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Abstract
Non-equilibriumdynamics of interfaces andmixing are omnipresent influids, plasmas andmaterials,
in nature and technology, at astrophysical and atmolecular scales. Thiswork investigates dynamics of an
interface separatingfluids of different densities andhaving interfacialmassflux, and being influencedby
the acceleration and the surface tension.Wederive solutions for the interface dynamics conservingmass,
momentumand energy,find the critical acceleration values separating stable andunstable regimes, and
reveal themacroscopic inertialmechanismas primarymechanismof the interface stabilization.We
show thatwhile the surface tension influences only the interface, its presence leads to formationof
vortical structures in the bulk. For large accelerations the conservative dynamics is unstable, leading to
the growth of interface perturbations and the growthof the interface velocity. This new instability canbe
unambiguously discerned fromother instabilities; for strong accelerations it has the fastest growth-rate
and the largest stabilizing surface tension valuewhen compared toLandau-Darrieus andRayleigh-
Taylor instabilities.We furtherfind the values of initial perturbationwavelengths atwhich the
conservative dynamics canbe stabilized and atwhich it has the fastest growth.Our results agreewith
existing observations, identify extensive theory benchmarks for future experiments and simulations, and
outline perspectives for application problems innature and technology.

1. Introduction

Non-equilibrium transport, interfaces andmixing are omnipresent innature and technology at astrophysical and
atmolecular scales, and inhigh and low energydensity regimes [1]. Thermonuclearflashes on the surface of
compact stars, thefingering of the interstellarmediumalong the edge of a blackhole, the formation ofhot spot in
inertial confinement fusion, theparticle-field interactions in implodingZ-pinches, the coronalmass ejections in
the Solarflares, the plasma instabilities in the Earth ionosphere, thedeepocean convection events in thepolar
region, the pollutant dispersion in the atmosphere, plasma thrusters, nano-fabrication, fossil fuel extraction, and
premixed combustion– are examples of processes governedby thenon-equilibrium interfacial dynamics [2–19].
These realistic environments are often characterized by sharply and rapidly changingflowfields and by small
effects of dissipation anddiffusion,which result in the formation of discontinuities (referred to as fronts or as
interfaces) between theflownon-uniformities (phases) atmacroscopic (continuous) scales [11]. Non-equilibrium
dynamics of interfaces andmixing are challenging to study in their directmanifestations in theory, experiment and
simulations, and are a source of paradigm shifts in science,mathematics and engineering [1, 2, 18].

In this workwe systematically investigate the dynamics of the interface that separatesfluids of different
densities, has the interfacialmass flux, and is influenced by the acceleration and the surface tension [20].
Through the general theoretical framework [21–23], we derive solutions for the interface dynamics conserving
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mass,momentum and energy, find the critical acceleration values separating stable and unstable regimes, and
reveal themacroscopic inertialmechanism as primarymechanism of the interface stabilization.We show that
while the surface tension influences only the interface, its presence leads to formation of vortical structures in the
bulk. For large accelerations the dynamics is unstable, leading to the growth of the interface perturbations and
the growth of the interface velocity. This instability of the conservative dynamics can be unambiguously
discerned fromotherfluid instabilities.

The paper is organized as follows. Following the Introduction in section 1, we provide theMethod in
section 2, including the governing equation (2.1), the theoretical approach (2.2), and the fundamental solutions
(2.3).We present in section 3 theResults of our analysis for the conservative dynamics, and for the dynamics of
the Landau-Darrieus andRayleigh-Taylor instabilities influenced by the acceleration and the surface tension.
This includes the fundamental solutions (3.1), the systematic study of the properties of the inertial dynamics free
from surface tension (3.2) andwith surface tension (3.3), the focused analyses of the accelerated dynamics free
from surface tension (3.4) andwith surface tension (3.5), the investigations of themechanisms of the interface
stabilization and destabilization (3.6) and the characteristic scales (3.7), as well as the theory outcomes for
experiments and simulations (3.8).We finalize theworkwithDiscussion in section 4, and provide
Acknowledgements, Data availability, Author’s contributions, References, Tables, and Figure captions and
Figures in sections 5–10.

When looking from a farfield, an observer ordinarily considers two kinds of discontinuities separating the
flowphases: a front and an interface [20]. The front has zeromassflux across it. Through the interface themass
can be transported. Thefluid phases are broadly defined: These can be the distinct kinds ofmatter or the same
kind ofmatter with distinct thermodynamic properties. To describe themulti-phase flow, a boundary value
problem should be solved by balancing the fluxes ofmass,momentum and energy at a freely evolving
discontinuity.While the boundary value problems are challenging to investigate, this approach has a number of
advantages, and the boundary value problem solution has high predictive capability in a broad parameter
regime [21].

The unstable accelerated fronts are represented byRayleigh-Taylor andRichtmyer-Meshkov instabilities
[24–27]. The fundamental properties of Rayleigh-Taylor andRichtmyer-Meshkov dynamics in the scale-
dependent early-time and late-time regimes and in the self-similar interfacialmixing regime are well captured by
the group theory approach and by the linear andweakly nonlinear theories [28–31]. For interfaces, the classical
theoretical framework for the problemwas developed by Landau [32]. It considered the dynamics of ideal
incompressible fluids, balanced at the interface thefluxes ofmass andmomentum and postulated the special
condition for the perturbedmassflux [32]. Several seminalmodels further connected this framework to realistic
environments in high energy density plasmas and in reactive and super-critical fluids [33–38].

The dynamics of interfaces with interfacialmass flux is a long-standing problem in science,mathematics and
engineering [1]. It has wide-ranging applications in plasmas (dynamics of ablation front influencing the hot spot
formation in inertial confinement fusion), astrophysics (thermonuclear flashes determining the nuclear
synthesis in type-Ia supernova), material science (material transformations under high strain rates in nano-
fabrication), and industry (scramjets) [1, 2]. To tackle these research frontiers and to solve a broad class of
problems, the theory of interface dynamics was recently developed [21–23].

This theory elaborated the general framework for the problemof the interface stability, directly linked the
microscopic transport at the interface tomacroscopic fields in thefluids’ bulk, and reported themechanisms of
the interface stabilization and destabilization never previously discussed [21–23]. The key discoveries – the
inertialmechanismof the interface stabilization, the new fluid instability of the accelerated interface, and the
chemistry-induced instabilities – identified the fundamental properties of the interface dynamics. They also
resolved the long-standing prospect of Landau [32], by showing that the classical Landau’s solution for Landau-
Darrieus instability is a perfectmathematicalmatch [21–23].

The theory [21–23] considered the inertial and the accelerated interface dynamics for ideal incompressible
fluids free from stabilizations caused by interactions of particles atmolecular scales [14–17]. Realistic processes
are usually accompanied by dissipation, diffusion, compressibility, radiation transport, stratification, surface
tension and other effects [3–15, 39–43]. The influence of these effects on the interface dynamics call for
systematic investigations [21].

Here we study the interface dynamics with interfacialmassflux in the presence of acceleration and surface
tension. Thefluids are ideal and incompressible, with negligible stratification and densities variation, theflow is
two-dimensional, periodic and spatially extended. The destabilizing acceleration is directed from the heavy to
the lightfluid.Macroscopically, the surface tension is understood as a tension at the phase boundary between the
flowphases [20, 21].Microscopically, the surface tension is caused by anisotropy of interactions between the
particles near the interface which results in energy consumptionwith the increasing interface area [14, 20, 41].
Physically, the surface tension is always present in amultiphase flow.Mathematically, the surface tension is
accounted for through the pressuremodification in the governing equations [14, 20, 21].We investigate the
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interplay of themacroscopic andmicroscopic stabilizations due to the inertial effect and surface tension,
respectively, with the destabilizing acceleration in the interface dynamics with interfacialmassflux.

In order to address this task, we advance and employ the generalmethod [21, 22] to rigorously solve the
linearized boundary value problem conservingmass,momentum and energy.Wefind that depending on the
acceleration and the surface tension, the dynamics can be stable or unstable. In the stable regime, theflowmay
have non-perturbed flowfields in the bulk and a constant interface velocity. The conservative dynamics is
unstable onlywhen it is accelerated andwhen the acceleration value exceeds a threshold. This threshold value
combines the contributions of the inertial and the surface tensionmechanisms and isfinite for zero surface
tension. The unstable dynamics couples the interface perturbations with the potential and vortical components
of the velocityfields in thefluids’ bulk and is shear free at the interface. It describes the standingwavewith the
growing amplitude, and has the growing interface velocity. This instability of the conservative dynamics has
unique quantitative and qualitative properties unambiguously differentiating it fromotherfluid instabilities.
Particularly, it has the fastest growth-rate and the largest stabilizing surface tension value in the extreme regime
of strong accelerations, when compared to the Landau-Darrieus andRayleigh-Taylor instabilities.We further
find the critical andmaximumvalues of the initial perturbationwavelengths at which thefluid instability of the
conservative dynamics can be stabilized and atwhich its growth is the fastest. Based on the obtained results, we
identify the theory benchmarks for future experiments and simulations and for application problems in nature
and technology [1–15, 39–45].

The problemof the interface dynamics with the interfacialmass flux is a corner-stone problemof physics,
mathematics and engineering [1, 2]. On the side of physics, one needs to grasp non-equilibriumdynamics of
interfaces andmixing in order to better understand a broad range of natural phenomena, from celestial events to
molecules [3–10]. On the side ofmathematics, this problem is evenmore challenging than theMillennium
problemof theNavier-Stokes equation, since, in addition to solution of nonlinear partial differential equations
in the bulk, it requires a solution of a boundary value problem at an unstable freely evolving interface and an ill-
posed initial value problem [1, 18–23, 46, 47]. In engineering, themultiphase flows are critical to technological
and industrial processes, including nano-fabrication, gas and oil extraction, and purification of water [11–17].
Hence, the problem studied in this paper - the interface dynamics with interfacialmassflux -fits naturally into
the scope of Physica Scripta and the Focus Issue ‘TurbulentMixing andBeyond’ [48].

The problem solution requires one to develop a rigorous and general theory applicable in a broad range of
conditions [20–23, 46]. It also demands the elucidation of the so-called third prospect of Landau – the 1962
Noble Laureate and one of founders ofmodern theoretical physics [20]. The resolutions of the two other
prospects of Landau – the theory of phase transitions and the theory of superconductors –were recognizedwith
Noble prizes in 1982 and 2003 [20, 49]. Our theoretical approach enables a rigorous, general and systematic
treatment of the interface dynamics, and finds that the classical Landau’s solution for the Landau-Darrieus
instability is a perfectmathematicalmatch requiring energy imbalance at the interface [21–23, 46]. Our first
work on the subject [23]was selected by Physica Scripta as ResearchHighlight [50].

Our theoretical approach reveals the physics of the interface dynamics through the analysis ofmathematical
attributes of rigorous analytical solutions, including, e.g., the direct link of the properties ofmacroscopic fields in
the bulk tomicroscopic transport at the interface, the inertial stabilizationmechanism, and the new fluid
instability [21–23, 46]. It calls for further systematic developments, including, e.g., the theory of ablative
Rayleigh-Taylor instability in fusion plasmas, the theory ofD’yakov-Kontorovich instability of shockwaves, and
the bridge of the concepts of the linear response theory, self-similarity and interfaces [20–23, 46]. The present
work studies the interface dynamics and focuses on the interplay of the destabilizing accelerationwith
macroscopic andmicroscopic stabilizations due to the inertial effect and the surface tension, respectively, in the
interface dynamics with the interfacialmass flux.

2.Method

2.1. Governing equations
Conservation laws: In the inertial frame of reference, the dynamics of idealfluid is governed by the conservation
ofmass,momentum, and energy as
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Here xi are the spatial coordinates, =x x x x y z, , , , ,1 2 3( ) ( ) t is time, r P Ev, , ,( ) are the fields of density ρ,
velocity v, pressure P and energy density E, and e is specific internal energy [20–23]. The inertial frame of
reference is referred to the frame of referencemovingwith constant velocity V0˜ relative the laboratory frame of
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reference; for definiteness = VV 0, 0,0 0˜ ( ˜ ) [21, 22]. The governing equations equation (1) are augmentedwith
the closure equation – the equation of state associating the internal energy and pressure [20].

For a systemof twofluidswith different densities separated by an interface, wemark thefields of the heavy
(light)fluid as r P Ev, , , ,h l( ) ( ) andwe introduce a continuous local scalar function q x y z t, , ,( ) to describe the
interface. The function value is q = 0 at the interface and it is q > 0 (q < 0) in the heavy (light)fluid [21–23,
28, 29]. By using theHeaviside step-function qH ( )we represent theflowfields in the entire domain as
r r q r q= + -P E P E H P E Hv v v, , , , , , , , ,h l( ) ( ) ( ) ( ) ( ) [18, 19, 21–23].

Boundary value problem: At the interface, the balance offluxes ofmass and normal and tangential
components ofmomentum and energy obey the boundary conditions [21–23, 28, 29]:
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where the jump of functions across the interface is denotedwith ... ;[ ] the unit vectors normal and tangential at
the interface aren and τwith q q=  n ∣ ∣and t =n 0;( · ) themass flux across themoving interface is

r q q=  +j n v ;˜ ( ∣ ∣ ) the specific enthalpy is r= +W e P [21–23, 28, 29].
The boundary conditions at the interface equation (2) are derived directly from the conservation laws in the

bulk equation (1) in the inertial frame of reference. They are exact and are independent of the velocity V0˜ of the
inertial frame of reference [21]. This general formulation allows us to stay free from traditional postulate of the
constancy of interface velocity [20], and to examine the sensitivity of the dynamics to the boundary conditions at
the interface, including theflowfields’ structure and the interface stability [46].

We consider the spatially extended flow,which is unbounded in the z direction and is periodic in the x y,( )
plane. The heavy (light)fluid is located in the lower (upper) sub-domain. The boundary conditions at the outside
boundaries of the domain are

= = = =-¥ +¥V Vv V v V0, 0, , 0, 0, 3h z h h l z l l∣ ( ) ∣ ( ) ( )

with the constant velocitymagnitude(s)V ,h l( ) figure 1.
Interface velocity: The interface velocity in the laboratory frame of reference is V.˜ For the steady planar

interface normal to themass flux, the interface velocity is constant; this velocity can be chosen equal to the
velocity of the inertial frame of reference as =V V.0˜ ˜ For the non-steady non-planar interface arbitrarily
positioned relative to themass flux, the interface velocity Ṽ and the velocity of the inertial frame of reference V0˜
are distinct, ¹V V0˜ ˜ [21]. In this general case, the interface velocity Ṽ obeys the relation

r= - = -q q= =nV vn j n 40 0˜ ∣ (˜ ) ∣ ( )

Flow configuration: Theflow is subject to the acceleration and the interfacial surface tension. The
acceleration g is directed along the z direction from the heavy fluids to the lightfluid, as = g gg 0, 0, , 0.( )
The interfacial surface tension is understood as the tension between thefluid phases, and is characterized by the
surface tension coefficient s s , 0.

Weconsider a sample case of a two-dimensional flowperiodic in the x direction, free frommotion in the y
direction and spatially extended in the z direction. The interfacial function θ is set as
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Figure 1 illustrates the schematics of the dynamics in equations (1)–(5) in a far field (not to scale). The heavy
(light)fluidwith the density rh l( ) is located in the lower (upper) part of the domain and has the uniform velocity
field = VV 0, 0,h l h l( )( ) ( ) marked by arrows far from the interface. Blue colormarks the interface between the
fluidswith solid (dashed) line for the perturbed (planar) interface. The acceleration = g gg 0, 0, , 0( ) is
directed from the heavy to the light fluid and is along the z-direction. In this configuration the gradients of the
pressure and density are directed oppositely, and the acceleration destabilizes the dynamics; the case of zero
massflux corresponds to Rayleigh-Taylor instability (RTI). The surface tension s s , 0 is present at the
interface. Theflow is two-dimensional.

Some discussion is required on nature of the acceleration [18–30]. The acceleration can destabilize the
dynamics when the gradients of pressure and density are directed oppositely [24–27]. This can occurwhen the
flow is a subject to acceleration directed from the heavy to the lightfluid and the acceleration is due the body
force. This can also occurwhen the fluid interfacemoves with the acceleration directed from the light to the
heavyfluid [24–27, 51]. The former case is illustrated bywaterflowing from an overturned cup under the
influence of gravity [24, 51]. The latter case is observed in experiments in shock-driven fluids and plasmas [18,
25–28, 52, 53]. For a nearly planar interface with zero interfacialmass flux, as in early-timeRayleigh-Taylor
instability, these definitions are equivalent, because the interface dynamics can be considered in a non-inertial
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frame of referencemovingwith the accelerated interface [24–28]. In general case of an unsteady non-planar
interface with interfacialmassflux, the former definition is usually applied [18–22, 29–38]. In our theorywe
consider the dynamics of thefluids and their interface in the inertial frame of reference, when the acceleration is
due to the body force and is directed from the heavy to the lightfluid.

In schematics of acceleration-driven instabilities andRTI in the literature [18, 19, 28–30], it is usual that
the acceleration is against the z direction and the heavy (light)fluid is located in the upper (lower)part of the
domain. Such configuration refers to our everyday experience whenwe observe RTI bywatchingwaterflowing
froman overturned cup [28–30]. For the purposes of the present paper, we keep the direction of the acceleration
from the heavy to the lightfluid, andwe locate the heavy (light)fluid in the lower (upper)part of the domain.
This configuration is free from the loss of generality and from the influencing the results [21, 22]. The
configuration is used because for the interface dynamics with the interfacialmassflux, the velocity field of the
heavyfluid is potential whereas the velocityfield of the lightfluid is a superposition of the potential and vortical
components, see section 2.3 for details [20–23, 32–38, 46]. Theflow configuration as infigure 1 allows us to
better illustrate the lightfluid flowfields of and to easier compare theflowfields of the conservative dynamics
with interfacialmassfluxwith those of Landau-Darrieus andRayleigh-Taylor instabilities, seefigures 3, 6–9
[20–23, 32–38, 46].

2.2. Linearized dynamics
The governing equations equations (1)–(4) are extremely challenging. They can be simplified by the conditions
of small perturbations,massflux directionality and incompressibility.

Figure 1. Schematics of the dynamics in a far field (not to scale). Blue colormarks the planar (dashed line) interface and the perturbed
(solid line) interface.
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Dynamics perturbations: The unperturbed flowfields are uniform, =P W P Wj v J V, , , , , , ,0 0{˜ } { } the
unperturbed interface is planar, and the normal and tangential unit vectors of the unperturbed interface are

t t=n n, ,0 0{ } { }equation (2).We slightly perturb in equations (1)–(4) theflowfields as = +j J j,˜
= +v V u, = +P P p,0 and = +W W w,0 with j J ,∣ ∣ ∣ ∣ u V∣ ∣ ∣ ∣ p P0∣ ∣ ∣ ∣ and w W .0∣ ∣ ∣ ∣ We

slightly perturb thefluid interface as = +n n n0 1 and t t t= + ,0 1 with n n1 0∣ ∣ ∣ ∣ and t t ,1 0∣ ∣ ∣ ∣ andwith
q q V .∣ ∣ ∣∣ ∣ ∣  Thefluid density is perturbed as r r dr + with dr r .∣ ∣ ∣ ∣ The perturbed velocity of the
interface is = +V V v,0˜ ˜ ˜ with v V .0∣ ˜ ∣ ∣ ˜ ∣

To the leading order in small perturbations, the boundary conditions at the interface are:
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To the first order, the boundary conditions at the interface are:
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The small perturbations of the flowfields decay away from the interface:

dr dr= =-¥ +¥p w p wj v j v, , , , 0, , , , , 0 6.3h z l z{ } ∣ { } ∣ ( )

Physics assumptions: The boundary conditions in equations (2)–(4) and (6) are valid for compressible and
incompressible ideal fluids, for two- and three-dimensional flows, and for arbitrary positioning of the interface
relative themassflux. Conditions equation (6) can be further simplified by applying the conditions of
directionality of themassflux, the incompressibility of thefluids, and the dimensionality of theflow.

Boundary conditions: Indeed, to the leading order, themass flux is r=J V, theflowfields are uniform in
the bulk, r r=P W P Wv V, , , , , , ,h l h l0 0( ) ( )( ) ( ) and obey conditions equation (3) at the boundaries of the
domain. The components ofmass flux normal and tangential to the interface are =J J n ,n 0· t=tJ J .0· We
presume that to the leading order themass flux is normal to the planar interface; hence, its tangential component
is zero, =tJ 0. In the limiting case of incompressible dynamics, the values approach r+ P J Pn h l h l0

2
0( ) ( )( ) ( )
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2 2

0( ) ( )( ) ( ) since the speed(s) of sound in thefluid(s) is substantially greater than other
velocity scales. These transform equation (6.1) to

= = =J P J Wn0, 0, 0 7n n0 0 0[ ] [ ] [ ] ( )

For a two-dimensional flow in equation (5), to the leading order the normal and tangential vectors of the
interface are = -n 0, 0, 10 ( ) and t = 1, 0, 0 .0 ( ) Thefirst order perturbations of the normal and tangential
vectors of the interface are = ¶ ¶z xn , 0, 01 *( ) and t = ¶ ¶z x0, 0, .1 *( ) This leads to =J n 0.1· For
incompressible fluidswith negligible density perturbations dr r u V∣ ∣ ∣ ∣ ∣ ∣ thefirst order boundary
conditions at the interfaces equation (6.2) are then transformed to
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The normal and tangential components of the perturbedmassflux are =j j nn 0· and t=tj j .0· In ideal
incompressible fluids the internal energy is constant, =e e ,0 and the perturbed enthalpy is r=w p .The
perturbed flowfields in the bulk and at the outside boundaries obey the equations [20–23]:

r
 = +  +


=

p
u u V u0, 0 8.2· ( · ) ( )

where thefields r pV u, , ,( ) are r pV u, , , h l( ) ( ) in the bulk of the heavy (light)fluid. The boundary conditions
for the perturbed flowfields away from the interface are:

= =-¥ +¥u u0, 0 8.3h z l z∣ ∣ ( )
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The interface velocity is = +V V v,0˜ ˜ ˜ with v V .0∣ ˜ ∣ ∣ ˜ ∣ Up to the first order it is

q= + = - + q=V V v vn u n, 8.40 0 0 0˜ ˜ ˜ ˜ ( · ) ∣ ( )

To conclude this Sub-Section, we emphasize that, in excellent agreementwith the classical results, for the
interface dynamics with the interfacialmass flux, the tangential component of the velocity is continuous at the
interface, with t =v 0,[ · ] including the zeroth order t =V 00[ · ] and the first order t t+ =V u 0,1 0[ · · ]
and the velocity field is shear-free at the interface equations (2), (6), (8) [20–23, 46].

2.3. Fundamental solutions
Structure of solutions:We seek solutions for the boundary value problem equation (8) inwhich the perturbed
velocity of the heavy fluid is potential in accordance with theKelvin theorem, and the perturbed velocity of the
lightfluid has both potential and vortical components [20–23]:

Y= F = F +  ´u u, 9.1h h l l l ( )

This structure of the solution agrees with observations and is established for any initial conditions [20].
Thefluid potential and vorticalfields and the interface perturbation are

Y
F = F + + W F = F - + W

= Y Y = Y - + W = + W

ikx kz t ikx kz t

ikx kz t z Z ikx t

exp , exp

0, , 0 , exp , exp 9.2

h l

l l l *

( ) ˜ ( )
( ) ( ˜ ) ( ) ( )

Here W is the growth-rate (the characteristic frequency, the eigenvalue) of the system equations (8), p l=k 2 is
thewavevector andλ is the spatial period (thewavelength).

For the pressure perturbations ph l( ) and for the length-scale of the vorticalfield l p= k2 ,˜ ˜ we obtain from
equation (8.2)

r
Y F +

¶F
¶

+ =
¶
¶

+
¶
¶

 ´ =V
z

p

t
V

z
0, 0 9.3h l h l

h l h l

h l
l l⎜ ⎟

⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟ ⎛

⎝
⎞
⎠

( ) ( )( ) ( )
( ) ( )

( )



The perturbed pressure is free from contributions from the perturbed vortical field [20, 21]. This leads to

r= - F +
¶F
¶

= Wp V
z

k V, 9.4.1h l h l h l h l
h l

l⎜ ⎟⎛
⎝

⎞
⎠

˜ ( )( ) ( ) ( ) ( )
( )

The perturbed enthalpy is

r
= = - F +

¶F
¶

w
p

V
z

9.4.2h l
h l

h l
h l h l

h l
⎜ ⎟⎛
⎝

⎞
⎠

( )( )
( )

( )
( ) ( )

( )

accounting for the constancy of internal energy in ideal incompressible fluids.We note that the vortical field
wave-vector = Wk Vl

˜ depends on the growth-rate W.The sign of the real part of k̃ is defined by the sign of
W,with > <kRe 0 0[ ˜] ( ) for W > <Re 0 0[ ] ( ) for the unstable (stable) dynamics, and the imaginary part of
k̃ is defined by the imaginary part of W, as = Wk VIm Im .l[ ˜] [ ] In order to obey the boundary conditions

=+¥u 0,l z∣ the vortical field should decay away from the interface, >k k 0,( ˜ ) and the interface dynamics
should be unstable, W >kVRe 0.h[ ( )]

In the presence of the acceleration = gg 0, 0,( ) and the surface tension the pressure and the enthalpy
perturbations aremodified as [20–23]:

r s

s
r

 + -  - +
¶
¶

 + -  - +
¶
¶

p p g z p p p p
z

x

w w g z w w w w
z

x

,

, 9.5

h l h l h l h l h l

h l h l h l h l
h

2

2

2

2

*

*

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

The perturbed dynamics is incompressible for a broad range of values of the acceleration, rg kP 1,0∣ ∣ 
and the surface tension, sk P 10∣ ∣  [20–23].

Figure 1 illustrates theflow configuration, with the heavy (light)fluid located in the lower (upper) part of the
domain. The acceleration is directed from the heavy to the light fluid and, similarly to Rayleigh-Taylor
instability, destabilizes the dynamics. The locations of the heavy and lightfluids and the direction of the
acceleration along the z axis are chosen to better illustrate the flowfields of the lightfluid and to easier compare
theflowfields of the conservative dynamics with interfacialmass fluxwith those of Landau-Darrieus and
Rayleigh-Taylor instabilities [20–23, 32–38, 46].

With expressions equation (9), the systemof differential equations governing the interface dynamics is
reduced to the linear systemMr=0, where vector r is = F F Y TV zr , , , ,h l h l*( ) and thematrixM is defined by
the boundary conditions at the interface equations (8), (9) [21].
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Dimensionless units: For ideal incompressible fluids, the characteristic length-scale k1 and time-scale
kV1 h are defined by the initial conditions, and the characteristic density scale is set by the heavyfluid density r .h

Weuse the dimensionless values of the growth-rate w = W kV ,h and the density ratio r r=R h l with R 1.

This leads to w= =V V R k k R,l h
˜ [21–23].We use the dimensionless values of the gravity =G g kV ,h

2

with G 0, and surface tension s r=T k V ,h h
2( )( ) with T 0, andwith a broad range of values G 0 and

T 0 for incompressible dynamics [20–22].We use dimensionless values for theflowfields, the interface, and
the variables asj = F V k ,h( ) j = F V k ,h˜ ˜ ( ) y = Y V k ,h( ) =z kZ ,¯ and   kx x kz z kV t t, , .h

In the dimensionless units, thefluid potentials arej j j j= =w w+ + - +e e,h
ix z t

l
ix z t˜ and y y= 0, , 0l l( )

with y y= w- +e ,l
ix k k z t( ˜ ) thefluid velocities are yj j=  =  +  ´u u, ,h h l l l and the interface

perturbation is = w+z ze .ix t* ¯
Fundamental solutions: In the dimensionless form, the elements of thematrixM is are the functions of the

growth-rate (the frequency, the eigenvalue) w, the density ratioR, the acceleration valueG, and the surface
tension valueT asM M w= R G T, , ,( ) [21]. The condition M w =R G Tdet , , , 0i( ) defines the eigenvalues
wi and the associated eigenvectors ei˜ [21, 22]. ThematrixM is ´4 4. For a non-degenerate ´4 4 matrix, there
are 4 fundamental solutions w=r r e, ,i i i i( ˜ ) =i 1...4,with 4 associated eigenvalues wi and eigenvectors e ,i˜
corresponding to 4 degrees of freedomand 4 independent variables obeying 4 equations, equations (8), (9).

Solution r for the systemMr=0 is a linear combination of the fundamental solutions ri

å=
=

Cr r 10
i

i i
1

4

( )

Here Ci are the integration constants, and w=r r e,i i i i( ˜ ) are the fundamental solutionswith = wer ei i
ti˜ and

j j y= + - - Te e ze ee , , ,i
ix z ix z ix ix k k z

i˜ ( ˜ ¯ )( ˜ ) andwith the associated vector j j y= Tze , , , .i i( ˜ ¯ )
At the first glance, thematerial in section 2 -Methodmay appear rather formal. This detailed consideration

is however necessary, because it related the physics of the interface dynamics to themathematical attributes of
rigorous solutions [21–23, 46]. By using the generalmatrixmethod for solving the boundary value problem
equations (1)–(10), we directly link themicroscopic interfacial transport to themacroscopic flowfields, conduct
a systematic study of the interplay of the interface stability with the structure of the flowfields, and investigate the
properties of the interface dynamics in a broad parameter regime [21, 22].

2.4. Theory outline
In this workwe develop the general framework for theoretical studies of the interface dynamics in a broad range
of conditions. Our approach has a number ofmethodical advantages. (1) Interfacial boundary conditions, which
we use, are exact, since they are derived from the conservation laws and in the inertial frame of reference in
equations (1), (2). This derivation is free from the postulate of constancy of the interface velocity; it allows us to
identify themacroscopic stabilizationmechanism and to examine sensitivity of the interface dynamics to the
boundary conditions [21–23, 46]. (2) Flowfields, whichwe employ, are represented by scalar and vector
potentials equation (9). This representation permits us tofind the structure of theflowfields, to directly link the
macroscopic flowquantities far from interface tomicroscopic transports at the interface, and to quantify
dependence of scalar and vector fields on physical parameters of theflow [21–23, 46]. (3) Solutions, whichwe
obtain, aremathematically rigorous and physically complete. This rigorous approach enables us to investigate
the degeneracy of non-equilibriumdynamics, to evaluate its sensitivity to initial conditions, and to predict the
existence of scale-dependent and self-similar regimes [21–23, 46].

In this work, we consider the dynamics of thefluids and the interface in the inertial frame of reference, when
the acceleration is due to the body force and is directed from the heavy to the light fluid equations (1)–(10). This
formulation permits the studies of the interface dynamics with the interfacialmassflux (as in conservative
dynamics and in Landau-Darrieus instability) andwith zero interfacialmass (as in Rayleigh-Taylor instability) in
a unified theoretical framework. It also allows the identification of the inertial stabilizationmechanism (to be
discussed in the next sections), as well as enables the investigations of the linear and nonlinear dynamics.

The interface dynamics is a corner-stone problemof appliedmathematics and theoretical physics; it seeded
the development ofmethods of nonlinear analysis and the field of dynamical systems [20, 34, 54]. For theweakly
nonlinear dynamics, it inspired the formulation of genericmathematicalmodels, includingGinzburg-Landau,
nonlinear Schrödinger, andKuramoto-Sivashinsky equations [20, 34, 54]. For the highly nonlinear dynamics, it
enabled the development of group theory based approach [19, 28, 29]. For self-similarmixing, it provided
grounds for development of theory of turbulence,mixing and chaos [19, 20, 29, 34, 54]. Our present work is
focused on the linear dynamics and is applicable for small amplitudes and early times, with < W-t 1 in
dimensional units. Our approach can be extended to analyze theweakly nonlinear dynamics at ~ W-t 1 and
late-time nonlinear dynamics at W-t .1 It can be linked to traditional weakly-nonlinear and highly nonlinear
theories [19, 20, 28–31, 34, 54].We address these important studies to the future.
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3. Results

3.1.Matrixes and fundamental solutions
In this sectionwe identify the fundamental solutions for the accelerated conservative dynamics and for the
classical Landau’s andRayleigh-Taylor dynamics with the acceleration and surface tension.

3.1.1. Conservative dynamics
Weconsider the conservative dynamics balancing thefluxes ofmass,momentum and energy at the interface,
equation (8.1). For this dynamics, thematrixM isM M= :GT

w w
w

w w
w w w w

M =

- - - +
- -

- + - - -
- + -

R R i
R i R

R R R G R RT iR
T R iR

1
1 1 1

1 2
11.1GT

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

( )
( )

Its determinant is
w w wM = - - + - + - - + +i R R R R R R R G R TRdet 1 1 1 1 ,GT

2(( ) )( )( )( ( ) ( ) ( ) ) and the values wi

and ei are

w j j y

w w

=  -
+
-

+
-

=

= = = - =
+

-
-
+

T

T

T

i R
G R

R R

T

R

R i R
i

R

i R

R

e

e e

1
1

1 1
, , , 1, ;

, 0, , 0, 1 ; ,
2

1
,

1

1
, 0, 1 11.2

1 2 1 2 1 2

3 3 4 4 ⎛
⎝

⎞
⎠

( )
( )

( ˜ )

( ) ( ) ( )

( ) ( ) ( )

where the components j j y, ,{ ˜ }of the eigenvectors for solutions 1 and 2 are functions on R G T, , .Among the
fundamental solutions for the conservative dynamics equation (11), the fundamental solutions wr e,1 1 1( ) and
wr e,2 2 2( ) depend on the values of the accelerationG and the surface tensionT, whereas the fundamental

solutions wr e,3 3 3( ) and wr e,4 4 4( ) are independent ofG andT [21, 22].
In regards to the fundamental solutions wr e,1 1 1( ) and wr e,2 2 2( ) in equation (11), for some values of the

acceleration, the surface tension and the density ratio, these solutions are stable, with =r r1 2* and w w=1 2*with
w =Re 0.1 2[ ]( ) They describe two stable travelingwaves, whose superposition results in stably oscillating

standingwaves. For some other values of the acceleration, the surface tension and the density ratio, one of these
solutions is unstable, r1 with w >Re 0,1[ ] whereas the other is stable, r2 with w >Re 0.2[ ] These solutions
describe the standingwaves, with the growing (r1) and the decaying (r2) amplitudes. For these solutions, the
interface perturbations are coupledwith the potential and vortical components of the velocities of the
fluids’ bulk.

In regards to the fundamental solutions wr e,3 3 3( ) and wr e,4 4 4( ) in equation (11), the solution r3 is unstable,
w = R3 and w >Re 0,3[ ] and the solution r4 is stable, w = -R4 and w <Re 0.4[ ] The remarkable property of
the formally unstable solution r3 is that the interface perturbation and the perturbed fields of the velocities
and pressure are identically zero in the entire domain at any time for any integration constant C ,3 with

= = =z pu0, 0, 0h l h l* ( ) ( ) [21, 22]. For the formally stable fundamental solution r4, wemust set the

integration constant =C 0,4 in order for this solution to obey at any time the conditions =+¥u 0.l z∣ This is
because the vortical component of the velocity, y ´ ¹ 0,l while decaying in time, increases away from the
interface. Note that for solution r4 the vorticity value is  ´ =u 0,l despite of y ¹ 0l and y ´ ¹ 0.l This

is because in the vorticityfield y ´ = - k kr 0, 1 , 0l l
2( ( ( ˜ ) ) ) the values are w= =k k R 12 2( ˜ ) ( ) [21, 22].

The accelerated conservative dynamics with surface tension has 4 fundamental solutionswith 4 associated
eigenvalues and eigenvectors, 4 independent degrees of freedom, and is non-degenerate. By defining the
solution rCDGT in the stable regime as the superposition of the travelingwaves = +r r r 2CDGT 1 2( ) and in the
unstable regime as the solution =r r ,CDGT 1 we analyze properties of this solution below, table 1. Sub-script
stands for conservative dynamics with the gravityG and the surface tensionT.

3.1.2. Classical Landau’s dynamics
The Landau’s theory for Landau-Darrieus instability, hereafter - the classical Landau’s dynamics, balances the
fluxes ofmass, and normal and tangential components ofmomentum, and employs the special condition for the
perturbed velocity at the interface. This special condition postulates the constancy of the interface velocity of the
non-steady non-planar interface, ºV V ,0˜ ˜ and leads to [20–23, 32–35, 46]:
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t t
t

r

r

= + =

+
= =

pj n
J n

j n n

J n
J j

u n

0,
2

0,

0, 0 12.1

0
0

0 0

0
1 0

0 0

⎜ ⎟⎜ ⎟
⎡

⎣
⎢

⎛

⎝
⎛
⎝

⎞
⎠

⎞

⎠

⎤

⎦
⎥

⎡
⎣⎢

⎤
⎦⎥

[ · ] ( · ) ( · )

( · ) ( · · ) [ · ] ( )

For the Landau’s dynamics thematrixM isM = L .GT

w w
w

w w
=

- - - +
- -

- + - - -
- -

R R i
R i R

R R R G R RT iR
i

L

1
1 1 1

1 2
1 1 0

12.2GT

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟( )

( )

Its determinant is w w w= - - + + - - + +i R R R R R R R G TRdet L 1 1 2 1 ,GT
2(( ) )( )(( ) ( )( ) ) and

the values of wi and ei are:

w j j y

w

=
-  + - + - - +

+
=

= =

T

T

R R R R G R TR R

R

R i

e

e

1 1

1
, , , 1, ;

, 0, , 0, 1 12.3

1 2

3 2 2

1 2 1 2

3 3

( ) ( ) ( )
( ˜ )

( ) ( )

( ) ( ) ( )

where the components of eigenvectors j j y, ,{ ˜ } for solutions 1 and 2 are functions on R G T, , .
Among the fundamental solutions for the classical Landau’s dynamics, the fundamental solutions wr e,1 1 1( )

and wr e,2 2 2( ) depend on the values of the accelerationG and surface tensionT, and the fundamental solution
wr e,3 3 3( ) is independent ofG andT and is identical to that in equation (11) [21, 22].
For the classical Landau’s dynamics equation (12), the fundamental solution wr e,1 1 1( ) corresponds to

Landau-Darrieus instability in the gravityfield in the presence of the surface tension. For this solution, the
interface perturbations are coupledwith the potential and vortical components of the velocities in the fluids’
bulk. For the fundamental solution wr e,2 2 2( ) the interface perturbation and the potential and vortical
components of the velocities are also coupled. For this solutionwemust set the integration constant =C 0,2 in
order to obey at any time the condition =+¥u 0l z∣ in equation (8). Solution wr e,3 3 3( ) has zerofields of the
perturbed velocity and pressure in the entire domain for any integration constantC3 and at any time, as in
equation (12) [21, 22].

The accelerated Landau’s dynamics with the surface tension is degenerate, since it has smaller number of
fundamental solutions (3) than the number of the degrees of freedom (4). This indicates a singular and ill-posed
character of the dynamics. The lifting the degeneracymay lead to a scale-invariant power-law dynamics and be
triggered by a seed vortical field, pre-imposed in the bulk of the lightfluid at some instance of time [21].

By defining the solution as =r r ,LDGT 1 we analyze properties of this solution below, table 2. Sub-script stands
for Landau’s dynamics with the gravity and the tension.

3.1.3. Rayleigh-Taylor dynamics
In theory of Rayleigh-Taylor instability - Rayleigh-Taylor dynamics hereafter - another set of the interfacial
boundary conditions is employed in order to describe the interface with zero interfacialmassflux, whichmay
also be called a contact discontinuity and an interface between immiscible fluids [20–31]. For outline of
theoretical, numerical and experimental works onRTI, the reader is referred to edited research book and to
review and research papers [2, 7, 18, 19, 24–31, 41, 52, 53, 55, 56, 57–60] and references therein.

The boundary conditions equations (2)–(4) are derived from the governing equations equation (1) assuming
that themassflux is conserved at the interface, =j n 0.[˜ · ] There is the important particular case, when the
conservedmassflux is zero at the interface, =q=j n 0.0

˜ · ∣ This leads to the continuity of normal component of

Table 1. Fundamental solution for the conservative dynamics with the acceleration and the surface tension.

=r r ,CDGT w w= ,CDGT j j y= = Tze e , , ,CDGT CDGT( ˜ ¯ )

w + + - -
- +

G R GR R RT

R1

2

j -
+ + - +R G R R R T

1

1 2( ) ( )
- + + + - +R T R G R R R T1 1( ( ( ) ( ) - - + + + + - +G R R G R R R T1 1( ( ) ( ) )

- - + + + + - +R R R G R R R T1 1( ( ) ( ) ) + - + + + + - +R R R G R R R T1 12( ( ) ( ) )))
j̃

- + + - + +G R R R T

1

1 1 2( ) ( )
- + - - + + + - +G R R G R R G R R R T1 1 1( ( ) ( ) ( )

- - + - + +R R R R T1 1( ) (( ) - - + + + - +R R G R R R T1 1( ) ( ) )
z̄ 1

y - - +
+ + - +

R RT

R G R R R T

i 1

1 2
( )

( ) ( )
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velocity =v n 0,[ · ] the continuity of the pressure, and the arbitrariness of the jumps of tangential component
of velocity and enthalpy at the interface [19–22, 28, 29]:

t= = = =P arbitrary W arbitraryv n v0, 0, , 13.1[ · ] [ ] [ · ] [ ] ( )

For the zeromassflux at the interface, the outside boundaries have no influence on the dynamics:

= =+¥ -¥v v0, 0 13.2z z∣ ∣ ( )

and the interface velocity is zero in the laboratory frame of reference:

=V 0 13.3˜ ( )

This case corresponds to the dynamics of a contact discontinuity and an interface with between immiscible
fluids, and to Rayleigh-Taylor andRichtmyer-Meshkov instabilities. According to the boundary conditions
equation (13), in Rayleigh-Taylor dynamics, due to zeromass flux at the interface, the tangential component of
velocity is discontinuous at the interface, and the velocityfield has the interfacial shear [20–23, 46].

For Rayleigh-Taylor dynamics, the unperturbed interface is planar, and the unperturbed velocity field is zero
in bothfluids.We slightly perturb the interface as q = - +z z x t, ,*( ) with = +Wz Ze ,ikx t* q q g k∣ ∣ ∣∣ 
and ¶ ¶z x 1.*∣ ∣  We slightly perturb thefluid velocities with the potential fields, = Fv ,h h

F = F + +We ,h
ikx kz t and = Fv ,l l F = F - +We ,l

ikx kz t˜ with g kv .∣ ∣  Weperturb the fluid pressure as

= +P P p,0 p P ,0∣ ∣ ∣ ∣ with r= - F + ¶F ¶ -p V z gzh l h l h l h l h l( )( ) ( ) ( ) ( ) ( ) and furthermodify it as

s-  - + ¶ ¶p p p p z x .h l h l
2 2*( ) ( ) ( ) System equation (13) is then reduced to a linear systemM =r 0,

where vector r is = F F TV zr , ,h l h *( ) andM is the 3×3matrix.
In Rayleigh-Taylor dynamics the length-scale is k1 and the time-scale is gk1 . In order to conduct a

comparative study of this dynamics with the conservative dynamics and the classical Landau’s dynamics, we
scale the timewith kV1 ,h where is nowunderstood as some velocity scale. This leads to =G g kVh

2 and
s r=T k V ,h h

2( )( ) as before. In the dimensional units thematrix wM = M R G T, , , .( ) For systemM =r 0,
the solution is å= Cr r ,

i i i with in non-degenerate case, similarly to equation (10). Here Ci are the integration

constants, w=r r e,i i i i( ˜ ) are the fundamental solutionswith = wer e ,i i
ti˜ j j= + - Te e zee , ,i

ix z ix z ix
i˜ ( ˜ ¯ ) are the

eigenvectors, and j j= Tze , ,i i i i( ˜ ¯ ) are the associated vectors. For Rayleigh-Taylor dynamics in equation (13),
matrixM isM = T :GT

w w
w w=

- - - +
- - - + - -

- -

R R
R R R G R TRT

1
1

1 1 0
14.1GT

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )

Its determinant is w= - + - - +det R R G R TRT 1 1 1 ,GT
2( )(( ) ( ) ) and wi and ei are

w j j= 
- -

+
= TG R TR

R
e

1

1
, , , 1 14.21 2 1 2 1 2

( ) ( ˜ ) ( )( ) ( ) ( )

where the components of eigenvectors j j,{ ˜ }are the functions on R G T, , .
Depending on the values of the acceleration, the surface tension and the density ratio, the solutions wr e,1 1 1( )

and wr e,2 2 2( ) can be stable or unstable.When both solutions are stable, with =r r1 2* and w w=1 2*with
w =Re 0,1 2[ ]( ) they describe travelingwaves whose superposition results in stably oscillating standingwaves.

For some other values of the acceleration, the surface tension and the density ratio, one of these solutions is
unstable, r1with w >Re 0,1[ ] whereas the other is stable, r2 with w >Re 0.2[ ] These solutions describe the
standingwaves, with the growing (r1) and decaying (r2) amplitudes. For solutions r1 and r2 the velocity fields are
potential in thefluids’ bulk. For > > =G R T0, 1, 0, solution wr e,1 1 1( ) corresponds to Rayleigh-Taylor
instability [19–21, 24–31].

Table 2. Fundamental solution for the Landau’s dynamics with the acceleration and the surface tension.

=r r ,LDGT w w= ,LDGT j j y= = Tze e , , ,LDGT LDGT( ˜ ¯ )

w - + - - + + + - -
+

R G R R GR R RT R T

R1

2 2 3 2

j - - - + + - + + - +
+

R G R R R R R T

R

1 1 1

1

2 2( ) ( ( ) )

j̃
+ + - - + + - + + - +R R R G R R R R R T

1

1 2 1 1 12 2( )( ( ) ( ) ( ( ) ) )

- + + - + + - + + - +G GR R T G R R R R R T1 1 12 2 2( ( ( ) ( ( ) )
+ - + + + - - + + - + + - +R R R T G R R R R R T2 1 1 12 2 2( ( ) ( ( ) ) ))

z̄ 1

y - + + - - + + - + + - +

+ - - + + - + + - +

R R R G R R R R R T

R R G R R R R R T

i 1 2 2 1 1 1

2 1 1 1

2 2

2 2

( ( ) ( ) ( ( ) ) )

( ) ( ) ( ( ) )
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Rayleigh-Taylor dynamics is degenerate, with smaller number of fundamental solutions (2) than the degrees
of freedom (3), and, hence, it is singular and ill-posed. The lifting the degeneracymay lead to a power-law
dynamics. Such dynamics can be triggered by a seed vorticalfield pre-imposed at the interface at some instance
of time (e.g., vortex line or the vortex sheet). This happens in, e.g., Richtmyer-Meshkov instability, due to the
vorticity deposition at the interface and the impulsive acceleration by the shock [21, 22, 24–31].

By defining the solution as = +r r r 2RTGT 1 2( ) in the stable regime, and as =r rRTGT 1 in the unstable
regime, we analyze properties of this solution below, table 3. Sub-script stands for Rayleigh-Taylor dynamics
with the gravity and tension.

3.1.4. Physics properties ofmathematical attributes
The important physics outcome of section 3.1 is that in the problemof the interface dynamics the properties of
macroscopic flowfields in the bulk are tightly linked to themicroscopic transport at the interface. Indeed, for the
dynamics conserving thefluxes ofmass,momentum and energy at the interface, thefluid velocitymay have
vorticalfield in the bulk depending on the values of the acceleration and the surface tension, and is shear-free at
the interface. For the classical Landau’s dynamics in Landau-Darrieus instability, conserving the fluxes ofmass
andmomentum and having special conditions for the perturbedmassflux at the interface, the fluid velocityfield
have a vortical field in the bulk, and it is shear-free at the interface. For Rayleigh-Taylor dynamics in Rayleigh-
Taylor instability, conserving the fluxes ofmass,momentum and energy at the interface and having zero
interfacialmass flux, thefluid velocityfield is free from vortical field in the bulk, and the velocity field has the
interfacial shear. Hence, by diagnosing qualitativemacroscopic properties of the flowfields in the bulk away
from the interface, onemay identify the properties ofmicroscopic transport at the interface. Onemay deduce,
for instance, whether there is an interfacialmassflux, whether the interfacialmassflux is zero, andwhether the
energy is fully balanced at the interface.

The other important physics outcome of section 3.1 is the identification of a degenerate or a non-degenerate
character of the dynamics [20–23, 46]. Our results clearly illustrate that the conservative dynamics is non-
degenerate, since it has 4 fundamental solutions for 4 governing equationswith 4 independent variables; it is
hence complete. The classical Landau’s dynamics for Landau-Darrieus instability is degenerate (3 fundamental
solutions for 4 governing equationswith 4 independent variables). The lifting the degeneracy of Landau-
Darrieus instabilitymay lead to scale-invariant (power-law) rather scale-dependent (exponential) dynamics
[46]. The Rayleigh-Taylor dynamics for Rayleigh-Taylor instability is also degenerate (2 fundamental solutions
for 3 governing equationswith 3 independent variables). The lifting the degeneracy of Rayleigh-Taylor unstable
dynamicsmay lead to Richtmyer-Meshkov instability, where a (sub-sonic) initial growth-rate can be set by a
shock, and/or an impulsive acceleration. The interested readers are referred to papers [20–29, 46] for details.

3.2. Inertial dynamics free from surface tension
In this sub-section, for the purpose of completeness, we provide solutions r r r, ,CDGT LDGT RTGT{ } for inertial
dynamics free from surface tension, = =G T0, 0, see [21] for details.

Conservative dynamics has the solution w== = = =r r e,CDGT G T CDGT CDGT CDGT G T0, 0 0, 0∣ ( ˜ )∣ with

w j j

q

=  =
+

=

= + = - + ~

T

q

= = = =

=


i R

e

e
e e

e

V V v vn u n

,
2

, , , 1, 0

, 15.1

CDGT G T CDGT G T

h
i R t

0, 0 0, 0

0 0 0 0

*∣ ∣ ( ˜ )

˜ ˜ ˜ ˜ ( )∣ ( )

The components of the eigenvector arej = - +i R i R1( ) ( ) andj = - - +R R i R1 .˜ ( ) ( ) This
solution is stable. It is stabilized by the inertialmechanism.Mathematically, themechanism is revealed in stable
oscillations of the interface velocity near the constant value = +V V v,0˜ ˜ ˜ with ~ ev n .i R t

0˜ · Physically, when
the interface is perturbed, the parcels of the heavyfluid and the lightfluid follow the interface perturbation thus

Table 3. Fundamental solution
for Rayleigh-Taylor with the
acceleration and the surface
tension.

=r r ,RTGT w w= ,RTGT

j j= = Tze e , ,RTGT RTGT( ˜ ¯)

w - + - + -

- +

R G GR RT

R

1

1 2

j - + - + -

- +

R G R RT

R

1 1

1 2

( )

j̃ - - + - + -

- +

R G R RT

R

1 1

1 2

( )

z̄ 1
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causing the change ofmomentum and energy of the fluid system. Yet, the dynamics is inertial. To conserve the
momentum and energy, the interface aswhole should slightly change its velocity. This causes the reactive force
to occur and stabilize the dynamics [21, 22].

Classical Landau’s dynamics has the solution w== = = =r r e,LDGT G T LDGT LDGT LDGT G T0, 0 0, 0∣ ( )∣ with

w j j y

q

=
- + - + +

+
= =

º = + = - + ºq

= = = =
T

=

R R R R

R
e e e

V V V V v vn u n

1
, , , , 1,

, , 0 15.2

LDGT G T LDGT G T

h

0, 0

2 3

0, 0

0 0 0 0 0

∣ ∣ ( ˜ )

˜ ˜ ˜ ˜ ˜ ˜ ( )∣ ( )

The components of the eigenvector j j y, ,{ ˜ }are the functions on the density ratioR. This solution is
unstable.When the interface is perturbed, the parcels of the heavy fluid and the lightfluid follow the interface
perturbation thus causing the change ofmomentum and energy of thefluid system. Yet, the postulated
constancy of the interface velocity, ºV V ,0˜ ˜ which is implemented in the special boundary condition ºun 0,0[ ]
preempts the occurrence of the reactive force. The interface perturbations grow and Landau-Darrieus instability
develops [21, 32].

Rayleigh-Taylor dynamics has the solution w== = = =r r e,RTGT G T RTGT RTGT RTGT G T0, 0 0, 0∣ ( ˜ )∣ with

w = = = =T
= = = =e e e V0, , 0, 0, 1 , 0 15.3RTGT G T CDGT G T0, 0 0, 0∣ ∣ ( ) ˜ ( )

This solution is neutrally stable. It has zero interface velocity in the laboratory frame of reference [21].
Hence, for the inertial dynamics free from surface tension = =r r r, , :CDGT LDGT RTGT G T0, 0{ } The

conservative dynamics is stable; it has potential flowfields in thefluids’ bulk and is shear free at the interface; it is
stabilized by the inertialmechanism revealed in stable oscillations of the interface velocity near the constant
value. The classical Landau’s dynamics is unstable; it has potential and vortical components of the velocity in the
fluids’ bulk; it is shear free at the interface; it has the postulated constant interface velocity; Rayleigh-Taylor
dynamics is neutrally stable; it has zero velocity fields in thefluids’ bulk; it has zero interface velocity in the
laboratory frame of reference. For detailed discussions of physics properties of the inertial dynamics free from
surface tension = =r r r, , ,CDGT LDGT RTGT G T0, 0{ } the reader is referred to the papers [21–23, 46].

3.3. Inertial dynamicswith surface tension
Herewe investigate solutions r r r, ,CDGT LDGT RTGT{ } in the case of the inertial dynamics with the surface
tension, = >G T0, 0.The results are illustrated by figures 2, 3 and tables 1–4.

3.3.1. Conservative dynamics
For the conservative dynamics the solution is w== =r r e,CDGT G CDGT CDGT CDGT G0 0∣ ( ˜ )∣ with

w j j y=  +
-

=
+

== =
Ti R

T

R
e

e e
e1

1
,

2
, , , 1, 16.1CDGT G CDGT G0 0
*∣ ∣ ( ˜ ) ( )

where quantities j j y, ,{ ˜ }are the functions on the density ratio and surface tension R T, .This solution is
consistent with the solution for the inertial conservative dynamics free from surface tension equation (15.1),
table 1, with j j y j j, , 1, , , 1, 0( ˜ ) ( ˜ ) for T 0.

Theflowfield for solution =rCDGT G 0∣ have the following structure equation (16.1). For the inertial
conservative dynamics withfinite surface tension value, the velocityfield is potential in the heavyfluid bulk, and
has potential and vortical components in the light fluid bulk equation (16.1),figure 3, table 1. The appearance of
the vorticalfield in the lightfluid bulk is associatedwith the contribution of surface energy, which defines the
strength of the vorticalfield. In the limit of zero surface tension, the velocityfields are potential in bothfluids.

The inertial dynamics with the surface tension =rCDGT G 0∣ is stable for > > =R T T1, ,cr G 0
˜ ∣ ==T 0,cr G 0

˜ ∣
figure 2, table 4. The eigenvalue w =CDGT G 0∣ is imagine, w ==Re 0.CDGT G 0[ ∣ ] This suggests that the length-
scale of the vortical field w= =k k R CDGT G 0

˜ ( ) ∣ is also imagine, =kRe 0.[ ˜] Hence, the dynamics =rCDGT G 0∣
describes the standingwave stably oscillating in time,figure 2. For this wave, in the bulk of the heavyfluid the
velocityfield is potential; it decays away from the interface. In the bulk of the lightfluid, the velocityfield has
potential and vortical components. Its potential component decays away from the interface. The vortical field is
periodic in the x directionwith the period l p= k2 , and is also periodic in the z directionwith the period
l p= k2 .˜ ˜ Hence, this dynamics has the stably oscillating periodic vortical structurewith constant amplitude,
figure 3. For solution =rCDGT G 0∣ the vorticity y ´ = - k ku 0, 1 , 0l l

2( ( ( ˜ ) ) ) is  ´ ¹u 0;l itsfield is also
periodic in the x z,( ) plane, figure 3.

Mathematically, the appearance of the vortical and vorticity fields periodic in the z direction ofmotion is
associatedwith the pure imaginary character of the frequency w in solution equation (16), which, in turn,
defines the purely imaginarywavevector k,˜ with w= =k k RIm Im .CDGT G 0[ ˜] ( ) [ ∣ ] Physically, by comparing the
solutions for the inertial conservative dynamics free from surface tension andwith surface tension in
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equations (15.1), (16.1), wefind that the vortical and vorticity fields are energetic (rather than dynamic) in
nature. Thesefields are decoupled from the pressure field and are produced by the excess of energy, which is
caused by the contribution of surface energy to the perturbed enthalpy, equation (9.5), table 1.

Consider now the interplay of the surface tensionwith the inertial stabilizationmechanism. Since the
solution is periodic in time, onemight expect that the interface velocity experiences stable oscillations, similarly
to the case of the inertial dynamics free from surface tension [21]. However, in order to obey the boundary
condition =+¥u 0l z∣ in equation (8.2), the solution =rCDGT G 0∣ in equation (16.1) requires us to set its
integration constant equal zero ==C 0.CDGT G 0∣ Since the integration constant is zero, the interface velocity for
this solution is constant:

q= + = - + ~ =  =q
w

=


==e CV V v vn u n V V, , 0 16.2h
i t

CDGT G0 0 0 0 0 0
CDGT G 0˜ ˜ ˜ ˜ ( )∣ ∣ ˜ ˜ ( )∣ ∣ ∣

We see that for the conservative dynamics, the inertial stabilizationmechanism is present, since the inertial
dynamics is stable. Thismechanismmay however be ‘masked’ by the surface tension for > =T T ,cr G 0

˜ ∣ andmay
be exhibited at = ==T T 0.cr G 0

˜ ∣
Note that some slightmodifications of the boundary conditions away from the interface  +¥z by an

external noisemay lead to a non-zero integration constant =CCDGT G 0∣ for the dynamics =r .CDGT G 0∣ These
modificationsmay include slightmodulations of the uniform velocity field of the lightfluid away from the
interface, as d +V V V,l l l due to a noisy, whichmay be present in realistic systems. In this case, the interface
velocity for the dynamics =rCDGT G 0∣ may experience slight oscillations near the constant value, as = +V V v0˜ ˜ ˜
with q= - + ~q

w
=

 =evn u n .h
i t

0 0 0
CDGT G 0˜ ( )∣ ∣ ∣ ∣

Figure 2.Growth-rates / frequencies for the inertial conservative dynamics (purple), Landau’s dynamics (blue) andRayleigh-Taylor
dynamics (light blue)with the surface tension and free from the acceleration. Dependence of the growth-rates: (top) on the surface
tension at some value of the density ratio; (bottom) on the density ratio at some value of the surface tension. Solid (dashed) linemarks
real (imagine) part.
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Therefore, the inertial conservative dynamics with the surface tension is stable for any values of the density
ratio and the surface tension > > =R T T1, ,cr G 0

˜ ∣ ==T 0,cr G 0
˜ ∣ figures 2, 3, tables 1, 4. The resultant inertial

conservative dynamics of the interface with surface tensionmay correspond to the stable unperturbed flow

Figure 3. Flow fields for the inertial conservative dynamics with surface tension at some instance of time and at some values of the
density ratio and the surface tension: (a)plots of the perturbed velocity vector fields, the perturbed velocity streamlines, and the
interface perturbation; (b) plots of the vortical component of the perturbed velocity and the perturbed vorticity. Real parts offields
and functions are shown. Each plot has its own range of values to better present the plot’s features.

Table 4.Regions of stability and instability for the inertial acceleration-free
dynamics with the surface tension for the conservative, Landau’s andRayleigh-
Taylor dynamics.

Dynamics Stability region Instability region Critical value

=rCDGT G 0∣ > =T Tcr G 0
˜ ∣ N A ==T 0cr G 0

˜ ∣
=rLDGT G 0∣ > =T Tcr G 0¯ ∣ < =T Tcr G 0¯ ∣ = -=T R 1cr G 0¯ ∣ ( )
=rRTGT G 0∣ > =T Tcr G 0

ˆ ∣ N A ==T 0cr G 0
ˆ ∣
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fields r P WV, , , h l0 0( ) ( ) and has constant interface velocity =V V0˜ ˜ (for zero integration constant
==C 0CDGT G 0∣ of solution =rCDGT G 0∣ ). Itmay also exhibit slightly oscillations of the interface and the

interface velocity, as well as the velocity and vorticityfields in the bulk (for non-zero integration constant
==C 0CDGT G 0∣ of solution =rCDGT G 0∣ ).

3.3.2. Classical Landau’s dynamics
For the classical Landau’s dynamics the solution is w== =r r e,LDGT G LDGT LDGT LDGT G0 0∣ ( ˜ )∣ with

w j j y=
- + + - - +

+
= == =

TR R R R TR R

R
e e

1

1
, , , 1, 17LDGT G LDGT G0

3 2

0∣
( ) ( )

∣ ( ˜ ) ( )

where the quantities j j y, ,{ ˜ }are the functions on the density ratio and the surface tension R T, , table 2.
This solution is consistent with the solution for classical Landau’s dynamics free from surface tension, since for
T 0 components j j y j j y= = =, , , ,LDGT LDGTG G T0 0, 0

{ ˜ } { ˜ }∣ ∣ in agreementwith equation (15.2).
The solution =rLDGT G 0∣ is stable for > =T T ,cr G 0¯ ∣ and is unstable for < =T T ,cr G 0¯ ∣ where = -=T R 1,cr G 0¯ ∣

in agreementwith [20, 21],figure 2, table 4.
The investigation of properties of the solution =rLDGT G 0∣ for > =T Tcr G 0¯ ∣ suggests that in the stable regime,

its integration constantmust be set zero ==C 0LDGT G 0∣ in order to obey the boundary conditions far from the
interface.

Considerproperties of the solution =rLDGT G 0∣ in theunstable regime, for < =T T ,cr G 0¯ ∣ figure 2, table 4.This
solution corresponds toLandau-Darrieus instabilitywith surface tension, and satisfies the assignedboundary
conditions at the interface andat theoutsideboundaries of thedomain equation (12). Its dynamics couples the
interfaceperturbationwith the vortical andpotential components of the velocityfields. For solution =rLDGT G 0∣ the
vortical componentof the velocity of the lightfluid y ´ l and the vorticity ´ u ,l while increasing in time, decay

far fromthe interface.The vorticalfieldhas thewavevector w= =k k R LDGT G 0
˜ ( ) ∣ and the length-scalel l = k k,˜ ˜

figure 2, table 2.The interface velocity for the solution =rLDGT G 0∣ is constant, ºV V ,0˜ ˜ inboth stable andunstable
regimes, as postulatedby the interfacial boundary conditions in the classical Landau’s dynamics, equation (12).

3.3.3. Rayleigh-Taylor dynamics
For the inertial Rayleigh-Taylor dynamics of contact discontinuity with surface tension the solution is

w== =r r e, :RTGT G RTGT RTGT RTGT G0 0∣ ( ˜ )∣

w j j= 
+

=
+

= T
= =i

T R

R
e

e e
e

1
,

2
, , , 1 18RTGT G CDGT G0 0
*∣ ∣ ( ˜ ) ( )

This solution is stable. For > == =T T T, 0,cr G cr G0 0
ˆ ∣ ˆ ∣ the solution corresponds to a standing capillary

wave stably oscillating in time. At =T 0 the solution is neutrally stable, and the components of this solution are
j j == = =, 0, 0 ,RTGT RTGTG G T0 0, 0

{ ˜ } { }∣ ∣ figure 2, tables 3, 4.

3.3.4. Summary of properties
Compare the properties of the solutions =r r r, ,CDGT LDGT RTGT G 0{ } for inertial dynamics with surface tension,
figures 2, 3, tables 1–4.

The conservative dynamics is stable for surface tension values > == =T T T, 0.cr G cr G0 0
˜ ∣ ¯ ∣ The presence of

the surface tensionmay ‘masks’ the inertial stabilizationmechanism. The resultant dynamics =rCDGT G 0∣ may
corresponds to stable unperturbed flowfields with constant interface velocity. In the presence of noise, itmay
also exhibit stable oscillations of the interface and the interface velocity, as well as the velocity and vorticity fields.

The classical Landau’s dynamics for Landau-Darrieus instability is stable for > =T Tcr G 0¯ ∣ and is unstable for
< =T Tcr G 0

ˆ ∣ with = -=T R 1.cr G 0¯ ∣ In the stable regime, the dynamics corresponds to the unperturbed flow
fields. In the unstable regime, it couples the interface perturbation to the potential and vortical components of
the velocityfields in the bulk and it is shear-free at the interface. The classical Landau’s dynamics postulates the
constancy of the interface velocity.

The inertial Rayleigh-Taylor dynamics is stable for > == =T T T, 0.cr G cr G0 0
ˆ ∣ ˆ ∣ In the stable regime it

describes the stably oscillating capillarywave. The dynamics has potential velocity fields in the bulk and has the
interfacial shear. The interface velocity is zero in the laboratory frame of reference.

3.3.5. Physics properties ofmathematical attributes
For the inertial dynamics, the interface stability and the structure of theflowfields are defined by the interfacial
boundary conditions [21–24, 46]. Bydiagnosing themacroscopicflowfields far from the interface, onemay
deduce the properties of themicroscopic transport at the interface anddifferentiate between various dynamics. For
instance, the observations of stable oscillations of the interface, the vortex-free velocityfields and the zero interface
velocity are indicative ofRayleigh-Taylor dynamicswith the vanishing interfacialmassflux. Theobservation of
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unstable growth of the interface for small surface tension values, the large-scale vorticityfield and the constant
interface velocity are indicative of the classical Landau’s dynamics, theLandau-Darrieus instability and the energy
imbalance at the interface. Theobservations of the stably oscillating interface and the stably oscillating interface
velocity are indicative of the conservative inertial dynamics in thepresence of slight noise. These qualitative and
quantitative results canbe applied for design and interpretationof experimental andobservational data.

3.4. Accelerated dynamics free from surface tension
In this sub-section, for the purpose of completeness, we briefly provide the properties of solutions
r r r, ,CDGT LDGT RTGT{ } for the accelerated dynamics free from surface tension, > =G T0, 0 [21, 22]. The
details can be found in [21, 22].

Conservative dynamics has the solution w== =r r e,CDGT T CDGT CDGT CDGT T0 0∣ ( ˜ )∣ with

w j j
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19.1
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CDGT T cr

h
t
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CDGT T 0
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˜ ˜ ˜ ˜ ( )∣
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( ∣ )

where quantities j j,{ ˜ }are the functions on the density ratio and the acceleration R G, , and Gcr is the critical
threshold value of the acceleration. For G 0, this solution is consistent with the solution for the inertial
dynamics free from surface tension equation (15.1). For >G 0 the solution’s stability is defined by the interplay
of the buoyancy and the inertia, or the gravity and the reactive force. For small acceleration values, <G G ,cr the
inertial effect dominates, and the reactive force exceeds the gravity. The solution is stable, and describes the
standingwave stably oscillating in time. The flowdynamics is similar to the case of the inertial conservative
dynamics free from surface tension. For large acceleration values, >G G ,cr the buoyant effect dominates, and
the gravity exceeds the reactive force. The solution is unstable, and describes the standingwavewith the growing
amplitude. For this solution the velocity field is potential in the bulk, and is shear free at the interface. Theflow is
the superposition of twomotions – themotion of the interface as wholewith the growing interface velocity and
the growth of the interface perturbations [21, 22].

Classical Landau’s dynamics has the solution w== =r r e,LDGT T LDGT LDGT LDGT T0 0∣ ( ˜ )∣ with

w j j y
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=
-  + - + -

+
= =

= + = - + º ºq

= =
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˜ ˜ ˜ ˜ ( )∣ ˜ ˜ ( )

where quantities j j y, ,{ ˜ }are the functions on the density ratio and the acceleration R G, . For G 0, this
solution is consistent with that for the inertial Landau’s dynamics free from surface tension equation (15.2). This
solution is unstable for G 0 and describes the standingwavewith the growing amplitude. Its velocity field is
potential in the bulk of the heavy fluid, has vortical and potential components in the bulk of the lightfluid, and is
shear free at the interface. Theflow is the superposition of twomotions – themotion of the interface with the
postulated constant velocity and the growth of the interface perturbations [20–22].

Rayleigh-Taylor dynamics has the solution w== =r r e,RTGT T RTGT RTGT RTGT T0 0∣ ( ˜ )∣ with

w j j=
-
+

= = ºT
= =

G R

R
e e V

1

1
, , , 1 , 0 19.3RTGT T RTGT T0 0∣ ( ) ∣ ( ˜ ) ˜ ( )

where quantities j j,{ ˜ }are the functions on the density ratio and the acceleration R G, .This solution is
unstable for any >G 0 and describes the standingwavewith the growing amplitude. Its velocity field is potential
in the bulks of the heavy and the lightfluids, and has shear at the interface. In the laboratory frame of reference
the interface velocity is zero [20–22].

A brief comparison of properties of the solutions =r r r, ,CDGT LDGT RTGT T 0{ } in equation (19) suggests: The
accelerated conservative dynamics is unstable when the accelerationmagnitude exceeds a threshold value set by
inertial stabilizationmechanism, >G G ;cr it has the growing interface velocity in the unstable regime; it has
potentialflowfields in thefluids’ bulk, and is shear free at the interface. The accelerated Landau’s dynamic is
unstable for the acceleration values G 0; it has a postulated constant interface velocity preempting the inertial
stabilizationmechanism to occur; it has a potential velocity field in the heavyfluid bulk and potential and
vortical velocity fields in the lightfluid bulk; it is shear free at the interface. Rayleigh-Taylor dynamics is unstable
for any acceleration value >G 0; it has zero interface velocity in the laboratory frame of reference; it has
potential velocity fields in thefluids’ bulk, and it has the interfacial shear. For large acceleration values
> = -G G G R, 1 42* * ( ) the instability of the accelerated conservative dynamics has the largest growth-rate
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when compared to the cases of the Landau-Darrieus andRayleigh-Taylor instabilities, see for details [20–30].
The reader is referred to the papers [21–23, 46] for detailed discussions of physics properties of the accelerated
dynamics free from surface tension =r r r, , ,CDGT LDGT RTGT T 0{ } .

3.5. Accelerated dynamicswith surface tension
In this sectionwe investigate the properties of the solutions r r r, ,CDGT LDGT RTGT{ } for the accelerated
dynamics with surface tension, > >G T0, 0, figures 4–9, tables 1–3, 5, 6.

3.5.1. Conservative dynamics
Fundamental solution: For the accelerated conservative dynamics with the surface tension the solution is

w=r r e, ,CDGT CDGT CDGT CDGT( ˜ ) figures 4–7, tables 1, 5:
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Figure 4.Growth-rates/ frequencies for the accelerated conservative dynamics (purple), Landau’s dynamics (blue) andRayleigh-Taylor
dynamics (light blue)with the surface tension at somevalues of the density ratio and the acceleration:Dependence of the growth-rates on
the surface tension for (top)weak and (bottom) intermediate accelerations. Solid (dashed) linemarks real (imagine)part.
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where themodified acceleration G̃ accounts the contribution of the surface tensionT , and Gcr is the critical
threshold acceleration value in the zero surface tension case. The quantities j j y, ,{ ˜ }depend on the density
ratio, the acceleration and the surface tension R G T, , .The vorticalfield is
y = - - + - + -iT R R G R R R T1 1 1 ,2( ) ( ( ) ( )) with y == 0.T 0∣ This solution is consistent with the
solution equation (19.1) for the accelerated conservative dynamics free from surface tension.

Stability and instability of the fundamental solution: For >G 0 the stability of the solution rCDGT is
defined by the interplay of the buoyancy, the inertia and the surface tension, or - the gravity, the reactive force
and the tension force. The stability curve is defined by the condition =G Gcr

˜ balancing the buoyancy (the
gravity)with the combined contributions of the inertial stabilizationmechanism and the surface tension (the
reactive force and the tension force). For small acceleration values, < <G G0 ,cr

˜ the buoyancy is dominated
and the reactive and tension forces exceed the gravity. The solution is stable, and describes the standingwave
stably oscillating in time. Theflowdynamics is similar to the case of the inertial conservative dynamics with
surface tension. For large acceleration values, >G G ,cr

˜ the buoyant effect dominates and the gravity exceeds the
reactive and the tension forces. The solution is unstable, and describes the standingwavewith the growing
amplitude, figures 4, 5, tables 1, 5.

For given values of the density ratio and the surface tension, the solution is stable for < <G G0 cr
˜ and is

unstable for >G G ,cr
˜ where the threshold value is = - + +G R R T R1 1 ,cr

˜ ( ) ( ) with G Gcr cr
˜ for T 0.

For given values of the density ratio and the acceleration, the solution is stable for >T T ,cr
˜ and is unstable for

<T T ,cr
˜ where the critical surface tension value is = + - -T G R R R R1 1 ;cr

˜ ( ( ) ( )) it approaches T 0cr
˜ for

 +G Gcr and equals zero =T 0cr
˜ for  G G0 ,cr figures 4, 5, 6, 7, tables 1, 5.

Figure 5.Growth-rates / frequencies for the accelerated conservative dynamics (purple), Landau’s dynamics (blue) andRayleigh-
Taylor dynamics (light blue)with the surface tension at some value of the density ratio. Dependence of the growth-rates: (top) on the
surface tension at some acceleration value for strong accelerations; (bottom) on the acceleration at some values of the surface tension.
Solid (dashed) linemarks real (imagine) part.
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Structure of theflowfields:Consider the structure of theflowfields for the solution rCDGT equation (20),
table 1,figures 6, 7. In this solution, in the limit of zero surface tension, T 0, the vortical component vanishes,

y  0, and the accelerated conservative dynamics free from surface tension has potential velocity fields in the
fluids’ bulks [21, 22]. For afinite value of the surface tension, >T 0, in the solution r ,CDGT the vortical
component isfinite, y ¹ 0, equation (20), table 1,figures 6, 7. This accelerated conservative dynamics with
surface tension has potential velocity field in the bulk of the heavyfluid, and the velocityfield combining the
potential and vortical components in the bulk of the lightfluid. The appearance of the vortical field in the light
fluid bulk is due to the surface energy contribution to the enthalpy jump at the interface w ,[ ] and it defines the
strength of the vorticalfield.

Stable dynamics:For <G Gcr
˜ ( >T Tcr

˜ ) the accelerated conservative dynamics with surface tension rCDGT

is stable, equation (20), figures 4–6, tables 1, 5. In this regime, the eigenvalue wCDGT is purely imagine,

Figure 6. Flow fields for the fundamental solution for the accelerated conservative dynamics with surface tension in the stable regime
at some instance of time and at some values of the density ratio, the acceleration, and the surface tension: (a) plots of the perturbed
velocity vector fields, the perturbed velocity streamlines, and the interface perturbation; (b) plots of the vortical component of the
perturbed velocity and the perturbed vorticity. Real parts offields and functions are shown. Each plot has its own range of values to
better present the plot’s features.
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w =Re 0.CDGT[ ] The length-scale of the vortical field w=k k R CDGT
˜ ( ) is also purely imagine, =kRe 0.[ ˜] The

solution rCDGT is the standingwave stably oscillating in time, figure 6. In the heavyfluid bulk, the velocity field is
potential; it is periodic in the x directionwith the period l p= k2 and decays away from the interface
 -¥z . In the bulk of the lightfluid, the velocity field combines the potential and the vortical components.

The potential component is periodic in the x directionwith period l p= k2 and decays away from the
interface  +¥z .The vortical component is periodic in the x directionwith period l p= k2 , and is
periodic in the z directionwith period l p= k2 .˜ ˜ The vorticity is y ´ = - k ku 0, 1 , 0l l

2( ( ( ˜ ) ) ) and
 ´ ¹u 0,l and the amplitude of this vortical structure is constant, figure 6.

In order for the solution rCDGT to obey in the stable regime, < <G G0 cr
˜ the boundary condition

=+¥u 0,l z∣ we are required to set its integration constant equal zero, =<C 0.CDGT G Gcr
∣ ˜ Hence the

perturbations are zero, and the interface velocity for this stable solution is constant =V V .0˜ ˜ Slightmodifications
of the boundary conditions away from the interface  +¥z may lead to a non-zero integration constant

Figure 7. Flow fields for the fundamental solution for the accelerated conservative dynamics with surface tension in the unstable
regime at some instance of time and at some values of the density ratio, the acceleration, and the surface tension: (a) plots of the
perturbed velocity vector fields, the perturbed velocity streamlines, and the interface perturbation; (b) plots of the vortical component
of the perturbed velocity and the perturbed vorticity. Real parts of fields and functions are shown. Each plot has its own range of values
to better present the plot’s features.
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<C .CDGT G Gcr
∣ ˜ In this case, the interface velocity for the dynamics <rCDGT G Gcr

∣ ˜ may slightly oscillate near a

constant value, as = +V V v0˜ ˜ ˜ with q= - + ~q
w

=
 =evn u nh

i t
0 0 0

CDGT G 0˜ ( )∣ ∣ ∣ ∣ .
We see that in the stable regime, <G Gcr

˜ ( >T Tcr
˜ ), the resultant accelerated conservative dynamics with

surface tensionmay correspond to the stable unperturbed flowfields r P WV, , , h l0 0( ) ( ) and constant interface

velocity =V V ,0˜ ˜ figures 4–6, tables 1, 5. Itmay also exhibit stable oscillations of the interface and the interface
velocity, as well as the velocity and the vorticity fields. In this case the buoyancy (the gravity) is dominated the
combined effects of the inertial stabilizationmechanism and the surface tension (the reactive force and the
tension force).

Unstable dynamics:The accelerated conservative dynamics with surface tension rCDGT is unstable for
>G Gcr

˜ ( <T Tcr
˜ ),figures 4, 5, 7, tables 1, 5. In this regime, the eigenvalue wCDGT is real and positive,

w >Re 0CDGT[ ] and w =Im 0.CDGT[ ] The dynamics rCDGT couples the interface perturbationwith the vortical
and potentialfields of the velocity yj j   ´, , .h l l The potential and vortical components of thefluid

Figure 8. Flow fields for the fundamental solution for the accelerated Landau’s dynamics with surface tension in the unstable regime
of Landau-Darrieus instability at some instance of time and at some values of the density ratio, the acceleration, and the surface
tension: (a)plots of the perturbed velocity vector fields, the perturbed velocity streamlines, and the interface perturbation; (b) plots of
the vortical component of the perturbed velocity and the perturbed vorticity. Real parts offields and functions are shown. Each plot
has its own range of values to better present the plot’s features.
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velocities achieve their extreme values near the interface, and, while increasing in time, decay away from the
interface.

The vorticalfield for theunstable solution rCDGT with >G Gcr
˜ ( <T Tcr

˜ ) in equation (20)has the following
properties. Thewavevector of the vorticalfield is w=k k R ,CDGT

˜ ( ) and the length-scale of the vorticalfield is large

Figure 9. Flow fields for the fundamental solution for Rayleigh-Taylor dynamics with surface tension inRayleigh-Taylor instability at
some instance of time and at some values of the density ratio, the acceleration, and the surface tension: plots of the perturbed velocity
vector fields, the perturbed velocity streamlines, and the interface perturbation. Real parts offields and functions are shown. Each plot
has its own range of values to better present the plot’s features.

Table 5.Regions of stability and instability and critical parameters for the
accelerated dynamics with the surface tension for the conservative, Landau’s
andRayleigh-Taylor dynamics.

Dynamics

Stability

region

Instability

region Critical values

rCDGT >T Tcr
˜ <T Tcr

˜ = + - -Tcr
G R R R

R

1 1˜ ( ) ( )

<G Gcr˜ >G Gcr˜ = +-
+ +

G R Tcr
R

R

R

R

1

1 1
˜

rLDGT >T Tcr¯ <T Tcr¯ = + -Tcr
G R R

R

1¯ ( )( )

<G Gcr¯ >G Gcr¯ = -
-

G T Rcr
R

R 1
¯

rRTGT >T Tcr
ˆ <T Tcr

ˆ = -T Gcr
R

R

1ˆ ( )

<G Gcr
ˆ >G Gcr

ˆ =
-

G Tcr
R

R 1
ˆ

Table 6.Qualitative properties of the conservative, Landau’s andRayleigh-Taylor dynamics with the acceleration and surface tension in their
corresponding stable and unstable regimes.

Dynamics Regime Interface velocity Velocity fields Interfacial shear

rCDGT Stable Constant Unperturbed fields Shear-free

Unstable Time-dependent Potential and vortical components Shear-free

rLDGT Stable Constant Unperturbed fields Shear-free

Unstable Constant Potential and vortical components Shear-free

rRTGT Stable Zero Potentialfields Interfacial shear

Unstable Zero Potentialfields Interfacial shear
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in a broad rangeof parameters, k k 1.( ˜ )  When surface tension valuedecreases, T 0, the strengthof the
vorticalfielddecreases, leading to thepotential velocityfields are in thefluids’bulks,figures 4, 5, 7, tables 1, 5 [21, 22].

For the unstable accelerated conservative dynamics with surface tension, the buoyancy (the gravity)
dominates the combined effects of the inertial stabilizationmechanism and the surface tension (the reactive
force and the tension force),figures 5, 7, tables 1, 5. For >G Gcr

˜ ( <T Tcr
˜ ), the interface velocity of the solution

rCDGT increases with time, = +V V v0˜ ˜ ˜ with ~ wevn .t
0

CDGT˜ ∣ ∣ The resultant flow is the superposition of two
motions – themotion of the interface aswhole with the growing interface velocity and the growth of the interface
perturbations. The dynamics is shear free at the interface.When compared to the accelerated conservative
dynamics free from surface tension, the surface tension influences the acceleration values at which the instability
occurs, and also leads to the appearance of the vortical field in the bulk of the lightfluid, figures 5, 7, tables 1,
5, [21, 22].

Summary:The accelerated conservative dynamics with surface tension can be stable of unstable depending
on the values of the acceleration, the surface tension and the density ratio. In the stable regime, the resultant
dynamicsmay have the stable unperturbed flowfields r P WV, , , h l0 0( ) ( ) and the constant interface velocity

=V V0˜ ˜ (andmay also exhibit slight stable oscillations of the interface, the interface velocity, and the velocity and
vorticityfields). In the unstable regime, the interface perturbations grow and so is the interface velocity. The
dynamics couples the interface perturbationwith the potential velocity field in the heavyfluid bulk and the
potential and vortical components of the velocityfield in the lightfluid bulk, and is shear-free at the interface.
The strength of the vortical field in the lightfluid bulk depends on the surface tension; for zero surface tension,
the velocityfields are potential in bothfluids,figures 4, 5, 6, 7, tables 1, 5.

3.5.2. Classical Landau’s dynamics
Fundamental solution: For the classical Landau’s dynamics in the presence of acceleration and surface tension
the solution is w=r r e,LDGT LDGT LDGT LDGT( ˜ ) figures 4, 5, 8, tables 2, 5:

w j j y

q

=
- + + - + -

+
= = = -

-
= + = - + º º

T

q=

R R R R G R

R
G G

T R

R
e e

V V v vn u n V V

1

1
, , , 1, ;

1
;

, 0,
21

LDGT LDGT

h

3 2 2

0 0 0 0 0

¯ ( )
( ˜ ) ¯

˜ ˜ ˜ ˜ ( )∣ ˜ ˜
( )



where themodified acceleration Ḡ accounts for the contribution of the surface tensionT .The quantities
j j y, ,{ ˜ }depend on the values of the density ratio, the acceleration and the surface tension R G T, , . For
T 0 this solution is consistent with the solution for the accelerated Landau’s dynamics free from surface

tension equation (19.2), table 2 [20–22].
Stability and instability of the fundamental solution:In the classical Landau’s dynamics the inertial

stabilizationmechanism is absent, due to the postulate of the constancy of the interface velocity. The dynamics
can be stabilized by the surface tension. The solution rLDGT is stable for >T Tcr¯ ( <G Gcr¯ ) and is unstable for
<T Tcr¯ ( >G Gcr¯ ). The condition w = 0LDGT defines the critical values = + -T G R R R1cr¯ ( )( ) and
= - -G TR R R R1 ,cr¯ ( ( )) figures 4, 5, tables 2, 5.
Structure offlowfields:In either stable or unstable regime, the dynamics rLDGT couples the interface

perturbationwith the vortical and potential fields of the velocity yj j   ´, , .h l l The presence of the
vorticalfield in the classical Landau’s dynamics is caused by the energy imbalance, which is due to the postulated
constancy of the interface velocity ºV V0˜ ˜ and the associated interfacial boundary condition for the perturbed
velocity [21–23].

Stable dynamics:For >T Tcr¯ ( <G Gcr¯ ), the solution is stable, with w <Re 0,LDGT[ ] and the length-scale of
the vorticalfield w=k k R LDGT

˜ ( ) has the negative real part <kRe 0,[ ˜] figures 4, 5, tables 2, 5. The vortical
component of the velocity of the light fluid y ´ l and its vorticity y ´ = - k ku 0, 1 , 0l l

2( ( ( ˜ ) ) ) increase
far from the interface,  +¥z . In order for the solution rLDGT to obey the boundary condition =+¥u 0l z∣
in equations (8.2), (12.1), wemust set its integration constant equal zero =C 0.LDGT Hence, in the stable regime,
>T Tcr¯ ( <G Gcr¯ ), the Landau’s dynamics with the acceleration and the surface tension has unperturbed flow

fields r P WV, , , h l0 0( ) ( ) and constant interface velocity .
Unstable dynamics: For <T Tcr¯ ( >G Gcr¯ ) the accelerated Landau’s dynamics with surface tension rLDGT is

unstable, equation (21),figures 4, 5, 8, tables 2, 5. In this regime, the eigenvalue wLDGT is real and positive,
w >Re 0LDGT[ ] and w =Im 0.LDGT[ ] The dynamics rLDGT couples the interface perturbationwith the vortical

and potentialfields of the velocity yj j   ´, , .h l l The potential and vortical components of thefluid
velocities achieve theirmaximumvalues near the interface, and, while increasing in time, decay away from the
interface, figure 8. For the unstable solution rLDGT with <T Tcr¯ in equation (21), the vortical field has the
wavevector w=k k R ;LDGT

˜ ( ) the length-scale of the vorticalfield is large, k k 1,( ˜ )  in a broad range of
parameters.While the vortical field depends on the surface tension value, it is present for any values of the
acceleration and the surface tension, and is associatedwith the energy imbalance for the Landau’s dynamics
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[21–23]. Hence, in the unstable regime, <T Tcr¯ ( >G Gcr¯ ) the accelerated Landau’s dynamics with surface
tension is the superposition of twomotions – themotion of the interface with the constant velocity ºV V0˜ ˜ and
the growth of the interface perturbations. It is shear free at the interface.

Summary:The accelerated Landau’s dynamics with surface tension can be stable or unstable depending on
the values of the acceleration, the surface tension and the density ratio. In the stable regime, the resultant
dynamics corresponds to the stable unperturbed flowfields r P WV, , , h l0 0( ) ( ) and has constant interface velocity

ºV V .0˜ ˜ In the unstable regime, the interface perturbations grow, whereas the interface velocity remains
constant. The unstable dynamics couples the interface perturbationwith the potential and vortical components
of the velocityfields in thefluids’ bulk, and is shear-free at the interface. The presence of the vorticalfield in the
lightfluid bulk is due to the postulated constancy of the interface velocity, leading to energy imbalance for any
value of the acceleration and the surface tension, figures 4, 5, 8, tables 2, 5 [21–23].

3.5.3. Rayleigh-Taylor dynamics
Fundamental solution: For Rayleigh-Taylor dynamics in the presence of acceleration and surface tension the
solution is w=r r e, ,RDGT RDGT RDGT RDGT( ˜ ) figures 4, 5, 9, tables 3, 5

w j j

w j j

< = 
-
+

=
+

=

> =
-
+

= = = -
-
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T

G i G
R

R

G G
R

R
G G

T R

R

e
e e

e

e e

0,
1

1
,

2
, , , 1 ;

0,
1

1
, , , 1 ;

1
22

RTGT RTGT

RTGT RTGT

*¯ ¯ ( ˜ )

¯ ¯ ( ˜ ) ¯ ( )

where the components of eigenvectors j j,{ ˜ } for solutions are the functions on R G T, , , table 3.
Stability and instability of the fundamental solution:Rayleigh-Taylor dynamics is stabilized by the surface

tension. The solution rRTGT is stable for >T Tcr
ˆ and is unstable for < <T T0 .cr

ˆ The critical surface tension
value = -T G R R1cr

ˆ ( ) is defined by the condition =G 0,¯ tables 3, 5; for G 0 the value approaches
T 0,cr

ˆ in agreement with equation (19.3).
Structure offlowfieldsIn the stable and the unstable regimes of Rayleigh-Taylor dynamics with surface

tension, the velocity fields are potential in the bulks of the light and the heavyfluid, and have the interfacial shear
at the interface, figure 9.

Summary: For Rayleigh-Taylor dynamics with surface tension in the stable regime the dynamics describes
the standingwave stably oscillating in time (which is the capillary wave for zero acceleration). In the unstable
regime the dynamics describes the standingwavewith the growing amplitude. The velocity fields are potential in
the bulks of the light and the heavy fluid, and there is the shear at the interface, figure 9, table 3 [20–31]. The
interface velocity is zero in the laboratory reference frame.

3.5.4. Summary of properties
Depending on the values of the acceleration, the surface tension and the density ratio, the dynamics
r r r, ,CDGT LDGT RTGT{ }can be stable or unstable, figures 4–9, tables 1–3, 5, 6. In either stable or unstable
regime, these dynamics have distinct qualitative properties.

The accelerated conservative dynamics is stable (unstable) for > <T Tcr( ) ˜ and < >G G .cr( ) ˜ In the stable
regime, the resultantmotion corresponds to unperturbed flowfields with constant interface velocity and zero
interfacial shear. In the unstable regime, the dynamics couples the interface perturbations with the potential and
vortical components of the velocity fields in thefluids’ bulks and is shear free at the interface; the interface
perturbations growwith time and so is the interface velocity,figures 4–7, tables 1, 5, 6.

The accelerated Landau’s dynamics is stable (unstable) for > <T Tcr( ) ¯ and < >G G .cr( ) ¯ In the stable
regime, the resultant dynamics corresponds to unperturbed flowfields with constant interface velocity andwith
zero interfacial shear. In the unstable regime, the dynamics couples the interface perturbations with the potential
and vortical components of the velocityfields in thefluids’ bulks and is shear free at the interface; the interface
perturbations growwith time; the interface velocity is constant, figures 4, 5, 8, tables 2, 5, 6.

Rayleigh-Taylor dynamics is stable (unstable) for > <T Tcr( ) ˆ and < >G G .cr( ) ˆ In either regime the
dynamics has potential velocityfields in thefluid bulks and has the interfacial shear; the interface velocity is zero
in the laboratory frame of reference. In the stable regime, the dynamics describes the stably oscillating standing
wave. In the unstable regime, the amplitude of the standingwave growswith time, figures 4, 5, 9, tables 3, 5, 6.

3.5.5. Physics properties ofmathematical attributes
For the accelerated dynamics, the interface stability and the structure of theflowfields are defined by the
interfacial boundary conditions and by the interplay of the inertial effect, the surface tension and the
acceleration. Onemay differentiate between various unstable dynamics and thus deduce the properties of the
microscopic interfacial transport bymeasuring themacroscopic fields in the bulk. Particularly, the observations
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of the vortex-free velocityfields in the bulk, the appearance of shear-driven vortical structures at the interface,
and the zero interface velocity are indicative of the unstable Rayleigh-Taylor dynamics free from interfacialmass
flux. The observations of the large-scale vortical field in the bulk, the absence of vortical structures at the
interface and the constant interface velocity are indicative of Landau-Darrieus instability characterized by energy
imbalance at the interface. The observations of the vortical field in the bulk, the absence of vortical structures at
the interface and the growing interface velocity are indicative of the unstable accelerated conservative inertial
dynamics. These results can be applied for design and interpretation of experimental and observational data.

3.6.Mechanisms of stabilization and destabilization
By comparing properties of fundamental solutions r r r, ,CDGT LDGT RTGT{ }we further analyze themechanisms
of stabilization and destabilization of the interface dynamics influenced by the acceleration and surface tension,
figures 4–9, tables 1–3, 5, 6.

3.6.1. Acceleration
Since the acceleration is directed from the heavyfluid to the lightfluid, its qualitative role is to destabilize the
interface dynamics. Quantitative effect of the acceleration is however distinct for the conservative, Landau’s and
Rayleigh-Taylor dynamics.

By comparing the growth-rates’ values for the dynamics r r r, , ,CDGT LDGT RTGT{ } wefind that at =T 0 they
are w w w= =CDGT LDGT RTGT at = = -G G R 1 4.2* ( ) For strong accelerations andweak surface tension the
dynamics r r r, ,CDGT LDGT RTGT{ }are unstable, and the growth-rates behave as
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Hence, in the limit of strong accelerations andweak surface tension values, the newfluid instability of the
conservative dynamics has the largest growth-rate when compared to the accelerated Landau’s andRayleigh-
Taylor dynamics,figure 5, tables 1–3.

3.6.2. Surface tension
The surface tension qualitative role is to stabilize the interface dynamics. Quantitative effect of the surface
tension is however distinct for the conservative, Landau’s andRayleigh-Taylor dynamics.

For given values of the acceleration and density ratio > >G R0, 1, each of the dynamics
r r r, ,CDGT LDGT RTGT{ }can be stabilized by surface tension. The new fluid instability of the accelerated
conservative dynamics is stabilized for >T T .cr

˜ The Landau’s dynamics is stabilized for >T T .cr¯ Rayleigh-
Taylor dynamics is stabilized for >T T .cr

ˆ By comparing the critical surface tension values for given values of the
acceleration and the density ratio, wefind (figures 4, 5, tables 1–3, 5): For > >G R0, 1 the values related as

>T T ,cr cr¯ ˆ and the Landau’s dynamics can be stabilized by larger surface tensionwhen compared to Rayleigh-
Taylor dynamics. For > -G R R 1 2( ) the values relate as >T T ,cr cr

ˆ ˜ andRayleigh-Taylor dynamics can be
stabilized by larger surface tensionwhen compared to the newfluid instability of the conservative dynamics. For
> -G R R 1( ) the values relate as >T T ,cr cr

˜ ˆ and the Landau’s dynamics can be stabilized by smaller surface
tensionwhen compared to the newfluid instability of the conservative dynamics, figures 4, 5, table 5.

Hence, for weak accelerations, < -G R R 1 2,( ) the critical surface tension values relate as < <T T Tcr cr cr
˜ ˆ ¯

and the new fluid instability of the accelerated dynamics is stabilized by the smallest surface tension valuewhen
compare to Rayleigh-Taylor and Landau’s dynamics. For intermediate accelerations, - < <R R G1 2( )

-R R 1( ) the values relate as < <T T T .cr cr cr
ˆ ˜ ¯ For strong accelerations, > -G R R 1 ,( ) the values relate as

< <T T Tcr cr cr
ˆ ¯ ˜ and the new fluid instability of the conservative dynamics requires the largest surface tension
value for the stabilization, when compared to Rayleigh-Taylor and Landau’s dynamics,figures 4, 5, table 5.

3.6.3. Inertial stabilizationmechanism
These results have clear physics interpretation: The conservative dynamics has inertial stabilizationmechanism.
Hence, for weak accelerations, the presence of thismechanism leads to smaller values of surface tension required
for the interface stabilization, when compared to Landau’s andRayleigh-Taylor dynamics. For strong
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accelerations, the conservative dynamics has the largest growth-rate leading to the largest surface tension value
required for the interface stabilization, when compared to Landau’s andRayleigh-Taylor dynamics.

The inertial stabilizationmechanism is the newmechanism recently discovered for the interface dynamics
with interfacialmassflux [21, 22]. Thismechanism is the essential property of the dynamics atmacroscopic
continuous scales. It is associatedwith the conservation ofmomentum and energy in the fluid system [21, 22]. It
is exhibited in the non-constancy of the interface velocity for the unsteady non-planar interface. This
mechanism is absent in the classical Landau’s dynamics due to the postulated constancy of the interface velocity.
It is also absent in Rayleigh-Taylor dynamics, inwhich the interface velocity is zero in the laboratory frame of
reference.

In the stable regime, the inertial stabilizationmechanism is revealed in slight oscillations of the interface
velocity at zero surface tension (or at some noisy boundary conditions away from the interface). In the unstable
regime, its presence is exhibited in the non-constancy of the interface velocity.

3.7. Characteristic length scales
The values of gravity g , the velocityV ,h the surface tensionσ and thefluid densities rh l( ) define the characteristic
length-scales and time-scales of the dynamics of ideal incompressible fluids. These include the critical value of
thewavevector kcr at which the interface is stabilized, and themaximumvalue of thewavevector kmax at which
themaximumvalue is achieved of the growth-rate of the interface perturbations, and the associated length-
scales (wavelengths) l p= k2cr crmax max( ) ( ) and time-scales t = -k V .cr cr hmax max

1( )( ) ( ) For given values of
s r rV g, , , , ,h h l we present in the dimensional form each of the dynamics r r r, ,CDGT LDGT RTGT{ }andfind the

critical and themaximumwavevector values from the conditions (tables 7, 8):
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The information on these scales is critical for design of experiments and simulations, since it ensures the
sufficient resolution of the observational results [20].

Conservative dynamics: For the fundamental solution rCDGT with W = WCDGT in equation (24), the critical
and themaximumwavevector values are (tables 7, 8):
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Table 7.Value of critical wavevector for the conservative, Landau’s andRayleigh-Taylor
dynamics.

rCDGT kcr
˜

r r s r r r r- - + + + -
s

r
r

r
r

V g V4h h l h l h h l
1

2
2 2

2
h

l

h

l

⎡

⎣
⎢ ⎛

⎝
⎞
⎠

⎤

⎦
⎥( ) ( )( ) ( ) ( )

rLDGT kcr
¯

r r s r r r r- - + - + -
s

r
r

r
r

V g V4h h l h l h h l
1

2
2 2

2
h

l

h

l

⎡

⎣
⎢ ⎛

⎝
⎞
⎠

⎤

⎦
⎥( ) ( )( ) ( ) ( )

rRTGT kcr
ˆ r r-

s
g

h l( )

Table 8.Value ofmaximumwavevector for the conservative, Landau’s andRayleigh-Taylor
dynamics.

rCDGT kmax
˜

r r s r r r r- - + + + -
s

r
r

r
r

V g V2 12 2h h l h l h h l
1

6
2 2

2
h

l

h

l

⎡

⎣
⎢ ⎛

⎝
⎞
⎠

⎤

⎦
⎥( ) ( )( ) ( ) ( )

rLDGT kmax
¯ s r r=k k V g, , , ,h h lmax max

¯ ¯ ( )
rRTGT kmax

ˆ r r-
s
g

h l
1

3
( )

27

Phys. Scr. 96 (2021) 084001 DV Ilyin et al



For s r r r r r r+ - g V 0h l h h l h l
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The ratio k kcr max( ˜ ˜ ) is the function on the parameters s r rV g, , , , ,h h l tables 7, 8. For vanishing surface
tension, the critical andmaximumwave-vector values and their ratio are:

s
r r

r r
r r

r
r

r
r

r r
r r

r
r

r r
r r

-
+
-




+
-


+
-



V

g

V

k
g

V
k

g

V

k

k

0;

;
1

2
; 2 25.2

h h l h

h l

h l

h

l

cr
h

l

h

h l

h l h

l

h

h l

h l

cr

2 2

2

2 max 2
max

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

˜ ˜ ˜
˜ ( )

For very large surface tension, the critical andmaximumwave-vector values and their ratio are:
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Classical Landau’s dynamics: For the fundamental solution rLDGT with W = WLDGT equation (24), the
critical andmaximumwavevector values are (tables 7, 8):
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For very large surface tension, the critical andmaximumwave-vector values and their ratio are:
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Rayleigh-Taylor dynamics: For the fundamental solution rRTGT with W = WRTGT in equation (24), the
critical and themaximumwavevector values are (tables 7, 8):
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For vanishing surface tension values, s r r- g 0,h l∣ ( ( ))∣ the critical andmaximumwavevector values

approach  ¥k g V ,cr hmax
2ˆ ( )( ) whereas for very large surface tension values s r r-  ¥g h l∣ ( ( ))∣ the

critical andmaximumwavevector values approach k g V 0cr hmax
2ˆ ( )( ) for given finite values of g V, ,h where

Vh is understood as some velocity scale. The ratio of the critical andmaximumwavevector values is
=k k 1 3crmax( ˆ ˆ ) for any s r r- >g 0h l∣ ( ( ))∣ , tables 7, 8.

Comparative analysis:The conservative dynamics of the fluid interface is stabilized by the inertial
mechanism and by the surface tension, and is destabilized by the acceleration. The presence of the inertial
stabilizationmechanism is revealed in thefinite values of the critical and themaximumwavevector values

~k g V O 1cr hmax
2˜ ( ) ( )( ) in the limit of vanishing surface tension. For very large surface tension values the

critical and themaximumwavevector values approach zero k g V 0.cr hmax
2˜ ( )( ) The ratio k kcr max( ˜ ˜ ) is the

function on the parameters s r rV g, , , , ,h h l and it varies from2 to 3 with the increase of the surface tension
parameter s r r r r r r+ -g Vh l h h l h l

2 2∣ ( ) ( ( )( )) ∣ from zero to infinity, tables 7, 8.
In the Landau’s andRayleigh-Taylor dynamics the properties of the characteristic scales are distinct when

compared to those in the conservative dynamics, tables 7, 8. The Landau’s dynamics is stabilized by surface
tension, and it is unstable even for zero acceleration. For given values of g V, ,h in the limit of vanishing surface
tension values the critical andmaximumwavevector values approach  ¥k g V .cr hmax

2¯ ( )( ) For very large
surface tension values, the critical andmaximumwavevector values approach k g V 0.cr hmax

2¯ ( )( ) The ratio

k kcr max( ¯ ¯ ) depends on the density ratio r rh l( ) and the surface tension parameter s r r r r-g V .h h l h l
4 2∣ ( ( ) ( ))∣

With the increase of this parameter the ratio k kcr max( ¯ ¯ ) varies from2 for r r ~ 1h l( ) and 3 2 for r r 1h l( ) 
to 3 for any density ratio r r ,h l( ) tables 7, 8.

Rayleigh-Taylor dynamics is stabilized by surface tension and is destabilized by the acceleration. For
vanishing surface tension values, the critical andmaximumwavevector values approach  ¥k g V ,cr hmax

2ˆ ( )( )
whereas for very large surface tension values the critical andmaximumwavevector values approach

k g V 0,cr hmax
2ˆ ( )( ) whereVh is some velocity scale. The ratio of the critical andmaximumwavevector values

is =k k 3cr max( ˆ ˆ ) for any value of the surface tension parameter s r r- >g 0h l∣ ( ( ))∣ , tables 7, 8.
We thus conclude that the boundary conditions at the interface strongly influence the characteristic wave-

vectors, length-scales and time-scales of the interfacial dynamics. This information is critical for design of
experiments and simulations. For instance, onemay employ in experiments and simulations the dependence of
the critical length- and time-scales on the acceleration strength and the surface tension in order to ensure that
the observations are well resolved. Onemay also vary the initial perturbationwavelength and identify the length-
scales corresponding to the stabilization and the fastest growth of the interface, and thus identify the properties
ofmicroscopic transport at the interface.

3.8.Outcome for experiments and simulations
Our analysis identifies themechanisms of stabilization and destabilization of the interface dynamics with the
interfacialmass flux andfinds that the properties of the inertial and accelerated conservative dynamics with
surface tension differ qualitatively and quantitatively from those of classical Landau’s dynamics for Landau-
Darrieus instability andRayleigh-Taylor dynamics for Rayleigh-Taylor instability [21]. This opens new
opportunities for experiments and simulations, and enables a better understanding and, ultimately, control of a
broad range of processes in nature and technology towhich unstable interfaces and interfacialmixing are
relevant [1–45]. In this sectionwe outline the outcomes of our analysis for experiments and simulations.

In order to comparewith existing experiments and simulations, we note that our results for the Landau’s
dynamics andRayleigh-Taylor dynamics agreewith the results of theoretical, experimental and numerical
studies [24–35, 46]. Furthermore, our results for the conservative dynamics clearly indicate that the interface can
be stable even for ideal incompressible fluidswith vanishing surface tension, when the acceleration value is
smaller than a threshold, similarly to ablative Rayleigh-Taylor instabilities in high energy density plasmas
[36–40, 46]. Another possible application of our results inmultiphase geophysical flows is the stability of the
interface between the oceans -whenwaters in the Pacific andAtlantic oceansmeet and notmix at global
scale [61].

Our theory elaborates extensive benchmark for future experiments and simulations. According to our
results, for given values of thefluid densities rh l( ) and the velocityV ,h in the regime of strong accelerations g, the
newfluid instability of the conservative dynamics has the largest stabilizing surface tensionσ and the largest
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growth-rate W,when compared to the cases of the accelerated Landau’s andRayleigh-Taylor dynamics,
equations (11), (12), (14),figures 5, 7, tables 1, 5, 6. The newfluid instability is the fastest in the extreme regimes
of strong accelerations andweak surface tension, occurring, for instance in high energy density plasmas [5–9].
Hence, for given values of the parameters r sV , , ,h h l( ) one can observe the newfluid instability by increasing the
acceleration values. One can further observe that for the unstable accelerated conservative dynamics with surface
tension, the growth of the interface perturbations is augmentedwith the growth of the interface velocity. The
former is present and the latter is absent in Landau-Darrieus andRayleigh-Taylor instabilities figure 7, table 6
[24–35]. By accurately diagnosing the interface dynamics, including the growth of the interface perturbations
and the interface velocity, one can confidently find the new fluid instability in experiments with strong
accelerations [5–9].

In some experiments the parameters of the dynamics s r rV g, , , ,h h l may be a challenge to vary
systematically [5–9, 39, 40]. Our analysis proposes how to address the challenge. Particularly, for given values of
the parameters r sV g, , , ,h h l( ) by varying thewavelength of the initial perturbation l, onemay observe the

interface stabilization at thewavevector =k kcr and the fastest growth-rate of the unstable interface at the
wavevector =k kmax and the associated length-scales l p= k2cr crmax max( ) ( ) and time-scales
t = -k V .cr cr hmax max

1( )( ) ( ) One can further identify the type of thefluid instability, and differentiate between the
newfluid instability of the conservative dynamics and the instabilities of the Landau’s andRayleigh-Taylor
dynamics by comparing the critical andmaximum scales l t,cr crmax max( ) ( ) with the theoretical results for given
values of the parameters, r sV g, , , ,h h l( ) equations (25)–(27), tables 7, 8. These results can be applied for design
of experiment in high energy density plasmas [5–9, 39, 40].

Our results indicate a need in further advancements of numericalmodeling of the interface dynamics
[41–43]. Numericalmodeling of unstable fluid interfaces is a challenge because the simulations are required to
track the interface, to capture small scales dissipative processes, and to use the highly accurate numerical
methods andmassive computations [1]. Existing numerical approaches usually apply diffusive approximation
formodeling interfaces with interfacialmassflux, andworkwell for flowswith smoothly changing offlowfields
[2]. Our results indicate that new developments are required to accuratelymodel the unstable interface with
sharply changing flowfields, including the Lagrangian and Eulerianmethods [1, 2, 41–43].

The existing experimental and numerical studies of the interface stability are focused on themeasurements
of the growth and growth-rate of the perturbation amplitude [2, 5–7, 39–43].We derive the amplitude growth
and the growth-rate, andwefinds that theflowdynamics is highly sensitive to the interfacial boundary
conditions,figures 2–9, tables 1–8. Our analysis directly links themacroscopic flowfields to themicroscopic
transport at the interface. It suggests that bymeasuring theflowfields atmacroscopic scales in the bulk far from
the interface, one can confidently capture the transport properties atmicroscopic scales at the interface,
figures 2–8. This information is especially important for systemswhere experimental data are a challenge to
obtain, including fusion, supernovae and scramjets [2–15].

Consider, for instance, the theory outcome for high energy density plasmas. In our analysis acceleration is a
body force, and the accelerationmagnitude is set constant in order to simplify the analysis equations (1–27). In
experiments in laser-ablated plasmas the acceleration is an effective acceleration, and it is time-dependent;
model experiment with a (quasi-) constant acceleration is extremely challenging to set up and conduct since it is
the target, the laser-drive and the experiment specific [5–8]. Our analysisfinds that for the unstable accelerated
conservative dynamics, the interface velocity is a function of time evenwhen the acceleration is constant. This is
due to the conservation ofmass,momentum and energy in the system. The time-dependence of the interface
velocity can be exponential in the linear regime and a power-law in the nonlinear regime [21–23, 46]. In a frame
of referencemovingwith the interface velocity, the systemmay experience an effective acceleration, which is a
complex function of time andwhichmay also depend on perturbation amplitude.While this opens exciting
perspectives for theory research, it also indicates that the dynamics of unstable accelerated interfaces with
interfacialmass flux, such as in laser-ablated plasmas and in type-Ia supernova [4–8], may be evenmore
challenging than theymay appear.

This suggests a need in new experimental approaches, that, on the one hand, would employ a striking
similarity of non-equilibriumdynamics of interfaces andmixing in the vastly different physical regimes [1, 2],
and, on the other hand, would be affordable and repeatable in a broad range of parameters, and conditions. In
classical Rayleigh-Taylor instabilities, such approachwas employed in jelly experiments and enabled the direct
observation of the order in interfacialmixing at very high Reynolds numbers [28]. In laser-matter interactions,
the experiments [9] provided observations of complex and ordered fine scale structures in Rayleigh-Taylor
unstable interfaces. In classical plasmas the Large PlasmaDevice (LAPD) experiments [62] enabled the discovery
of the spiky structures inmagnetic flux ropes through scrupulous analysis of immense high quality data. In
liquids, the experiments on liquid-liquid interfaces [63] provided the nano-scale view of assisted ion transport
across the interface and revealed essentially non-diffusive interfacial transport. The theory and the experiments
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suggest that the problem is the interface dynamics with interfacialmass flux is well open for curiousmind [1, 2,
5–9, 28, 62, 63].

It is traditionally believed that the interface dynamics can be stabilized by factors depending onmicroscopic
properties ofmatter (plasmas, fluids,materials), such as surface tension, diffusion, and dissipation, which, in
turn, occur due to interactions of the constituting particles (atoms,molecules) [20, 30–35]. Our analysis suggests
that while these factors indeed play a stabilizing role, the conservative dynamics of the interface with interfacial
massflux can also be stabilized by the inertialmechanism, which is enabled by themacroscopicmotion of the
interface aswhole equations (11), (20) [21, 22]. Thismechanism is absent in the classical Landau’s dynamics, due
to the postulated constancy of the interface velocity, and in Rayleigh-Taylor dynamics, where the interface
velocity is zero in laboratory frame of reference equations (12), (14), (21), (22) [20–22]. In case of the accelerated
dynamics with surface tension, the inertialmechanism is exhibited in the larger (smaller) values of surface
tension required to stabilize the strongly (weakly) accelerated interface in the conservative dynamics when
compared to the Landau’s andRayleigh-Taylor dynamics, figures 3–9, tables 1–5.

4.Discussion and conclusion

We investigated the interfacial dynamics with interfacialmassflux in the presence of the acceleration and the
surface tension equations (1)–(27).We considered ideal and incompressible fluidswith negligible stratification
and densities variation for the two-dimensional spatially extended periodicflowwith the acceleration directed
from the heavy to the lightfluid andwith surface tension understood as the tension at the boundary between the
flowphases. The generalmatrixmethodwas advanced and applied to rigorously solve the linearized boundary
value problem. The fundamental solutionswere found for the dynamics conservingmass,momentum and
energy, andwere comparedwith those for the classical Landau’s andRayleigh-Taylor dynamics. The interplay of
the acceleration, surface tension and inertial stabilizationmechanismwas scrupulously studied and its effect of
the interface stability and on the properties of the new fluid instability of the conservative dynamics was
identified. Extensive benchmarks were elaborated for future experiments and simulations and for better
understanding of natural and technological processes, towhich unstable interfaces are relevant, equations (1)–
(27),figures 1–9, tables 1–8.

We found that the dynamics conservingmass,momentum and energy can be stable or unstable depending
on the acceleration and the surface tension. In the stable regime, the conservative dynamics corresponds to non-
perturbed flowfields in the bulk, is shear-free at the interface and has the constant interface velocity. The
instability can develop only in the presence of the acceleration and onlywhen itsmagnitude exceeds a threshold,
equation (20),figures 2–7, tables 1, 4, 5, 6. This threshold value reflects the contributions of the inertial
stabilizationmechanism and the surface tension and is finite for zero surface tension. In the unstable regime, the
interface perturbations are coupledwith the potential and vortical components of the velocity fields in thefluids’
bulk; for zero surface tension, the velocity fields are potential. The dynamics is shear-free at the interface. It
describes the standingwavewith the growing amplitude, and has the growing interface velocity, figure 6.
Depending on the acceleration and the surface tension, the fluid instability of the conservative dynamics can
grow faster or slowerwhen compared to the accelerated Landau’s andRayleigh-Taylor dynamics; it has the
largest growth-rate and the largest stabilizing surface tension value in the extreme regime of strong accelerations,
equations (20)–(22),figures 4–9, tables 2–6.We also found the critical andmaximumvalues of thewavevector of
the initial perturbation at which the conservative instability is stabilized and atwhich it has the largest growth-
rate, tables 7, 8. These unique quantitative and qualitative properties of the instability of the conservative
dynamics clearly distinct it fromother fluid instabilities, and call for further investigations, equations (1)–(27),
figures 1–9, tables 1–8.

Our results agree qualitatively with available observations and indicate a strong need in further experimental
and numerical studies of the interface dynamics, and in the development of newmethods of numerical
modeling and experimental diagnostics. Existing experimental and numerical studies of the interface dynamics
are focused on diagnostics of the growth of the amplitude of the initial perturbation [1, 2, 39–43]. Our analysis
provides the amplitude growth-rate in a broad range of parameters, determines the regions of the experimental
parameter of the stable and unstable dynamics, identifies the structure of theflowfield and links them to the
boundary conditions at the interface equations (1)–(27),figures 1–9, tables 1–8. Particularly, according to our
results, bymeasuring atmacroscopic scales the flowfields in the bulk, one can capture the transport properties at
microscopic scales at the interface, figures 6–9, table 6.

An important outcome of our theory for applied scientists and engineers is that for the interface dynamics
with interfacialmassflux the interface unsteadiness and the interface stability are distinct concepts,
equations (1)–(27). Indeed, for the accelerated conservative dynamics, due to the inertial stabilization
mechanism, the interface velocity is unsteady in both stable and unstable regimes: It experiences slight
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oscillations in the stable regime, and it increases with time in the unstable regime. This suggests thatmore
caution is requiredwith how the acceleration is defined: For the accelerated conservative dynamics with the
interfacialmass flux the acceleration can be caused by the body force and be directed from the heavy to the light
fluid in the inertial frame of reference. For Rayleigh-Taylor dynamics with zero interfacialmassflux, the
acceleration can also be the acceleration of the fluid interface and be directed from the light to the heavyfluid in
the inertial frame of reference, figures 1–9.

Our approach resolved the long-standing prospect of Landau [32], by showing that Landau’s solution for
Landau-Darrieus instability is a perfectmathematicalmatch [21–23, 46]. Our results can be further connected to
realistic environments in plasmas,fluids andmaterial, in which the dynamics is usually accompanied by
dissipation, diffusion, compressibility, radiation transport, stratification, and non-local forces, figures 1–9
[2–15]. Our general theoretical approach can be extended to systematically incorporate these effects, to analyze
the interplay of the interface stability with the structure offlowfields, and to elaborate a unified theory
framework for studies of interfacial dynamics in a broad range of processes including ablative Rayleigh-Taylor
instabilities in fusion plasmas, dynamics of reactive and super-critical fluids, andD’yakov-Kontorovich
instability of shockwaves [1–45].We address these studies to the future.
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