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Two-dimensional (2D) materials are outstanding platforms for exotic physics and emerging applications by
forming interfaces. In order to efficiently take into account the substrate screening in the quasiparticle energies of
2D materials, several theoretical methods have been proposed previously but are only applicable to interfaces of
two systems’ lattice constants with certain integer proportion, which often requires a few percent of strain. In this
work, we analytically showed the equivalence and distinction among different approximate methods for substrate
dielectric matrices. We evaluated the accuracy of these methods by applying them to calculate quasiparticle
energies of hexagonal boron nitride interface systems (heterojunctions and bilayers) and compared the results
with explicit interface calculations. Most importantly, we developed an efficient and accurate interpolation
technique for dielectric matrices that made quasiparticle energy calculations possible for arbitrarily mismatched
interfaces free of strain, which is extremely valuable for practical applications.
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I. INTRODUCTION

Two-dimensional (2D) materials and their interfaces have
shown unprecedented rich physics and promising applica-
tions in many areas, such as optospintronics [1,2], quantum
information [3,4], and biomedical research [5,6]. Emerging
phenomena such as nonconventional superconductivity [7,8]
and topologically protected states [9–12] may be created by
stacking 2D layers. Experimentally, growth of 2D materials,
achieved through physical epitaxy or chemical vapor depo-
sition (CVD), is typically supported on a substrate [13]. In
general, the electrical and optical properties of 2D materi-
als could be strongly modified by substrate screening. For
example, the 2D materials’ fundamental electronic gap can
be significantly reduced due to the dielectric screening from
surrounding layers (substrates) when forming heterointerfaces
[14,15]. Reliable prediction of substrate screening effects
from first-principles calculations is critical for accurate inter-
pretation of experimental results and guidance for design of
new materials.

Currently, widely used electronic structure methods such
as the HSE06 hybrid functional [16] may accurately describe
a large number of three-dimensional bulk systems but are
inadequate for low-dimensional systems such as ultrathin
2D materials because of their highly inhomogeneous dielec-
tric screening. The Koopman’s compliant hybrid functional
[17–19] or dielectric-dependent hybrid functional [20] are
necessary for the electronic structure of ultrathin 2Dmaterials,
where the fraction of Fock exchange α varies with the number
of layers [21] and needs to be determined for each individual
material and thickness.
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On the other hand, many-body perturbation theory (MBPT)
[22–24] can successfully describe the quasiparticle proper-
ties of 2D materials such as fundamental electronic gaps,
regardless of their thickness and dielectric properties. Gen-
erally, one- and two-particle excitations, experimentally
corresponding to charged excitations (e.g., photoemission)
and neutral excitation (e.g., optical absorption), can be accu-
rately obtained by the GW approximation [22,25–28] and the
Bethe-Salpeter equation [29–34] (BSE), respectively. How-
ever, explicit interface calculations at this level of theory are
extremely computationally demanding and not suitable for the
rapid evaluation of the effect of different substrates.

Therefore, several approximate methods have been pro-
posed to compute the quasiparticle properties of interfaces at
the cost of primitive cell calculations of the subsystems com-
posing the interface [15,35,36]. Typically, for weakly bonded
van deWaals (vdW) interfaces, the hybridization between lay-
ers is relatively weak and the dominant effect of the substrate
consists in modifying the dielectric screening of the material
of interest [36]. Within the GW approximation, this effect
can be described by approximating the dielectric matrix of
an interface in terms of contributions from individual subsys-
tems (the material and the substrate), as proposed in several
previous studies [15,35,36]. Despite the reasonable level of
accuracy achieved through these methods, the underlying
approximations and connections between different methods
have not been carefully evaluated. For example, partially ne-
glecting the local-field effect of substrate dielectric screening
(i.e., removing in-plane and/or out-of-plane off-diagonal ele-
ments of dielectric matrices [15,37,38]) has been a common
approximation, which was not carefully examined before. We
will test the applicability of such approximation in different
systems for both in-plane and out-of-plane components of
dielectric matrices.

2469-9950/2020/102(20)/205113(10) 205113-1 ©2020 American Physical Society

https://orcid.org/0000-0001-6231-9576
https://orcid.org/0000-0002-0123-3389
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.205113&domain=pdf&date_stamp=2020-11-11
https://doi.org/10.1103/PhysRevB.102.205113


GUO, XU, ROCCA, AND PING PHYSICAL REVIEW B 102, 205113 (2020)

Most important, previous methods cannot be applied to ar-
bitrarily lattice-mismatched 2D interfaces; namely, an integer
relation between lattice constants is necessary (L · N = L̃ · Ñ ,
where L and L̃ are the primitive lattice constants of the two
systems at interfaces and N (Ñ ) is an integer number). Forcing
lattice matching or the fulfillment of the above relation is
typically required for interface calculations. These constraints
either limit the choice of interfaces that can be studied or
require applying artificial strain that may strongly modify the
electronic structure. In this work, we develop a reciprocal-
space linear-interpolation method in the entire q + G space
to approximate interface dielectric matrices of arbitrarily mis-
matched systems. This approach makes MBPT calculations of
general interfaces possible and free of strain.

In order to demonstrate the accuracy and efficiency of
this methodology, we will consider applications to interfaces
involving hexagonal boron nitride (hBN). This material has
a wide band gap in ultraviolet region, with promising ap-
plications in deep ultraviolet light-emitting devices [39] and
as a host for spin qubits and single photon emitters [40] in
quantum information technologies [26,41]. As ultrathin hBN
is mostly supported on substrates in experimental measure-
ments, it is critical to accurately predict the effect of substrates
on electronic structure of hBN. This is also important for
evaluations of defect properties in 2D materials supported by
substrates [42,43]. We will use hBN with SnS2 substrates and
bilayer hBN in two conformations as prototypical examples
for our methodology validation in this study as shown in
Fig. 1.

For the rest of the paper, we first analytically derived
the connection among different approximations of dielectric
matrices with substrate screening [15,36,38,44,45]. We then
performed the separate GW calculations for subsystems from
interfaces with several approximate approaches to construct
the interface polarizability, and compared results with explicit
interfaces in order to evaluate the accuracy of these methods.
Next we examined the importance of off-diagonal elements of
polarizability in substrate screenings in various 2D interface
systems. Finally, we introduced our linear-interpolation tech-
nique, benchmarked it, and showed the quasiparticle energies
obtained by this technique for arbitrarily lattice-mismatched
2D interfaces.

II. METHODOLOGY

In this section, we will discuss the different methods and
concepts used in this paper, which are summarized in Table I.

A. Methods for interface polarizability

The interactions among quasiparticles within the GW ap-
proximation are described by the screened Coulomb potential
W = ε−1vC , where vC is the bare Coulomb interaction and
ε is the dielectric matrix. The inverse dielectric matrix is
defined by ε−1 = 1 + vCχ within the random-phase approx-
imation (RPA) [23]. The reducible polarizability χ can be
obtained from the irreducible polarizability χ0 (also known
as independent-particle polarizability) through the equation
χ = χ0 + χ0vCχ .

FIG. 1. Atomic structures of 2D interfaces (a) hBN/SnS2, (b) bi-
layer hBN with AB stacking, and (c) bilayer hBN with AA′ stacking.
The green balls denote boron atoms; the white balls denote N atoms;
the yellow balls denote sulfur atoms; and the silver balls denote Sn
atoms.

TABLE I. Overview of methodology in this work.

Methods Assumption

χeff-sum [Eq. (3)] Coulomb interaction between layers
χGSC
eff -sum Uses interface eigenvalue

in χeff-sum
χFW F
eff -sum Uses interface eigenvalue

and wave functions in GW with χeff-sum
χ0-sum [Eq. (4)] Coulomb interaction between layers,

equiv. to χeff-sum at RPA
χ -sum [Eq. (6)] No interaction between layers

Approximations Definition
ε−1-diag Neglects χ s off-diagonal elements
ε-diag Neglects χ s

0 off-diagonal elements

Interface structure Solution
Lattice match Direct summation
Special match q + G mapping
Arbitrary mismatch q + G bilinear interpolation
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For the purpose of our discussion, we first partition the
total (“tot”) vdW interface systems into material (“m”) and
substrate (“s”) subsystems [36]. Considering density response
of external field, we obtain

δnm = χm(δVext + vCδns),

δns = χ s(δVext + vCδnm), (1)

where δn is the density response and the reducible polarizabil-
ity χ is defined as the density-density response function to an
applied potential. If we consider the material subsystem (“m”)
as the probe, the total external potential includes the external
applied potential (δVext) and the Coulomb potential from the
charge response δns in the substrate (vCδns). (We assume the
material and substrate are connected only through interlayer
Coulomb interactions, with minimum wave-function overlap
between material and substrates, i.e., interlayer hybridiza-
tion.) Then we define an effective polarizability χeff as a
density response function of one subsystem to only the ex-
ternal applied potential (δVext), i.e., χ

m/s
eff = δnm/s/δVext. More

precisely, χm/s
eff can be given in terms of χm/s through Eq. (1):

χ
m/s
eff = δnm/s

δVext

= (1 − χm/svCχ s/mvC )
−1(χm/s + χm/svCχ s/m). (2)

When subsystems have negligible interlayer wave-function
overlap (i.e., hybridization), the total density response (δntot)
can be written as δntot = δnm + δns and then the total polariz-
ability χ tot of entire interface systems is

χ tot = δntot

δVext
= δnm

δVext
+ δns

δVext
= χm

eff + χ s
eff. (3)

In summary, this approach uses the reducible polarizabilty
of each subsystem (χm/s) where the Coulomb potential from
the other subsystem is considered part of external potential
in Eq. (1), to construct the effective reducible polarizability
χ

m/s
eff of each subsystem where such potential is excluded from

external potential in Eq. (2). Then we sum up χm
eff and χ s

eff to
obtain total reducible polarizability of interface systems χ tot

in Eq. (3), which will be denoted as “χeff-sum.”
As we noted above, interlayer wave-function overlap or

hybridization effect is not taken into account in the method
described above. The hybridization effect can change the
eigenvalues and eigenfunctions at the DFT level, which then
change the Green’s function (G) and dielectric matrix (in W)
in the GW calculations. Therefore, for systems with strong
interlayer hybridization, we can add the hybridization ef-
fect step by step. We can add corrections from ground-state
eigenvalues of interfaces to the χeff-sum methods, namely
“χGSC

eff -sum” method, which partially take into account the
effect of interlayer hybridization on eigenvalues at the DFT
level. Furthermore, we can also include interface ground
state wave function (“FWF”) and eigenvalues as inputs for
Green’s function (G), denoted as the “χFW F

eff -sum” method.
This method is close to GW calculations of an explicit inter-
face except with approximate dielectric matrix by Eq. (3).

From another perspective, if the interlayer hybridization or
wave-function overlap is negligible (similar to the condition
required above for δntot) [44,45], the total irreducible polariz-

ability χ tot
0 of the interfaces can be expressed approximately

as the sum of each subsystem contribution [15,37,38,44–46],

χ tot
0 = χm

0 + χ s
0, (4)

which we denote as the “χ0-sum” method. To further under-
stand the theoretical connection between different methods,
we rewrite Eq. (1) with χ0 through relation χ = χ0 + χ0vCχ

as

δnm = χm
0 (δVext + vCδns + vCδnm),

δns = χ s
0(δVext + vCδnm + vCδns). (5)

Here χ0 as the irreducible polarizability is the density re-
sponse function to total field δVtot, which includes the applied
field and bare Coulomb potential of the total interface
system, namely δVtot ≡ δVext + vCδntot. Using the above con-
dition δntot = δnm + δns for the interface, summation of the
two equations of subsystems in Eq. (5) results in δntot =
χ tot
0 δVtot = (χm

0 + χ s
0 )δVtot, which gives Eq. (4). This indicate

that the χeff-sum method and χ0-sum method are equiva-
lent under RPA. However, the χeff-sum method and χ0-sum
method are not equivalent when the diagonal approximation
is applied, i.e., neglecting off-diagonal elements of χ in the
former or χ0 in the latter, as we will discuss in the Sec. II B.
Therefore, we primarily used the χeff-sum method in this
paper.

If we further neglect the interlayer Coulomb interaction,
this will set vCδnm/s to zero in Eq. (1) and lead to χeff → χ .
This is at the noninteracting limit between two layers, where

χ tot = χm + χ s, (6)

and we name it the “χ -sum” method. In Sec. IVA, we
will compare the quasiparticle energies of interfaces with the
above approximated dielectric matrices with explicit interface
GW calculations.

B. Diagonal approximation of dielectric screening

For simple metals which may be treated as “jellium,”
the nearly translational invariance justifies the dielectric ma-
trix ε may be diagonal in reciprocal space [23]. However,
semiconductors and insulators that have strong inhomogene-
ity at interaction length scale require nonzero off-diagonal
elements of ε [23,47]. The effect from off-diagonal elements
of dielectric matrix ε is often referred to the “local field effect”
[23,47,48].

While the effect of off-diagonal terms in intrinsic dielec-
tric screening has been systematically studied [23,47,48],
the off-diagonal terms’ effect from environmental dielectric
screening has not been studied in detail. Here we will in-
vestigate the off-diagonal effect of environmental dielectric
screening through two different approaches, i.e., by applying
the diagonal approximation of dielectric matrix ε (“ε-diag,”
which directly relates to diagonal approximation of χ0) or in-
verse dielectric matrix ε−1 (“ε−1-diag,” which directly relates
to diagonal approximation of χ and χeff).

The ε-diag approximation has been used for substrate di-
electric screening in past work [15,37,38,46] when applying
the χ0-sum method, specifically, by removing the in-plane
off-diagonal components of substrate dielectric matrices. The
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ε−1-diag approximation has not been employed before, but
it is more convenient in the χeff-sum approach. Since the
off-diagonal elements of χ0 will contribute to the diagonal
elements of χ and ε−1 through the matrix inverse operation,
this is a weaker approximation than ε-diag. We compare these
two approximations considering specific numerical examples
in Sec. IVB.

C. Reciprocal-space linear-interpolation approach

The construction of interface structure models is often
complicated by the problem of lattice matching between two
subsystems. One of the main objectives of this work is to
propose a general approach that can be applied to subsystems
with different periodicity and crystal symmetry and that does
not require the application of strain to force the lattice match-
ing at the interface.

In general, in order to directly sum the subsystem con-
tributions to obtain the polarizability (and dielectric matrix)
of the full interface, one needs an exact correspondence of
the q + G vectors between the material and the substrate.
This requires finding two integer numbers N and Ñ such
that the lattice constants L (substrate) and L̃ (material) sat-
isfy the relation L · N = L̃ · Ñ . If N and Ñ can be chosen to
be reasonably small, calculations can be directly performed
for supercells containing N and Ñ repetitions, although this
approach often requires the application of a small percentage
of strain. However, if the required N or Ñ are large, several
methods have been proposed to make this type of calculation
practical [15,37,38,44–46]. The central idea is to consider unit
cells only and to perform a one-to-one mapping between the
reciprocal space q + G vectors of the material and substrate
[45] [see Fig. 2(a)]. This approach still requires the relation
L · N = L̃ · Ñ to be satisfied (possibly by applying a small
strain to modify L or L̃) but avoids supercell calculations. We
note that even if one applies the diagonal approximation for
χ0 or χ , the diagonal elements still contain both q and G
vectors, which requires this relation to be satisfied. While this
is a clear numerical improvement, a large number of q vectors
in the first Brillouin zone might still be required. Indeed,
one needs to sample q and/or q̃ point meshes fine enough to
ensure that the number of q points (Nq) satisfy the relation
L · Nq = L̃ · Nq̃ or equivalently Nq/Nq̃ = N/Ñ . Accordingly,
this approach becomes computationally demanding for large
N and/or Ñ . A more serious issue is that this mapping scheme
is not possible for interfaces with two systems with very
different crystal symmetries, e.g., hexagonal and lattice.

In this work, we propose a general method for arbitrar-
ily lattice-mismatched interfaces where it is not possible to
map the q + G vectors between the two subsystems. This
approach applies a linear interpolation of the matrix elements
on the substrate grid (q + G, q′ + G′) to obtain their rep-
resentation on the material grid (q̃ + G̃, q̃′ + G̃′), as shown
in Figs. 2(b) and 2(c). We note that we need to interpolate
q + G together between materials and substrates, which can
completely remove the symmetry constrain. Interpolation of
q only as done in the past work [49,50] will improve q-
sampling convergence speed but does not solve the periodicity
or symmetry mismatch problem at interfaces. As this pro-
cedure requires a sampling of the q vectors over the full

FIG. 2. Schematic diagram of (a) mapping between computed
data points of substrate (orange dots) and computed data points of
material (blue dots), where the reciprocal space q + G grid from the
substrate and q̃ + G̃ grid from the material are overlapping; (b) bi-
linear interpolation of the black cross point at P (from q̃ + G̃ grid)
from the four nearest data points A, B,C, D (red cross) when P is
inside the boundary of the q + G grid (orange dots); and (c) proximal
interpolation with the only nearest one point A when the interpolation
point is P at the boundary.

first Brillouin zone (FBZ), whenever necessary, the symmetry
operators are used to reconstruct the grid in the FBZ from the
grid in the irreducible Brillouin zone (IBZ). Without loss of
generality, we choose the same size for vacuum in the z direc-
tion for both subsystems; in this way, the same out-of-plane
reciprocal lattice Gz components are obtained. In order to sim-
plify the implementation, we neglect the in-plane off-diagonal
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elements of the substrate; i.e., we consider vCχ s
G,G′ (q) ≈

vCχ s
GG′ (q)δGx,G′

x
δGy,G′

y
. As shown later for specific numerical

examples (see Sec. IVC), this approximation works well in
practice for mismatched 2D interfaces. For each set of matrix
elements at fixed {Gz, G′

z}, the standard bilinear interpolation
technique [51] is used to obtain the corresponding in-plane
matrix elements vCχGz,G′

z
(q̃x,y + G̃x,y) in the material sub-

space, interpolated from vCχGz,G′
z
(qx,y + Gx,y) in the substrate

subspace. As shown in Fig. 2(b), the value of the response
function ε−1 − 1 = vCχ at each q̃ + G̃ point (denoted by the
black cross overlaying the blue dots) is obtained by interpo-
lating the values at the four nearest q + G points (denoted
by the red cross overlaying the orange dots). We note that
the bilinear interpolation method can be applied only if all
four nearest neighbours exist within the boundaries of q + G
space; otherwise, the standard proximal interpolation method
is applied, which considers only the nearest point on the grid
(most likely at the boundary), as shown in Fig. 2(c). However,
the values close to the boundary of q + G space are very
close to zero as shown in Fig. 3(a). The bilinear interpolation
method is fully general regardless of crystal symmetry, which
can be applied to arbitrary interfaces.

By applying the interpolation method, we can obtain sub-
strate vCχ matrix elements at the material’s q̃ + G̃ grids,
without any artificial strain [15,44,45]. As shown in Fig. 3(a),
the orange points are the vCχGz,G′

z
(qx,y + Gx,y) values com-

puted at the substrate momentum space with full BZ, and then
we interpolate them to the blue points on the grids of material
momentum space vCχGz,G′

z
(q̃x,y + G̃x,y) (only elements in IBZ

are shown here). The blue points fall smoothly on the surface
of orange points, which show a good interpolation quality. An
enlarged picture is also shown in Fig. 3(b). To show the gen-
erality of our method, we applied this interpolation method
for hBN/phosphorene(BP) interface, where BP has a rectangle
lattice, sharply different from the hexgonal lattice hBN has
(see Fig. 1 in the Supplemental Material [52]). We show again
with our interpolation method that one can obtain the matrix
elements of substrates at the material q̃ + G̃ grids. Then we
can compute the quasiparticle energies of this interface, at two
systems’ natural lattice constants, with the χeff-sum method.

III. COMPUTATIONAL DETAILS

A. Computational workflow

The workflow of GW calculations for the interface is
structured as follows. We first compute the reducible polar-
izabilities (χ ) for each subsystem separately and then we
use them to obtain the effective polarizabilities (χm/s

eff ) using
Eq. (2). In the case of lattice mismatch between the two
subsystems, the matrix elements of the polarizability χ of the
substrates are obtained on the same reciprocal space grid of
the material [monolayer (ML) hBN in the practical applica-
tions of this work] by using the linear interpolation method
described above. Next we sum them to obtain χ tot (i.e., the
χeff-sum method).

Finally, in order to include the screening effect of the
substrate on the material, the GW calculations are performed
for the standalone hBN ML with the χ tot obtained in the
previous step. As we will discuss later, one can achieve fur-
ther improvement for interfaces with strong hybridization by

FIG. 3. 3D plot of in-plane diagonal elements of function ε−1 −
1 of SnS2 substrate, with G vector subset (Gz, G′

z ) = (0, 0) in (a) full
reciprocal space and (b) an enlarged portion of panel (a) that contains
the irreducible Brillouin zone of the interpolated points (blue) in hBN
q̃ + G̃ subspace. The qi + Gi, i = x, y are in-plane reciprocal space
Cartesian coordinate in atomic unit (Bohr−1). The orange points
are directly computed data points (“DIR CALC”) in SnS2 substrate
q + G subspace, while the blue points are interpolated points (“IN-
TERP”) to (hBN) material q̃ + G̃ subspace. Note that the orange
points used for interpolating blue points in panel (b) are beyond the
first Brillouin zone of the substrate q + G subspace. The single point
at zero is the head element of ε−1 − 1, which is exactly zero for both
material and substrate.

including corrections from ground-state eigenvalues and wave
functions of explicit interfaces.

B. Numerical parameters

In this work, we mainly focus on the quasiparticle ener-
gies of monolayer hBN/substrate interfaces as prototypical
systems (where as substrates we will consider monolayer
hBN itself and monolayer SnS2). Density functional theory
(DFT) ground-state calculations based on the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional [53] have
been performed using the open source plane-wave code

205113-5



GUO, XU, ROCCA, AND PING PHYSICAL REVIEW B 102, 205113 (2020)

QUANTUM ESPRESSO [54] with optimized norm-conserving
Vanderbilt (ONCV) pseudopotentials [55] and a 80-Ry wave-
function cutoff. From structural relaxation, we obtained lattice
constants of 2.51 (Å) and 3.70 (Å) for the free-standing ML
hBN and SnS2, respectively.

GW calculations with the Godby-Needs plasmon-pole ap-
proximation [56,57] (PPA) were then performed using the
YAMBO [58] code. We chose PPA as a showcase for lower
computational cost, but we can apply the same χeff-sum
and reciprocal-space interpolation method with full fre-
quency integration as well without technical difficulty, with
more computational cost. Importantly, to the best of our
knowledge, only PPA models or static coulomb hole plus
screened exchange (COHSEX) approximation were used in
past calculations for the dielectric screening of substrates
[15,36–38,44–46] and the obtained results were reasonably
accurate. We used the same plasmon frequency for all calcu-
lations ωp = 27.2 eV and found little variation of the results
(i.e., within 20 meV with ωp from 24.5 to 30 eV).

The distance between the nearest periodic repetitions along
the vacuum direction was set to be 20 Å. In order to speed
up convergence with respect to vacuum sizes, a 2D Coulomb
truncation technique was applied to dielectric matrices and
GW self-energies [59]. For bilayer hBN systems, we set the
interlayer distance to the bulk value of 3.33(Å) for both
of the two different stacking configurations considered here
(AA′ and AB). The hBN/SnS2 interlayer distance was set to
3.31 (Å) as obtained from structural relaxation with vdW-
corrected functionals [60,61].

For each free-standing ML unit cell, the GW self-energy
cutoff is set to 15 Ry. The number of bands is set to 1000
(1500) for hBN (SnS2) unit cell calculations. The exchange
self-energy cutoff is set to 40 Ry. We use a 30×30×1
(20×20×1) k-point sampling for ML-hBN (ML-SnS2) unit
cell calculations, unless specified.

GW calculations for the full explicit heterointerfaces have
also been performed to obtain “exact” reference results to
benchmark the different methods for the substrate screening
effects (see Sec. IVA). The computational parameters for the
full interface are set to keep consistency between supercells
and unit cell calculations. Additional computational details
and convergence tests can be found in the Supplemental
Material [52].

IV. RESULTS AND DISCUSSION

A. Numerical comparison of different methods
for substrate screening

After presenting in Sec. II with different approaches to
approximate the total dielectric screening of an interface be-
tween two weakly interacting subsystems, in this section we
discuss their accuracy in practical GW calculations. Results
for explicit interfaces will be used as a reference. Specifi-
cally, we computed the GW quasiparticle bandgaps of three
interfaces: hBN/SnS2, 2L-AB stacking hBN with two layers’
atoms misaligned, and 2L-AA′ stacking hBN interface with
two layers’ atoms aligned (the corresponding atomic struc-
tures are shown in Fig. 1). In order to keep the comparison
of different methodologies as simple as possible, the calcula-
tions in this section are performed with fully commensurate

FIG. 4. hBN direct band gap at K from several interfaces with
different approximations of substrate screening, compared with ex-
plicit interface calculations. The black dashed line is the direct band
gap at K of free-standing ML hBN. For each symbol in the figure,
“DIR HS” with black cross denotes direct GW calculation of explicit
heterostructure; “χeff-sum” with blue circle denotes sum of effective
polarizability approach by Eq. (3) with ground-state inputs from
free-standing ML hBN; “χGSC

eff -sum” method with red down triangle
denotes “χeff-sum” method with additional eigenvalue corrections
from ground state interface eigenvalues (“GSC”); “χFW F

eff -sum” with
magenta up triangle denotes “χeff-sum” method with both ground-
state eigenvalues and wave functions from interfaces; and “χ -sum”
denotes noninteracting “χ-sum” method by Eq. (6).

interfaces, for both explicit and approximate interface calcu-
lations, as shown in Fig. 4.

From the explicit interface results in Fig. 4, we see that
the direct band gap of hBN at the hBN/SnS2 interface (black
cross in the third column) is reduced by 0.8 eV compared
with the isolated ML hBN (dashed line). This value is
about four times of the band-gap reduction for the bilayer
hBN with respect to the isolated ML hBN (black crosses
in the first and second columns). This is because ML SnS2
has a much stronger dielectric screening (ε∞ ≈ 17) and a
smaller electronic band gap (≈ 2 eV) compared to ML hBN,
which has ε∞ ≈ 5 and an electronic band gap of ≈ 7 eV.
This indicates the positive correlation between electronic
band-gap reduction and substrate dielectric screening, similar
to previous discussions [62–64].

Second, we find that the effective polarizability approach
results (χeff-sum method, blue circle) are consistently in good
agreement with the ones from explicit interface GW calcu-
lations (direct, black cross), i.e., within 0.2 eV. We improve
the agreement by 50 meV with additional corrections from
ground-state eigenvalues of interfaces (χGSC

eff -sum method, red
triangle), which partially take into account the effect of inter-
layer couplings on eigenvalues at the DFT level. Moreover, by
using interface ground-state wave functions and eigenvalues
(FWF) as inputs for Green’s function calculations, the re-
sults of the effective polarizability approximation (χFW F

eff -sum
method, green square) are further improved, i.e., with only
10 meV difference from the explicit interface GW calcula-
tions. While a similar approach was used in Ref. [44], the
χFW F
eff -sum method has a computational cost similar to that
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FIG. 5. GW results for hBN direct band gap at K using χeff-sum
or equivalently χ0-sum method to examine the effect of diagonal
approximations. “Full matrix” in black cross denotes full dielectric
matrices without any diagonal approximation as reference; “in-plane
ε−1-diag” in red downward-pointing triangle denotes diagonal ap-
proximation to in-plane elements of ε−1; “out-of-plane ε−1-diag”
in dark blue right-pointing triangle denotes diagonal approxima-
tion to out-of-plane elements for ε−1; “in-plane ε-diag” in magenta
upward-pointing triangle denotes diagonal approximation to in-plane
elements of ε; and “out-of-plane ε-diag” in light blue left-pointing
triangle denotes diagonal approximation to out-of-plane elements
of ε.

of the full interface GW calculation (although the evaluation
of the dielectric matrix is more efficient) and is much more
demanding than the other methods in Fig. 4 and Table I.
Therefore, χeff-sum and χGSC

eff -sum provide the best compro-
mise between accuracy and computational cost. We note that
for explicit hBN/SnS2 interface, we had to apply 1.5% strain
to obtain commensurate supercells, which may explain why
this interface has slightly larger difference between χeff-sum
and explicit calculation than bilayer hBN.

In sharp contrast to the methods discussed above, the
noninteracting interlayer method based on Eq. (6) (χ -sum
method, black diamond) gives results far from the explicit
interface reference (e.g., with an error of about 0.6 eV). This
indicates that the interlayer Coulomb interaction plays a dom-
inant role in the electronic band-gap reduction by substrate
screening.

B. Diagonal approximation of substrate dielectric screening

In this section, we will compare different diagonal
approximations for the screening considering different
numerical examples. With “in-plane ε−1-diag,” we will denote
an approximation that discards the in-plane off-diagonal
elements of reducible polarizability χ in reciprocal space, i.e.,
χGG′ (q, ω)δGx,G′

x
δGy,G′

y
. Similarly, “out-of-plane ε−1-diag”

will denote an approach that does not include the out-of-plane
off-diagonal elements of polarizability in reciprocal space,
i.e., χGG′ (q, ω)δGz,G′

z
. Analogous definitions will be used for

ε-diag.
The GW quasiparticle gaps with different diagonal approx-

imations for the hBN bilayer in two different confomations
(AA′/AB) and the hBN/SnS2 interface are shown in Fig. 5.

We find that for both the ε−1 and ε-diagonal approxima-
tions, neglecting out-of-plane off-diagonal elements of the
substrate (“out-of-plane ε−1-diag” and “out-of-plane ε-diag,”
denoted by dark blue right-pointing triangle and light blue
left-pointing triangle, respectively) causes a large discrepancy
of the bandgaps (i.e., from 0.2 to 0.8 eV) with respect to
the “exact” result obtained from the full screening matrix
(“full matrix,” black cross). In contrast, the results obtained
by neglecting in-plane off diagonal elements (in-plane ε−1/

in-plane ε-diag, red downward-pointing triangle and magenta
upward-pointing triangle) are similar to those with the full
screening matrix with deviations within 50 meV. This means
the inhomogeneity effect of out-of-plane substrate screening
on quasiparticle energies is much stronger than the one of in-
plane substrate screening, because the out-of-plane direction
is along the nonperiodic (vacuum) direction with dramatically
inhomogeneous charge distribution, compared to the in-plane
periodic direction.

Besides the overall difference of diagonal approximation
along different directions, we also distinguish the difference
between ε−1-diag and ε-diag approaches in each case. (1)
Along the in-plane direction, the difference between different
approaches is negligible, i.e., less than 10 meV. (2) Along the
out-of-plane direction, the out-of-plane ε−1-diag results (dark
blue rightward-pointing triangle) are much closer to the full
dielectric matrix results (black cross) than the out-of-plane ε-
diag results (light blue left triangle) in Fig. 5. This is consistent
with our earlier speculation that the ε−1-diag may be a better
(weaker) approximation, because the off-diagonal elements of
irreducible polarizability χ0 contribute to χ or ε−1 during its
matrix inversion, which is completely missing in the ε-diag
approximation.

Moreover, the in-plane inhomogeneity is relatively larger
when there is stronger interlayer coupling with atoms aligned
perfectly for chemical bonding. For example, the in-plane
inhomogeneity of bilayer hBN with atoms aligned [e.g.,
2L AA′ hBN in Fig. 1(b); both in-plane ε−1-diag (red
downward-pointing triangle) and in-plane ε-diag (magenta
upward-pointing triangle) results have 40-meV difference
from the “full matrix” results in the first column of Fig. 5] is
larger than the interfaces with atoms misaligned [e.g., 2L AB
hBN and hBN/SnS2 hectorstructure in Figs. 1(a) and 1(c);
both in-plane ε−1-diag and in-plane ε-diag results have no
difference from “full matrix” results in the second and third
columns of Fig. 5].

C. Lattice mismatched hBN/SnS2 interface

In order to benchmark the reciprocal-space linear-
interpolation method introduced in Sec. II C and Table I, we
consider the hBN/SnS2 interface. A strain of 1.5% was ap-
plied to SnS2 to match the hBN lattice constant with a 2:3
ratio in each direction of the plane (namely 2LSnS2 = 3LhBN).
By using a commensurate q-point sampling for the two sub-
systems with a 2:3 ratio, a mapping of the q + G vectors
is possible and traditional methods for the substrate effect
can be applied to produce a reference results for our new
interpolation method (which, instead, will be used with an
incommensurate q-point sampling). We computed the GW
band edges near the high-symmetry point K of hBN on the
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FIG. 6. GW band structure of hBN at hBN/stretched SnS2 in-
terface, referenced to valence band maximum (VBM) by using
“χeff-sum” method. The blue solid line is computed with com-
mensurate q-point sampling with the reciprocal space mapping
approach, while the red and black dashed line results are computed
with incommensurate q-point sampling with the reciprocal-space
linear-interpolation approach. Panel (a) shows both valence and con-
duction band edges; panel (b) shows only the conduction band edge
close to K .

SnS2 substrate with the χeff-sum method at different k-point
samplings, as shown in Fig. 6. The mesh for q-point sampling
was chosen to be identical to the k-point sampling. Specifi-
cally, the reference calculations were performed with the hBN
unit cell calculation with 20×20×1 and 30×30×1 k-point
sampling for the units cells of SnS2 and hBN, respectively
(this choice satisfies the 2:3 ratio for each in-plane direction).
The reference result obtained from the q + G mapping is
shown in Fig. 6 (blue curve labeled by “Nk 20 mapping”).
To apply our interpolation technique, it is not necessary to
use commensurate grids and we compare instead the results
for two different choices of the q-point sampling for SnS2.
Specifically, in Fig. 6 we show the results for the 22×22×1
(red dashed line, “Nk 22 interp.”) and 24×24×1 (black dashed
line, “Nk 24 interp.”) q-point grids, which do not allow for
a mapping of the reciprocal space vectors and would be im-
possible to treat without our interpolation method. The results
in Fig. 6(a) show that the GW band structure with interpo-
lation (red and black dashed lines) is nearly identical to the

FIG. 7. GW band structures of hBN with stretched SnS2 sub-
strate (“hBN/stretched SnS2,” red dash-dotted line), hBN with SnS2

substrate with no strain (“hBN/SnS2,” blue solid line), and com-
pressed hBN with SnS2 substrate (“compressed hBN/SnS2,” black
dashed line), respectively.

one based on the mapping (blue solid line), with differences
smaller than 1 meV [as can be seen by enlarging the conduc-
tion band edge in Fig. 6(b)]. This comparison demonstrates
the excellent numerical accuracy of our linear interpolation
method, which could have also been expected from the high
quality of the interpolation in Fig. 3.

Finally, we use our interpolation method to better under-
stand the effect of the strain on quasiparticle energies. In
Fig. 7, the blue curve corresponds to the the hBN band struc-
ture on the SnS2 substrate without strain for either system
as obtained from the interpolation scheme described above.
These results are compared with those obtained for the in-
terface by applying strain either to compress the hBN lattice
parameter or to stretch SnS2. We found that even a 1.5%
compressive strain for hBN (black dashed line), the conduc-
tion band edge changes by 0.2 eV. Since we are focusing
on the band structure of hBN states, the application of the
strain to the SnS2 substrate leads to negligible changes (red
dash-dotted line). This result highlights the high sensitivity of
quasiparticle band structures to strain.

We note that for a proof of principle and benchmark pur-
pose, we chose systems with similar crystal symmetry, i.e.,
hexagonal lattice, in this work. However, our interpolation
method can be applied to general interfaces with very different
crystal symmetry, e.g., interface between hexagonal and rect-
angle lattices, as the example of hBN/phosphorene interface
shown in the Supplemental Materials Fig. 1 [52]. This is not
possible by using the previous q + G mapping approach. Our
reciprocal-space linear-interpolation method makes possible
the GW calculations of interfaces composed by two materials
with very different lattice parameters and symmetry, at the
cost of primitive cell calculations only.

V. CONCLUSION

In this work, we theoretically and numerically exam-
ined the existing methods to approximate substrate dielectric
screening effect on quasiparticle energies, through hBN
heterostructures as prototypical examples. We clarified the
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theoretical equivalence between the sum of effective reducible
polarizability approach (χeff-sum) and sum of irreducible po-
larizability of interface systems (χ0 sum) at the RPA level.
We numerically compared the GW calculations of 2D in-
terfaces with several approximations and found excellent
agreements between χeff-sum and the explicit interface calcu-
lations. Further improvement can be achieved by including the
ground-state corrections of eigenvalues (and wave functions)
from explicit interfaces. We further evaluated the importance
of nondiagonal elements of ε and ε−1 from substrates on
quasiparticle energies of 2D interface. Most important, we
developed an accurate reciprocal-space linear-interpolation
technique for arbitrarily lattice-mismatched interfaces, which
can be used to compute the interface polarizability for GW
quasiparticle energies without any artificial strain, at the cost
of only primitive cell calculations.
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