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ABSTRACT 

Cyber-physical systems (CPS) are physical devices 
with highly integrated functionalities of sensing, 
computing, communication, and control. The levels of 
intelligence and functions that CPS can perform 
heavily rely on their intense collaboration and 
information sharing through networks. In this paper, 
the information propagation within CPS networks is 
studied. Information dynamics models are proposed to 
characterize the evolution of information processing 
capabilities of CPS nodes in networks. The models are 
based on a mesoscale probabilistic graph model, 
where the sensing and computing functions of CPS 
nodes are captured as the probabilities of correct 
predictions, whereas the communication functions are 
represented as the probabilities of mutual influences 
between nodes. In the proposed copula dynamics 
model, the information dependency among individuals 
is represented with joint prediction probabilities and 
estimated from copulas of extremal probabilities. In 
the proposed functional interdependency model, the 
correlations between prediction capabilities are 
captured with their functional relationships. A data-
driven approach is taken to train the parameters of the 
information dynamics models with data from 
simulations. The information dynamics models are 
demonstrated with a simulator of CPS networks. 
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1. INTRODUCTION

Cyber-physical systems (CPS) are physical devices 
with highly integrated functionalities of sensing, 
computing, communication, and actuation. They share 
information, work collaboratively, and form networks, 
also known as Internet of Things (IoT). Such devices 
can have different sizes and physical forms at micro- 
or macro-scales. They are the essential elements in 
smart home and office, intelligent manufacturing, 
personalized medicine, autonomous and safe 

transportation, omnipresent energy supplies, and 
many other applications. Given the intensive 
interactions between CPS and human society as well 
as human’s heavy reliance on CPS, the term cyber-
physical-social systems (CPSS) is also used by 
researchers to describe the highly integrated systems 
with the social dimension.  

In CPS, information collection, processing, and 
decision making are done in a decentralized fashion. 
The intelligence level of CPS is enhanced by intensive 
information sharing, as more high-quality information 
leads to better decisions. The level of dependencies 
among CPS devices for their computation and 
decision making is unprecedented.  There is a strong 
need to understand the deep information dependency 
between devices in a CPS network. The knowledge 
about the behaviors of the complex system can help us 
to design more reliable and dependable systems. 

Currently there is a lack of study of information 
propagation in CPS networks. Existing research on 
information diffusion focused on computer networks 
and social networks. The uniqueness of CPS networks 
is the sensing and control capabilities which do not 
exist in traditional computer networks. Information 
diffusion in traditional computer networks can be 
regarded as passive. In contrast, in CPS networks, 
information is generated and shared intensively 
among nodes. The risk that inaccurate information 
causes bad decisions is also much higher because 
more decisions are made locally. It is important to 
understand the evolution of information in CPS 
networks such that the adaptability and scalability of 
the systems can be properly engineered. Therefore, 
understanding how information propagates in the CPS 
networks and the sensitivity of the behavior with 
respect to network architecture and topology is a 
challenge for CPS design.  

In a dynamically evolving CPS network, the effects of 
information generation and sharing need to be 
quantified and analyzed so that the long-term 
behaviors of such networks can be predicted, which is 
useful to test systems engineering strategies towards 
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the system design. To model the effects of information 
exchange, here an information dynamics modeling 
approach is proposed to analyze the information 
interdependency among CPS nodes and subnetworks. 
The proposed model provides the insight of how nodes 
have influence on each other when information is 
exchanged and how the behavior of networks evolves 
dynamically. This dynamics analysis is useful for 
design of an open system with good adaptability, 
where nodes can be added and removed arbitrarily.  

The proposed information dynamics modeling 
approach is based on a generic probabilistic graph 
model of networks ([1], [2]), where information 
exchange and processing at nodes are modeled at the 
mesoscale. In the probabilistic graph model, the 
sensing and computing capabilities of each node are 
characterized by a prediction probability, whereas the 
communication capabilities between nodes are 
characterized by pairwise reliance probabilities. The 
prediction probability measures how well a node can 
gather information and make sound judgement. The 
reliance probabilities capture the extent of influences 
for one node to another via information exchange. In 
the proposed information dynamics models, the 
evolution of prediction capabilities of nodes is 
captured, where the prediction accuracies of nodes are 
influenced by each other, given that the decision of 
each node is made based on information gathered from 
itself as well as its neighboring nodes.  

Two types of models are proposed here to capture the 
information dependency. The first one is called copula 
dynamics model, where correlations between 
prediction capabilities are explicitly modeled and 
represented by joint probabilities. The dynamics is 
modeled with the copulas of extremal probabilities. 
The second one is the functional interdependency 
model, where the correlations are captured by linear or 
nonlinear functional relationships. A data-driven 
approach is taken to build the information dynamics 
models, where simulations are performed and the 
models are trained based on the simulation data. 

In the remainder of this paper, the background of CPS 
design, existing models of information diffusion in 
networks, and the probabilistic graph model is given 
in Section 2. The proposed information dynamics 
models are introduced in Section 3. The models are 
demonstrated and compared with a CPS simulator in 
Section 4. 

2. BACKGROUND 

2.1. CPS Design Challenges and 
Principles 

There are unique engineering challenges in designing 
CPS. First, given the evolution nature of cyber and 
physical technologies, adaptability that enables the 
capabilities of self-learning, self-organization, and 
context awareness is important to design open systems 
that can evolve along technology advancement [3][4]. 
Using new technologies as the augmentation to 
existing products can effectively enhance adaptability 
[5]. Second, the complexity of the CPS has 
significantly increased from traditional products and 
devices. The CPS products are connected through IoT 
and heavily rely on data exchange from each other to 
realize their functions. Communication between 
devices plays a major role. Therefore, how to design 
systems of CPSS which have dependable 
communication is important. Reliable large-scale 
networked systems that do not fail are impossible to 
achieve. Resilient systems that can recover 
automatically from partial failures are more likely to 
be realized [1][2]. Third, the high-dimensional design 
space of CPSS includes not only the cyber and 
physical subspaces, but also the social subspace. 
Examples of the emerging research issues are how to 
design the modalities for human-system interaction 
[6], how to enable context awareness and personalized 
communication between CPSS and humans [7], and 
how to quantify trustworthy strategic relationships for 
information sharing [8]-[10].  

In general, the design factors and design principles to 
be considered for CPSS can be categorized in 
physical, virtual, and mental worlds. In the physical 
world, sustainability, reliability, resilience, 
interoperability, adaptability, biocompatibility, 
flexibility, and safety need to be considered. In the 
virtual world, we need to emphasize the principles of 
human-in-the-loop, data-driven design, co-design, 
scalability, usability, and security. In the mental 
world, the perceptions of risk, trust, and privacy, as 
well as memory capacity and emotion need to be 
incorporated in design. Those design factors and 
principles are summarized in Table 1. Note that not 
all factors need to be considered for every design. 
Some are more important than others for a particular 
CPS device.  

Network connectivity is essential for CPS. A 
standalone CPS device cannot perform the functions 
which it is designed for. Compared to traditional 
products, the design of CPS requires engineers to have 
better understanding of the systems level behaviors, as 
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well as the new methodology for the optimization in 
large-scale networks. Systems level modeling 
methods and tools have been developed for CPS 
design and analysis, such as hybrid discrete-event and 
continuous simulations [11]-[13], inductive constraint 
logic programming [14] abductive reasoning [15], 
hybrid timed automaton [16], ontologies [17], 
information schema [18], UML [19], and SysML [20].  

2.2. Information Diffusion in Networks 

The information flow in computer networks and social 
networks has been studied. The propagation of 
information can be modeled in different ways. One of 
the most used approaches is the epidemic model of 
networks, where transmission probabilities of virus 
between nodes are mainly used to model the speed of 

infection and the dynamics of outbreak and decay is 
captured with ordinary differential equations [21][22].  
The epidemic model has been widely applied to study 
the propagation of keywords or phrases among blogs 
[23] and within social networks [24]. In the linear 
influence model [25], the propagation of information 
is modeled and parameterized by the influences of 
individual nodes in the network. In the event-driven 
modeling approaches, the adoption of new 
information by nodes is characterized by discrete 
Poisson processes [26][27] or continuous hazard 
function [28].   

There is still no study of information diffusion in CPS 
networks, which have different behaviors from 
computer networks, given that CPS nodes possess 
complex functionalities of sensing, computing, 

Table 1 Major design factors and principles to be incorporated in physical, cyber, and social design subspaces 
respectively. 

Domain Factor Note 
Physical World 
 

Sustainability The energy consumption of CPSS networks will be significant as the number of nodes 
grows exponentially.  

Reliability The reliability CPSS components needs to be maintained as complexity increases with 
highly integrated functions. 

Resiliency It is impossible to ensure millions of CPSS nodes be functioning at all time in large 
networks. Local disruption should not affect the overall functionality.  

Interoperability Standards of communication for both hardware and software can continuously evolve 
while legacy systems need to be supported. 

Adaptability Open architecture is needed for systems that can adapt to different working environments 
and conditions. The system may evolve by itself. 

Biocompatibility CPSS should be compatible with biological systems of human or animal for medical 
purposes. 

Flexibility CPSS materials that support sensing, computing, communication, and actuation can be 
soft materials. 

Safety The operations of CPSS should not bring safety of human users and general public at 
risk. 

Virtual World Human-In-The-
Loop 

The level of automation can be very high in CPSS. Yet human involvement can improve 
the robustness of algorithms and decision making.  

Data Driven 
Design 

The incorporation of product usage data can help identify design constraints and improve 
the product quality. 

Co-Design Design of the complex systems requires the simultaneous consideration of software, 
algorithms, and hardware for better integration. 

Scalability The software and algorithms should be functional when the complexity of applications 
increases with growing network and data sizes, and processing heterogeneous data. 

Usability The design of software and user interface should maintain easy-to-use properties. 
Security The information collected and shared by CPSS needs to be kept away from illegal access 

or use. 
Mental World Risk Perception The perceived risks associated with CPSS usage are personal and vary by individual 

users. 
Trust Trust is essential for using CPSS where intensive human entanglement for information 

gathering, sharing, augmentation, and automation will affect the daily lives of their users 
and customers.  

Privacy The extent of data collection and sharing by CPSS needs to be customizable to individual 
users. 

Memory Capacity The different mental capacities of human individuals when using and interaction with 
complex CPSS need to be considered. 

Emotion In human-system interaction, the emotion of human can vary consistently along time, 
and the intention can be disguised and difficult to detect. 
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communication, and control. 

2.3. Probabilistic graph model 

A recently developed probabilistic graph model [2] for 
CPS networks, as the foundation of the information 
dynamics models, is introduced here. In the 
probabilistic graph model, each node has its own 
sensing, reasoning, and communication units. As 
illustrated in Figure 1, there are probabilities 
associated with information gathering and exchange 
between nodes. For each node, there is a prediction 
probability indicating the capabilities of information 
gathering and reasoning. For each directed edge 
indicating information exchange, there are two 
reliance probabilities associated with it. The three 
probabilities are defined as follows. 

 

The prediction probability that the kth node detects the 
true state of world 𝜃 is 

ℙ(𝑥௞ = 𝜃) = 𝑝௞  (1) 

where 𝑥௞ is the state variable. For convenience, we 
denote 𝑞௞ = 1 − 𝑝௞. The information dependency 
between nodes is modeled with probabilistic 
adjacency matrix RP with elements as P-reliance 
probabilities 

ℙ൫𝑥௝ = 𝜃ห𝑥௜ = 𝜃൯ = 𝑝௜௝  (2) 

which is the probability that the jth node predicts the 
true state of world given that the ith node predicts 
correctly. Similarly, we also have adjacency matrix 
RQ with elements as Q-reliance probabilities 

ℙ൫𝑥௝ = 𝜃ห𝑥௜ ≠ 𝜃൯ = 𝑞௜௝  (3) 

because nodes could be negatively correlated, or 
miscommunication between nodes could exist. The 
reliance probability can be used to model reliability of 
communication between nodes, e.g. in moving 
vehicles’ ad hoc wireless networks, data packet loss is 
not uncommon. 

Therefore, different from the adjacency matrix in 
traditional graph model with binary “yes-or-no” edge 
connection topology, there are reliance probabilities 
associated with each pair of nodes in the new 
probabilistic graph model. If the communication 
channel from node i and node j is disrupted, both 𝑝௜௝ 
and 𝑞௜௝ are zeros.  

The random state variables with binary values ( =
𝜃 or ≠ 𝜃) can be extended to multiple values or 
continuous. For instance, one sensor measures a value 
(e.g. temperature or flow speed) which follows some 
distribution, as in prediction probability.  If there are a 
finite set of possible values {𝜃ଵ, … , 𝜃ே} for state 
variables. The prediction probability ℙ(𝑥௞ = 𝜃௡) and 
P-reliance probability ℙ൫𝑥௝ = 𝜃௡ห𝑥௜ = 𝜃௠൯, where 
1 ≤ 𝑚, 𝑛 ≤ 𝑁, can be enumerated similarly. 

The edges in the probabilistic graph are directional. 
The neighbors of each node can be further 
differentiated as source nodes or destination nodes, as 
illustrated in Figure 2. For one node, its source nodes 
are those sending information to this node, whereas 
the destination nodes are those receiving information 
from it. When receiving different cues from source 
nodes, a CPS node can update its prediction 
probability to reflect its perception of the world. The 
aggregation of prediction probabilities sensitively 
depends on the rules of information fusion during the 
prediction update.  

 

If 𝑃(𝑥௞) and 𝑃(𝑥௞
஼) denote the probabilities of a 

positive and a negative prediction from node k 
respectively, we define the best-case fusion rule as 

𝑃′(𝑥௞) = 1 − ൫1 − 𝑃(𝑥௞)൯ ∏ 𝑃(𝑥௜)(1 −
ெು
௜ୀଵ

𝑃(𝑥௞|𝑥௜)) ∏ 𝑃(𝑥௝
஼)൫1 − 𝑃(𝑥௞|𝑥௝

஼)൯
ெಿ
௝ୀଵ   (4) 

where node k updates its prediction based on its own 
current prediction and those cues from its 𝑀௉ + 𝑀ே 
source nodes, out of which 𝑀௉ of the source nodes 
provide positive predictions whereas 𝑀ே of them 

Figure 1 Probabilistic graph model of CPS systems  
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provide negative predictions, 𝑃(𝑥௞|𝑥௜) indicates the 
probability that a positive message from node i leads 
to a positive prediction of node k, and 𝑃(𝑥௞|𝑥௝

஼) is the 
probability that a negative message from node j leads 
to a positive prediction of node k. Therefore, if any of 
the cues from the source nodes is positive, the 
prediction of the node is positive. Some variations of 
this fusion rules exist. For instance, the previous 
prediction from itself can be either included or 
excluded during the update.  

Similarly, the worst-case fusion rule can be defined as 

𝑃′(𝑥௞) =

𝑃(𝑥௞) ∏ 𝑃(𝑥௜)𝑃(𝑥௞|𝑥௜)
ெು
௜ୀଵ ∏ 𝑃(𝑥௝

஼)𝑃(𝑥௞|𝑥௝
஼)

ெಿ
௝ୀଵ   (5) 

That is, if any of the cues from the source nodes is 
negative, the prediction of the node is negative. The 
Bayesian fusion rule is defined as 

𝑃ᇱ(𝑥௞) =
௉(௫ೖ) ୫ୟ୶

ౌ
ቄ(௉(௫ೖ))ೝ൫ଵି௉(௫ೖ)൯

ೄషೝ
ቅ

∫(௉(௫ೖ))ೝ൫ଵି௉(௫ೖ)൯
ೄషೝ

ௗ௉
   (6) 

where the prediction of the node is updated to 𝑃′ from 
prior prediction 𝑃, and out of S cues that the 
neighboring nodes provide, r of them provide are 
positive, if the maximum likelihood principle is taken. 

The probabilistic graph model provides a system level 
abstraction and a mesoscale description of CPS 
networks, where information exchange and 
aggregation are captured. More details about the 
probabilistic graph model can be found in Ref.[2]. 

3. THE INFORMATION DYNAMICS 
MODEL 

Based on the probabilistic graph model, we propose 
two types of information dynamics models to capture 
the information diffusion in CPS networks based on 
the probabilities that the nodes produce meaningful 
information. The information dynamics models are to 
characterize and predict how information is produced 
and consumed in a networked CPS environment. In 
CPS networks, each node produces information by 
sensing and processing. Information is exchanged 
among nodes. When a node receives some information 
from others, the received information is combined and 
digested, which is then used to update the prediction 
of the node. Thus the prediction probabilities of CPS 
nodes are dynamically updated with the mutual 
influences among each other. Therefore, strong 
dependencies exist among the prediction probabilities 
from different nodes.  

To understand the propagation of information in CPS 
networks, the influences and interdependency among 
information producers and consumers need to be 
modeled. The high correlation between nodes need to 
be incorporated in modeling the dynamics. In the 
proposed information dynamics model, two 
approaches are taken to capture the interdependency. 
One is using joint probabilities, and the other is based 
on functional relationships.  

In the first approach, the joint probabilities of 
prediction capabilities instead of the marginal 
probabilities are used to model the information 
dynamics. Joint probabilities explicitly capture the 
correlation among nodes. However, joint probabilities 
with a large number of variables are not easy to 
calculate, given that the number of nodes in a CPS 
network can be very large. Therefore copulas are 
proposed here to estimate the joint probabilities of 
prediction. The precise joint probabilities or copulas 
are unknown but can be estimated from the ones in 
some extreme scenarios, such as perfectly positive or 
negative correlation, or completely independence. The 
joint probabilities or copulas are known as extremal 
distributions. The extremal probabilities can be 
regarded as the vertices that form a convex hull of 
unknown joint probabilities in the space of 
distributions. If the copulas for extremal probabilities 
can be obtained, then the joint probabilities can be 
estimated. From the joint probabilities, the marginal 
probabilities of predictions can be easily calculated. In 
the information dynamics model, the evolutions of 
extremal probabilities are explicitly modeled. Here, a 
data-driven approach is taken to model the dynamics 
of extremal probabilities. The interactions between 
nodes can be simulated from the probabilistic graph 
model. The copulas for extremal probabilities then can 
be obtained. Time series models can be used and 
trained from the simulation data. Then the future 
behavior of the system can be predicted. Because the 
number of copulas grows exponentially as the number 
of nodes increases, it will be computationally 
challenging to use joint probabilities to keep track of 
the evolution of large-scale networks.  

In the second approach, the marginal prediction 
probabilities are used in the dynamics model, where 
the interdependency and coupling between them are 
captured implicitly as functional relationships. That is, 
the prediction probability of one node is a function of 
the probabilities from its neighbors.  

Here, the copula approach is introduced in Section 3.1, 
where the construction of extremal probabilities and 
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the estimation of joint probabilities are described.  The 
functional approach to capture interdependency is 
described in Section 3.2.  

3.1. Copula Dynamics 

For n random variables 𝑋ଵ, … , 𝑋௡, each of which has 
the marginal cumulative distribution function 𝑈௜(𝑥) =
 ℙ(𝑋௜ ≤ 𝑥), the copula 𝐶: [0,1]௡ → [0,1] describes 
the joint cumulative distribution function of these 
random variables from their marginal distributions 
and is generally defined as  

𝐶(𝑢ଵ, … , 𝑢௡) = ℙ[𝑈ଵ ≤ 𝑢ଵ, … , 𝑈௡ ≤ 𝑢௡]  (7) 

In a probabilistic graph model with n nodes, given the 
joint probability 𝑃(𝑥ଵ, … , 𝑥௡) = ℙ[𝑥ଵ = 𝜃, … , 𝑥௡ =
𝜃]  for the case that all predictions are positive, the 
corresponding copula is 

𝐶(𝑝ଵ, … , 𝑝௡) 
= ℙ[ℙ(𝑥ଵ) ≤ 𝑃(𝑥ଵ), … , ℙ(𝑥௡) ≤ 𝑃(𝑥௡)] 
= 𝑃(𝑥ଵ, … , 𝑥௡)  (8) 

This is due to the simplicity of ℙ(𝑥௜ ≤ 𝜃) =
ℙ(𝑥௜ = 𝜃) in the case of binary values 𝑥௜ = 𝜃 or 𝑥௜ ≠
𝜃. The copulas are typically difficult to calculate. But 
their bounds, known as extremal probabilities, are 
much easier to obtain. 

Extremal Probabilities 

The well-known Fréchet bounds of the copula are 
given as 

 max{0, ℙ(𝑥ଵ) + ⋯ + ℙ(𝑥௡) + 1 − 𝑛} ≤

𝐶൫ℙ(𝑥ଵ), … , ℙ(𝑥௡)൯ ≤ min{ℙ(𝑥ଵ), … , ℙ(𝑥௡)} (9) 

where the lower bound corresponds to the perfectly 
negative correlation, whereas the upper bound 
corresponds to the perfectly positive correlation. For 
two random variables, the bounds are 

max{0, ℙ(𝑥ଵ) + ℙ(𝑥ଶ) − 1} ≤ 𝐶൫ℙ(𝑥ଵ), ℙ(𝑥ଶ)൯ ≤

min{ℙ(𝑥ଵ), ℙ(𝑥ଶ)}  (10) 

The bounds for perfectly positive and negative 
correlations are regarded as the extremal probabilities. 
The perfectly positive correlation case is also called 
comonotonic, whereas the perfectly negative 
correlation case is called countercomonotonic. There 
are different ways to quantify correlation. In the sense 
of linear correlation, defined as 𝜌(𝑥, 𝑦) = 𝐶𝑜𝑣(𝑥, 𝑦)/

ඥ𝜎ଶ(𝑥)𝜎ଶ(𝑦), the linear correlation coefficient takes 
the maximum value 𝜌 = +1 for the perfectly positive 
linear dependency and the minimum value 𝜌 = −1 for 
the perfectly negative linear dependency. Other 

correlation definitions include Spearman’s rank 
correlation 𝜌௦(𝑥, 𝑦) = 𝜌(𝐹௫(𝑥), 𝐹௬(𝑦)) defined by the 
linear correlation of random variables’ distribution 
functions, Kendall’s rank correlation 𝜌ఛ(𝑥, 𝑦) =
ℙ[(𝑥ଵ − 𝑥ଶ)(𝑦ଵ − 𝑦ଶ) > 0] − ℙ[(𝑥ଵ − 𝑥ଶ)(𝑦ଵ −
𝑦ଶ) < 0] defined by the probability of monotonicity 
trend in the random values. 

The extremal probabilities can be extended to multiple 
variables or nodes. The nodes in 𝒱 = {𝒱ଵ, 𝒱ଶ} are 
categorized into two subsets. Within the first subset 
𝒱ଵ = {𝑥ଵ, … , 𝑥௠}, all nodes are perfectly positively 
correlated. Within the second subset 𝒱ଶ =
{𝑥௠ାଵ, … , 𝑥௡}, all nodes are also perfectly positively 
correlated. However, between any node in 𝒱ଵ and 
another one in 𝒱ଶ, they are negatively correlated. That 
is, the opposite opinions are formed between the two 
homogenized groups. The predictions between the 
two groups are contradictory. Given the partition 𝒱 =
𝒱ଵ ∪ 𝒱ଶ, the extremal joint probability is 

𝐶{𝒱భ,𝒱మ}൫ℙ(𝑥ଵ), … , ℙ(𝑥௡)൯ = ℙ(𝑥ଵ, … , 𝑥௡|{𝒱ଵ, 𝒱ଶ}) 

= max{0, min
௜∈𝒱భ

{ℙ(𝑥௜)} + min
௝∈𝒱మ

{ℙ(𝑥௝)} − 1}  (11) 

when the correlation within either group is perfectly 
positive but perfectly negative between the two 
groups. When all nodes have perfectly positive 
correlation without partition, the extremal joint 
probability is 

𝐶{𝒱ା}൫ℙ(𝑥ଵ), … , ℙ(𝑥௡)൯ = ℙ(𝑥ଵ, … , 𝑥௡|{𝒱+}) =

min
௜∈𝒱

{ℙ(𝑥௜)}  (12) 

Another extremal joint probability is 

𝐶{𝒱ୄ}൫ℙ(𝑥ଵ), … , ℙ(𝑥௡)൯ = ℙ(𝑥ଵ, … , 𝑥௡|{𝒱 ⊥}) =

∏ ℙ(𝑥௜)௜∈𝒱   (13) 

when all nodes are independent from each other. 

Although the precise form of the copula 
𝐶൫ℙ(𝑥ଵ), … , ℙ(𝑥௡)൯ is unknown, it can be 
approximated by the combination of extremal 
distributions, based on the decomposition principle as 

𝐶൫ℙ(𝑥ଵ), … , ℙ(𝑥௡)൯ = 𝛼𝐶{𝒱ା} + ∑ 𝛽௝𝐶{𝒱భ,𝒱మ}
ே
௝ୀଵ +

(1 − 𝛼 − ∑ 𝛽௝
ே
௝ୀଵ )𝐶{𝒱ୄ}  (14) 

where 𝑁 = 2௡ିଵ − 1 indicates all possible partitions 
of n nodes into two subsets, weight coefficients 𝛼 and 
𝛽௝’s can be regarded as the chances that the copula 
takes the respective forms of extremal distributions. 
All coefficients sum up to one. For instance, the case 
that 𝛼 = 1 and 𝛽௝ = 0 (𝑗 = 1, … , 𝑁) corresponds to 
the perfect positive correlation among all nodes, 
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whereas 𝛼 = 𝛽௝ = 0 (𝑗 = 1, … , 𝑁) corresponds to the 
complete independence among all nodes. The copula 
𝐶൫ℙ(𝑥ଵ), … , ℙ(𝑥௡)൯ thus is located in the convex set 
formed by the extremal distributions, if all extremal 
distributions can be calculated. The challenge of 
estimating copulas however is to find out the weight 
coefficients. 

The decomposition principle in Eq. (14) can be further 
generalized. If the nodes are self-organized into M 
different independent groups and nodes between 
groups are uncorrelated, then 

𝐶൫ℙ(𝑥ଵ), … , ℙ(𝑥௡)൯ = ∏ 𝐶௠
ெ
௠ୀଵ   (15) 

where copulas 𝐶௠’s are estimated according to Eq. 
(14) from the extremal distributions for partitions and 
independence within each group. Furthermore, if 
nodes are conditionally independent within each 
partition, the extremal distributions can also be 
estimated more accurately. In other words, additional 
dependency information among nodes helps identify 
the extremal probabilities more precisely.   

Data-Driven Dynamics Modelling 

The evolution of copulas with extremal probabilities 
can be generally modelled as 

𝑑𝐶{𝒱భ,𝒱మ}(𝑡)/𝑑𝑡 = 𝑓൫𝐶{𝒱భ,𝒱మ}(𝑡)൯ + 𝜖  (16) 

where {𝒱ଵ, 𝒱ଶ} corresponds to any partition of nodes 
as in Eq. (11), and 𝜖 is the random noise term. Each 
copula in Eq. (14) has a respective dynamics model. A 
simple numerical approximation of Eq. (16) as time 
series autoregressive (AR) model is  

𝐶{𝒱భ,𝒱మ}(𝑘) = 𝛾଴ + ∑ 𝛾௟𝐶{𝒱భ,𝒱మ}(𝑘 − 𝑙)௅
௟ୀଵ + 𝜖  (17) 

where the k-th time step value depends on the values 
of previous L steps, 𝛾଴ is the intercept, 𝛾௟’s are the 
model coefficients, and  𝜖~𝒩(0, σఢ

ଶ) follows a normal 
distribution. The AR model in Eq. (17) captures the 
time correlation of the expected values of copulas. 
Other more complex models such as autoregressive 
moving average (ARMA) can also be applied.  

The data-driven approaches are necessary to calibrate 
the dynamics models. Based on the probabilistic graph 
model in Section 2.3, Monte Carlo sampling can be 
used to simulate the evolutions of the prediction 
probabilities. The information dynamics model can be 
trained through regular data fitting or Bayesian 
approaches. For the copula dynamics modelling, two 
training procedures are needed. First, the weight 
coefficients 𝛼 and 𝛽௝’s in Eq. (14) need to be trained 
and calibrated so that the actual joint probabilities of 

state variables can be estimated from the extremal 
probabilities. Second, the parameters 𝛾଴ and 𝛾௟’s of 
the dynamics models of copulas in Eq. (17) also need 
to be calibrated. After parameter calibration, the 
models can be applied to predict the future values. 

3.2. Functional Interdependency 

The second approach to model the interdependency 
between predictions is to use analytical functions. The 
dynamics of prediction probabilities can be modelled 
by  

ௗ௉(௫భ,௧)

ௗ௧
= 𝑓ଵ൫𝑃(𝑥ଵ, 𝑡), … , 𝑃(𝑥௡, 𝑡)൯ + 𝜖ଵ

⋮
ௗ௉(௫೙,௧)

ௗ௧
= 𝑓௡൫𝑃(𝑥ଵ, 𝑡), … , 𝑃(𝑥௡, 𝑡)൯ + 𝜖௡

  (18) 

where 𝑓ଵ, …, 𝑓௡ can be linear and nonlinear functions 
to capture the interdependency between prediction 
probabilities 𝑃(𝑥௞)’s. If the prediction probabilities of 
all nodes are considered as a vector (𝑡) =
[𝑃(𝑥ଵ, 𝑡), … , 𝑃(𝑥௡, 𝑡)]୘ , the model is written as 

ௗ𝑷(௧)

ௗ௧
= 𝑭൫𝑷(𝑡)൯ + 𝝐  (19) 

A simple linearized vector autoregression (VAR) 
model is  

𝑷(𝑘) = 𝑨଴ + ∑ 𝐀௟𝑷(𝑘 − 𝑙)௅
௟ୀଵ + 𝝐  (20) 

where the vector value at the k-th time step is related 
to the values at the previous L steps, 𝑨଴ is the vector 
of intercepts, 𝝐~𝒩(𝟎, 𝚺ఢ) is the multi-variant normal 
random variables, and the 𝑛 × 𝑛 coefficient matrices 
𝐀௟’s capture the interdependency between prediction 
probabilities. The VAR model in Eq. (20) captures the 
time and location dependencies of nodes 
simultaneously as the linear relationships.  

More complex models can be applied to capture the 
functional interdependency between prediction 
probabilities. For instance, latent variables or hidden 
state variables can be introduced to capture the 
inherent correlations between prediction capabilities. 
An example of hidden state models can be defined as 

𝑷(𝑘) = 𝑩଴ + 𝐁𝑽(𝑘) + 𝜼  (21) 

𝑽(𝑘) = 𝑻଴ + 𝐓𝑽(𝑘 − 1) + 𝜺  (22) 

where Eq. (21) captures the relation between 
observable 𝑷 and hidden variables 𝑽, the evolution of 
hidden state variables or state transition is modelled in 
Eq.(22). Here, 𝐓 is the transition matrix, 𝑻଴ is the 
vector of intercepts, 𝐁 is the observation matrix, and 
𝑩଴ is the vector of observation bias. Notice that the 
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dimension of state vector 𝑽 is not necessarily the same 
as the dimension of observable vector 𝑷.  
𝜼~𝒩(𝟎, 𝚺ఎ) and  𝜺~𝒩(𝟎, 𝚺ఌ) are associated with the 
noises of observation and state transition respectively. 
In the hidden state model, the interdependency among 
nodes is captured through the hidden state variables. 
The correlations between state variables or the 
common state variables corresponding to the 
observable variables represent the inherent 
correlations between the observables.  More complex 
nonlinear models can be obtained similarly. The 
computational costs associate with nonlinear models 
however are higher than those with linear ones. 
Therefore nonlinear models are often approximated by 
linear models to reduce the computational complexity.  

The parameter calibration process here will be similar 
to the ones for the copula dynamics models.  In the 
VAR model in Eq. (20), the parameters to be 
calibrated are vector 𝑨଴ and matrices 𝐀௟’s. For the 
hidden state model in Eqs. (21) and (22), parameters 
𝐓, 𝑻଴, 𝐁, and 𝑩଴ need to be calibrated. 

4. DEMONSTRATIVE EXAMPLES 

In this section, several examples are used to 
demonstrate the proposed information dynamics 
models. The copula dynamics model will be 
demonstrated with a simple three-node network. The 
VAR functional interdependency model are 
demonstrated with some larger networks. A CPS 
network simulator is developed to simulate the 
information update based on Monte Carlo sampling. 
The proposed information dynamics models were 
developed and compared with the Monte Carlo 
simulation results. Both the simulator and the 
information dynamics models were implemented in 
python programming language.   

4.1. Demonstration of The Copula 
Dynamics Model 

In the first example, a three-node random network is 
created where the nodes are connected at different 
probabilities. The values of the initial prediction 
probabilities as well as the P- and Q-reliance 
probabilities are randomly generated.  

Monte Carlo sampling is applied to simulate the 
process of prediction probability updates. The 
simulation algorithm is listed in Table 2. In each time 
step, random samples of observations are generated 
for each node based on its current prediction 
probability. Then the observations are shared to the 

neighboring nodes, and the shared information is 
sampled based on the reliance probabilities. When a 
node receives the information from its source nodes, a 
fusion rule (e.g. worst-case, best-case, Bayesian) is 
applied to update its prediction. The predictions are 
compared with the randomly generated ground truth 
state value and the correct instances are recorded. The 
above sampling procedure repeats many times, and the 
probability of correct prediction for each node is 
obtained and updated for this time step. The joint 
probabilities for all nodes for all possible 
combinations of correct and incorrect predictions are 
also obtained. The simulation clock advances and the 
next iteration of update is done in the same way. 

Table 2 The simulation algorithm to generate sequences 
of prediction and joint probabilities for nodes 
along time. 

Input: A probabilistic graph model with initial 
prediction probabilities and reliance probabilities 
Output: Time sequences of prediction probabilities 
𝑃(𝑥௞)’s and joint probabilities 𝑃(𝑥ଵ, … , 𝑥௡)’s. 
(1) While maximum time steps is not reached: 
(2) Randomly generate the ground truth state 

value. Randomly generate a sample of 
correct observation for each node based 
on its prediction probability. 

(3) Based on the observations from its source 
nodes, each node obtains samples of 
observations based on P-reliance 
probabilities 𝑃(𝑥௞|𝑥௜)’s if the source 
node predicts correctly, or based on Q-
reliance probabilities 𝑃(𝑥௞|𝑥௝

஼)’s if the 
source node predicts incorrectly. 

(4) Update the prediction probability of each 
node according to a fusion rule (e.g. 
worst-case, best-case, Bayesian) 

(5) Repeat Steps (2-4) for N times.  
(6) Calculate the probabilities of correct 

prediction for individual nodes and the joint 
probabilities 

(5) Update the prediction probability for each 
node in the graph 

(6) Go to Step (1) for the next time step 

After the simulation data are obtained, the extremal 
probabilities also need to be calculated based on Eqs. 
(11)-(13). To calibrate the weight coefficients 𝛼 and 
𝛽௝’s in Eq. (14), these copulas of extremal 
probabilities will be used as the inputs for model 
training, whereas the outputs will be the joint 
probabilities. For a network of three nodes, the 
number of extremal probabilities according to the 
number of node partitions is 5. The number of joint 
probabilities as the number of binary-valued 
combinations is 23=8. Therefore, for the three-node 
network, a total of 5×8=40 different extremal 
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probabilities are used as the inputs during the training 
of the copula model in Eq. (14). The outputs are the 8 
joint probabilities. The training can be done by solving 
the least-squared error optimization problem under the 
constraints that the weight coefficients are 
nonnegative and sum up to one. After the training, the 
relation between the extremal probabilities and joint 
probabilities is obtained to predict future joint 
probabilities.  

The AR model in Eq. (17)  is also built for each of the 
40 extremal probabilities. The purpose is to predict the 
future copulas with extremal probabilities from the 
existing data. The calibration of coefficients 𝛾଴ and 
𝛾௟’s can be similarly done with regressions.  

After the two training procedures, the 40 AR models 
are used to predict the future values of the 40 
respective extremal probabilities from existing 
simulation data. From the forecast of extremal 
probabilities as the inputs of Eq. (14), the 8 joint 
probabilities for a future time step can be estimated. 
From the 8 joint probabilities, 3 marginal prediction 
probabilities can be easily obtained.  

For the first three-node example, all nodes are fully 
connected with all 6 directional edges, as in Figure 3. The 
randomly generated initial prediction probabilities and 
reliance probabilities are listed in Table 3 to Table 5. The 
probability update is simulated for 60 time steps. The 
simulated data are used to train the copula model and the 
AR models. After training, the calibrated weight 
coefficients in Eq. (14) are shown in Table 6. Three 
examples of the calibrated coefficients for the 40 AR 
models are shown in Table 7. Here the lag order is L=2. The 
obtained standard deviations corresponding to the three 
models are listed in The variances of the marginal 
probability values are the sum of the ones of the joint 
probability values, assuming that the joint probabilities are 
independent combinations. 

Table 8. Sensitivity studies of choosing different lag order 
L’s were also conducted. The results showed that the model 
predictions are not sensitive to the choice of lag order in our 
model. Higher orders cause slightly higher computational 
costs. The lag order is also independent from the number of 
nodes. After training, the models are applied to predict the 
probability update for additional 30 time steps. In Figure 3, 
the simulated prediction probability update and the forecast 
are compared, where the mean and the bounds of two 
standard deviation are shown. The standard deviations of 
the marginal prediction probabilities shown in Figure 3 are 
estimated from the standard deviations of the extremal 
probabilities such as the ones listed in The variances of the 
marginal probability values are the sum of the ones of the 
joint probability values, assuming that the joint 
probabilities are independent combinations. 

Table 8. It is assumed that the variances associated 
with the extremal probability values are the same as 
the ones with joint probabilities. 

 
Table 3 The initial prediction probabilities. 

 Node 0 Node 1 Node 2 
𝑃(𝑥௞) 0.223014 0.096656 0.321909 

Table 4 The pairwise P-reliance probabilities. 

𝑃(𝑥௞|𝑥௜) Node 0 Node 1 Node 2 
Node 0  0.171229 0.945277 
Node 1 0.094149  0.265593 
Node 2 0.257377 0.856983  

Table 5 The pairwise Q-reliance probabilities. 

𝑃(𝑥௞|𝑥௝
஼) Node 0 Node 1 Node 2 

Node 0  0.608827 0.548566 
Node 1 0.917376  0.271680 
Node 2 0.383766 0.364328  

Table 6 Calibrated weight coefficients in Eq. (14) for 
the 3-node example in Figure 3. 

Index Coefficient 
1 0.171246 
2 0.171111 
3 0.171105 
4 0.171483 
5 0.315056 

Table 7 Three examples of the calibrated coefficients 
for the AR models to predict future extremal 
probabilities. 

 γ0 γ1 γ2 
example 1 0.0075325 0.27051428 −0.18069243 

Figure 3 The simulated prediction probabilities and 
forecast starting from time step 60 by the 
copula dynamics model in a three-node-six-
edge example.  
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example 2 0.1269418 −0.03805253 −0.14354211 
example 3 0.0243994 0.0312964 −0.14376424 

The variances of the marginal probability values are the 
sum of the ones of the joint probability values, assuming 
that the joint probabilities are independent combinations. 

Table 8 The standard deviations for the three calibrated 
AR models Table 7. 

 σఢ  
example 1 0.0208359986 
example 2 0.1614207112 
example 3 0.0347577082 

It is seen that the general trends of probabilities are 
predicted well by the models. The fluctuations are also 
enclosed by the error bounds. The bounds of two 
standard deviations are supposed to enclose 95% of 
samples in a normal distribution. The mean values of 
forecast are stabilized after a few steps, indicating that 
the system remains equilibrium in long term. The 
variances of the forecast for all three prediction 
probability values are similar. This is because all 
variances are estimated from those ones associated 
joint probabilities, which have all nodes involved.  

To assess the robustness of the proposed copula 
dynamics model for the three-node network, 
sensitivity analyses are performed by reducing the 
number of edges. In Figure 4, the number of the 
directed edges is reduced to 2.  The initial prediction 
probabilities and reliance probabilities are randomly 
generated. Simulation data collection and model 
training are similarly done. The results in Figure 4 
show that the model can predict the trend well. 
Compared to the previous three-node-six-edge case in 
Figure 3, the variabilities of predictions by nodes 
increase. Therefore, the variances of forecast are also 
increased. The increased error bounds tend to 
overestimate the fluctuation range for those nodes 
which provide more stable predictions, such as Node 
1 in Figure 4. Node 1 in this case receives information 
from Node 0 directly and Node 2 indirectly. The 
general trend is that when a node receives more 
information, its prediction capability increases with 
smaller fluctuations. Here, Node 2 fluctuates the most, 
since it does not receive information from others. 
Node 0 receives information from Node 2, and its 
prediction is more stable than the one by Node 2.   

When the number of edges is further reduced to 1, the 
results of simulation and forecast are shown in Figure 
5. Without receiving information, the prediction 
capabilities of Node 0 and Node 1 fluctuate 
significantly. As a result, the error bounds of the 
forecast further increase from the previous cases.  

It is seen in this example that the copula dynamics 
model can provide accurate estimations of the trends 
and variances associated with prediction capabilities 
for the nodes. As the number of nodes increases, the 
number of joint probabilities and copulas of extremal 
distributions will increase exponentially. Therefore, 
the disadvantage of the copula dynamics model is the 
computational complexity for larger systems.  

 

 

Figure 4  The simulated prediction probabilities and 
forecast starting from time step 60 by the 
copula dynamics model in a three-node-two-
edge example.  

Figure 5 The simulated prediction probabilities and 
forecast starting from time step 60 by the 
copula dynamics model in a three-node-one-
edge example.  
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4.2. Demonstration of The Functional 
Interdependency Model 

The functional interdependency model captures the 
correlations of prediction capabilities between nodes 
by functional relationships. This approach has the 
lower computational complexity than the copula 
dynamics model, since the prediction probability 
values are directly modelled.  

  
Table 9 The calibrated VAR model parameters in 

Figure 6 for the three-node-six-edge graph. 

𝑨଴ [1.28702158 0.59495947 0.4537085]୘ 

𝐀ଵ ൥
−0.32078891 0.08630353 −0.11113924
−0.72776017 0.01507701 0.33916682
−0.14554776 −0.20091567 −0.06757319

൩ 

𝐀ଶ ൥
0.0236274 −0.04637095 −0.03657765

−0.15761436 −0.00410451 0.0106602
−0.25973278 −0.03305852 −0.06595382

൩ 

𝚺ఢ  ൥
0.02736594 −0.01089281 −0.00164103

−0.01089281 0.00535025 0.00067239
−0.00164103 0.00067239 0.00078254

൩ 

Here, the VAR model in Eq. (20) is demonstrated. The 
VAR model is applied to the previous three-node-six-
edge example. The simulation data are collected to 
train the VAR model with lag order L=2. The training 
data and forecast results are shown in Figure 6. The 
calibrated model parameters are listed in Table 9. The 
error bounds are defined as two standard deviations, 
which are directly obtained from the covariance 
matrix in Table 9 after the training procedure. The 
model predicts the trend well. Compared to the copula 
dynamics model, the predicted error bounds are more 
precise and specific for different nodes associated 

with their forecasted values. This indicates that the 
VAR model can provide more information about the 
dynamics of prediction capabilities than the copula 
dynamics model can. 

 

Figure 6 The simulated prediction probabilities and 
forecast starting from time step 60 by the 
VAR model in a three-node-six-edge 
example.  

Figure 7 The simulated prediction probabilities and 
forecast starting from time step 60 by the 
VAR model in the 8-node-56-edge example. 
(a) with the best-case fusion rule; (b) with 
the worst-case fusion rule. 

(b) 

(a) 
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More examples are tested for the VAR model. In 
Figure 7, an 8-node-56-edge example is shown, where 
both best-case and worst-case fusion rules are applied. 
It is seen that the prediction capabilities of nodes 
fluctuate significantly.  

 

With the full connections between nodes, nodes share 
information among each other extensively. The 
mutual influences cause a large level of fluctuations. 
It is also seen that the fluctuations among nodes are 
synchronized. Strong correlations exist between them. 

When the number of edges is reduced to 10 for the 8 
nodes, the simulated and forecasted prediction 
capabilities are shown in Figure 8. Compared to the 
previous full-connection case in Figure 7, the extent of 
fluctuation is reduced. The forecasts are also more 
accurate with reduced error bounds.  

5. CONCLUDING REMARKS 

The analyses of the systems level behavior of CPS 
networks enable us to design better systems. How to 
design a CPS system which promotes effective 
information sharing is one of the major aspects of 
design. Therefore, we need models that can 
characterize and predict the information sharing 
behaviors of such systems.  

In this paper, information dynamics models are 
proposed to predict the information propagation 
within a CPS network. Based on a recently developed 
mesoscale probabilistic graph model, two dynamics 
models are introduced to capture the mutual 
influences between nodes on their reasoning 
processes. The representation of correlations between 
nodes is the central theme in both models.  

The first model represents the interdependency 
between nodes for their prediction capabilities 
explicitly with the joint probabilities of successful 
predictions. Theoretically the evolution of joint 
probabilities can capture the complete correlation 
information and help us to understand the information 
interdependency. However, the computational 
complexity increases exponentially as the number of 
nodes increases. Here, a data-driven copula dynamics 
model is proposed to capture the evolution of joint 
probabilities for the nodes’ correct predictions via the 
copulas for extremal probabilities. Instead of 
modeling the dynamics of joint probabilities directly, 
the dynamics of their convex hulls known as the 
extremal probabilities are modeled. The advantage of 
this approach is that it is easier to estimate the 
extremal probabilities than the joint probabilities 
themselves in practice. Nevertheless, from the 
extremal probabilities, the joint probabilities still need 
to be estimated by interpolating the extremal 
probabilities. The data-driven approach demonstrated 
in this paper shows the possible ways of estimating the 
joint probabilities with the interpolation from their 

Figure 8 The simulated prediction probabilities and 
forecast starting from time step 60 by the 
VAR model in the 8-node-10-edge example. 
(a) with the best-case fusion rule; (b) with 
the worst-case fusion rule. 

(b) 

(a) 
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bounds as well as predicting the dynamics of the 
bounds.  

In the second model, the correlation between 
prediction capabilities is captured analytically with 
functional relationships, such as linear and nonlinear 
ones. This approach simplifies the dependencies as 
mathematical relations. Existing statistical models for 
time series analyses can be adopted for this purpose. 
The main limitation however is that the details of 
interdependency can be lost in the general 
mathematical models.  

The prediction accuracy from the data-driven models 
sensitively relies on the training datasets. In general, 
larger datasets are always better for model training and 
calibration. For situations where there is a lack of 
training data, the proposed modeling approach will not 
be feasible. Alternative modeling approaches that are 
based more on the detailed knowledge about the 
systems will be needed. The current information 
diffusion models are only evaluated with a mesoscale 
network simulator. The comparisons with the detailed 
network simulators and actual experimental data are 
needed in further evaluations in the future. 
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