೖ∈ࣞೕ

  (11) 

and variance 

ॽቀܣ௝൫ߠหࣦ
ሺି௝ሻ൯ቁ ൌ ቀ ௝߬ ൅ ∑ ௝߬௞,௣௞∈ࣞೕ ൅ ∑ ௝߬௞,௤௞∈ࣞೕ ቁ

ିଵ
  (12) 

The overall and comprehensive ability perception with the 
simultaneous considerations of its capabilities of prediction, 
information processing, and influence is similarly calculated as  

ॱቀܣ௝൫ߠหࣦ
ሺା௝ሻ, ࣦሺି௝ሻ൯ቁ	

ൌ
ఛೕ௣ೕା∑ ఛ೔ೕ,೛௣೔ೕ೔∈࣭ೕ

ା∑ ఛ೔ೕ,೜௤೔ೕ೔∈࣭ೕ
ା∑ ఛೕೖ,೛௣ೕೖೖ∈ࣞೕ

ା∑ ఛೕೖ,೜ሺଵି௤ೕೖሻೖ∈ࣞೕ

ఛೕା∑ ఛ೔ೕ,೛೔∈࣭ೕ
ା∑ ఛ೔ೕ,೜೔∈࣭ೕ

ା∑ ఛೕೖ,೛ೖ∈ࣞೕ
ା∑ ఛೕೖ,೜ೖ∈ࣞೕ

  

  (13) 

ॽቀܣ௝൫ߠหࣦ
ሺା௝ሻ, ࣦሺି௝ሻ൯ቁ	

ൌ ቀ ௝߬ ൅ ∑ ߬௜௝,௣௜∈࣭ೕ ൅ ∑ ߬௜௝,௤௜∈࣭ೕ ൅ ∑ ௝߬௞,௣௞∈ࣞೕ ൅ ∑ ௝߬௞,௤௞∈ࣞೕ ቁ
ିଵ

  

  (14) 
Therefore, a node that gives accurate predictions, makes sound 
decisions, and brings positive influences to others is deemed to 
be trustworthy. 

The perception of one’s ability can also be dictated by the 
abilities of those ones that are closely associated. That is, if a 
neighbor or associate, who is influenced by a node, has high 
ability, the perception of this node’s ability is also increased. 
Therefore higher-order perception of ability can be defined. If 
the ability in Eqs. (13) and (14) is first-order and has values of 

mean ॱቀܣ௝൫ߠหࣦ
ሺା௝ሻ, ࣦሺି௝ሻ൯ቁ ൌ ௝ܧ  and variance 

ॽቀܣ௝൫ߠหࣦ
ሺା௝ሻ, ࣦሺି௝ሻ൯ቁ ൌ ௝ܸ, the second-order ability is defined 

as  

ॱሺଶሻ ቀܣ௝൫ߠหࣦ
ሺା௝ሻ, ࣦሺି௝ሻ൯ቁ	

ൌ
௏ೕ
షభாೕା∑ ఛೕೖ,೛௣ೕೖሺ௏ೖ

షభாೖሻೖ∈ࣞೕ
ା∑ ఛೕೖ,೜ሺଵି௤ೕೖሻሺ௏ೖ

షభாೖሻೖ∈ࣞೕ

ఛೕା∑ ఛೕೖ,೛௣ೕೖ௏ೖ
షభ

ೖ∈ࣞೕ
ା∑ ఛೕೖ,೜ሺଵି௤ೕೖሻ௏ೖ

షభ
ೖ∈ࣞೕ

   

  (15) 

ॽሺଶሻ ቀܣ௝൫ߠหࣦ
ሺା௝ሻ, ࣦሺି௝ሻ൯ቁ	

ൌ ቀ ௝߬ ൅ ∑ ௝߬௞,௣݌௝௞ ௞ܸ
ିଵ

௞∈ࣞೕ ൅ ∑ ௝߬௞,௤ሺ1 െ ௝௞ሻݍ ௞ܸ
ିଵ

௞∈ࣞೕ ቁ
ିଵ

  

  (16) 
Higher-order perceptions of ability can be similarly defined. 

3.2 Benevolence 
The benevolence of a CPSS node is evaluated by the 

reciprocity and motive. The perception of reciprocity is 
measured by the willingness of sharing information to others 
while receiving information simultaneously. The motive is 
quantified by the quality of information shared to others and the 
frequency of sharing.  

The expected reciprocity for node j perceived by node i is 
defined as   
 ॱ൫ܴ௜,௝൯ ൌ ௝→௜൯݌||௜→௝݌୏୐൫ܦ െ ௜→௝൯݌||௝→௜݌୏୐൫ܦ ൅ ܾ଴ (17) 
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where ݌௝→௜ ൌ ∏ ௞,௞ାଵ݌
௜ିଵ
௞ୀ௝  is the product of all P-reliance 

probabilities ݌௞,௞ାଵ  corresponding to the shortest path from 
node j to node i, ܦ୏୐ሺܲ||ܳሻ ൌ ∑ ௜ܲlog	ሺ ௜ܲ/ܳ௜ሻ௜  is the Kullback-
Leibler divergence from probability Q to P, and ܾ଴  is a 
reference value such that ॱ൫ܴ௜,௝൯ ൐ ܾ଴ when node j has a larger 
reciprocity with respect to node i. Intuitively, if node j is willing 
to share accurate information with node i without necessarily 
expecting node i to share information as a return, node j has a 
high reciprocity to node i. In other words, node i can trust node 
j. Here, ܾ଴ ൌ 0.5 such that reciprocity has a value between 0 
and 1. A higher value of reciprocity indicates higher 
trustworthiness. Furthermore, ॱ൫ܴ௜,௜൯ ൌ ܾ଴ . The variance 
associated with the perceived reciprocity is conservatively 
estimated as 
 ॽ൫ܴ௜,௝൯ ൌ min൫∑ ߬௔௕

ିଵ
௝→௜ ൅ ∑ ߬௖ௗ

ିଵ
௜→௝ , ௠ܸ௔௫൯ (18) 

where ߬௔௕ and  ߬௖ௗ are the precisions associated with the P-
reliance probabilities along paths j→i and i→j, respectively, and 
௠ܸ௔௫ ൌ 1.0  is the theoretical maximum value of variance 

associated with probabilities. ॽ൫ܴ௜,௜൯ ൌ 0.   
Motive measures the intention of information sharing within 

a community. Sharing high-quality information with neighbors 
indicates the good purpose of improving the overall functionality 
of the community. Thus perceived motive of node j is defined as  

 ॱ൫ܯ௝൯ ൌ ௝݌
ௗೕ (19) 

 ॽ൫ܯ௝൯ ൌ ௝߬
ିଵ (20) 

where ݌௝  is the prediction probability associated with node j 
with precision ௝߬, and ௝݀ ൌ | ௝ࣞ| is the number of destination 
nodes for node j.  

The overall benevolence of node j perceived by node i is 

 ॱ൫ܤ௜,௝൯ ൌ
ॽషభ൫ோ೔,ೕ൯ॱ൫ோ೔,ೕ൯ାॽ

షభ൫ெೕ൯ॱ൫ெೕ൯

ॽషభ൫ோ೔,ೕ൯ାॽషభ൫ெೕ൯
 (21) 

 ॽ൫ܤ௜,௝൯ ൌ ቀॽିଵ൫ܴ௜,௝൯ ൅ ॽିଵ൫ܯ௝൯ቁ
ିଵ

 (22) 

 

4. DISCRETE BAYESIAN OPTIMIZATION 

The trust-based network optimization is to identify a subset 
of nodes in the network which are the most trustworthy with 
respect to a reference node. The optimization problem involves 
choosing the best subset of nodes and therefore is 
combinatorically complex. The traditional approach to solve 
these problems is using heuristic algorithms such as genetic 
algorithms and simulated annealing.  

Here, a new discrete Bayesian optimization (dBO) method 
is developed to perform the CPSS network optimization. The 
design problem is to choose the optimum subgraph out of a graph 
with respect to a reference node such that the trustworthiness 
level perceived by the reference node is maximized. The 
proposed dBO method is a global optimization method to find 
the optimum combination of nodes. 

Bayesian optimization is a class of surrogate based methods 
to search global optimum under uncertainty with Bayesian 
sequential sampling strategies. The search or sampling process 

is based on an acquisition function that is defined in the same 
input space of the objective function. In parallel, a surrogate 
model of the objective is also constructed and updated during the 
search. The most used surrogate is Gaussian process regression 
(GPR) model which is updated based on the Bayesian principle.  

The sampling strategy of choosing the next sample is to 
maximize the acquisition function instead of the objective 
surrogate. One example of acquisition functions is the expected 
improvement (EI)  
ܽாூሺ࢞; ሼ࢞௜, ௜ሽ௜ୀଵݕ

஽ ,  ሻߠ
ൌ ;ሺ࢞ߪ ሼ࢞௜, ௜ሽ௜ୀଵݕ

஽ , ሺ࢞ሻ൯ߛሺ࢞ሻΦ൫ߛሻ൫ߠ ൅ ߶ሺߛሺ࢞ሻሻ൯ (23) 
where ߶ሺ⋅ሻ and Φሺ⋅ሻ are the probability density function and 
cumulative distribution function of the standard normal 
distribution, ߛሺ࢞ሻ ൌ ሺߤሺ࢞; ሼ࢞௜, ௜ሽ௜ୀଵݕ

஽ , ሻߠ െ /௕௘௦௧ሻݕ
;ሺ࢞ߪ ሼ࢞௜, ௜ሽ௜ୀଵݕ

஽ ,  ሻ is the deviation away from the best solutionߠ
;ሺ࢞ߤ ௕௘௦௧ found so far, with posterior meanݕ ሼ࢞௜, ௜ሽ௜ୀଵݕ

஽ ,  ሻ andߠ
posterior standard deviation ߪሺ࢞; ሼ࢞௜, ௜ሽ௜ୀଵݕ

஽ , ሻߠ , given the 
existing D samples ሼ࢞௜, ௜ሽ௜ୀଵݕ

஽  and GPR hyper-parameter ߠ.  
Another example of acquisition function is upper 

confidence bound (UCB) 
ܽ௎஼஻ሺ࢞; ሼ࢞௜, ௜ሽ௜ୀଵݕ

஽ ,  ሻߠ
ൌ ;ሺ࢞ߤ ሼ࢞௜, ௜ሽ௜ୀଵݕ

஽ , ሻߠ ൅ ;ሺ࢞ߪߢ ሼ࢞௜, ௜ሽ௜ୀଵݕ
஽ ,  ሻ (24)ߠ

where ߢ is a hyper-parameter for the exploitation-exploration 
balance. To simply the optimization process, in this work we 
choose ߢ ൌ 1.5 as a constant instead. 

In the proposed dBO method for network design, the GPR 
surrogate of the objective function  ݂ሺࢠሻ~࣡࣪ሺ݉ሺࢠሻ, ݇ሺࢠ,  ሻሻ′ࢠ
has mean function ݉ሺࢠሻ  and covariance kernel function 
݇ሺࢠ, ࢠ ሻ, where′ࢠ ൌ ሾݖଵ, … ,  ேሿ is an index vector of N binaryݖ
values (ݖ௜ ∈ ሼ0,1ሽ, ∀݅ ൌ 1,… ,ܰ) for a graph with N nodes. A “1” 
indicates that the corresponding node is included in the subgraph 
as the solution, and a “0” indicates not. The major construct of 
the GPR model is the kernel function, defined as 
 ݇ሺࢠ, ሻ′ࢠ ൌ expሺ∑ ݀ሺݖ௜, ௜ݖ

ᇱሻ/ߠ௜
ே
௜ୀଵ ሻ, (25) 

where ݀ሺ⋅ሻ is a distance function defined in the discrete space 
such as the Hamming distance, and ߠ௜ ’s are the hyper-
parameters of scales. The advantage of one independent scale 
parameter being associated with each node comparison is that 
the different importance levels of nodes for trust quantification 
can be captured. In other words, not every node in a network is 
equally trustworthy with respect to a reference node. The scale 
parameters after the training can provide the weights of 
importance. The disadvantage of the kernel function in Eq. (25) 
is that the quickly increased number of hyper-parameters for 
large networks requires a large training datasets. The prediction 
will not be accurate otherwise. One easy way to mitigate the risk 
and reduce the computational load is to assume that all hyper-
parameters have the same value, as  
 ݇ሺࢠ, ሻ′ࢠ ൌ expሺ∑ ݀ሺݖ௜, ௜ݖ

ᇱሻ/ߠே
௜ୀଵ ሻ. (26) 

That is, there is only one hyper-parameter ߠ . This greatly 
simplifies the training process, at the expense of losing model 
granularity. 
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5. TRUST BASED STRATEGIC NETWORK DESIGN 

A strategic network for a node is the most trustworthy 
network that the node can form the strategic collaboration 
relation. The design of such strategic network is to identify a 
subset of nodes within the complete network so that the node has 
the highest trustworthiness level. The trustworthiness metrics of 
ability and benevolence are used here to demonstrate the trust 
based strategic network design. The network optimization based 
on other metrics such as integrity can be done similarly.   

5.1 Ability as the optimization criteria 
Ability in Eq. (13) is first utilized as the metric to identify 

the most trustworthy network for a reference node. The strategic 
network of the reference node can be obtained by finding the 
network where the ability of the reference node is maximized. 
Three networks with 20, 40, and 60 nodes, shown in Figure 3, 
are generated with random connections for tests. The prediction 
and reliance probabilities are also randomly generated. Note that 
the random networks are generated to better test the robustness 
and scalability of the design optimization method than some 
deterministic ones.  

 

 
FIGURE 3: Three example networks for optimization tests, with 
(a) 20 nodes and 192 edges, (b) 40 nodes and 787 edges, and (c) 
60 nodes and 1731 edges. 

 
The EI acquisition in Eq. (23) and UCB acquisition in Eq. 

(24) along with the two kernel functions in Eqs. (25) and (26) are 
tested for the 20-node-192-edge example. The Hamming 
distance is used in the kernels. When searching for the optimum 
network to maximize the ability of node 0, they have different 
convergence rates, as compared in Figure 4(a). The optimum 
solution, as shown in Figure 4(b), is found with the EI acquisition 
in combination with the multi-parameter kernel. During the 
search, a simulated annealing algorithm is applied to maximize 
the acquisition to decide the next sample. It is seen that the search 
can be trapped at the local optimum when the single-parameter 
kernel function in Eq. (26) is used. The single-parameter kernel 

function does not provide the as much granularity as the multi-
parameter kernel and does not differentiate much about the 
different contributions between nodes for the ability of node 0. 
Therefore, the parameter training tends to be not optimal. The 
UCB acquisition function emphasizes more on exploitation than 
the EI acquisition. Thus the search tends to get trapped in local 
optima.  

The convergence speeds for the networks of different sizes 
are further tested. The results are shown in Figure 5. It is seen 
that as the size of network increases, more iterations are required 
to find the global optimum. The reason is two-fold. First, larger 
networks result in the higher dimension of the searching space. 
The searching complexity for the possible solutions grows 
exponentially. Second, as the dimension of searching space 
increases, more samples are required to construct reliable 
surrogate models. Therefore, more iterations are necessary to 
ensure the convergence to the global optimum.  

To compare the performance of the dBO method with the 
commonly used heuristic algorithms, simulated annealing is 
applied for the same network optimization problems. For each of 
the three examples with 20, 40, and 60 nodes, the simulated 
annealing algorithm to maximize the ability metric is run 5 times 
with different annealing steps ranging from 50 to 300. The means 
and standard deviations of the obtained optimal ability values for 
those test runs are listed in Table 1, Table 2, and Table 3 
respectively. The means and standard deviations of results for 5 
runs of the dBO algorithm after 50 iterations are also listed in 
these tables, where EI acquisition and multi-parameter kernel are 
used. The number of annealing steps indicates the computational 
cost where each step involves one evaluation of the original 
objective function. In the dBO searching, 50 initial samples with 
the evaluations of the objective function were obtained to 
construct the initial GPR surrogate. Additional samples are 
added for each of the iterations in Figure 4 and Figure 5. Each 
iteration involves one evaluation of the objective function, 
whereas the evaluation of the acquisition function in Bayesian 
optimization is based on the surrogate and usually costs much 
less, especially when the original objective function requires 
heavy computation. Therefore, the cost of dBO for 50 iterations 
is approximately equivalent to the cost of simulated annealing 
for 100 steps in these examples. From the comparisons, it is seen 
that the dBO method can find better solutions than the simulated 
annealing with the similar cost. Furthermore, the results of the 
dBO method have much less variability. In other words, the dBO 
algorithm is also more robust than the heuristic simulated 
annealing.  

Besides the comprehensive ability metric, capacity in Eq. 
(9) and influence in Eq. (11) can also be applied individually as 
the criteria to perform design optimization based on specific 
interests. In addition, the second-order ability in Eq. (15) can also 
be used as the optimization criterion. The respective optimum 
networks based on these three criteria for node 0 in the 20-node 
example are shown in Figure 6. It is seen that different criteria 
lead to different optimum networks. If multiple criteria are used 
simultaneously, multi-objective optimization methods are 
needed. 

(a) (b) 

(c) 
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FIGURE 4: (a) The convergence speed of four cases with EI and 
UCB acquisition functions, along with single-parameter and 
multiple-parameter kernel functions, are com-pared for the 20-
node-192-edge example. (b) The optimum network with the 
ability of node 0 maximized is found with the EI acquisition and 
multiple-parameter kernel.  

 

 
FIGURE 5: (a) The convergence speeds when searching in the 
20-, 40-, and 60-node networks, with the EI acquisition and 
multi-parameter kernel functions. (b) The optimum in the 40-
node network. (c) The optimum in the 60-node network.   

 

 
TABLE 1: The means and standard deviations of the maximum 
ability for the 20-node network using simulated annealing with 
different annealing steps, in comparison with the dBO of 50 
iterations 

Steps Mean Standard Deviation 
50 0.704128758 0.024803099 
100 0.717732062 0.01618725 
150 0.724677974 0.021446642 
200 0.738149753 0.026914332 
250 0.72842703 0.018894042 
300 0.726842286 0.014625707 
dBO 0.763904996 0.002614458 

 
TABLE 2: The means and standard deviations of the maximum 
ability for the 40-node network using simulated annealing with 
different annealing steps, in comparison with the dBO of 50 
iterations 

Steps Mean Standard Deviation 
50 0.638595221 0.060644109 
100 0.684115767 0.035342407 
150 0.696934409 0.028088683 
200 0.68054112 0.023215712 
250 0.709194429 0.031983543 
300 0.70440341 0.023225232 
dBO 0.746661792 0.00340882 

 
TABLE 3: The means and standard deviations of the maximum 
ability for the 60-node network using simulated annealing with 
different annealing steps, in comparison with the dBO of 50 
iterations 

Steps Mean Standard Deviation 
50 0.623391013 0.056150683 
100 0.65012841 0.039877341 
150 0.657217419 0.046396371 
200 0.679789337 0.005860135 
250 0.678678903 0.005974927 
300 0.676195812 0.00793658 
dBO 0.692554458 0.003021649 

 
 

 
FIGURE 6: Optimum networks with respect to node 0 in the 20-
node-192-edge example by different ability metrics: (a) 
capability as criterion, (b) influence as criterion, and (c) second-
order ability as criterion.  

(b) 

(a) 

(b) 

(a) 

(c) (b) (a) (c) 
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5.2 Benevolence as the optimization criteria 
The design optimization procedure can be similarly applied 

with benevolence as the criterion. Because the reciprocity in Eq. 
(17) and benevolence in Eq. (21) are defined as pair-wise 
metrics, the optimization can be based on the weighted average 
benevolence perceived by node i as 
 ܷሺ௜ሻ ൌ ∑ ത௝௝∈ࣰሺ೔ሻܤ௝ݓ  (27) 

for all neighboring nodes ࣰሺ௜ሻ  of node i, where ܤത௝ ൌ ሺ1/

௝݊ሻ∑ ௝,௞௞∈ࣰሺ೔ሻܤ  is the average benevolence of node j among its 

௝݊ neighbors, and weights ݓ௝’s (0 ൑ ௝ݓ ൑ 1) indicate the self-
interest level. When ݓ௜ ൌ 1 and ݓ௝ ൌ 0	ሺ∀݆ ് ݅ሻ with respect 
to node i, it is a “selfish” mode. Only the benevolence of node i 
is considered as the criterion to find the optimum network for 
node i. On the other hand, when ݓ௜ ൌ 0 and ∑ ௝௝ஷ௜ݓ ൌ 1, it is 
considered to be a “altruistic” mode. The weighted average 
reciprocity can be calculated similarly.  

In the 20-node-192-edge example, the optimum networks 
for node 0 with the benevolence criteria are shown in Figure 7. 
It is seen when the self-interest weight w0 is lower it is easier to 
build a larger trustworthy network.  

 
FIGURE 7: Optimum networks with respect to node 0 in the 20-
node-192-edge example by different benevolence metrics: (a) 
weighted average benevolence as criterion with w0=1; (b) 
weighted average benevolence as criterion with w0=1/2 and all 
other weights are 1/38; (c) weighted average reciprocity as 
criterion with w0=1/2 and all other weights are 1/38.  

6. CONCLUSION 

In this paper, quantitative trustworthiness metrics are used 
as the design criteria to perform optimization of cyber-physical-
social system networks. Each node can choose its own most 
trusted strategic network so that they can collaborate and share 
information. The trustworthiness is quantified as multi-facet 
quantities in both cyber and social spaces, including the 
dimensions of ability, benevolence, and integrity. In CPSS, the 
ability and benevolence can be calculated based on statistics 
from their working history to measure the capacities of 
information gathering, reasoning, and information sharing. The 
most trusted strategic network for a node is the subnet that 
maximizes the ability of the node if ability is used as the 
criterion. A node that has the high capacities of observing the 
state of world accurately, making sound decisions based on 
available information, and bringing positive impacts to others is 
deemed to possess a high level of ability and thus a trustworthy 
individual. Similarly, a node that is willing to share accurate 
information with others is also regarded as trustworthy. The 
strategic network is the one that leads to the maximum level of 

ability for the reference node, or consists of a group of 
collaborators that are the most willing to collaborate with the 
reference node.  

It has been shown [2] that the new ability, benevolence, and 
integrity metrics are sensitive to trust attacks. When a malicious 
node generates false predictions and sends them to other nodes, 
its perceived trustworthiness will drop quickly. When the attack 
stops, the perceived trustworthiness will gradually increase and 
recover. This matches well with human social behaviors. It 
usually takes time to establish a trust relation, whereas the 
damage can be done much more quickly. When designing the 
trusted strategic network, the risks of attacks also need to be 
considered. Instead of targeting at the maximum trust level as 
shown in this paper, additional criteria for robustness need to be 
incorporated in future work. 

The proposed discrete Bayesian optimization performs 
reasonably well for the combinatorial problem of network 
design. For the kernel function based on the Hamming distance, 
more hyper-parameters can help increase the flexibility of the 
kernel, whereas a small number of hyper-parameters is not robust 
enough for optimization. The limitation of using multiple hyper-
parameters is the training efficiency. More samples are required 
to train a larger number of hyper-parameters, which makes it not 
feasible for small problems. Combinatorial problems usually 
have very large searching space. Introducing additional hyper-
parameters can potentially bring the benefit of faster 
convergence. 

In this work only single-objective optimization is applied. 
The multi-facet trustworthiness metrics eventually will need a 
multi-objective optimization approach for trust based design, 
where multiple metrics are considered simultaneously and 
tradeoffs need to be made. The scalability of the discrete 
Bayesian optimization also requires further investigation, given 
that the Bayesian update procedure in GPR is computationally 
expensive when the number of samples is large. The proposed 
scheme for large-scale networks will require further tests. 
Enhancement such as sparse GPR is likely to bring better 
scalability.  
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