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Abstract

Non-equilibrium dynamics of interfaces and mixing are omnipresent in fluids, plasmas and materials,
in nature and technology, at astrophysical and at molecular scales. This work investigates dynamics of an
interface separating fluids of different densities and having interfacial mass flux, and being influenced by
the acceleration and the surface tension. We derive solutions for the interface dynamics conserving mass,
momentum and energy, find the critical acceleration values separating stable and unstable regimes, and
reveal the macroscopic inertial mechanism as primary mechanism of the interface stabilization. We
show that while the surface tension influences only the interface, its presence leads to formation of
vortical structures in the bulk. For large accelerations the conservative dynamics is unstable, leading to
the growth of interface perturbations and the growth of the interface velocity. This new instability can be
unambiguously discerned from other instabilities; for strong accelerations it has the fastest growth-rate
and the largest stabilizing surface tension value when compared to Landau-Darrieus and Rayleigh-
Taylor instabilities. We further find the values of initial perturbation wavelengths at which the
conservative dynamics can be stabilized and at which it has the fastest growth. Our results agree with
existing observations, identify extensive theory benchmarks for future experiments and simulations, and
outline perspectives for application problems in nature and technology.

1. Introduction

Non-equilibrium transport, interfaces and mixing are omnipresent in nature and technology at astrophysical and
at molecular scales, and in high and low energy density regimes [1]. Thermonuclear flashes on the surface of
compact stars, the fingering of the interstellar medium along the edge of a black hole, the formation of hot spotin
inertial confinement fusion, the particle-field interactions in imploding Z-pinches, the coronal mass ejections in
the Solar flares, the plasma instabilities in the Earth ionosphere, the deep ocean convection events in the polar
region, the pollutant dispersion in the atmosphere, plasma thrusters, nano-fabrication, fossil fuel extraction, and
premixed combustion —are examples of processes governed by the non-equilibrium interfacial dynamics [2-19].
These realistic environments are often characterized by sharply and rapidly changing flow fields and by small
effects of dissipation and diffusion, which result in the formation of discontinuities (referred to as fronts or as
interfaces) between the flow non-uniformities (phases) at macroscopic (continuous) scales [11]. Non-equilibrium
dynamics of interfaces and mixing are challenging to study in their direct manifestations in theory, experiment and
simulations, and are a source of paradigm shifts in science, mathematics and engineering [1, 2, 18].

In this work we systematically investigate the dynamics of the interface that separates fluids of different
densities, has the interfacial mass flux, and is influenced by the acceleration and the surface tension [20].
Through the general theoretical framework [21-23], we derive solutions for the interface dynamics conserving
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mass, momentum and energy, find the critical acceleration values separating stable and unstable regimes, and
reveal the macroscopic inertial mechanism as primary mechanism of the interface stabilization. We show that
while the surface tension influences only the interface, its presence leads to formation of vortical structures in the
bulk. For large accelerations the dynamics is unstable, leading to the growth of the interface perturbations and
the growth of the interface velocity. This instability of the conservative dynamics can be unambiguously
discerned from other fluid instabilities.

The paper is organized as follows. Following the Introduction in section 1, we provide the Method in
section 2, including the governing equation (2.1), the theoretical approach (2.2), and the fundamental solutions
(2.3). We present in section 3 the Results of our analysis for the conservative dynamics, and for the dynamics of
the Landau-Darrieus and Rayleigh-Taylor instabilities influenced by the acceleration and the surface tension.
This includes the fundamental solutions (3.1), the systematic study of the properties of the inertial dynamics free
from surface tension (3.2) and with surface tension (3.3), the focused analyses of the accelerated dynamics free
from surface tension (3.4) and with surface tension (3.5), the investigations of the mechanisms of the interface
stabilization and destabilization (3.6) and the characteristic scales (3.7), as well as the theory outcomes for
experiments and simulations (3.8). We finalize the work with Discussion in section 4, and provide
Acknowledgements, Data availability, Author’s contributions, References, Tables, and Figure captions and
Figures in sections 5-10.

When looking from a far field, an observer ordinarily considers two kinds of discontinuities separating the
flow phases: a front and an interface [20]. The front has zero mass flux across it. Through the interface the mass
can be transported. The fluid phases are broadly defined: These can be the distinct kinds of matter or the same
kind of matter with distinct thermodynamic properties. To describe the multi-phase flow, a boundary value
problem should be solved by balancing the fluxes of mass, momentum and energy at a freely evolving
discontinuity. While the boundary value problems are challenging to investigate, this approach has a number of
advantages, and the boundary value problem solution has high predictive capability in a broad parameter
regime [21].

The unstable accelerated fronts are represented by Rayleigh-Taylor and Richtmyer-Meshkov instabilities
[24-27]. The fundamental properties of Rayleigh-Taylor and Richtmyer-Meshkov dynamics in the scale-
dependent early-time and late-time regimes and in the self-similar interfacial mixing regime are well captured by
the group theory approach and by the linear and weakly nonlinear theories [28—31]. For interfaces, the classical
theoretical framework for the problem was developed by Landau [32]. It considered the dynamics of ideal
incompressible fluids, balanced at the interface the fluxes of mass and momentum and postulated the special
condition for the perturbed mass flux [32]. Several seminal models further connected this framework to realistic
environments in high energy density plasmas and in reactive and super-critical fluids [33—38].

The dynamics of interfaces with interfacial mass flux is along-standing problem in science, mathematics and
engineering [1]. It has wide-ranging applications in plasmas (dynamics of ablation front influencing the hot spot
formation in inertial confinement fusion), astrophysics (thermonuclear flashes determining the nuclear
synthesis in type-Ia supernova), material science (material transformations under high strain rates in nano-
fabrication), and industry (scramjets) [ 1, 2]. To tackle these research frontiers and to solve a broad class of
problems, the theory of interface dynamics was recently developed [21-23].

This theory elaborated the general framework for the problem of the interface stability, directly linked the
microscopic transport at the interface to macroscopic fields in the fluids’ bulk, and reported the mechanisms of
the interface stabilization and destabilization never previously discussed [21-23]. The key discoveries — the
inertial mechanism of the interface stabilization, the new fluid instability of the accelerated interface, and the
chemistry-induced instabilities — identified the fundamental properties of the interface dynamics. They also
resolved the long-standing prospect of Landau [32], by showing that the classical Landau’s solution for Landau-
Darrieus instability is a perfect mathematical match [21-23].

The theory [21-23] considered the inertial and the accelerated interface dynamics for ideal incompressible
fluids free from stabilizations caused by interactions of particles at molecular scales [ 14—17]. Realistic processes
are usually accompanied by dissipation, diffusion, compressibility, radiation transport, stratification, surface
tension and other effects [3—15, 39—43]. The influence of these effects on the interface dynamics call for
systematic investigations [21].

Here we study the interface dynamics with interfacial mass flux in the presence of acceleration and surface
tension. The fluids are ideal and incompressible, with negligible stratification and densities variation, the flow is
two-dimensional, periodic and spatially extended. The destabilizing acceleration is directed from the heavy to
the light fluid. Macroscopically, the surface tension is understood as a tension at the phase boundary between the
flow phases [20, 21]. Microscopically, the surface tension is caused by anisotropy of interactions between the
particles near the interface which results in energy consumption with the increasing interface area [14, 20, 41].
Physically, the surface tension is always present in a multiphase flow. Mathematically, the surface tension is
accounted for through the pressure modification in the governing equations [14, 20, 21]. We investigate the
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interplay of the macroscopic and microscopic stabilizations due to the inertial effect and surface tension,
respectively, with the destabilizing acceleration in the interface dynamics with interfacial mass flux.

In order to address this task, we advance and employ the general method [21, 22] to rigorously solve the
linearized boundary value problem conserving mass, momentum and energy. We find that depending on the
acceleration and the surface tension, the dynamics can be stable or unstable. In the stable regime, the flow may
have non-perturbed flow fields in the bulk and a constant interface velocity. The conservative dynamics is
unstable only when it is accelerated and when the acceleration value exceeds a threshold. This threshold value
combines the contributions of the inertial and the surface tension mechanisms and is finite for zero surface
tension. The unstable dynamics couples the interface perturbations with the potential and vortical components
of the velocity fields in the fluids’ bulk and is shear free at the interface. It describes the standing wave with the
growing amplitude, and has the growing interface velocity. This instability of the conservative dynamics has
unique quantitative and qualitative properties unambiguously differentiating it from other fluid instabilities.
Particularly, it has the fastest growth-rate and the largest stabilizing surface tension value in the extreme regime
of strong accelerations, when compared to the Landau-Darrieus and Rayleigh-Taylor instabilities. We further
find the critical and maximum values of the initial perturbation wavelengths at which the fluid instability of the
conservative dynamics can be stabilized and at which its growth is the fastest. Based on the obtained results, we
identify the theory benchmarks for future experiments and simulations and for application problems in nature
and technology [1-15, 39-45].

The problem of the interface dynamics with the interfacial mass flux is a corner-stone problem of physics,
mathematics and engineering [1, 2]. On the side of physics, one needs to grasp non-equilibrium dynamics of
interfaces and mixing in order to better understand a broad range of natural phenomena, from celestial events to
molecules [3—10]. On the side of mathematics, this problem is even more challenging than the Millennium
problem of the Navier-Stokes equation, since, in addition to solution of nonlinear partial differential equations
in the bulk, it requires a solution of a boundary value problem at an unstable freely evolving interface and an ill-
posed initial value problem [1, 18-23, 46, 47]. In engineering, the multiphase flows are critical to technological
and industrial processes, including nano-fabrication, gas and oil extraction, and purification of water [11-17].
Hence, the problem studied in this paper - the interface dynamics with interfacial mass flux - fits naturally into
the scope of Physica Scripta and the Focus Issue ‘“Turbulent Mixing and Beyond’ [48].

The problem solution requires one to develop a rigorous and general theory applicable in a broad range of
conditions [20-23, 46]. It also demands the elucidation of the so-called third prospect of Landau — the 1962
Noble Laureate and one of founders of modern theoretical physics [20]. The resolutions of the two other
prospects of Landau — the theory of phase transitions and the theory of superconductors — were recognized with
Noble prizes in 1982 and 2003 [20, 49]. Our theoretical approach enables a rigorous, general and systematic
treatment of the interface dynamics, and finds that the classical Landau’s solution for the Landau-Darrieus
instability is a perfect mathematical match requiring energy imbalance at the interface [21-23, 46]. Our first
work on the subject [23] was selected by Physica Scripta as Research Highlight [50].

Our theoretical approach reveals the physics of the interface dynamics through the analysis of mathematical
attributes of rigorous analytical solutions, including, e.g., the direct link of the properties of macroscopic fields in
the bulk to microscopic transport at the interface, the inertial stabilization mechanism, and the new fluid
instability [21-23, 46]. It calls for further systematic developments, including, e.g., the theory of ablative
Rayleigh-Taylor instability in fusion plasmas, the theory of D’yakov-Kontorovich instability of shock waves, and
the bridge of the concepts of the linear response theory, self-similarity and interfaces [20-23, 46]. The present
work studies the interface dynamics and focuses on the interplay of the destabilizing acceleration with
macroscopic and microscopic stabilizations due to the inertial effect and the surface tension, respectively, in the
interface dynamics with the interfacial mass flux.

2. Method

2.1. Governing equations
Conservation laws: In the inertial frame of reference, the dynamics of ideal fluid is governed by the conservation
of mass, momentum, and energy as

Ip + Opvi 0 Opvi + Apviv; n oP _ OE " O(E + P)v;

— YU 0) A
ot Ox;

o ~0 M
ot Ox; ot 8xj Ox;

Here x; are the spatial coordinates, (x;, %, x3) = (x, y, z), tistime, (p, v, P, E) are the fields of density p,
velocity v, pressure Pand energy density E, and eis specific internal energy [20-23]. The inertial frame of
reference is referred to the frame of reference moving with constant velocity V; relative the laboratory frame of
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reference; for definiteness V, = (0, 0, Vj) [21, 22]. The governing equations equation (1) are augmented with
the closure equation — the equation of state associating the internal energy and pressure [20].

For a system of two fluids with different densities separated by an interface, we mark the fields of the heavy
(light) fluid as (p, v, P, E)p), and we introduce a continuous local scalar function 8 (x, y, z, t) to describe the
interface. The function valueis # = 0 atthe interfaceanditis @ > 0 (@ < 0)in the heavy (light) fluid [21-23,
28, 29]. By using the Heaviside step-function H (f) we represent the flow fields in the entire domain as
(p, v, P, E) = (p, v, P, E)yH(0) + (p, v, P, E))H(—0)[18,19,21-23].

Boundary value problem: At the interface, the balance of fluxes of mass and normal and tangential
components of momentum and energy obey the boundary conditions [21-23, 28, 29]:

1 3 3 32
Gonl o, [(”MH:O’ [MT]ZO, [(;.n)(w+J_2)]:0 &
P p 2p

where the jump of functions across the interface is denoted with [....]; the unit vectors normal and tangential at
the interface arenand Twith n = V60/|V0|and (n - 7) = 0; the mass flux across the moving interface is
j = p(md/|V0| + v); the specific enthalpyis W = e + P/p [21-23,28,29].

The boundary conditions at the interface equation (2) are derived directly from the conservation laws in the
bulk equation (1) in the inertial frame of reference. They are exact and are independent of the velocity V; of the
inertial frame of reference [21]. This general formulation allows us to stay free from traditional postulate of the
constancy of interface velocity [20], and to examine the sensitivity of the dynamics to the boundary conditions at
the interface, including the flow fields’ structure and the interface stability [46].

We consider the spatially extended flow, which is unbounded in the z direction and is periodic in the (x, y)
plane. The heavy (light) fluid is located in the lower (upper) sub-domain. The boundary conditions at the outside
boundaries of the domain are

Vilz—oo = Vi = (0,0, Vi),  Vil;oi0c = Vi = (0, 0, V) 3)

with the constant velocity magnitude(s) V), figure 1.

Interface velocity: The interface velocity in the laboratory frame of reference is V. For the steady planar
interface normal to the mass flux, the interface velocity is constant; this velocity can be chosen equal to the
velocity of the inertial frame of reference as Vy = V. For the non-steady non-planar interface arbitrarily
positioned relative to the mass flux, the interface velocity V and the velocity of the inertial frame of reference V
aredistinct, V = V; [21]. In this general case, the interface velocity V obeys the relation

Vn = —vnly—g = —G/P)n|9:0 4)

Flow configuration: The flow is subject to the acceleration and the interfacial surface tension. The
acceleration gis directed along the z direction from the heavy fluids to the light fluid, as g = (0, 0, g), g > 0.
The interfacial surface tension is understood as the tension between the fluid phases, and is characterized by the
surface tension coefficient o, o > 0.

We consider a sample case of a two-dimensional flow periodic in the x direction, free from motion in the y
direction and spatially extended in the z direction. The interfacial function @ is set as

* * *\2
b= 240, =22, vo— (ai, 0, 1), Vo] = |1+ (81) (5)
ot Ox Ox

Figure 1 illustrates the schematics of the dynamics in equations (1)—(5) in a far field (not to scale). The heavy
(light) fluid with the density p;, ;) islocated in the lower (upper) part of the domain and has the uniform velocity
field Vi) = (0, 0, Vj,(;)) marked by arrows far from the interface. Blue color marks the interface between the
fluids with solid (dashed) line for the perturbed (planar) interface. The acceleration g = (0, 0, g), g > Ois
directed from the heavy to the light fluid and is along the z-direction. In this configuration the gradients of the
pressure and density are directed oppositely, and the acceleration destabilizes the dynamics; the case of zero
mass flux corresponds to Rayleigh-Taylor instability (RTI). The surface tension o, ¢ > 0is present at the
interface. The flow is two-dimensional.

Some discussion is required on nature of the acceleration [18—30]. The acceleration can destabilize the
dynamics when the gradients of pressure and density are directed oppositely [24—27]. This can occur when the
flow is a subject to acceleration directed from the heavy to the light fluid and the acceleration is due the body
force. This can also occur when the fluid interface moves with the acceleration directed from the light to the
heavy fluid [24-27, 51]. The former case is illustrated by water flowing from an overturned cup under the
influence of gravity [24, 51]. The latter case is observed in experiments in shock-driven fluids and plasmas [18,
25-28,52, 53]. For a nearly planar interface with zero interfacial mass flux, as in early-time Rayleigh-Taylor
instability, these definitions are equivalent, because the interface dynamics can be considered in a non-inertial
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Figure 1. Schematics of the dynamics in a far field (not to scale). Blue color marks the planar (dashed line) interface and the perturbed
(solid line) interface.

frame of reference moving with the accelerated interface [24-28]. In general case of an unsteady non-planar
interface with interfacial mass flux, the former definition is usually applied [18—22, 29-38]. In our theory we
consider the dynamics of the fluids and their interface in the inertial frame of reference, when the acceleration is
due to the body force and is directed from the heavy to the light fluid.

In schematics of acceleration-driven instabilities and RTI in the literature [18, 19, 28—30], it is usual that
the acceleration is against the z direction and the heavy (light) fluid is located in the upper (lower) part of the
domain. Such configuration refers to our everyday experience when we observe RTI by watching water flowing
from an overturned cup [28-30]. For the purposes of the present paper, we keep the direction of the acceleration
from the heavy to the light fluid, and we locate the heavy (light) fluid in the lower (upper) part of the domain.
This configuration is free from the loss of generality and from the influencing the results [21, 22]. The
configuration is used because for the interface dynamics with the interfacial mass flux, the velocity field of the
heavy fluid is potential whereas the velocity field of the light fluid is a superposition of the potential and vortical
components, see section 2.3 for details [20-23, 3238, 46]. The flow configuration as in figure 1 allows us to
better illustrate the light fluid flow fields of and to easier compare the flow fields of the conservative dynamics
with interfacial mass flux with those of Landau-Darrieus and Rayleigh-Taylor instabilities, see figures 3, 69
[20-23, 32-38, 46].

2.2. Linearized dynamics
The governing equations equations (1)—(4) are extremely challenging. They can be simplified by the conditions
of small perturbations, mass flux directionality and incompressibility.
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Dynamics perturbations: The unperturbed flow fields are uniform, {}, v, P, W} = {], V, Py, Wy}, the
unperturbed interface is planar, and the normal and tangential unit vectors of the unperturbed interface are
{n, 7} = {ng, T} equation (2). Weslightly perturb in equations (1)—(4) the flow fields as ] =J+j
v=V+uP="0F+pandW=W+ w,with|j| < [J],|u] < |V]|p] < |Py|and |w| < |W,|. We
slightly perturb the fluid interfaceas n = ny + n;and 7 = 7 + 74, with |nj| < |ng|and |71| < ||, and with
|0/1VO|| < |V|. The fluid density is perturbed as p — p + Spwith |§p| < |p|. The perturbed velocity of the
interfaceis V.= V) + ¥, with |[v| < |Vj|.

To the leading order in small perturbations, the boundary conditions at the interface are:

. 2 . 2
U nol = 0, [(Po + M)no] 0, [(I : no)w’ro] 0, [(I - m)(wo + I—z)] =0 (6
p p 2p

To the first order, the boundary conditions at the interface are:

G-not 7 ml=0, l(p+ @((j-noﬂ-m)—“'z—““%))nol:o,

I:((]‘no)(]'7-1+j'To)+(]'7’o)(]-nl+j no))%] =0,

.3 2
l(] - ng) (w + (]p—Z’) — (%”)%J] =0 (6.2)

The small perturbations of the flow fields decay away from the interface:
{j’ v, D, W, 5P}h |ZH70<: =0, {]’ v, D, W, 50}1 |z%+oc =0 (6-3)

Physics assumptions: The boundary conditions in equations (2)—(4) and (6) are valid for compressible and
incompressible ideal fluids, for two- and three-dimensional flows, and for arbitrary positioning of the interface
relative the mass flux. Conditions equation (6) can be further simplified by applying the conditions of
directionality of the mass flux, the incompressibility of the fluids, and the dimensionality of the flow.

Boundary conditions: Indeed, to the leading order, the mass fluxis J] = pV, the flow fields are uniform in
thebulk, (p, v, P, W),qy = (p, V, Po, Wo)na)> and obey conditions equation (3) at the boundaries of the
domain. The components of mass flux normal and tangential to the interfaceare J, = J - ny, J, = J - 7. We
presume that to the leading order the mass flux is normal to the planar interface; hence, its tangential component
is zero, J, = 0.In the limiting case of incompressible dynamics, the values approach (P, + J/ Py — (Podnay
and Wy + J2/2p?)hay — (Wodnqy» since the speed(s) of sound in the fluid(s) is substantially greater than other
velocity scales. These transform equation (6.1) to

Und =0, [Po m] =0, [J, Wol =0 )

For a two-dimensional flow in equation (5), to the leading order the normal and tangential vectors of the
interfaceare ny = (0, 0, —1) and 15 = (1, 0, 0). The first order perturbations of the normal and tangential
vectors of the interface are n; = (9z*/9x, 0, 0)and 77 = (0, 0, 9z*/0x). Thisleadsto J - n; = 0. For
incompressible fluids with negligible density perturbations |6p/p| < |u|/|V|the first order boundary
conditions at the interfaces equation (6.2) are then transformed to

[j - nol = 0, l((p+ @)G-no))nolzo,
(,.nO)MTO]:O, [(,.no) (W+g)]:0 61
p p

The normal and tangential components of the perturbed mass fluxare j, = j - ngand j_ = j - 7. Inideal
incompressible fluids the internal energy is constant, e = e, and the perturbed enthalpyis w = p/p. The
perturbed flow fields in the bulk and at the outside boundaries obey the equations [20-23]:

V-u=0, u+(V~V)u+@:o (8.2)
o
where the fields (p, V, u, p)are (p, V, u, p)y( in the bulk of the heavy (light) fluid. The boundary conditions
for the perturbed flow fields away from the interface are:

uh|z~>700 =0, ul|z~>+oc =0 (83)
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The interface velocityis V = V + ¥, with [¥#| < |Vg|. Up to the first order it is
V=V+% ¥np=—(u-no+0) lo—o (8.4)

To conclude this Sub-Section, we emphasize that, in excellent agreement with the classical results, for the
interface dynamics with the interfacial mass flux, the tangential component of the velocity is continuous at the
interface, with [v - 7] = 0, including the zeroth order [V - 73] = 0 and thefirstorder [V - 7 + u - ] = 0,
and the velocity field is shear-free at the interface equations (2), (6), (8) [20-23, 46].

2.3.Fundamental solutions

Structure of solutions: We seek solutions for the boundary value problem equation (8) in which the perturbed
velocity of the heavy fluid is potential in accordance with the Kelvin theorem, and the perturbed velocity of the
light fluid has both potential and vortical components [20-23]:

u,=V®, uy=Vy +V x Y 9.1)
This structure of the solution agrees with observations and is established for any initial conditions [20].
The fluid potential and vortical fields and the interface perturbation are
Oy, = Pexp (ikx + kz + Qt), & = Dexp (ikx — kz + Q)
U, = (0, T, 0), U =Wexp(ikx — kz + Q1), z*= Zexp(ikx + Q1) (9.2)
Here (2 is the growth-rate (the characteristic frequency, the eigenvalue) of the system equations (8), k = 27/ \ is
the wavevector and A is the spatial period (the wavelength).

For the pressure perturbations p, ; and for the length-scale of the vortical field X = 27/k, we obtain from
equation (8.2)

. 0P p 0 0
V| &nay + Vm( h“)) + 20—y, (— + Vz—) (Vx®) =0 9.3)
(92 ph(l) 3t 82
The perturbed pressure is free from contributions from the perturbed vortical field [20, 21]. This leads to
. 8@;1 1 ~
Puay = —Pao (‘Ph@ + Vhoy ()) , k=Q/V; (9.4.1)
The perturbed enthalpy is
p . 0P
Why = 20— (<I>h<z) + Vi h(l)) 9.4.2)
Phay 0z

accounting for the constancy of internal energy in ideal incompressible fluids. We note that the vortical field
wave-vector k = Q/V; depends on the growth-rate . The sign of the real part of k is defined by the sign of
Q,withRe[k] > 0(< 0)for Re[Q2] > 0 (< 0)for the unstable (stable) dynamics, and the imaginary part of
k is defined by the imaginary part of €2, as Im[k] = Im[Q] / V. In order to obey the boundary conditions
W, 1o = 0, thevortical field should decay away from the interface, (k/k) > 0, and the interface dynamics
should be unstable, Re [Q2(kV},)] > 0.

In the presence of the acceleration g = (0, 0, g) and the surface tension the pressure and the enthalpy
perturbations are modified as [20-23]:

62 *
Puay = Pay T Py 8 2 (P = ) = (P —P) H 053
o 0%z*
whoy = Wiy + & 2 (W — wp) — (W — wp) + — (9.5)
pp Ox?

The perturbed dynamics is incompressible for a broad range of values of the acceleration, | pg/kPy | < 1,
and the surface tension, |ck/Py| < 1[20-23].

Figure 1 illustrates the flow configuration, with the heavy (light) fluid located in the lower (upper) part of the
domain. The acceleration is directed from the heavy to the light fluid and, similarly to Rayleigh-Taylor
instability, destabilizes the dynamics. The locations of the heavy and light fluids and the direction of the
acceleration along the z axis are chosen to better illustrate the flow fields of the light fluid and to easier compare
the flow fields of the conservative dynamics with interfacial mass flux with those of Landau-Darrieus and
Rayleigh-Taylor instabilities [20-23, 3238, 46].

With expressions equation (9), the system of differential equations governing the interface dynamics is
reduced to the linear system Mr = 0, where vectorris r = (&, ®;, V;,z*, ¥))7, and the matrix M is defined by
the boundary conditions at the interface equations (8), (9) [21].
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Dimensionless units: For ideal incompressible fluids, the characteristic length-scale 1 /k and time-scale
1/kVj, are defined by the initial conditions, and the characteristic density scale is set by the heavy fluid density p,,.
We use the dimensionless values of the growth-rate w = /kV}, and the density ratio R = p, /p; with R > 1.
Thisleadsto V;/V, = R, k/k = w/R[21-23]. We use the dimensionless values of the gravity G = g/kV},
with G > 0,and surface tension T = (o/p,) (k/ V), with T > 0, and with a broad range of values G > 0 and
T > 0 for incompressible dynamics [20-22]. We use dimensionless values for the flow fields, the interface, and
the variablesas ¢ = ®/(V,/k), p = &/ (V,/k), ¥ = V/(V, /k), 2 = kZ,and kx — x, kz — z, kV,t — t.
In the dimensionless units, the fluid potentials are ), = pe™#t« I, = @e*~?+ and P, = (0, ¢, 0)
with ¢ = e */Dztw ¢ the fluid velocitiesare u, = Vg, w, = Vi, + V x 9, and the interface
perturbation is z* = ze™*« 1,

Fundamental solutions: In the dimensionless form, the elements of the matrix M is are the functions of the
growth-rate (the frequency, the eigenvalue) w, the density ratio R, the acceleration value G, and the surface
tension value Tas M = M (w, R, G, T)[21]. The condition det M (w;, R, G, T) = 0 defines the eigenvalues
w; and the associated eigenvectors &, [21,22]. The matrix Mis 4 X 4.Foranon-degenerate 4 X 4 matrix, there
are 4 fundamental solutions r; = r(w;, €;), 1 = 1...4, with 4 associated eigenvalues w; and eigenvectors &;,
corresponding to 4 degrees of freedom and 4 independent variables obeying 4 equations, equations (8), (9).

Solution r for the system Mr = 0is alinear combination of the fundamental solutions r;

4
r = Z C,‘l‘,‘ (10)
i=1

Here C; are the integration constants, and r; = r;(w;, €;) are the fundamental solutions with r; = &% and
& = (petz, pe=2, ze, e~ ®/k 2)T and with the associated vector e; = (p, &, 2, ).

At the first glance, the material in section 2 - Method may appear rather formal. This detailed consideration
is however necessary, because it related the physics of the interface dynamics to the mathematical attributes of
rigorous solutions [21-23, 46]. By using the general matrix method for solving the boundary value problem
equations (1)—(10), we directly link the microscopic interfacial transport to the macroscopic flow fields, conduct
asystematic study of the interplay of the interface stability with the structure of the flow fields, and investigate the

properties of the interface dynamics in a broad parameter regime [21, 22].

2.4. Theory outline

In this work we develop the general framework for theoretical studies of the interface dynamics in a broad range
of conditions. Our approach has a number of methodical advantages. (1) Interfacial boundary conditions, which
we use, are exact, since they are derived from the conservation laws and in the inertial frame of reference in
equations (1), (2). This derivation is free from the postulate of constancy of the interface velocity; it allows us to
identify the macroscopic stabilization mechanism and to examine sensitivity of the interface dynamics to the
boundary conditions [21-23, 46]. (2) Flow fields, which we employ, are represented by scalar and vector
potentials equation (9). This representation permits us to find the structure of the flow fields, to directly link the
macroscopic flow quantities far from interface to microscopic transports at the interface, and to quantify
dependence of scalar and vector fields on physical parameters of the flow [21-23, 46]. (3) Solutions, which we
obtain, are mathematically rigorous and physically complete. This rigorous approach enables us to investigate
the degeneracy of non-equilibrium dynamics, to evaluate its sensitivity to initial conditions, and to predict the
existence of scale-dependent and self-similar regimes [21-23, 46].

In this work, we consider the dynamics of the fluids and the interface in the inertial frame of reference, when
the acceleration is due to the body force and is directed from the heavy to the light fluid equations (1)—(10). This
formulation permits the studies of the interface dynamics with the interfacial mass flux (as in conservative
dynamics and in Landau-Darrieus instability) and with zero interfacial mass (as in Rayleigh-Taylor instability) in
aunified theoretical framework. It also allows the identification of the inertial stabilization mechanism (to be
discussed in the next sections), as well as enables the investigations of the linear and nonlinear dynamics.

The interface dynamics is a corner-stone problem of applied mathematics and theoretical physics; it seeded
the development of methods of nonlinear analysis and the field of dynamical systems [20, 34, 54]. For the weakly
nonlinear dynamics, it inspired the formulation of generic mathematical models, including Ginzburg-Landau,
nonlinear Schrédinger, and Kuramoto-Sivashinsky equations [20, 34, 54]. For the highly nonlinear dynamics, it
enabled the development of group theory based approach [19, 28, 29]. For self-similar mixing, it provided
grounds for development of theory of turbulence, mixing and chaos [19, 20, 29, 34, 54]. Our present work is
focused on the linear dynamics and is applicable for small amplitudes and early times, with t < Q7 !in
dimensional units. Our approach can be extended to analyze the weakly nonlinear dynamicsat t ~ Q~!and
late-time nonlinear dynamics at t > Q™. It can be linked to traditional weakly-nonlinear and highly nonlinear
theories [19, 20, 28-31, 34, 54]. We address these important studies to the future.
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3. Results

3.1. Matrixes and fundamental solutions
In this section we identify the fundamental solutions for the accelerated conservative dynamics and for the
classical Landau’s and Rayleigh-Taylor dynamics with the acceleration and surface tension.

3.1.1. Conservative dynamics
We consider the conservative dynamics balancing the fluxes of mass, momentum and energy at the interface,
equation (8.1). For this dynamics, the matrix M is M = Mgr:

—R -1 —w + Rw i
Mep — 1 -1 1—R 1w/‘R (111
R—Rvw R+w G(R—-1)—RT -2iR
w —w T+ w— Rw iR

Its determinant is
det Mgr = i(R—1)/R)(w—R)(w + RA)(W?*(R—1) + R(R — 1) — G(R + 1) + TR), and the values w;
and e; are

. GCR+1D T ) .
w = +iJR |1 — + 5 € - > 5 17 5
i1e) v \/ RR-1  R_1 0= ¢ (Do
. . T
. 2 —1
W3 = Ra €3 = (0) 1, O, I)T; Wy = _Ra €4 = ! > l(R )a 0, 1) (112)
R+1 R+1

where the components {¢, @, 1} of the eigenvectors for solutions 1 and 2 are functionson R, G, T.Among the
fundamental solutions for the conservative dynamics equation (11), the fundamental solutions r;(w;, e;) and
r,(w,, e;) depend on the values of the acceleration G and the surface tension T, whereas the fundamental
solutions r3(w;3, e3) and ry(wy, e,) areindependent of Gand T'[21, 22].

In regards to the fundamental solutions r(wi, e;) and r(w,, €,) in equation (11), for some values of the
acceleration, the surface tension and the density ratio, these solutions are stable, with ; = ¥} and w; = ¥ with
Re [wy )] = 0. They describe two stable traveling waves, whose superposition results in stably oscillating
standing waves. For some other values of the acceleration, the surface tension and the density ratio, one of these
solutions is unstable, r; with Re[w;] > 0, whereas the other is stable, r, with Re [w,] > 0. These solutions
describe the standing waves, with the growing (r;) and the decaying (r,) amplitudes. For these solutions, the
interface perturbations are coupled with the potential and vortical components of the velocities of the
fluids’ bulk.

In regards to the fundamental solutions r;(w;3, e3) and ry(w;, e4) in equation (11), the solution r; is unstable,
w3 = Rand Re [ws] > 0, and the solution r is stable, wy = —R and Re [wy] < 0. The remarkable property of
the formally unstable solution r; is that the interface perturbation and the perturbed fields of the velocities
and pressure are identically zero in the entire domain at any time for any integration constant Cs, with
Z¢=0, uyy =0, Pray = 0121, 22]. For the formally stable fundamental solution r,, we must set the
integration constant C, = 0, in order for this solution to obey at any time the conditions w;|,—, 1~ = 0. Thisis
because the vortical component of the velocity, V X 1), = 0, while decaying in time, increases away from the
interface. Note that for solution r, the vorticity valueis V x u; = 0, despite of 1, = 0and V x ), = 0. This
is because in the vorticity field V x r; = (0, (1 — (k/k)?) 1/, 0) the values are (k/k)* = (w/R)* = 1[21,22].

The accelerated conservative dynamics with surface tension has 4 fundamental solutions with 4 associated
eigenvalues and eigenvectors, 4 independent degrees of freedom, and is non-degenerate. By defining the
solution rcpgr in the stable regime as the superposition of the traveling waves rcpgr = (1 + 1) /2 and in the
unstable regime as the solution rcpgr = 1, we analyze properties of this solution below, table 1. Sub-script
stands for conservative dynamics with the gravity G and the surface tension T.

3.1.2. Classical Landaw’s dynamics

The Landau’s theory for Landau-Darrieus instability, hereafter - the classical Landau’s dynamics, balances the
fluxes of mass, and normal and tangential components of momentum, and employs the special condition for the
perturbed velocity at the interface. This special condition postulates the constancy of the interface velocity of the
non-steady non-planar interface, V = V,, and leads to [20-23, 32-35, 46]:

9
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Table 1. Fundamental solution for the conservative dynamics with the acceleration and the surface tension.

_ _ _ _ N
I = IcpGr, W = WepGT»> € = ecpar = (¢ @5 Z, Y)eper

JG+R+GR—R2—RT

J-T+R
@ —m(\/—l +R(TVR+G(1+R) —RR+T)-GH/-1+R + R+ GA+R —RR+T))
—RG/-1+R+JR+GA+R —RR+T))+R(-1+R +JR+G(1+R) — RR + 1))
® m(G(—l+R)R—G\/—1+R\/R+G(1+R)—R(R+T)
~(=1+RR(~1+RR+T—-/-1+RJR+G(1+R) —RR+T))
Z i(—1+ R)RT !

T RIGU+R -RELT)

[j-no] =0, [((P + @)(i . no))nol =0,

[(] . no)wﬂ)] =0, [u-ng=0 (12.1)
For the Landau’s dynamics the matrix Mis M. = Lgy.
—R -1 —w + Rw i
Lop = 1 —1 1-R uu/'R (12.2)
R—Rw R+w GR—1)— RT —2iR
-1 -1 0 i

Its determinantis det Lgr = i((R — 1)/R)(w — R)(R + Dw? 4+ 2Rw — (R — 1)(R + G) + TR ),and
the values of w; and e; are:

—-R+ JR+R —-R +GR -1 —TRR+ 1) N
wi) = / R+1 e =(p & L Vi

ws=R, es=(0, i, 0, DT (12.3)

where the components of eigenvectors { ¢, @, 1} forsolutions1and 2 are functionson R, G, T.

Among the fundamental solutions for the classical Landau’s dynamics, the fundamental solutions r(w;, e;)
and r,(w,, e,) depend on the values of the acceleration G and surface tension T, and the fundamental solution
r3(ws, e3)isindependent of G and T'and is identical to that in equation (11) [21, 22].

For the classical Landau’s dynamics equation (12), the fundamental solution rj(w;, e;) corresponds to
Landau-Darrieus instability in the gravity field in the presence of the surface tension. For this solution, the
interface perturbations are coupled with the potential and vortical components of the velocities in the fluids’
bulk. For the fundamental solution r,(w,, e;) the interface perturbation and the potential and vortical
components of the velocities are also coupled. For this solution we must set the integration constant C; = 0, in
order to obey at any time the condition w;|,—, o, = 0inequation (8). Solution r;(w;, €3) has zero fields of the
perturbed velocity and pressure in the entire domain for any integration constant C; and at any time, as in
equation (12) [21, 22].

The accelerated Landau’s dynamics with the surface tension is degenerate, since it has smaller number of
fundamental solutions (3) than the number of the degrees of freedom (4). This indicates a singular and ill-posed
character of the dynamics. The lifting the degeneracy may lead to a scale-invariant power-law dynamics and be
triggered by a seed vortical field, pre-imposed in the bulk of the light fluid at some instance of time [21].

By defining the solution as r; pgr = 1;, we analyze properties of this solution below, table 2. Sub-script stands
for Landau’s dynamics with the gravity and the tension.

3.1.3. Rayleigh-Taylor dynamics
In theory of Rayleigh-Taylor instability - Rayleigh-Taylor dynamics hereafter - another set of the interfacial
boundary conditions is employed in order to describe the interface with zero interfacial mass flux, which may
also be called a contact discontinuity and an interface between immiscible fluids [20-31]. For outline of
theoretical, numerical and experimental works on RTI, the reader is referred to edited research book and to
review and research papers 2,7, 18,19, 24-31,41, 52, 53, 55, 56, 57—60] and references therein.

The boundary conditions equations (2)—(4) are derived from the governing equations equation (1) assuming
that the mass flux is conserved at the interface, [j - n] = 0. There is the important particular case, when the

conserved mass flux is zero at the interface, j - ny—o = 0. This leads to the continuity of normal component of
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Table 2. Fundamental solution for the Landau’s dynamics with the acceleration and the surface tension.

_ _ _ _ ~ = . N\T
I = IIpGT> W = WIDGT> € = erpr = (©> @5 Z, V)ipGr

—R+-G—R+R2+GR?+ R*— RT— R’T

v 1+R
0 R—G(—1+R)+R(—1+R+R— (1 +R)T)
- 1+R
~ 1
L4 A+ R(RQ+R) — JG(~1+R) +R(~1+R+R*~(1+R)T))
(G — GR? + R(T + \/G(fl +R)+R(-1+R+R -1+ RT)
+ R(—24R+R+T—JG(-1+R)+R(—1+R+R— (1 +RT)))
z 1
¥ iR(—1+RQ+R) —2JG(—=1+ R+ R(—1 + R+ RE— (1 + R)T))

RQ+R) —JG(—1+R) +R(—-1+R+R2— (1 + R)T)

velocity [v - n] = 0, the continuity of the pressure, and the arbitrariness of the jumps of tangential component
of velocity and enthalpy at the interface [19-22, 28, 29]:

[v-n]=0, [Pl=0, [v-T7]=arbitrary, [W] = arbitrary (13.1)
For the zero mass flux at the interface, the outside boundaries have no influence on the dynamics:
Vstoo =0, V][;moe =0 (13.2)

and the interface velocity is zero in the laboratory frame of reference:

V=0 (13.3)
This case corresponds to the dynamics of a contact discontinuity and an interface with between immiscible
fluids, and to Rayleigh-Taylor and Richtmyer-Meshkov instabilities. According to the boundary conditions
equation (13), in Rayleigh-Taylor dynamics, due to zero mass flux at the interface, the tangential component of
velocity is discontinuous at the interface, and the velocity field has the interfacial shear [20-23, 46].

For Rayleigh-Taylor dynamics, the unperturbed interface is planar, and the unperturbed velocity field is zero
in both fluids. We slightly perturb the interfaceas = —z + z*(x, t), with z* = Ze®+21 10 /|V0|| <« \/gW
and |0z*/0x| < 1. Weslightly perturb the fluid velocities with the potential fields, v;, = V&,

Py, = Pektketl and vy = VP, ) = Pekr ket ith |v| <« \/gW We perturb the fluid pressure as
P =P+ p,|pl < |, with p,g, = —ppqy (@nay + VhayOPna)/0z — gz) and further modify it as

(py, — p) — (p, — p) + 0(0%*/0x?). System equation (13) is then reduced to alinear system Mr = 0,
wherevectorrisr = (9, ®;, V,z¥)7 and Misthe3 x 3 matrix.

In Rayleigh-Taylor dynamics the length-scale is 1 /k and the time-scaleis 1 / \/R .In order to conducta
comparative study of this dynamics with the conservative dynamics and the classical Landau’s dynamics, we
scale the time with 1/kVj, where is now understood as some velocity scale. Thisleads to G = g/kV}? and
T = (a/p,)(k/ V}?), as before. In the dimensional units the matrix M = M(w, R, G, T).For system Mr = 0,
the solutionis r = Zi C;r;, with in non-degenerate case, similarly to equation (10). Here C; are the integration
constants, r; = r;(w;, &;) are the fundamental solutions with r; = &%, & = (e™?, Pe™*?, Zei");F are the
eigenvectors, and e; = (;, @; Z;)! are theassociated vectors. For Rayleigh-Taylor dynamics in equation (13),
matrix Mis M = Tgr:

R —1 —w + Rw
Tor=|-R—Rw —R+w GR—1) — TR (14.1)
—1 —1 0

Its determinantis det Tor = (R — 1)((R + 1)w? — G(R — 1) + TR), and w;and e; are

G(R—-1)—TR -
wi) = + % N (o, ®, l)lT(z) (14.2)

where the components of eigenvectors {, @} are the functionson R, G, T.

Depending on the values of the acceleration, the surface tension and the density ratio, the solutions 1(w;, €;)
and r,(w>, €,) can be stable or unstable. When both solutions are stable, with r, = r§ and w; = w? with
Re [wi(2)] = 0, they describe traveling waves whose superposition results in stably oscillating standing waves.
For some other values of the acceleration, the surface tension and the density ratio, one of these solutions is
unstable, r; with Re [w;] > 0, whereas the other is stable, r, with Re [w;] > 0. These solutions describe the
standing waves, with the growing (r;) and decaying (r,) amplitudes. For solutions 1 and r, the velocity fields are
potential in the fluids’ bulk. For G > 0, R > 1, T = 0, solution r(w, e;) corresponds to Rayleigh-Taylor
instability [19-21, 24-31].
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Table 3. Fundamental solution
for Rayleigh-Taylor with the
acceleration and the surface
tension.

I = YRTGT> W = WRIGT>
~ =T
e = erreT = (¥ @ Zr1GT

V—-14+Ry-G+GR—RT

w

-1+ R?
J=T+RJG(-1+R) - RT
¥ J-14+R?
- _ JTI+RJG-T+R) —RT
v V-1+R2

1

Ny

Rayleigh-Taylor dynamics is degenerate, with smaller number of fundamental solutions (2) than the degrees
of freedom (3), and, hence, it is singular and ill-posed. The lifting the degeneracy may lead to a power-law
dynamics. Such dynamics can be triggered by a seed vortical field pre-imposed at the interface at some instance
of time (e.g., vortex line or the vortex sheet). This happens in, e.g., Richtmyer-Meshkov instability, due to the
vorticity deposition at the interface and the impulsive acceleration by the shock [21,22,24-31].

By defining the solution as ryrgr = (1 + 1) /2 in the stable regime, and as rrrgr = 1 in the unstable
regime, we analyze properties of this solution below, table 3. Sub-script stands for Rayleigh-Taylor dynamics
with the gravity and tension.

3.1.4. Physics properties of mathematical attributes

The important physics outcome of section 3.1 is that in the problem of the interface dynamics the properties of
macroscopic flow fields in the bulk are tightly linked to the microscopic transport at the interface. Indeed, for the
dynamics conserving the fluxes of mass, momentum and energy at the interface, the fluid velocity may have
vortical field in the bulk depending on the values of the acceleration and the surface tension, and is shear-free at
the interface. For the classical Landau’s dynamics in Landau-Darrieus instability, conserving the fluxes of mass
and momentum and having special conditions for the perturbed mass flux at the interface, the fluid velocity field
have a vortical field in the bulk, and it is shear-free at the interface. For Rayleigh-Taylor dynamics in Rayleigh-
Taylor instability, conserving the fluxes of mass, momentum and energy at the interface and having zero
interfacial mass flux, the fluid velocity field is free from vortical field in the bulk, and the velocity field has the
interfacial shear. Hence, by diagnosing qualitative macroscopic properties of the flow fields in the bulk away
from the interface, one may identify the properties of microscopic transport at the interface. One may deduce,
for instance, whether there is an interfacial mass flux, whether the interfacial mass flux is zero, and whether the
energy is fully balanced at the interface.

The other important physics outcome of section 3.1 is the identification of a degenerate or a non-degenerate
character of the dynamics [20-23, 46]. Our results clearly illustrate that the conservative dynamics is non-
degenerate, since it has 4 fundamental solutions for 4 governing equations with 4 independent variables; it is
hence complete. The classical Landau’s dynamics for Landau-Darrieus instability is degenerate (3 fundamental
solutions for 4 governing equations with 4 independent variables). The lifting the degeneracy of Landau-
Darrieus instability may lead to scale-invariant (power-law) rather scale-dependent (exponential) dynamics
[46]. The Rayleigh-Taylor dynamics for Rayleigh-Taylor instability is also degenerate (2 fundamental solutions
for 3 governing equations with 3 independent variables). The lifting the degeneracy of Rayleigh-Taylor unstable
dynamics may lead to Richtmyer-Meshkov instability, where a (sub-sonic) initial growth-rate can be set by a
shock, and/or an impulsive acceleration. The interested readers are referred to papers [20-29, 46] for details.

3.2. Inertial dynamics free from surface tension
In this sub-section, for the purpose of completeness, we provide solutions {rcpgr, YrpcT> YrRTGT} for inertial
dynamics free from surface tension, G = 0, T = 0, see [21] for details.

Conservative dynamics has the solution rcpgr| 6=0, =0 = Ycper(Weper> €cper) lG=0,17=0 With

. e+ e* _ T
weper| G=o, T=0 = £iVR,  ecper| G=o, T—0 = T €= (o, @ 1, 0)
\7 = \7() + v, \an() = —(Uhno + 6) |9:0 ~ eiiﬁt (151)

The components of the eigenvectorare ¢ = i(R — 1)/(i + +/R)and » = —(R — 1)</R /(i + ~/R).This
solution is stable. It is stabilized by the inertial mechanism. Mathematically, the mechanism is revealed in stable
oscillations of the interface velocity near the constant value V.= V, + ¥, with ¥ - ny ~ =R, Physically, when
the interface is perturbed, the parcels of the heavy fluid and the light fluid follow the interface perturbation thus
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causing the change of momentum and energy of the fluid system. Yet, the dynamics is inertial. To conserve the
momentum and energy, the interface as whole should slightly change its velocity. This causes the reactive force
to occur and stabilize the dynamics [21, 22].

Classical Landau’s dynamics has the solution r;per| 6=0, 7=0 = Tp6T(WipGT> €LpGT)|G=0,7=0 With

/ 2 3
wipGr| G=0, T=0 = RV R+ R AR ,ewerl g=0, =0 =€, e=(p, & 1, P’
1+R
V=V, V=V+% nyg=—(umng+ Op_o=0 (15.2)

The components of the eigenvector { ¢, @, 1} arethe functions on the density ratio R. This solution is
unstable. When the interface is perturbed, the parcels of the heavy fluid and the light fluid follow the interface
perturbation thus causing the change of momentum and energy of the fluid system. Yet, the postulated
constancy of the interface velocity, V = V,, which is implemented in the special boundary condition [uny] = 0,
preempts the occurrence of the reactive force. The interface perturbations grow and Landau-Darrieus instability
develops [21, 32].

Rayleigh—Taylor dynamics has the solution rRTGTl G=0, T=0 — rRTGT(wRTGT) éRTGT) |G:0,T:O with

wrreT| G=0, T=0 = 0, ecpcr| =0, T=0 =€, e=1(0, 0, DI, V=0 (15.3)

This solution is neutrally stable. It has zero interface velocity in the laboratory frame of reference [21].

Hence, for the inertial dynamics free from surface tension {rcpgr, ¥psr» YRTGT J6=0, T—0: The
conservative dynamics is stable; it has potential flow fields in the fluids’ bulk and is shear free at the interface; it is
stabilized by the inertial mechanism revealed in stable oscillations of the interface velocity near the constant
value. The classical Landau’s dynamics is unstable; it has potential and vortical components of the velocity in the
fluids’ bulk; it is shear free at the interface; it has the postulated constant interface velocity; Rayleigh-Taylor
dynamics is neutrally stable; it has zero velocity fields in the fluids’ bulk; it has zero interface velocity in the
laboratory frame of reference. For detailed discussions of physics properties of the inertial dynamics free from
surface tension {rcper, TipGr> YRTGT }G=0, T—0, the reader is referred to the papers [21-23, 46].

3.3.Inertial dynamics with surface tension
Here we investigate solutions {rcpgr, ¥rper» Yrrer}inthe case of the inertial dynamics with the surface
tension, G = 0, T > 0.Theresultsareillustrated by figures 2, 3 and tables 1-4.

3.3.1. Conservative dynamics
For the conservative dynamics the solution is rcpgr| =0 = rcper(Wepst> €cper) lg=0 With

. T e+ e* N T
weper| =0 = FiVR |1 + o1 ecper| =0 = T e=(p, & 1, V) (16.1)

where quantities {p, @, 1} arethe functions on the density ratio and surface tension R, T'.This solution is
consistent with the solution for the inertial conservative dynamics free from surface tension equation (15.1),
table I, with (¢, @, 1,v¢) — (v, @, 1,0)forT — 0.

The flow field for solution rcpgr| =0 have the following structure equation (16.1). For the inertial
conservative dynamics with finite surface tension value, the velocity field is potential in the heavy fluid bulk, and
has potential and vortical components in the light fluid bulk equation (16.1), figure 3, table 1. The appearance of
the vortical field in the light fluid bulk is associated with the contribution of surface energy, which defines the
strength of the vortical field. In the limit of zero surface tension, the velocity fields are potential in both fluids.

The inertial dynamics with the surface tension repgr| g—gisstablefor R > 1, T > T |g—o> Torlg—0 = 0,
figure 2, table 4. The eigenvalue wepgr| 6=o is imagine, Re [weper| g=0] = 0. This suggests that the length-
scale of the vortical field k = (k/R) weper| g_oisalso imagine, Re [k] = 0.Hence, the dynamics repgr| 6=0
describes the standing wave stably oscillating in time, figure 2. For this wave, in the bulk of the heavy fluid the
velocity field is potential; it decays away from the interface. In the bulk of the light fluid, the velocity field has
potential and vortical components. Its potential component decays away from the interface. The vortical field is
periodic in the x direction with the period A = 27 /k, and is also periodic in the z direction with the period
X = 27 /k. Hence, this dynamics has the stably oscillating periodic vortical structure with constant amplitude,
figure 3. For solution rcpgr| g=o the vorticity V- x uw; = (0, (1 — (k/k)®p, 0)is V x w; = 0;its field is also
periodicin the (x, z) plane, figure 3.

Mathematically, the appearance of the vortical and vorticity fields periodic in the z direction of motion is
associated with the pure imaginary character of the frequency w in solution equation (16), which, in turn,
defines the purely imaginary wavevector k, with Im[k] = (k/R) Im[weper| ¢—ol. Physically, by comparing the
solutions for the inertial conservative dynamics free from surface tension and with surface tension in
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Figure 2. Growth-rates / frequencies for the inertial conservative dynamics (purple), Landau’s dynamics (blue) and Rayleigh-Taylor
dynamics (light blue) with the surface tension and free from the acceleration. Dependence of the growth-rates: (top) on the surface
tension at some value of the density ratio; (bottom) on the density ratio at some value of the surface tension. Solid (dashed) line marks
real (imagine) part.

equations (15.1), (16.1), we find that the vortical and vorticity fields are energetic (rather than dynamic) in
nature. These fields are decoupled from the pressure field and are produced by the excess of energy, which is
caused by the contribution of surface energy to the perturbed enthalpy, equation (9.5), table 1.

Consider now the interplay of the surface tension with the inertial stabilization mechanism. Since the
solution is periodic in time, one might expect that the interface velocity experiences stable oscillations, similarly
to the case of the inertial dynamics free from surface tension [21]. However, in order to obey the boundary
condition uy|,_, ; o, = 0inequation (8.2), the solution rcpgr| G—o in equation (16.1) requires us to set its
integration constant equal zero Ccpgr| g=o = 0. Since the integration constant is zero, the interface velocity for
this solution is constant:

V=V+¥ ¥ng=—(wng+ 0)|p_g ~ eFlwaarl ol £ Coper| 6o =0 =V =1, (16.2)

We see that for the conservative dynamics, the inertial stabilization mechanism is present, since the inertial
dynamics is stable. This mechanism may however be ‘masked’ by the surface tension for T > T;,|c—o, and may
be exhibitedat T = T, |g_o = 0.

Note that some slight modifications of the boundary conditions away from the interface z — +ocobyan
external noise may lead to a non-zero integration constant Ccpgr| g—o for the dynamics repgr| g—o- These
modifications may include slight modulations of the uniform velocity field of the light fluid away from the
interface, as V; — V; 4+ 0V}, due to a noisy, which may be present in realistic systems. In this case, the interface
velocity for the dynamics rcpgr| g—o may experience slight oscillations near the constant value,as V = V, + ¥
with ¥ng = —(uw,ng + 9) lo—o ~ etilweperl =0l 1,

14



10P Publishing

Phys. Scr. 96 (2021) 084001

DVllyinetal

———

G=0 T=2 R=3 t=n/4

-JT

I

0 LS
2

(b)

== =~
HF P, | pararass at = /=
s | freans fff////—s\\\\ /////:\\\\Q\\
s 2N 72N s 20N
HOHHGH @)
] SN
1 N~ r | N> | 1 (\\:\_:_{/4\ ¥\£ﬁéé
pran e IZRN7Z2N
el J ===
0 \\v/ \\V//‘ 0 i ~— N
I NN
N A NS NS/
AN~~~/ /I \\~~/ | \\%:/4/[\\\\\:4//'/1
N NSNS
FAN~=/ /71 \NN~=2/ /| \\\\"L/// \\é::////
IAN~=// 0NN~/ 11] 4 n\\\\§://///\\\\\‘;////’
IR R R B I SR \\://///I\§\\://%,
R st tikaierlt & .‘&\\\:7/4/,\\1\\%\:;2/,;’/;
s N
B R I I =N
-7 e 0 I T -7 _I 0 Vi T
2 2 2 2
12 V X lIJ ; ><<«<-<\—
-
A et Y oy |
| S

Yeper ((D cpcT 7 €cper )
G=0
T=2
R=3

Figure 3. Flow fields for the inertial conservative dynamics with surface tension at some instance of time and at some values of the
density ratio and the surface tension: (a) plots of the perturbed velocity vector fields, the perturbed velocity streamlines, and the
interface perturbation; (b) plots of the vortical component of the perturbed velocity and the perturbed vorticity. Real parts of fields
and functions are shown. Each plot has its own range of values to better present the plot’s features.

03}
0.2}

Table 4. Regions of stability and instability for the inertial acceleration-free
dynamics with the surface tension for the conservative, Landau’s and Rayleigh-

Taylor dynamics.

Dynamics Stability region Instability region Critical value
teperle=o T > Tolo-o N/A Trlg—o =0
rrperle=o T > Tyle=0 T < Tilo=0 Tirlg=0 = (R — 1)
rrrerlo=0 T > Tirlo=0 N/A Tirlg=0 = 0

Therefore, the inertial conservative dynamics with the surface tension is stable for any values of the density

ratio and the surface tension R > 1, T > T, |g—0> Torlg—o = 0, figures 2, 3, tables 1, 4. The resultant inertial
conservative dynamics of the interface with surface tension may correspond to the stable unperturbed flow
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fields (p, V, Py, Wp)i()and has constant interface velocity V = V; (for zero integration constant
Ccper| =0 = 0ofsolution rcpgr| G=0)- It may also exhibit slightly oscillations of the interface and the
interface velocity, as well as the velocity and vorticity fields in the bulk (for non-zero integration constant
Ceper| =0 = 0 of solution repgr| G=0)-

3.3.2. Classical Landaw’s dynamics
For the classical Landau’s dynamics the solution is ¥, pgr| G=0 = rrper(Wipcr> €rpeT)lg=0 With

—R+ JR+R—R —TRR+1) -
wrperle=o0 = J 1 , emgrlo—o =e=(p, & 1, YT (17)

where the quantities {¢o, @, 1} are the functions on the density ratio and the surface tension R, T, table 2.
This solution is consistent with the solution for classical Landau’s dynamics free from surface tension, since for
T — O0components {¢, @&, V}ipeTiee, — (¥ & VIDGT|oms, 1o, IN agreement with equation (15.2).

The solution r;pgr| g—o isstable for T > T, |g—¢, and isunstable for T < T, |g—o, where T, |—o = R — 1,
in agreement with [20, 21], figure 2, table 4.

The investigation of properties of the solution r;pgr| g—o for T > T, |g—o suggests that in the stable regime,
its integration constant must be set zero Cypgr| g=o = 0 in order to obey the boundary conditions far from the
interface.

Consider properties of the solution 1; 7| G—o in the unstable regime, for T < T, |G-, figure 2, table 4. This
solution corresponds to Landau-Darrieus instability with surface tension, and satisfies the assigned boundary
conditions at the interface and at the outside boundaries of the domain equation (12). Its dynamics couples the
interface perturbation with the vortical and potential components of the velocity fields. For solution r; pgr| g—o the
vortical component of the velocity of the light fluid V' x 1), and the vorticity V X w;, while increasing in time, decay
far from the interface. The vortical field has the wavevector k = (k/R) wipcrlg—oand the length-scale \/\ = k/ k,
figure 2, table 2. The interface velocity for the solution 1;pgr| G—o is constant, V = Vj, in both stable and unstable
regimes, as postulated by the interfacial boundary conditions in the classical Landau’s dynamics, equation (12).

3.3.3. Rayleigh-Taylor dynamics
For the inertial Rayleigh-Taylor dynamics of contact discontinuity with surface tension the solution is
trrGr| =0 = TrrGT(WRTGT> €RTGT) |G=0:

.| TR e+ e*
w o = i , e —0 = , e=(p, @ DT 18
RTGT lG=0 . coerl 6=o 5 (o, o 1 (18)

This solution is stable. For T > T.,|—0»  Tilg—0 = 0, the solution corresponds to a standing capillary
wave stably oscillating in time. At T = 0 the solution is neutrally stable, and the components of this solution are
{0, @YRTGTIo=e = 105 O}RTGT oy, 1—0» figUTe 2, tables 3, 4.

3.3.4. Summary of properties
Compare the properties of the solutions {rcpgr, ¥rper> TrRTGT J6=0 fOr inertial dynamics with surface tension,
figures 2, 3, tables 1-4.

The conservative dynamics is stable for surface tension values T > T, |c—o, Twlg—0 = 0. The presence of
the surface tension may ‘masks’ the inertial stabilization mechanism. The resultant dynamics rcpgr|g=o may
corresponds to stable unperturbed flow fields with constant interface velocity. In the presence of noise, it may
also exhibit stable oscillations of the interface and the interface velocity, as well as the velocity and vorticity fields.

The classical Landau’s dynamics for Landau-Darrieus instability is stable for T > T;, |5—o and is unstable for
T < T, |g—owith T, |g_o = R — 1.Inthe stable regime, the dynamics corresponds to the unperturbed flow
fields. In the unstable regime, it couples the interface perturbation to the potential and vortical components of
the velocity fields in the bulk and it is shear-free at the interface. The classical Landau’s dynamics postulates the
constancy of the interface velocity.

The inertial Rayleigh-Taylor dynamics is stable for T > Tolo—o> Tolg—o = 0.Inthestable regime it
describes the stably oscillating capillary wave. The dynamics has potential velocity fields in the bulk and has the
interfacial shear. The interface velocity is zero in the laboratory frame of reference.

3.3.5. Physics properties of mathematical attributes

For the inertial dynamics, the interface stability and the structure of the flow fields are defined by the interfacial
boundary conditions [21-24, 46]. By diagnosing the macroscopic flow fields far from the interface, one may
deduce the properties of the microscopic transport at the interface and differentiate between various dynamics. For
instance, the observations of stable oscillations of the interface, the vortex-free velocity fields and the zero interface
velocity are indicative of Rayleigh-Taylor dynamics with the vanishing interfacial mass flux. The observation of
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unstable growth of the interface for small surface tension values, the large-scale vorticity field and the constant
interface velocity are indicative of the classical Landau’s dynamics, the Landau-Darrieus instability and the energy
imbalance at the interface. The observations of the stably oscillating interface and the stably oscillating interface
velocity are indicative of the conservative inertial dynamics in the presence of slight noise. These qualitative and
quantitative results can be applied for design and interpretation of experimental and observational data.

3.4. Accelerated dynamics free from surface tension
In this sub-section, for the purpose of completeness, we briefly provide the properties of solutions
{rcper> tiper, rrror)for the accelerated dynamics free from surface tension, G > 0, T = 0[21,22]. The
details can be found in [21, 22].
Conservative dynamics has the solution rcpgr| 7—0 = Ycpor(Wepers €cper) lr—o With

. G e+ e* .
G < Gy weperlr—o = £iVR |1 — o ecoer| T=0 = S €= (o, @ 1, 0%
cr
G - R(R -1
G> Gy  weperlr=o = VR G_cr -1, eccrlrmo=e=(p, & 1, 0, G,= %5
V=V+7 ¥ng=—(umg+ 0)p—q ~ elcrerl 10} ¢
(19.1)

where quantities {p, @} are the functions on the density ratio and the acceleration R, G, and G,, is the critical
threshold value of the acceleration. For G — 0, this solution is consistent with the solution for the inertial
dynamics free from surface tension equation (15.1). For G > 0 the solution’s stability is defined by the interplay
of the buoyancy and the inertia, or the gravity and the reactive force. For small acceleration values, G < G, the
inertial effect dominates, and the reactive force exceeds the gravity. The solution is stable, and describes the
standing wave stably oscillating in time. The flow dynamics is similar to the case of the inertial conservative
dynamics free from surface tension. For large acceleration values, G > G, the buoyant effect dominates, and
the gravity exceeds the reactive force. The solution is unstable, and describes the standing wave with the growing
amplitude. For this solution the velocity field is potential in the bulk, and is shear free at the interface. The flow is
the superposition of two motions — the motion of the interface as whole with the growing interface velocity and
the growth of the interface perturbations [21, 22].

Classical Landau’s dynamics has the solution r;pgr| 7—0 = ¥1peT(WingTs €rpet) IT=0 With

R+ JR+R—-R +GR* -1 .
wrper| T=0 = v Rl , ewcrl o =e=(p, & 1, P

V = V() + ¥, ng = —(u;,no + 9)'0:0 =0, \7 = V() (192)

where quantities { o, @, 1} are the functions on the density ratio and the acceleration R, G.For G — 0, this
solution is consistent with that for the inertial Landau’s dynamics free from surface tension equation (15.2). This
solution is unstable for G > 0 and describes the standing wave with the growing amplitude. Its velocity field is
potential in the bulk of the heavy fluid, has vortical and potential components in the bulk of the light fluid, and is
shear free at the interface. The flow is the superposition of two motions — the motion of the interface with the
postulated constant velocity and the growth of the interface perturbations [20-22].
Rayleigh-Taylor dynamics has the solution rrrgr| 7—0 = TrRTT(WRTGT> €RTGT) |T—0 With
GR-1)

wrreT| T=0 = i1’ errerl o =e=(p, @ DI, V=0 (19.3)

where quantities { o, @} are the functions on the density ratio and the acceleration R, G. This solution is
unstable for any G > 0 and describes the standing wave with the growing amplitude. Its velocity field is potential
in the bulks of the heavy and the light fluids, and has shear at the interface. In the laboratory frame of reference
the interface velocity is zero [20-22].

A brief comparison of properties of the solutions {rcpGr, Yrper> ¥rRTGT }T—0 1N equation (19) suggests: The
accelerated conservative dynamics is unstable when the acceleration magnitude exceeds a threshold value set by
inertial stabilization mechanism, G > G; it has the growing interface velocity in the unstable regime; it has
potential flow fields in the fluids’ bulk, and is shear free at the interface. The accelerated Landau’s dynamic is
unstable for the acceleration values G > 0; it has a postulated constant interface velocity preempting the inertial
stabilization mechanism to occur; it has a potential velocity field in the heavy fluid bulk and potential and
vortical velocity fields in the light fluid bulk; it is shear free at the interface. Rayleigh-Taylor dynamics is unstable
for any acceleration value G > 0; it has zero interface velocity in the laboratory frame of reference; it has
potential velocity fields in the fluids’ bulk, and it has the interfacial shear. For large acceleration values
G > G* G* = (R? — 1) /4 theinstability of the accelerated conservative dynamics has the largest growth-rate
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-1.0!

Figure 4. Growth-rates / frequencies for the accelerated conservative dynamics (purple), Landau’s dynamics (blue) and Rayleigh-Taylor
dynamics (light blue) with the surface tension at some values of the density ratio and the acceleration: Dependence of the growth-rates on
the surface tension for (top) weak and (bottom) intermediate accelerations. Solid (dashed) line marks real (imagine) part.

when compared to the cases of the Landau-Darrieus and Rayleigh-Taylor instabilities, see for details [20-30].
The reader is referred to the papers [21-23, 46] for detailed discussions of physics properties of the accelerated
dynamics free from surface tension {rcper, TipGr> YRTGT }T=0>-

3.5. Accelerated dynamics with surface tension
In this section we investigate the properties of the solutions {rcpgr, Ttipsr> Trrer)for the accelerated
dynamics with surface tension, G > 0, T > 0, figures 4-9, tables 1-3, 5, 6.

3.5.1. Conservative dynamics
Fundamental solution: For the accelerated conservative dynamics with the surface tension the solution is
tcoer = Tepor(wepers €cper), figures 47, tables 1, 5:

. G e+ e* .
G < Gy,  weper = FivR I_G_’ ecpeT = T e=(p, @ 1, 5

cr

. G -
G > Gy, weper = VR G——l, ecper =e=(p, & 1, )T

G_g_ TR o _RR-D
R+1 R+1
V = VO + v, \7n0 = *(llhno + 9)'0:0 ~ eleDGTlT:Olt (20)

>
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0 2 - 6 8 10
Figure 5. Growth-rates / frequencies for the accelerated conservative dynamics (purple), Landau’s dynamics (blue) and Rayleigh-
Taylor dynamics (light blue) with the surface tension at some value of the density ratio. Dependence of the growth-rates: (top) on the

surface tension at some acceleration value for strong accelerations; (bottom) on the acceleration at some values of the surface tension.
Solid (dashed) line marks real (imagine) part.

where the modified acceleration G accounts the contribution of the surface tension T, and G,, is the critical
threshold acceleration value in the zero surface tension case. The quantities {p, @, 0} depend on the density
ratio, the acceleration and the surface tension R, G, T. The vortical field is

= —iT RR—1)/(G(R + 1) — R(R* + T — 1)), with ¢|y—o = 0. This solution is consistent with the
solution equation (19.1) for the accelerated conservative dynamics free from surface tension.

Stability and instability of the fundamental solution: For G > 0 the stability of the solution rcpgr is
defined by the interplay of the buoyancy, the inertia and the surface tension, or - the gravity, the reactive force
and the tension force. The stability curve is defined by the condition G = G, balancing the buoyancy (the
gravity) with the combined contributions of the inertial stabilization mechanism and the surface tension (the
reactive force and the tension force). For small acceleration values, 0 < G < G, the buoyancy is dominated
and the reactive and tension forces exceed the gravity. The solution is stable, and describes the standing wave
stably oscillating in time. The flow dynamics is similar to the case of the inertial conservative dynamics with
surface tension. For large acceleration values, G > G, the buoyant effect dominates and the gravity exceeds the
reactive and the tension forces. The solution is unstable, and describes the standing wave with the growing
amplitude, figures 4, 5, tables 1, 5.

For given values of the density ratio and the surface tension, the solution is stable for 0 < G < G, and is
unstable for G > G,,, where the threshold valueis G, = R(R — 1 + T) /(R + 1),with G, — G, for T — 0.
For given values of the density ratio and the acceleration, the solution is stable for T > T, and is unstable for
T < T, where the critical surface tension valueis T, = (G(R + 1) — R(R — 1)) /R; itapproaches T, — 0 for
G — Gj and equals zero T,=0for0 < G< G, figures 4,5, 6, 7, tables 1, 5.
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Figure 6. Flow fields for the fundamental solution for the accelerated conservative dynamics with surface tension in the stable regime
at some instance of time and at some values of the density ratio, the acceleration, and the surface tension: (a) plots of the perturbed
velocity vector fields, the perturbed velocity streamlines, and the interface perturbation; (b) plots of the vortical component of the
perturbed velocity and the perturbed vorticity. Real parts of fields and functions are shown. Each plot has its own range of values to
better present the plot’s features.

Structure of the flow fields:Consider the structure of the flow fields for the solution rcpgr equation (20),
table 1, figures 6, 7. In this solution, in the limit of zero surface tension, T — 0, the vortical component vanishes,
1) — 0, and the accelerated conservative dynamics free from surface tension has potential velocity fields in the
fluids’ bulks [21, 22]. For a finite value of the surface tension, T > 0, in the solution rcpgr, the vortical
component is finite, ¢ = 0, equation (20), table 1, figures 6, 7. This accelerated conservative dynamics with
surface tension has potential velocity field in the bulk of the heavy fluid, and the velocity field combining the
potential and vortical components in the bulk of the light fluid. The appearance of the vortical field in the light
fluid bulk is due to the surface energy contribution to the enthalpy jump at the interface [w], and it defines the
strength of the vortical field. y

Stable dynamics:For G < G, (T > T;,) the accelerated conservative dynamics with surface tension rcpgr
is stable, equation (20), figures 46, tables 1, 5. In this regime, the eigenvalue wcpgr is purely imagine,
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Figure 7. Flow fields for the fundamental solution for the accelerated conservative dynamics with surface tension in the unstable
regime at some instance of time and at some values of the density ratio, the acceleration, and the surface tension: (a) plots of the
perturbed velocity vector fields, the perturbed velocity streamlines, and the interface perturbation; (b) plots of the vortical component
of the perturbed velocity and the perturbed vorticity. Real parts of fields and functions are shown. Each plot has its own range of values
to better present the plot’s features.

Re [wepgr] = 0. Thelength-scale of the vortical field k = (k/R) weperisalso purely imagine, Re [k] = 0. The
solution rcpgr is the standing wave stably oscillating in time, figure 6. In the heavy fluid bulk, the velocity field is
potential; it is periodic in the x direction with the period A = 27 /k and decays away from the interface
z — —00. In the bulk of the light fluid, the velocity field combines the potential and the vortical components.
The potential component is periodic in the x direction with period A = 27/k and decays away from the
interface z — +-00. The vortical component is periodic in the x direction with period A = 27 /k, and is
periodic in the z direction with period X = 27 /k. The vorticityis V x u; = (0, (1 — (k/k)* 1, 0)and
V x w; = 0, and the amplitude of this vortical structure is constant, figure 6.

In order for the solution rcpgr to obey in the stable regime, 0 < G < G, the boundary condition
)|, 100 = 0, wearerequired to set its integration constant equal zero, Ccpgrls<¢, = 0. Hence the
perturbations are zero, and the interface velocity for this stable solution is constant V = V. Slight modifications
of the boundary conditions away from the interface z — + 0o maylead to a non-zero integration constant
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Figure 8. Flow fields for the fundamental solution for the accelerated Landau’s dynamics with surface tension in the unstable regime
of Landau-Darrieus instability at some instance of time and at some values of the density ratio, the acceleration, and the surface
tension: (a) plots of the perturbed velocity vector fields, the perturbed velocity streamlines, and the interface perturbation; (b) plots of
the vortical component of the perturbed velocity and the perturbed vorticity. Real parts of fields and functions are shown. Each plot

Ceperle<é, - Inthis case, the interface velocity for the dynamics rcper| G<¢, may slightly oscillate near a
constant value,as V = Vy + ¥ with ¥ng = —(uyng + 0)|g_y ~ e*ilwesrl ool 1,

We see that in the stable regime, G < G, (T > T.,), the resultant accelerated conservative dynamics with
surface tension may correspond to the stable unperturbed flow fields (p, V, Py, Wp)n) and constant interface

velocity V = Vj, figures 4—6, tables 1, 5. It may also exhibit stable oscillations of the interface and the interface
velocity, as well as the velocity and the vorticity fields. In this case the buoyancy (the gravity) is dominated the
combined effects of the inertial stabilization mechanism and the surface tension (the reactive force and the

tension force).

Unstable dynamics:The accelerated conservative dynamics with surface tension rcpgr is unstable for
G > G, (T < T,), figures 4, 5,7, tables 1, 5. In this regime, the eigenvalue wepgr is real and positive,
Re [weper] > 0and Im[wepgr] = 0. The dynamics repgr couples the interface perturbation with the vortical
and potential fields of the velocity V,, V¢, V X ;. The potential and vortical components of the fluid
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Figur_e 9. Flow fields for the fundamental solution for Rayleigh-Taylor dynamics with surface tension in Rayleigh-Taylor instability at
some instance of time and at some values of the density ratio, the acceleration, and the surface tension: plots of the perturbed velocity
vector fields, the perturbed velocity streamlines, and the interface perturbation. Real parts of fields and functions are shown. Each plot
has its own range of values to better present the plot’s features.

Table 5. Regions of stability and instability and critical parameters for the
accelerated dynamics with the surface tension for the conservative, Landau’s
and Rayleigh-Taylor dynamics.

Stability Instability
Dynamics region region Critical values
rcpGr T>T, T<T, T, = C&L 1);R(R7 D
~ A ~ R-1 R

G < Gy G > Gy G,;,=RR—+1+ Ril
e T>T,  T< T, = Crhey

G < Gy G> Gy Go =T~ — R
TRTGT T > Tg T < Tfr Tg = G(R;l)

G < G, G> G, Ger = T

Table 6. Qualitative properties of the conservative, Landau’s and Rayleigh-Taylor dynamics with the acceleration and surface tension in their
corresponding stable and unstable regimes.

Dynamics Regime Interface velocity Velocity fields Interfacial shear
rcpGT Stable Constant Unperturbed fields Shear-free
Unstable Time-dependent Potential and vortical components Shear-free
I.DGT Stable Constant Unperturbed fields Shear-free
Unstable Constant Potential and vortical components Shear-free
IRTGT Stable Zero Potential fields Interfacial shear
Unstable Zero Potential fields Interfacial shear

velocities achieve their extreme values near the interface, and, while increasing in time, decay away from the
interface.

The vortical field for the unstable solution repgr with G > G, (T < T,) in equation (20) has the following
properties. The wavevector of the vortical field is k = (k/R) weper, and the length-scale of the vortical field is large
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in a broad range of parameters, (k/k) < 1. When surface tension value decreases, T — 0, the strength of the
vortical field decreases, leading to the potential velocity fields are in the fluids’ bulks, figures 4, 5, 7, tables 1, 5 [21, 22].

For the unstable accelerated conservative dynamics with surface tension, the buoyancy (the gravity)
dominates the combined effects of the inertial stabilization mechanism and the surface tension (the reactive
force and the tension force), figures 5, 7, tables 1, 5. For G > G, (T < Tcr), the interface velocity of the solution
rcper increases with time, V.= V + ¥ with ¥ny ~ el“carl £ The resultant flow is the superposition of two
motions — the motion of the interface as whole with the growing interface velocity and the growth of the interface
perturbations. The dynamics is shear free at the interface. When compared to the accelerated conservative
dynamics free from surface tension, the surface tension influences the acceleration values at which the instability
occurs, and also leads to the appearance of the vortical field in the bulk of the light fluid, figures 5, 7, tables 1,
5,[21,22].

Summary:The accelerated conservative dynamics with surface tension can be stable of unstable depending
on the values of the acceleration, the surface tension and the density ratio. In the stable regime, the resultant
dynamics may have the stable unperturbed flow fields (p, V, Py, Wj)n«) and the constant interface velocity
V =V, (and may also exhibit slight stable oscillations of the interface, the interface velocity, and the velocity and
vorticity fields). In the unstable regime, the interface perturbations grow and so is the interface velocity. The
dynamics couples the interface perturbation with the potential velocity field in the heavy fluid bulk and the
potential and vortical components of the velocity field in the light fluid bulk, and is shear-free at the interface.
The strength of the vortical field in the light fluid bulk depends on the surface tension; for zero surface tension,
the velocity fields are potential in both fluids, figures 4, 5, 6, 7, tables 1, 5.

3.5.2. Classical Landau’s dynamics
Fundamental solution: For the classical Landau’s dynamics in the presence of acceleration and surface tension
the solution is IIpGT = rLDGT(WLDGT) éLDGT) ﬁgures 4,5,8, tables 2,5:

R+ JRR+R—R+GR* -1 . - T R
WLDGT = \/ R11 , emer=e=(p, & 1, VT G:G—R_l;
V=V%+7% %ng=—(wng+ Njg_g =0, V=V,
(21

where the modified acceleration G accounts for the contribution of the surface tension T. The quantities
{¢, &, 1}dependon thevaluesof the density ratio, the acceleration and the surface tension R, G, T.For
T — 0 this solution is consistent with the solution for the accelerated Landau’s dynamics free from surface
tension equation (19.2), table 2 [20-22].

Stability and instability of the fundamental solution:In the classical Landau’s dynamics the inertial
stabilization mechanism is absent, due to the postulate of the constancy of the interface velocity. The dynamics
can be stabilized by the surface tension. The solution r; pgr is stable for T > T, (G < G,)and is unstable for
T < T, (G > G,). The condition w;pgr = 0 defines the critical values T,, = (G + R)(R — 1) /R and
G, = (TR — R(R — 1)) /R, figures 4, 5, tables 2, 5.

Structure of flow fields:In either stable or unstable regime, the dynamics r; pgr couples the interface
perturbation with the vortical and potential fields of the velocity V,, V¢, V X af. The presence of the
vortical field in the classical Landau’s dynamics is caused by the energy imbalance, which is due to the postulated
constancy of the interface velocity V = V; and the associated interfacial boundary condition for the perturbed
velocity [21-23].

Stable dynamics:For T > T;, (G < G,), the solution is stable, with Re [wpgr] < 0,and the length-scale of
the vortical field k = (k/R) wypcr has the negative real part Re (k] < 0, figures 4, 5, tables 2, 5. The vortical
component of the velocity of the light fluid V X 1), and its vorticity V x u; = (0, (1 — (k/k)®)1, 0) increase
far from the interface, z — +o0. In order for the solution r;pgr to obey the boundary condition u|, . ;o = 0
in equations (8.2), (12.1), we must set its integration constant equal zero C; pgr = 0. Hence, in the stable regime,
T > T, (G < G,), the Landau’s dynamics with the acceleration and the surface tension has unperturbed flow
fields (p, V, Py, Wp)i()and constant interface velocity .

Unstable dynamics: For T < T, (G > G,,) the accelerated Landau’s dynamics with surface tension r; p¢r is
unstable, equation (21), figures 4, 5, 8, tables 2, 5. In this regime, the eigenvalue w; pgr is real and positive,
Re[wrper] > 0and Im[wpgr] = 0. The dynamics r;pgr couples the interface perturbation with the vortical
and potential fields of the velocity V,, V¢, V X ;. The potential and vortical components of the fluid
velocities achieve their maximum values near the interface, and, while increasing in time, decay away from the
interface, figure 8. For the unstable solution r; pgy with T < T, in equation (21), the vortical field has the
wavevector k = (k/R) wipcr; the length-scale of the vortical field is large, (k/k) < 1,inabroad range of
parameters. While the vortical field depends on the surface tension value, it is present for any values of the
acceleration and the surface tension, and is associated with the energy imbalance for the Landau’s dynamics
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[21-23]. Hence, in the unstable regime, T < T, (G > G,,) the accelerated Landau’s dynamics with surface
tension is the superposition of two motions — the motion of the interface with the constant velocity V = V; and
the growth of the interface perturbations. It is shear free at the interface.

Summary:The accelerated Landau’s dynamics with surface tension can be stable or unstable depending on
the values of the acceleration, the surface tension and the density ratio. In the stable regime, the resultant
dynamics corresponds to the stable unperturbed flow fields (p, V, Py, Wj)nq) and has constant interface velocity
V = V. In the unstable regime, the interface perturbations grow, whereas the interface velocity remains
constant. The unstable dynamics couples the interface perturbation with the potential and vortical components
of the velocity fields in the fluids’ bulk, and is shear-free at the interface. The presence of the vortical field in the
light fluid bulk is due to the postulated constancy of the interface velocity, leading to energy imbalance for any
value of the acceleration and the surface tension, figures 4, 5, 8, tables 2, 5 [21-23].

3.5.3. Rayleigh-Taylor dynamics
Fundamental solution: For Rayleigh-Taylor dynamics in the presence of acceleration and surface tension the
solution is rrpgT = rrpeT(WRDGT> €RDGT)> figures4, 5,9, tables 3, 5

- .= |R—-1 e+ e*
G<0, w :j:z«/E —, e = , e=(p, & DT
RTGT R+1 RTGT 5 (o, @ )
_ =~ R -1 - - T R
G>0, wror =G Rt 1 errar =€ = (¢, @ D5 G=G-— 1 (22)

where the components of eigenvectors {, @} for solutions are the functionson R, G, T, table 3.

Stability and instability of the fundamental solution: Rayleigh-Taylor dynamics is stabilized by the surface
tension. The solution rgrer is stable for T > T, andis unstable for 0 < T < T,,. The critical surface tension
value T, = G(R — 1) /R is defined by the condition G = 0, tables 3, 5; for G — 0 the value approaches
T, — 0,in agreement with equation (19.3).

Structure of flow fieldsIn the stable and the unstable regimes of Rayleigh-Taylor dynamics with surface
tension, the velocity fields are potential in the bulks of the light and the heavy fluid, and have the interfacial shear
at the interface, figure 9.

Summary: For Rayleigh-Taylor dynamics with surface tension in the stable regime the dynamics describes
the standing wave stably oscillating in time (which is the capillary wave for zero acceleration). In the unstable
regime the dynamics describes the standing wave with the growing amplitude. The velocity fields are potential in
the bulks of the light and the heavy fluid, and there is the shear at the interface, figure 9, table 3 [20-31]. The
interface velocity is zero in the laboratory reference frame.

3.5.4. Summary of properties

Depending on the values of the acceleration, the surface tension and the density ratio, the dynamics
{rcper> TipGr> TrTGT) can be stable or unstable, figures 4-9, tables 1-3, 5, 6. In either stable or unstable
regime, these dynamics have distinct qualitative properties.

The accelerated conservative dynamics is stable (unstable) for T > (<) T,,and G < (>) G, Inthestable
regime, the resultant motion corresponds to unperturbed flow fields with constant interface velocity and zero
interfacial shear. In the unstable regime, the dynamics couples the interface perturbations with the potential and
vortical components of the velocity fields in the fluids’ bulks and is shear free at the interface; the interface
perturbations grow with time and so is the interface velocity, figures 4-7, tables 1, 5, 6.

The accelerated Landau’s dynamics is stable (unstable) for T > (<) T,and G < (>) G,.Inthestable
regime, the resultant dynamics corresponds to unperturbed flow fields with constant interface velocity and with
zero interfacial shear. In the unstable regime, the dynamics couples the interface perturbations with the potential
and vortical components of the velocity fields in the fluids’ bulks and is shear free at the interface; the interface
perturbations grow with time; the interface velocity is constant, figures 4, 5, 8, tables 2, 5, 6.

Rayleigh-Taylor dynamics is stable (unstable) for T > (<) T,and G < (>) G,.Ineither regime the
dynamics has potential velocity fields in the fluid bulks and has the interfacial shear; the interface velocity is zero
in the laboratory frame of reference. In the stable regime, the dynamics describes the stably oscillating standing
wave. In the unstable regime, the amplitude of the standing wave grows with time, figures 4, 5, 9, tables 3, 5, 6.

3.5.5. Physics properties of mathematical attributes

For the accelerated dynamics, the interface stability and the structure of the flow fields are defined by the
interfacial boundary conditions and by the interplay of the inertial effect, the surface tension and the
acceleration. One may differentiate between various unstable dynamics and thus deduce the properties of the
microscopic interfacial transport by measuring the macroscopic fields in the bulk. Particularly, the observations
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of the vortex-free velocity fields in the bulk, the appearance of shear-driven vortical structures at the interface,
and the zero interface velocity are indicative of the unstable Rayleigh-Taylor dynamics free from interfacial mass
flux. The observations of the large-scale vortical field in the bulk, the absence of vortical structures at the
interface and the constant interface velocity are indicative of Landau-Darrieus instability characterized by energy
imbalance at the interface. The observations of the vortical field in the bulk, the absence of vortical structures at
the interface and the growing interface velocity are indicative of the unstable accelerated conservative inertial
dynamics. These results can be applied for design and interpretation of experimental and observational data.

3.6. Mechanisms of stabilization and destabilization

By comparing properties of fundamental solutions {rcper, ¥ipgr, trrer) we further analyze the mechanisms
of stabilization and destabilization of the interface dynamics influenced by the acceleration and surface tension,
figures 4-9, tables 1-3, 5, 6.

3.6.1. Acceleration
Since the acceleration is directed from the heavy fluid to the light fluid, its qualitative role is to destabilize the
interface dynamics. Quantitative effect of the acceleration is however distinct for the conservative, Landau’s and
Rayleigh-Taylor dynamics.

By comparing the growth-rates’ values for the dynamics {rcpgr, tiper> Trrer), wefindthatat T = 0 they
are wepgr = wiper = Wrrer at G = G* = (R? — 1) /4. For strong accelerations and weak surface tension the
dynamics {rcper, Tiper» Yrrer}areunstable, and the growth-rates behave as

G—o00, T—0: WCEpGT > WIDGT > WRTGT
R+1 1 TR R—-1
w — JG + — —R|—— |;
cpar R—1 2\/G( JR — 1 R+1)

1 1 1 TR R(R* + R — 1
wiper — NG +(—1+ )—i— - + (R + ) ;
VR+1 R+1) 2JG RR—-1 R+ DJR -1

R—-1 1 TR
w — VG + — 23
RTGT R+l 2\/6( Rz—l) (23)

Hence, in the limit of strong accelerations and weak surface tension values, the new fluid instability of the
conservative dynamics has the largest growth-rate when compared to the accelerated Landau’s and Rayleigh-
Taylor dynamics, figure 5, tables 1-3.

3.6.2. Surface tension
The surface tension qualitative role is to stabilize the interface dynamics. Quantitative effect of the surface
tension is however distinct for the conservative, Landau’s and Rayleigh-Taylor dynamics.

For given values of the acceleration and density ratio G > 0, R > 1, each of the dynamics
{rcper> TipGT, YrTGT) Can be stabilized by surface tension. The new fluid instability of the accelerated
conservative dynamics is stabilized for T > T;,. The Landau’s dynamics is stabilized for T > T,,. Rayleigh-
Taylor dynamics is stabilized for T > 1. By comparing the critical surface tension values for given values of the
acceleration and the density ratio, we find (figures 4, 5, tables 1-3,5): For G > 0, R > 1thevaluesrelated as
T, > T.,and the Landau’s dynamics can be stabilized by larger surface tension when compared to Rayleigh-
Taylor dynamics. For G > R(R — 1) /2 the values relate as T, > T,,and Rayleigh-Taylor dynamics can be
stabilized by larger surface tension when compared to the new fluid instability of the conservative dynamics. For
G > R(R — 1) thevaluesrelateas T, > f}r, and the Landau’s dynamics can be stabilized by smaller surface
tension when compared to the new fluid instability of the conservative dynamics, figures 4, 5, table 5.

Hence, for weak accelerations, G < R(R — 1) /2, the critical surface tension values relate as T, < T, < T,
and the new fluid instability of the accelerated dynamics is stabilized by the smallest surface tension value when
compare to Rayleigh-Taylor and Landau’s dynamics. For intermediate accelerations, R(R — 1) /2 < G <
R(R — 1) thevalues relate as T, < T, < T,.For strongaccelerations, G > R(R — 1), the values relate as
f}, < T, < T, and the new fluid instability of the conservative dynamics requires the largest surface tension
value for the stabilization, when compared to Rayleigh-Taylor and Landau’s dynamics, figures 4, 5, table 5.

3.6.3. Inertial stabilization mechanism

These results have clear physics interpretation: The conservative dynamics has inertial stabilization mechanism.
Hence, for weak accelerations, the presence of this mechanism leads to smaller values of surface tension required
for the interface stabilization, when compared to Landau’s and Rayleigh-Taylor dynamics. For strong
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Table 7. Value of critical wavevector for the conservative, Landau’s and Rayleigh-Taylor
dynamics.
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1

ILDGT ker ;_”[_V}f(ﬁ)(ph - p) + \/4Ug(ph - o)+ (V}f(%)(ph B p’))z}

P

TRTGT ker N C))

Table 8. Value of maximum wavevector for the conservative, Landau’s and Rayleigh-Taylor
dynamics.
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k
- 1
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accelerations, the conservative dynamics has the largest growth-rate leading to the largest surface tension value
required for the interface stabilization, when compared to Landau’s and Rayleigh-Taylor dynamics.

The inertial stabilization mechanism is the new mechanism recently discovered for the interface dynamics
with interfacial mass flux [21, 22]. This mechanism is the essential property of the dynamics at macroscopic
continuous scales. It is associated with the conservation of momentum and energy in the fluid system [21, 22]. It
is exhibited in the non-constancy of the interface velocity for the unsteady non-planar interface. This
mechanism is absent in the classical Landau’s dynamics due to the postulated constancy of the interface velocity.
Itis also absent in Rayleigh-Taylor dynamics, in which the interface velocity is zero in the laboratory frame of
reference.

In the stable regime, the inertial stabilization mechanism is revealed in slight oscillations of the interface
velocity at zero surface tension (or at some noisy boundary conditions away from the interface). In the unstable
regime, its presence is exhibited in the non-constancy of the interface velocity.

3.7. Characteristic length scales
The values of gravity g, the velocity Vj,, the surface tension o and the fluid densities pj, ;) define the characteristic
length-scales and time-scales of the dynamics of ideal incompressible fluids. These include the critical value of
the wavevector k., at which the interface is stabilized, and the maximum value of the wavevector k., at which
the maximum value is achieved of the growth-rate of the interface perturbations, and the associated length-
scales (wavelengths) A (may) = 27 /Ky (max) and time-scales 7 (max) = (k¢r(max) Vi)' - For given values of
Vi & 0, pj,» pp We present in the dimensional form each of the dynamics {rcper, ¥rper, Trrer)and find the
critical and the maximum wavevector values from the conditions (tables 7, 8):

2
38_2 - =0, 2]522 < 0; Q= Qcperaper)®RTGT) (24)

— Rmax k= kmax

Qi=r, = 0;

The information on these scales is critical for design of experiments and simulations, since it ensures the
sufficient resolution of the observational results [20].

Conservative dynamics: For the fundamental solution ropgr with 2 = Qcpgr in equation (24), the critical
and the maximum wavevector values are (tables 7, 8):

A0eper O*Qeper
Q =k =0 — =0, —5 <0
cper lk=k, ok i oK |
1 |
- p P
ey = — V,f(—h)(ph — pp) + ,|4og(p, + pp) + Vlf(—h)(/’h =)
20 0 P
1 2
Kmax = — _2V5(&)(ph —p) + 1208 (p), + p) + 2V5(&)(f0h - ) (25.1)
60 1% P
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For |og (p,, + pl)/(th(ph /0 (p, — p))?| — 0thevalues EC,(max)/(g/\/,f) ~ O(1) remain finite, whereas
for |ag (0, + 1)/ (Viou/ D (py, — p)P| — oo the values approach Ko /(¢/ V) — 0.

The ratio (k, /kmax ) is the function on the parameters V3, g, o, p;, p;, tables 7, 8. For vanishing surface
tension, the critical and maximum wave-vector values and their ratio are:

2
i o %(P;ﬁ-ﬂz) (&) =0
Viilpw = o) Vil\pw — 1) \ o
I;cr N %ﬂ(m) s ]gmax — l%ﬂ(ph + pl) ; ~kcr ) (252)
Vh P\ Pn— P 2 Vh Pu\Pn — P kmax

For very large surface tension, the critical and maximum wave-vector values and their ratio are:
2
o g (ph + PZ)( P ]
Viior, = ) Vi \ow = o1 )\

i |gente) oy L git o). ke m 25.3)
o V3 o Kenas

Classical Landau’s dynamics: For the fundamental solution r; pgr with 2 = Qpgr equation (24), the
critical and maximum wavevector values are (tables 7, 8):

— OO

aQLDGT aZS)LDGT
Q -k, =0 — =0, ——— <0

'LDGT |k ki ak k:];max akz k:Emax

1 2
- P P
ke = — Vﬁ(—h)(ﬂh = p) + ,[40g(py, — pp) + V;%(—h)(ﬁ'h =P

20 P P

Emax = Emax (Vh) 8> 05 Py pl) (261)

For vanishing surface tension values |og / (Vi( o/ P (p, — pp) | — 0thecritical and maximum wave-vectors
values approach Ecr<max>/(g/\/,$) — 00, whereas for |0g/(V;,1 (pn/ P)*(py, — pp) | — o0, the values
are Ecr(max)/(g[th)_ — 0.

The ratio (k. /kmay ) is a cumbersome function on the parameters V;, g, o, p,,, p, tables 7, 8. For vanishing
surface tension, the critical and maximum wave-vector values and their ratio are:

2 2
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For very large surface tension, the critical and maximum wave-vector values and their ratio are:

2
2;%(&) e R [$i )
Vilp, — p) Vi \ py o
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N \/3, Ekcr

— 3 (26.3)

Rayleigh-Taylor dynamics: For the fundamental solution rrrgr with Q = Qprer in equation (24), the
critical and the maximum wavevector values are (tables 7, 8):
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For vanishing surface tension values, |0 /(g (p, — p;))| — 0, the critical and maximum wavevector values

Orrer k=i, = 05

approach IGC,(maX) / (g/ Vi) — oo, whereas for very large surface tension values | o /(g(p, — p))| — oothe

critical and maximum wavevector values approach lgcr (max) / (g/V}) — 0 for given finite values of g, V}, where
Vj, is understood as some velocity scale. The ratio of the critical and maximum wavevector values is
(Kmnax /lgcr) = 1//3 for any|o/(g(p, — p))| > 0,tables7,8.

Comparative analysis: The conservative dynamics of the fluid interface is stabilized by the inertial
mechanism and by the surface tension, and is destabilized by the acceleration. The presence of the inertial
stabilization mechanism is revealed in the finite values of the critical and the maximum wavevector values
I;C,(max ) / (g/V}) ~ O(1)in the limit of vanishing surface tension. For very large surface tension values the

critical and the maximum wavevector values approach zero k. (max) / (g/V}) — 0.Theratio (ko /Kkomay ) is the
function on the parameters Vj, g, o, p,,, pj, and it varies from2 to /3 with the increase of the surface tension
parameter |og (p;, + pl)/(Vh2 (p,/ P (P, — pp))?|from zero to infinity, tables 7, 8.

In the Landau’s and Rayleigh-Taylor dynamics the properties of the characteristic scales are distinct when
compared to those in the conservative dynamics, tables 7, 8. The Landau’s dynamics is stabilized by surface
tension, and it is unstable even for zero acceleration. For given values of g, V}, in the limit of vanishing surface
tension values the critical and maximum wavevector values approach ke, (max)/(g/ Vi) — oc. For very large
surface tension values, the critical and maximum wavevector values approach k., (max) / (g/ th) — 0. Theratio
(ker /kmax ) depends on the density ratio (p;, / p;) and the surface tension parameter |og / %y (o / P, — PO
With the increase of this parameter the ratio (k, /kmay ) varies from 2 for (p, /p;) ~ land 3/2 for (p,/p) > 1
to +/3 for any density ratio (p,,/ p;), tables 7, 8.

Rayleigh-Taylor dynamics is stabilized by surface tension and is destabilized by the acceleration. For
vanishing surface tension values, the critical and maximum wavevector values approach IGC, (max) / (g/V}) — oo,
whereas for very large surface tension values the critical and maximum wavevector values approach
Ecr(max ) / (g/ V) — 0,where V, is some velocity scale. The ratio of the critical and maximum wavevector values
is (Igcr / Igmax) = /3 for any value of the surface tension parameter | /(g(p, — p))| > 0,tables7, 8.

We thus conclude that the boundary conditions at the interface strongly influence the characteristic wave-
vectors, length-scales and time-scales of the interfacial dynamics. This information is critical for design of
experiments and simulations. For instance, one may employ in experiments and simulations the dependence of
the critical length- and time-scales on the acceleration strength and the surface tension in order to ensure that
the observations are well resolved. One may also vary the initial perturbation wavelength and identify the length-
scales corresponding to the stabilization and the fastest growth of the interface, and thus identify the properties
of microscopic transport at the interface.

3.8. Outcome for experiments and simulations

Our analysis identifies the mechanisms of stabilization and destabilization of the interface dynamics with the
interfacial mass flux and finds that the properties of the inertial and accelerated conservative dynamics with
surface tension differ qualitatively and quantitatively from those of classical Landau’s dynamics for Landau-
Darrieus instability and Rayleigh-Taylor dynamics for Rayleigh-Taylor instability [21]. This opens new
opportunities for experiments and simulations, and enables a better understanding and, ultimately, control of a
broad range of processes in nature and technology to which unstable interfaces and interfacial mixing are
relevant [1-45]. In this section we outline the outcomes of our analysis for experiments and simulations.

In order to compare with existing experiments and simulations, we note that our results for the Landau’s
dynamics and Rayleigh-Taylor dynamics agree with the results of theoretical, experimental and numerical
studies [24-35, 46]. Furthermore, our results for the conservative dynamics clearly indicate that the interface can
be stable even for ideal incompressible fluids with vanishing surface tension, when the acceleration value is
smaller than a threshold, similarly to ablative Rayleigh-Taylor instabilities in high energy density plasmas
[36—40, 46]. Another possible application of our results in multiphase geophysical flows is the stability of the
interface between the oceans - when waters in the Pacific and Atlantic oceans meet and not mix at global
scale [61].

Our theory elaborates extensive benchmark for future experiments and simulations. According to our
results, for given values of the fluid densities p, ;) and the velocity V}, in the regime of strong accelerations g, the
new fluid instability of the conservative dynamics has the largest stabilizing surface tension o and the largest
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growth-rate (2, when compared to the cases of the accelerated Landau’s and Rayleigh-Taylor dynamics,
equations (11), (12), (14), figures 5, 7, tables 1, 5, 6. The new fluid instability is the fastest in the extreme regimes
of strong accelerations and weak surface tension, occurring, for instance in high energy density plasmas [5-9].
Hence, for given values of the parameters Vj, p, @y O>0necan observe the new fluid instability by increasing the
acceleration values. One can further observe that for the unstable accelerated conservative dynamics with surface
tension, the growth of the interface perturbations is augmented with the growth of the interface velocity. The
former is present and the latter is absent in Landau-Darrieus and Rayleigh-Taylor instabilities figure 7, table 6
[24-35]. By accurately diagnosing the interface dynamics, including the growth of the interface perturbations
and the interface velocity, one can confidently find the new fluid instability in experiments with strong
accelerations [5-9].

In some experiments the parameters of the dynamics V;, g, o, p,, p; may bea challenge to vary
systematically [5-9, 39, 40]. Our analysis proposes how to address the challenge. Particularly, for given values of
the parameters Vj, py,;), 0, g, by varying the wavelength of the initial perturbation A, one may observe the
interface stabilization at the wavevector k = k., and the fastest growth-rate of the unstable interface at the
wavevector k = k., and the associated length-scales A¢rmax) = 27 /kr(max) and time-scales
Ter(max) = (Ker(max) Vi)' . One can further identify the type of the fluid instability, and differentiate between the
new fluid instability of the conservative dynamics and the instabilities of the Landau’s and Rayleigh-Taylor
dynamics by comparing the critical and maximum scales Ay (max)» Ter(max) With the theoretical results for given
values of the parameters, V;, p, ay o & equations (25)—(27), tables 7, 8. These results can be applied for design
of experiment in high energy density plasmas [5-9, 39, 40].

Our results indicate a need in further advancements of numerical modeling of the interface dynamics
[41-43]. Numerical modeling of unstable fluid interfaces is a challenge because the simulations are required to
track the interface, to capture small scales dissipative processes, and to use the highly accurate numerical
methods and massive computations [1]. Existing numerical approaches usually apply diffusive approximation
for modeling interfaces with interfacial mass flux, and work well for flows with smoothly changing of flow fields
[2]. Our results indicate that new developments are required to accurately model the unstable interface with
sharply changing flow fields, including the Lagrangian and Eulerian methods[1, 2, 41-43].

The existing experimental and numerical studies of the interface stability are focused on the measurements
of the growth and growth-rate of the perturbation amplitude [2, 5-7, 39-43]. We derive the amplitude growth
and the growth-rate, and we finds that the flow dynamics is highly sensitive to the interfacial boundary
conditions, figures 29, tables 1-8. Our analysis directly links the macroscopic flow fields to the microscopic
transport at the interface. It suggests that by measuring the flow fields at macroscopic scales in the bulk far from
the interface, one can confidently capture the transport properties at microscopic scales at the interface,
figures 2—8. This information is especially important for systems where experimental data are a challenge to
obtain, including fusion, supernovae and scramjets [2—15].

Consider, for instance, the theory outcome for high energy density plasmas. In our analysis acceleration is a
body force, and the acceleration magnitude is set constant in order to simplify the analysis equations (1-27). In
experiments in laser-ablated plasmas the acceleration is an effective acceleration, and it is time-dependent;
model experiment with a (quasi-) constant acceleration is extremely challenging to set up and conduct since it is
the target, the laser-drive and the experiment specific [5—8]. Our analysis finds that for the unstable accelerated
conservative dynamics, the interface velocity is a function of time even when the acceleration is constant. This is
due to the conservation of mass, momentum and energy in the system. The time-dependence of the interface
velocity can be exponential in the linear regime and a power-law in the nonlinear regime [21-23, 46]. In a frame
of reference moving with the interface velocity, the system may experience an effective acceleration, which isa
complex function of time and which may also depend on perturbation amplitude. While this opens exciting
perspectives for theory research, it also indicates that the dynamics of unstable accelerated interfaces with
interfacial mass flux, such as in laser-ablated plasmas and in type-Ia supernova [4—8], may be even more
challenging than they may appear.

This suggests a need in new experimental approaches, that, on the one hand, would employ a striking
similarity of non-equilibrium dynamics of interfaces and mixing in the vastly different physical regimes [1, 2],
and, on the other hand, would be affordable and repeatable in a broad range of parameters, and conditions. In
classical Rayleigh-Taylor instabilities, such approach was employed in jelly experiments and enabled the direct
observation of the order in interfacial mixing at very high Reynolds numbers [28]. In laser-matter interactions,
the experiments [9] provided observations of complex and ordered fine scale structures in Rayleigh-Taylor
unstable interfaces. In classical plasmas the Large Plasma Device (LAPD) experiments [62] enabled the discovery
of the spiky structures in magnetic flux ropes through scrupulous analysis of immense high quality data. In
liquids, the experiments on liquid-liquid interfaces [63] provided the nano-scale view of assisted ion transport
across the interface and revealed essentially non-diffusive interfacial transport. The theory and the experiments
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suggest that the problem is the interface dynamics with interfacial mass flux is well open for curious mind [1, 2,
5-9,28,62,63].

It is traditionally believed that the interface dynamics can be stabilized by factors depending on microscopic
properties of matter (plasmas, fluids, materials), such as surface tension, diffusion, and dissipation, which, in
turn, occur due to interactions of the constituting particles (atoms, molecules) [20, 30-35]. Our analysis suggests
that while these factors indeed play a stabilizing role, the conservative dynamics of the interface with interfacial
mass flux can also be stabilized by the inertial mechanism, which is enabled by the macroscopic motion of the
interface as whole equations (11), (20) [21, 22]. This mechanism is absent in the classical Landau’s dynamics, due
to the postulated constancy of the interface velocity, and in Rayleigh-Taylor dynamics, where the interface
velocity is zero in laboratory frame of reference equations (12), (14), (21), (22) [20-22]. In case of the accelerated
dynamics with surface tension, the inertial mechanism is exhibited in the larger (smaller) values of surface
tension required to stabilize the strongly (weakly) accelerated interface in the conservative dynamics when
compared to the Landau’s and Rayleigh-Taylor dynamics, figures 3-9, tables 1-5.

4, Discussion and conclusion

We investigated the interfacial dynamics with interfacial mass flux in the presence of the acceleration and the
surface tension equations (1)-(27). We considered ideal and incompressible fluids with negligible stratification
and densities variation for the two-dimensional spatially extended periodic flow with the acceleration directed
from the heavy to the light fluid and with surface tension understood as the tension at the boundary between the
flow phases. The general matrix method was advanced and applied to rigorously solve the linearized boundary
value problem. The fundamental solutions were found for the dynamics conserving mass, momentum and
energy, and were compared with those for the classical Landau’s and Rayleigh-Taylor dynamics. The interplay of
the acceleration, surface tension and inertial stabilization mechanism was scrupulously studied and its effect of
the interface stability and on the properties of the new fluid instability of the conservative dynamics was
identified. Extensive benchmarks were elaborated for future experiments and simulations and for better
understanding of natural and technological processes, to which unstable interfaces are relevant, equations (1)—
(27), figures 1-9, tables 1-8.

We found that the dynamics conserving mass, momentum and energy can be stable or unstable depending
on the acceleration and the surface tension. In the stable regime, the conservative dynamics corresponds to non-
perturbed flow fields in the bulk, is shear-free at the interface and has the constant interface velocity. The
instability can develop only in the presence of the acceleration and only when its magnitude exceeds a threshold,
equation (20), figures 2—7, tables 1, 4, 5, 6. This threshold value reflects the contributions of the inertial
stabilization mechanism and the surface tension and is finite for zero surface tension. In the unstable regime, the
interface perturbations are coupled with the potential and vortical components of the velocity fields in the fluids’
bulk; for zero surface tension, the velocity fields are potential. The dynamics is shear-free at the interface. It
describes the standing wave with the growing amplitude, and has the growing interface velocity, figure 6.
Depending on the acceleration and the surface tension, the fluid instability of the conservative dynamics can
grow faster or slower when compared to the accelerated Landau’s and Rayleigh-Taylor dynamics; it has the
largest growth-rate and the largest stabilizing surface tension value in the extreme regime of strong accelerations,
equations (20)—(22), figures 4-9, tables 2—6. We also found the critical and maximum values of the wavevector of
the initial perturbation at which the conservative instability is stabilized and at which it has the largest growth-
rate, tables 7, 8. These unique quantitative and qualitative properties of the instability of the conservative
dynamics clearly distinct it from other fluid instabilities, and call for further investigations, equations (1)—(27),
figures 1-9, tables 1-8.

Our results agree qualitatively with available observations and indicate a strong need in further experimental
and numerical studies of the interface dynamics, and in the development of new methods of numerical
modeling and experimental diagnostics. Existing experimental and numerical studies of the interface dynamics
are focused on diagnostics of the growth of the amplitude of the initial perturbation [1, 2, 39—43]. Our analysis
provides the amplitude growth-rate in a broad range of parameters, determines the regions of the experimental
parameter of the stable and unstable dynamics, identifies the structure of the flow field and links them to the
boundary conditions at the interface equations (1)—(27), figures 1-9, tables 1-8. Particularly, according to our
results, by measuring at macroscopic scales the flow fields in the bulk, one can capture the transport properties at
microscopic scales at the interface, figures 69, table 6.

An important outcome of our theory for applied scientists and engineers is that for the interface dynamics
with interfacial mass flux the interface unsteadiness and the interface stability are distinct concepts,
equations (1)—(27). Indeed, for the accelerated conservative dynamics, due to the inertial stabilization
mechanism, the interface velocity is unsteady in both stable and unstable regimes: It experiences slight
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oscillations in the stable regime, and it increases with time in the unstable regime. This suggests that more
caution is required with how the acceleration is defined: For the accelerated conservative dynamics with the
interfacial mass flux the acceleration can be caused by the body force and be directed from the heavy to the light
fluid in the inertial frame of reference. For Rayleigh-Taylor dynamics with zero interfacial mass flux, the
acceleration can also be the acceleration of the fluid interface and be directed from the light to the heavy fluid in
the inertial frame of reference, figures 1-9.

Our approach resolved the long-standing prospect of Landau [32], by showing that Landau’s solution for
Landau-Darrieus instability is a perfect mathematical match [21-23, 46]. Our results can be further connected to
realistic environments in plasmas, fluids and material, in which the dynamics is usually accompanied by
dissipation, diffusion, compressibility, radiation transport, stratification, and non-local forces, figures 1-9
[2—15]. Our general theoretical approach can be extended to systematically incorporate these effects, to analyze
the interplay of the interface stability with the structure of flow fields, and to elaborate a unified theory
framework for studies of interfacial dynamics in a broad range of processes including ablative Rayleigh-Taylor
instabilities in fusion plasmas, dynamics of reactive and super-critical fluids, and D’yakov-Kontorovich
instability of shock waves [1-45]. We address these studies to the future.
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