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ABSTRACT

Cyber-physical-social ~ systems (CPSS) with  highly
integrated functions of sensing, actuation, computation, and
communication are becoming the mainstream consumer and
commercial products. The performance of CPSS heavily relies
on the information sharing between devices. Given the extensive
data collection and sharing, security and privacy are of major
concerns. Thus one major challenge of designing those CPSS is
how to incorporate the perception of trust in product and systems
design. Recently a trust quantification method was proposed to
measure trustworthiness of CPSS by quantitative metrics of
ability, benevolence, and integrity. In this paper, the applications
of ability and benevolence metrics in design optimization of
CPSS architecture are demonstrated. A Bayesian optimization
method is developed to perform trust based CPSS network
design, where the most trustworthy network with respect to a
reference node can be selected to collaborate and share
information with.

Keywords: Cyber-Physical-Social Systems; Probabilistic Graph
Model; Trust; Ability; Benevolence; Integrity; Bayesian
Optimization

1. INTRODUCTION

Cyber-physical systems (CPS) are physical devices that
have highly integrated functions of sensing, actuation,
computation, and communication. Currently both consumer and
commercial products are becoming more intelligent with the
implementations of them as CPS. These CPS devices have
sensors embedded and can collect data of the surrounding
environment. The data are shared between those devices, which
help human users as well as the devices themselves to make
individual decisions in a highly distributed fashion. The
decisions will be executed with the control unit. These devices
are the essential elements for smart home, smart city, intelligent
manufacturing, personalized medicine, autonomous and safe

transportation, omnipresent energy supplies, and many other
applications. Given the ubiquity of CPS and their interaction and
seamless integration with human society, they are also termed as
cyber-physical-social systems (CPSS).

The design of CPSS is challenging because various factors
and constraints in the cyber, physical, and social dimensions of
design space need to be considered. There are unique challenges
in CPSS design, such as sustainability, reliability, resilience,
interoperability, adaptability, bio-compatibility, flexibility, and
safety in the physical subspace. There are also principles of
human-in-the-loop, data-driven design, co-design, scalability,
usability, and security that need to be considered in the cyber
subspace. In social subspace, the perceptions of risk, trust, and
privacy, as well as memory capacity and emotion of users need
to be incorporated.

The rapid growth of CPSS requires engineers to adopt a new
design for connectivity principle. Different from tradition
products, CPSS devices heavily rely on information sharing with
each other to be functioning. Those devices form the Internet of
Things (IoT). How to consider the connectivity related issues in
product design therefore is new to engineers. Particularly, each
CPSS device constantly collects data and shares them with other
devices in the networks. Information security and privacy
become critical issues in designing such massively networked
systems. At the high-level application layer, decisions of what
data can be collected, where data are stored, who can access the
data, which portion of data can be shared, etc. need to be made
during the software design. These decisions will simultaneously
affect hardware and mechanism design as well as product safety.
The effectiveness of their performance critically depends on
what and how they share among each other. Trust is an important
design feature for these systems to work together. Therefore,
designing the intelligent decision making and decision support
subsystems for CPSS need to incorporate the trust aspect in the
social dimension, as trustworthiness can affect the design of the
policies for security and privacy.
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Furthermore, trust is critical for human users of these CPSS
devices whose personal information are likely to be collected and
shared by the devices. The users’ perceptions of trust about the
systems can affect the effectiveness of human-device
interactions. Thus designing trustworthy CPSS devices and
systems is an important task for design engineers.

Trust has been extensively studied in the domains of
psychology, organizational behavior, marketing, and computer
science. However, most studies remain conceptual and
qualitative. Quantitative measurements of trustworthiness are
needed when the concept is applied in engineering design and
optimization. Some quantitative studies of trust have been
conducted in computer science, where trustworthiness is mostly
quantified by quality of service (QoS), e.g. success rate as well
as consistency in packet forwarding and other transactions, in
network communication. The reputations in user ratings and
recommendations online were also used. These metrics are
quantities only in cyber design space. There is still lack of
trustworthiness metrics in both cyber and social design spaces,
which are important to guide the design of trustworthy CPSS at
the levels of network architecture and devices.

In this work, the perception of trust is quantified and applied
in CPSS architecture design, where the collaboration network of
a particular node can be optimized based on trustworthiness
criteria. The quantitative trustworthiness metrics are based on the
recently proposed ability-benevolence-integrity (A-B-I) model
[1]-[3], where trustworthiness is quantified by the cyber-social
metrics of ability, benevolence, and integrity. Ability shows how
well a trustee party is capable of doing what it claims to perform.
Benevolence indicates whether the motivation of the trustee is
purely for the benefit of itself. Integrity measures if the trustee
does what it claims to. Based on a mesoscale probabilistic graph
model [4][5] of CPSS, the perceptions of ability, benevolence,
and integrity can be quantified with the probabilities of good
judgements for the nodes as well as the information
dependencies among nodes. In this paper, we further
demonstrate how to apply the quantitative trustworthy metrics as
the design criteria in network architecture design and
optimization. The design criteria are used as the utilities to
identify an optimal subset of nodes in the network that one
particular node can trust and collaborate with.

Here, a discrete Bayesian optimization method is developed
to solve the combinatorial optimization problem. Bayesian
optimization is a robust global optimization scheme that
incorporates uncertainty in the searching process. Different from
other global optimization approaches such as the commonly used
genetic algorithms, simulated annealing, and other heuristic
algorithms, Bayesian optimization performs search based on a
surrogate model of the objective function. The surrogate, usually
a Gaussian process regression model, keeps the search history in
memory as opposed to other “memoryless” heuristic algorithms.
In addition, an acquisition function is constructed and used to
guide the searching or sequential sampling process. It is designed
to strike a good balance between exploration and exploitation.
During sequential sampling, the surrogate of objective function
is continuously updated with new samples based on the Bayesian

belief update. Therefore the searching process in Bayesian
optimization can be accelerated with the properly designed
surrogate model and acquisition function. This provides unique
advantages in discrete optimization over traditional heuristic
algorithms, especially for complex combinatorial problems
where exhaustive search in the discrete solution space is
computationally prohibitive. In our discrete Bayesian
optimization method for the combinatorial problem of network
optimization, a new distance kernel is developed to measure the
similarity between networks.

In the remainder of this paper, the existing work of system-
level design of CPSS, discrete Bayesian optimization, and trust
quantification approaches are reviewed in Section 2, where the
probabilistic graph model of CPSS is also introduced. In Section
3, the metrics of ability and benevolence in the A-B-I trust model
are introduced. The discrete Bayesian optimization method is
described in Section 4. The application of Bayesian optimization
to the CPSS network architecture design is demonstrated with
ability and benevolence metrics as the utilities.

2. BACKGROUND

Here an overview of CPSS system-level design is given. The
existing research on discrete Bayesian optimization and trust
quantification are reviewed. The probabilistic graph model of
CPSS which the A-B-I model is based upon is also introduced.

2.1 Systems level design of CPSS

Network connectivity is essential for CPSS. A standalone
CPSS device cannot perform the functions which it is designed
for. Compared to traditional products, the design of CPSS
requires engineers to have better understanding of the systems
level behaviors [7], from conceptual design to design
optimization of multidisciplinary and hierarchical architecture
[8]. Given the evolution nature of cyber and physical
technologies, adaptability that enables the capabilities of self-
learning, self-organization, and context awareness is important
to design open systems that can evolve along technology
advancement [6]. With the complexity of the CPSS networks
grows to billions of nodes, it is impossible to ensure all nodes are
free from compromise or breakdown. Node compromise and
subnet disruption should be treated as daily norms. Therefore the
emphasis of CPSS networks and systems should be more on the
ability to recover from breakdown, instead of preventing its
breakdown. That is, resilience (the ability to recover) is more
important than reliability (the ability to stay functioning) in
designing systems of CPSS [4][5].

Some systems modeling methods and tools have been
applied for CPSS design and analysis, such as hybrid discrete-
event and continuous simulations [12]-[ 14], inductive constraint
logic programming [15], abductive reasoning [16], hybrid timed
automaton [17], ontologies [18], information schema [19], UML
[20], SysML [21], and information dynamics modeling [22]. The
high-dimensional design space of CPSS includes not only the
cyber and physical subspaces, but also the social subspace. The
modalities for human-system interaction [10], context awareness
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and personalized human-system communication [11], as well as
trusted collaboration [1]-[3] have been studied.

2.2 Bayesian optimization for discrete problems

Bayesian optimization has been widely used in the
continuous domain and only recently gained more attention in
the discrete domains, such as in solving mixed-integer problems
[41,42]. The straightforward extension of Bayesian optimization
from continuous domain to discrete domain is just treating
discrete variables as continuous ones and round the variable
values to the closest integers during the searching process. For
instance, Baptista and Poloczek [44] proposed a quadratic
acquisition function for combinatorial problems and converted
the binary variables to high-dimensional vectors during the
searching process. The solutions are then projected back to the
binary space. However, this approach may fail to identify the true
optimum and be trapped in the local region because there is a
mismatch between the true discontinuous objective function and
the assumed continuous acquisition function. Zaefferer et al. [43]
replaced the continuous distance with discrete distance measures
and compared the performance using the expected improvement
acquisition function. Garrido-Merchadn and Hernandez-Lobato
[45] developed an input variable transformation to ensure the
distance between any two discrete variables remain unchanged
in evaluating kernels when the variables perturb into the
continuous space. Zhang et al. [46] proposed a new kernel
function based on the position distance for permutation problems
and the prior knowledge about similarity in the problems. The
sparse Gaussian process model is used to reduce the
computational cost of kernel update.

2.3 Trust quantification for CPS

Conceptually, trust is the willingness to be vulnerable to
another. It is a different concept from security. Security is critical
for trust. However, security along cannot guarantee the
trustworthiness. For instance, although security protocols can
ensure data are not intercepted during transmission, they provide
no guarantee against the misuse by the receiving party or against
fraud by the transmitting party. In recent studies in computer
science, trust was quantified with reputation, ratings, and user
recommendations in information systems and social networks
[23,24]. 1t was also measured by QoS, routing and delivery
success rates, and consistency of data forwarding in computer
networks and sensor networks [25,26]. Probability [27-29],
imprecise probability [30,31], and fuzzy logic [32-34] have been
applied to quantify the human perception of trust.

To quantify trustworthiness of CPS, Chen et al. [35]
developed a fuzzy model of trust based on the reputation of
communication efficiency. Al-Hamadi and Chen [36] calculated
trust from user ratings aggregated from different time periods
and different locations. Xu et al. [37] used the weighted average
of direct user experiences and other’s recommendations to
evaluate the trust of edge computing devices. Tao et al. [38]
measured the sensor data trustworthiness with the consistency
with reference data sets. Junejo et al. [39] quantified
trustworthiness of CPS nodes by QoS measurements.

Different from the above, we developed a quantitative
approach with multi-faceted metrics of ability, benevolence, and
integrity [1]-[3], which has been qualitatively studied in social
organization [40]. In the quantitative A-B-I model, ability
characterizes a node’s capabilities of sensing, reasoning, and
influence to other nodes based on its probability of correct
predictions as well as those of other nodes due to the information
shared by this node. Benevolence characterizes the motivation of
a node for its information sharing. Integrity is related to the
traditional cyber and physical security and can be quantified
from QoS.

In order to build large-scale networks, trustworthiness
should be treated as transferrable quantities so that it can be
propagated in scalable systems. With the quantitative measures
of trustworthiness, the risk of deploying CPSS can be quantified
and assessed more thoroughly in highly complex networks
where a global view of the networks is impossible to obtain.

2.4 Probabilistic graph model of CPSS

The probabilistic graph model [2][5] is an abstraction of
CPSS networks at the mesoscale. It captures the sensing,
computing, and communication capabilities of CPSS by the
prediction probabilities for all nodes in a CPSS network and the
pair-wise reliance probabilities between nodes as the extent of
information dependency and mutual influences. The model is
illustrated in Figure 1. The prediction and reliance probabilities
of nodes are defined as follows.

FIGURE 1: Probabilistic graph model of CPSS networks.

A probabilistic graph G = (V,E,P,R) consists of a set of
vertices V = {v,} and a set of directed edges € = {(v;,v;)}.
Each node v, is associated with a prediction probability p; €
P, and each directed edge (v;,v;) is associated with a reliance
probability p;; € R. The prediction probability that the k-th
node detects the true state of world 6 is

P(x; = 0) = py )
where x; is the state variable. Without loss of generality, here
we only consider binary-valued state variables ( = 6 or # 0) .
State variables with multiple discrete values can be easily
extended. Continuous variables can be discretized in a digital
computing environment.

With binary-valued state variables, we can define P-reliance
probability
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as the probability that the j-th node predicts the true state of
world given that the i-th node predicts correctly. We also define
Q-reliance probability

as the probability that the j-th node predicts the true state of
world given that the i-th node does not predict the same.

The state variables contain the results from sensing. The
values can be updated because of computing or reasoning.
Therefore the prediction probabilities capture the sensing and
computing functionalities, whereas the reliance probabilities
indicate the functionality of communication. The random state
variables with binary values can be extended to multiple values
or continuous. For instance, one sensor measures a value which
follows some distribution, as in prediction probability. If there
are a finite set of possible values {0, ..., 07} for state variables.
The prediction probability P(x; = 6,,) and reliance probability
P(xj = 9n|xl- = Qm), where 1 <m,n < T, can be enumerated
similarly.

The edges in the probabilistic graph are directional. The
neighbors of each node can be further differentiated as source
nodes or destination nodes, as illustrated in Figure 2. For one
node, its source nodes are those sending information to this node,
whereas the destination nodes are those receiving information
from it. When receiving different cues from source nodes, a CPS
node can update its prediction probability to reflect its perception
of the world. The aggregation of prediction probabilities
sensitively depends on the rules of information fusion during the
prediction update.

——

~———
source destination

FIGURE 2: Source and destination nodes with respect to node j
are differentiated.

If P(x,) and P(x{) denote the probabilities of a positive
and a negative prediction from node & respectively, we define the
best-case fusion rule as
PO =1 (1= P(x) ;2 PG (1 = PCxelx)

T2 PG (1 = PCalx)) ©)
where node k updates its prediction based on its own current
prediction and those cues from its Mp + My source nodes, out
of which Mp of the source nodes provide positive predictions
whereas My of them provide negative predictions, P(x;|x;)
indicates the probability that a positive message from node i
leads to a positive prediction of node k, and P(xk|x]-c) is the
probability that a negative message from node j leads to a

positive prediction of node k. Therefore, if any of the cues from
the source nodes is positive, the prediction of the node is
positive. Some variations of this fusion rules exist. For instance,
the previous prediction from itself can be either included or
excluded during the update.

Similarly, the worst-case fusion rule can be defined as
P'(x) = P (o) T2 POe)P (e lx) T2 P(ef )P (el xf) - (5)
That is, if any of the cues from the source nodes is negative, the
prediction of the node is negative. The Bayesian fusion rule is

defined as
S-r
P (i) max{(P(i)" (1-P(x0)” '}

! —
P JP)(1-PG)” " ap ©
where the prediction of the node is updated to P’ from prior
prediction P, and out of S cues that the neighboring nodes
provide, r of them provide are positive, if the maximum
likelihood principle is taken.

The probabilistic graph model provides a system level
abstraction and a mesoscale description of CPSS networks,
where information exchange and aggregation are captured.
Prediction and reliance probabilities can be easily obtained in a
physical system from the collected historical data. The prediction
probability of a node can be based on data collected by its
sensing and reasoning units. It can be estimated as the frequency
of correct prediction. The reliance probabilities can be estimated
similarly from the frequencies of positive and negative
predictions by the neighboring nodes given the node’s own
prediction. For instance, in sensor networks, the prediction
probability associated with a node can be estimated as the ratio
of the number of packets sent by this node to a baseline reference
number that the best performer sends as the upper limit. The P-
reliance probability for each path can be estimated as the ratio of
the number of packets received by the destination to the number
sent by the source [5]. If no experimental data are available,
subjective estimations from domain experts can be elicited.
Probability elicitation is well known in both practice and
literature. Standard procedures are usually taken to elicit
probabilities associated with some events from domain experts
as subjective estimates.

3. THE A-B-I TRUST MODEL

Based on the probabilistic graph model, the trust metrics of
ability and benevolence can be calculated. The ability of a CPSS
node is measured with its capability of performing correct
predictions and making right decisions from the perspectives of
sensing and computation, as well as its influence to other nodes.
The benevolence is measured by how willing it is to share
information reciprocally and the motivation of sharing from the
perspective of communication. The integrity of a CPSS node is
closely related to the cybersecurity and can be evaluated with
consistency, frequency of compromises, QoS, and other security
measurements.

Here only the metrics of ability and benevolence are
summarized. They will be used as the utilities to demonstrate the
network optimization. Since integrity has been studied

4 © 2020 by ASME



extensively in cybersecurity, ability and benevolence can show
the uniqueness of our proposed trust measurements. The
complete description of the A-B-I trust model as well as the
illustrations of the metrics and their use for detecting malicious
attacks can be found in Ref.[2].

3.1 Ability

The ability of a CPSS node is evaluated by its capability of
prediction and its influence to other nodes. The capability of
prediction for a node is measured by its capabilities of data
collection and reasoning based on data obtained from its
neighbors, quantified by the prediction probability and reliance
probabilities perceived by others, as well as the precisions of the
perceptions. The influence to others is quantified by how
influential its information shared to others is in their decision
making.

The perceived ability of node j with the consideration of its
prediction capability is A;(0) = P (P(xj = 9)), where P(-)
denotes perception. Suppose that all perceptions follow Gaussian
distributions. The prediction capability can be quantified by its
mean

E(4;(0)) = p), ()
and its variance

V(4;(0) =1 (8)
That is, if a node has a higher prediction capability with less
variability than others, it is more trustworthy.

Based on the directions of information sharing between
nodes, the neighboring nodes for each node in the network are
categorized as source nodes and destination nodes, as illustrated
in Figure 2. With respect to node j, the set of source nodes that
share information with node j is denoted as §; = {v;|(v;,v;) €
£}, and the set of destination nodes that receive information from
node j is denoted as D; = {vy|(v;, vi) € E}.

The perceptions about the P- and Q-reliance probabilities for
nodes i and j are related to the information processing capability
of node j. A high P-reliance probability indicates that node j can
absorb knowledge quickly. A high Q-reliance probability shows
that node j can have good judgement even in a noisy and
uncertain  situation. We simplify the notations as L;; =

]P(P(x]- = 0|xi = 9)) and L = ]P’(P(xj = 9|xi * 9))
respectively. They are assumed to follow Gaussian
distributions with means E(L;|A;) =p;; and E(L§;|4;) =
q;j, and variances V(L;j|4;) = 75 and V(L§;|4;) = 755,
respectively.

The perceived ability of node j with the considerations of

both capabilities of prediction and information processing is then
quantified with mean

IE(A]-(B |£(+j))) _ ijj+2iesj Tij,ppij+2iesjfij,qthj

©)

Tj+Ziesj Tijp +Ziesj Tijq
and variance

. -1
V(Aj(9|L(+J))) = (Tj + Ziesj Tijp T Ziesj Tij,q) (10)
based on Bayes’ rule of belief update. Bayesian belief update is
an intuitive way to combine multiple factors.

Leadership should be regarded as one’s ability. Here, it is
estimated as its influence to others by sharing information. The
perceived ability of node j with the considerations of its
prediction capability and influence is quantified with mean

. TjPj+2keD; TjkpP jktLkeD ; Tjk,q(1—4 k)
IE(A]-(9|L(‘J)))=]] €D TjkpPjkt2keD; Tjkq(1=d]

an

T,'+Zke1>j Tjk,p+2ke73j Tjk,q
and variance

\% (Aj (9|L(_D)) = (Tj + Lkep,; Tjkp T Lken; Tjk,q) (12)

The overall and comprehensive ability perception with the
simultaneous considerations of its capabilities of prediction,
information processing, and influence is similarly calculated as
E (Aj(g |cen, L<-f)))

ijj+2iesj Tij,pPiﬁZies]- Tij,qqij+2ke73j Tjk,ppjk+2kez>j Tik,q(1=4qjk)

Tj+2ie5]- Tij,p+2iesj Tij,q+2kez)j Tikp +ZkEDj Tjk,q
(13)
\ (AJ.(Q|£(+]))L(—J)))

-1
= (Tj + Dies; Tijp T Lies; Tijq T Lkep; Tikp + Lken; Tjk,q)

(14)
Therefore, a node that gives accurate predictions, makes sound
decisions, and brings positive influences to others is deemed to
be trustworthy.

The perception of one’s ability can also be dictated by the
abilities of those ones that are closely associated. That is, if a
neighbor or associate, who is influenced by a node, has high
ability, the perception of this node’s ability is also increased.
Therefore higher-order perception of ability can be defined. If
the ability in Egs. (13) and (14) is first-order and has values of

mean  E(4;(0]£¢D,£60))=E  and
A\ (A]- (9|L(+7),£(‘j))) = V;, the second-order ability is defined
as

E® (A].(9| LG L(—j)))

-1 -1 -1
v; Ej+Zkez)jTjk,ijk(Vk Ek)"'ZkEDjTjk,q(l_ij)(Vk Eg)

variance

Tj+Zkep; Tjk,ppjka_1+ZkeDj Tjk,q(A=ai) Vi *
(15)
v (A],(g|1;(+j)'£(—j)))

-1
= (Tj + Yken; TikpPicVi -+ Yken; Tjkq(1 = ij)Vk_l)
(16)

Higher-order perceptions of ability can be similarly defined.

3.2 Benevolence

The benevolence of a CPSS node is evaluated by the
reciprocity and motive. The perception of reciprocity is
measured by the willingness of sharing information to others
while receiving information simultaneously. The motive is
quantified by the quality of information shared to others and the
frequency of sharing.

The expected reciprocity for node j perceived by node i is
defined as

E(R;;) = Dv(pijlIpj-i) — Dxi(pjillpinj) + bo (17)

5 © 2020 by ASME



where pj;_,; = ]_[}'(‘:1]- Prk+1 is the product of all P-reliance
probabilities py r4q corresponding to the shortest path from
node j tonode i, Dk (P||Q) = X; Plog(P;/Q;) isthe Kullback-
Leibler divergence from probability QO to P, and b, is a
reference value such that ]E(Ri‘ j) > b, when node has a larger
reciprocity with respect to node i. Intuitively, if node j is willing
to share accurate information with node i without necessarily
expecting node i to share information as a return, node j has a
high reciprocity to node i. In other words, node 7 can trust node
j- Here, by = 0.5 such that reciprocity has a value between 0
and 1. A higher value of reciprocity indicates higher
trustworthiness. Furthermore, IE(RL-_i) = b, . The variance
associated with the perceived reciprocity is conservatively
estimated as
V(Rij) = min(¥;.i tap + Xivj Ted s Vinax (18)
where 74, and 7.5 are the precisions associated with the P-
reliance probabilities along paths j—i and i—/, respectively, and
Vinax = 1.0 is the theoretical maximum value of variance
associated with probabilities. V(R;;) = 0.
Motive measures the intention of information sharing within
a community. Sharing high-quality information with neighbors
indicates the good purpose of improving the overall functionality
of the community. Thus perceived motive of node j is defined as

E(M) =p;’ (19)
V(M) =1t (20)
where p; is the prediction probability associated with node j
with precision 7;, and d; = |D;| is the number of destination
nodes for node ;.
The overall benevolence of node j perceived by node i is
=1(R. . . -1 . .
B(B,,) = i)

V(B,)) = (V1 (Ryy) + V1 ()) 22)

4. DISCRETE BAYESIAN OPTIMIZATION

The trust-based network optimization is to identify a subset
of nodes in the network which are the most trustworthy with
respect to a reference node. The optimization problem involves
choosing the best subset of nodes and therefore is
combinatorically complex. The traditional approach to solve
these problems is using heuristic algorithms such as genetic
algorithms and simulated annealing.

Here, a new discrete Bayesian optimization (dBO) method
is developed to perform the CPSS network optimization. The
design problem is to choose the optimum subgraph out of a graph
with respect to a reference node such that the trustworthiness
level perceived by the reference node is maximized. The
proposed dBO method is a global optimization method to find
the optimum combination of nodes.

Bayesian optimization is a class of surrogate based methods
to search global optimum under uncertainty with Bayesian
sequential sampling strategies. The search or sampling process

is based on an acquisition function that is defined in the same
input space of the objective function. In parallel, a surrogate
model of the objective is also constructed and updated during the
search. The most used surrogate is Gaussian process regression
(GPR) model which is updated based on the Bayesian principle.

The sampling strategy of choosing the next sample is to
maximize the acquisition function instead of the objective
surrogate. One example of acquisition functions is the expected
improvement (EI)

(49:1 (x; {xi; yi}zp=1' 9)

= a(x; {x;, y31, O (y (02 (y (1) + (¥ (x))) (23)
where ¢(-) and ®(-) are the probability density function and
cumulative distribution function of the standard normal
distribution, Y () = 0 (0 Y31, 0) = Vpesd)/
a(x; {x;,y:}71,0) is the deviation away from the best solution
Vpese found so far, with posterior mean u(x; {x;,v;}7-,,6) and
posterior standard deviation o (x;{x;,y;}r-;,6), given the
existing D samples {x;,y;}r-, and GPR hyper-parameter 6.

Another example of acquisition function is upper
confidence bound (UCB)
aycs (% (%, y3i=1, 6)
= 1 (X0, Y1}, 0) + Ko (x; 21, v, 6) (24)
where k is a hyper-parameter for the exploitation-exploration
balance. To simply the optimization process, in this work we
choose k = 1.5 as a constant instead.

In the proposed dBO method for network design, the GPR
surrogate of the objective function f(2)~GP(m(2), k(z,z"))
has mean function m(z) and covariance kernel function
k(z,z"), where z = [z, ...,zy] is an index vector of N binary
values (z; € {0,1},Vi = 1, ..., N) for a graph with N nodes. A “1”
indicates that the corresponding node is included in the subgraph
as the solution, and a “0” indicates not. The major construct of
the GPR model is the kernel function, defined as

k(z,2) = exp(ZYy d(z,,20)/6), (25)
where d(-) is a distance function defined in the discrete space
such as the Hamming distance, and 6; ’s are the hyper-
parameters of scales. The advantage of one independent scale
parameter being associated with each node comparison is that
the different importance levels of nodes for trust quantification
can be captured. In other words, not every node in a network is
equally trustworthy with respect to a reference node. The scale
parameters after the training can provide the weights of
importance. The disadvantage of the kernel function in Eq. (25)
is that the quickly increased number of hyper-parameters for
large networks requires a large training datasets. The prediction
will not be accurate otherwise. One easy way to mitigate the risk
and reduce the computational load is to assume that all hyper-
parameters have the same value, as

k(z,2') = exp(SiL, (2, 2))/6). (26)
That is, there is only one hyper-parameter 6. This greatly
simplifies the training process, at the expense of losing model
granularity.
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5. TRUST BASED STRATEGIC NETWORK DESIGN

A strategic network for a node is the most trustworthy
network that the node can form the strategic collaboration
relation. The design of such strategic network is to identify a
subset of nodes within the complete network so that the node has
the highest trustworthiness level. The trustworthiness metrics of
ability and benevolence are used here to demonstrate the trust
based strategic network design. The network optimization based
on other metrics such as integrity can be done similarly.

5.1 Ability as the optimization criteria

Ability in Eq. (13) is first utilized as the metric to identify
the most trustworthy network for a reference node. The strategic
network of the reference node can be obtained by finding the
network where the ability of the reference node is maximized.
Three networks with 20, 40, and 60 nodes, shown in Figure 3,
are generated with random connections for tests. The prediction
and reliance probabilities are also randomly generated. Note that
the random networks are generated to better test the robustness
and scalability of the design optimization method than some
deterministic ones.

FIGURE 3: Three example networks for optimization tests, with
(a) 20 nodes and 192 edges, (b) 40 nodes and 787 edges, and (¢)
60 nodes and 1731 edges.

The EI acquisition in Eq. (23) and UCB acquisition in Eq.
(24) along with the two kernel functions in Eqgs. (25) and (26) are
tested for the 20-node-192-edge example. The Hamming
distance is used in the kernels. When searching for the optimum
network to maximize the ability of node 0, they have different
convergence rates, as compared in Figure 4(a). The optimum
solution, as shown in Figure 4(b), is found with the EI acquisition
in combination with the multi-parameter kernel. During the
search, a simulated annealing algorithm is applied to maximize
the acquisition to decide the next sample. It is seen that the search
can be trapped at the local optimum when the single-parameter
kernel function in Eq. (26) is used. The single-parameter kernel

function does not provide the as much granularity as the multi-
parameter kernel and does not differentiate much about the
different contributions between nodes for the ability of node 0.
Therefore, the parameter training tends to be not optimal. The
UCB acquisition function emphasizes more on exploitation than
the EI acquisition. Thus the search tends to get trapped in local
optima.

The convergence speeds for the networks of different sizes
are further tested. The results are shown in Figure 5. It is seen
that as the size of network increases, more iterations are required
to find the global optimum. The reason is two-fold. First, larger
networks result in the higher dimension of the searching space.
The searching complexity for the possible solutions grows
exponentially. Second, as the dimension of searching space
increases, more samples are required to construct reliable
surrogate models. Therefore, more iterations are necessary to
ensure the convergence to the global optimum.

To compare the performance of the dBO method with the
commonly used heuristic algorithms, simulated annealing is
applied for the same network optimization problems. For each of
the three examples with 20, 40, and 60 nodes, the simulated
annealing algorithm to maximize the ability metric is run 5 times
with different annealing steps ranging from 50 to 300. The means
and standard deviations of the obtained optimal ability values for
those test runs are listed in Table 1, Table 2, and Table 3
respectively. The means and standard deviations of results for 5
runs of the dBO algorithm after 50 iterations are also listed in
these tables, where EI acquisition and multi-parameter kernel are
used. The number of annealing steps indicates the computational
cost where each step involves one evaluation of the original
objective function. In the dBO searching, 50 initial samples with
the evaluations of the objective function were obtained to
construct the initial GPR surrogate. Additional samples are
added for each of the iterations in Figure 4 and Figure 5. Each
iteration involves one evaluation of the objective function,
whereas the evaluation of the acquisition function in Bayesian
optimization is based on the surrogate and usually costs much
less, especially when the original objective function requires
heavy computation. Therefore, the cost of dBO for 50 iterations
is approximately equivalent to the cost of simulated annealing
for 100 steps in these examples. From the comparisons, it is seen
that the dBO method can find better solutions than the simulated
annealing with the similar cost. Furthermore, the results of the
dBO method have much less variability. In other words, the dBO
algorithm is also more robust than the heuristic simulated
annealing.

Besides the comprehensive ability metric, capacity in Eq.
(9) and influence in Eq. (11) can also be applied individually as
the criteria to perform design optimization based on specific
interests. In addition, the second-order ability in Eq. (15) can also
be used as the optimization criterion. The respective optimum
networks based on these three criteria for node 0 in the 20-node
example are shown in Figure 6. It is seen that different criteria
lead to different optimum networks. If multiple criteria are used
simultaneously, multi-objective optimization methods are
needed.

7 © 2020 by ASME
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FIGURE 5: (a) The convergence speeds when searching in the
20-, 40-, and 60-node networks, with the EI acquisition and
multi-parameter kernel functions. (b) The optimum in the 40-
node network. (¢) The optimum in the 60-node network.

TABLE 1: The means and standard deviations of the maximum
ability for the 20-node network using simulated annealing with
different annealing steps, in comparison with the dBO of 50
iterations

Steps Mean Standard Deviation
50 0.704128758 0.024803099

100 0.717732062 0.01618725

150 0.724677974 0.021446642

200 0.738149753 0.026914332

250 0.72842703 0.018894042

300 0.726842286 0.014625707

dBO 0.763904996 0.002614458

TABLE 2: The means and standard deviations of the maximum
ability for the 40-node network using simulated annealing with
different annealing steps, in comparison with the dBO of 50
iterations

Steps Mean Standard Deviation
50 0.638595221 0.060644109

100 0.684115767 0.035342407

150 0.696934409 0.028088683

200 0.68054112 0.023215712

250 0.709194429 0.031983543

300 0.70440341 0.023225232

dBO 0.746661792 0.00340882

TABLE 3: The means and standard deviations of the maximum
ability for the 60-node network using simulated annealing with
different annealing steps, in comparison with the dBO of 50

iterations

Steps | Mean Standard Deviation
50 0.623391013 0.056150683

100 0.65012841 0.039877341

150 0.657217419 0.046396371

200 0.679789337 0.005860135

250 0.678678903 0.005974927

300 0.676195812 0.00793658

dBO 0.692554458 0.003021649

(@)

order ability as criterion.

(b)

FIGURE 6: Optimum networks with respect to node 0 in the 20-
node-192-edge example by different ability metrics: (a)
capability as criterion, (b) influence as criterion, and (c¢) second-

© 2020 by ASME



5.2 Benevolence as the optimization criteria

The design optimization procedure can be similarly applied
with benevolence as the criterion. Because the reciprocity in Eq.
(17) and benevolence in Eq. (21) are defined as pair-wise
metrics, the optimization can be based on the weighted average
benevolence perceived by node i as

U® =% cp0w;B; (27)

for all neighboring nodes V@ of node i, where B; = (1/
n;) Xrev® Bjk is the average benevolence of node j among its
n; neighbors, and weights w;’s (0 < w; < 1) indicate the self-
interest level. When w; =1 and w; = 0 (Vj # i) with respect
to node i, it is a “selfish” mode. Only the benevolence of node i
is considered as the criterion to find the optimum network for
node i. On the other hand, when w; =0 and };.;w; =1, itis
considered to be a “altruistic” mode. The weighted average
reciprocity can be calculated similarly.

In the 20-node-192-edge example, the optimum networks
for node 0 with the benevolence criteria are shown in Figure 7.
It is seen when the self-interest weight wy is lower it is easier to
build a larger trustworthy network.

(a) (b)
FIGURE 7: Optimum networks with respect to node 0 in the 20-
node-192-edge example by different benevolence metrics: (a)
weighted average benevolence as criterion with wo=1; (b)
weighted average benevolence as criterion with wy=1/2 and all
other weights are 1/38; (c) weighted average reciprocity as
criterion with wo=1/2 and all other weights are 1/38.

6. CONCLUSION

In this paper, quantitative trustworthiness metrics are used
as the design criteria to perform optimization of cyber-physical-
social system networks. Each node can choose its own most
trusted strategic network so that they can collaborate and share
information. The trustworthiness is quantified as multi-facet
quantities in both cyber and social spaces, including the
dimensions of ability, benevolence, and integrity. In CPSS, the
ability and benevolence can be calculated based on statistics
from their working history to measure the capacities of
information gathering, reasoning, and information sharing. The
most trusted strategic network for a node is the subnet that
maximizes the ability of the node if ability is used as the
criterion. A node that has the high capacities of observing the
state of world accurately, making sound decisions based on
available information, and bringing positive impacts to others is
deemed to possess a high level of ability and thus a trustworthy
individual. Similarly, a node that is willing to share accurate
information with others is also regarded as trustworthy. The
strategic network is the one that leads to the maximum level of

ability for the reference node, or consists of a group of
collaborators that are the most willing to collaborate with the
reference node.

It has been shown [2] that the new ability, benevolence, and
integrity metrics are sensitive to trust attacks. When a malicious
node generates false predictions and sends them to other nodes,
its perceived trustworthiness will drop quickly. When the attack
stops, the perceived trustworthiness will gradually increase and
recover. This matches well with human social behaviors. It
usually takes time to establish a trust relation, whereas the
damage can be done much more quickly. When designing the
trusted strategic network, the risks of attacks also need to be
considered. Instead of targeting at the maximum trust level as
shown in this paper, additional criteria for robustness need to be
incorporated in future work.

The proposed discrete Bayesian optimization performs
reasonably well for the combinatorial problem of network
design. For the kernel function based on the Hamming distance,
more hyper-parameters can help increase the flexibility of the
kernel, whereas a small number of hyper-parameters is not robust
enough for optimization. The limitation of using multiple hyper-
parameters is the training efficiency. More samples are required
to train a larger number of hyper-parameters, which makes it not
feasible for small problems. Combinatorial problems usually
have very large searching space. Introducing additional hyper-
parameters can potentially bring the benefit of faster
convergence.

In this work only single-objective optimization is applied.
The multi-facet trustworthiness metrics eventually will need a
multi-objective optimization approach for trust based design,
where multiple metrics are considered simultaneously and
tradeoffs need to be made. The scalability of the discrete
Bayesian optimization also requires further investigation, given
that the Bayesian update procedure in GPR is computationally
expensive when the number of samples is large. The proposed
scheme for large-scale networks will require further tests.
Enhancement such as sparse GPR is likely to bring better
scalability.
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