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ABSTRACT

Cyber-physical systems (CPS) are physical devices
with highly integrated functionalities of sensing,
computing, communication, and control. The levels of
intelligence and functions that CPS can perform
heavily rely on their intense collaboration and
information sharing through networks. In this paper,
the information propagation within CPS networks is
studied. Information dynamics models are proposed to
characterize the evolution of information processing
capabilities of CPS nodes in networks. The models are
based on a mesoscale probabilistic graph model,
where the sensing and computing functions of CPS
nodes are captured as the probabilities of correct
predictions, whereas the communication functions are
represented as the probabilities of mutual influences
between nodes. In the proposed copula dynamics
model, the information dependency among individuals
is represented with joint prediction probabilities and
estimated from copulas of extremal probabilities. In
the proposed functional interdependency model, the
correlations between prediction capabilities are
captured with their functional relationships. A data-
driven approach is taken to train the parameters of the
information dynamics models with data from
simulations. The information dynamics models are
demonstrated with a simulator of CPS networks.
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1. INTRODUCTION

Cyber-physical systems (CPS) are physical devices
with highly integrated functionalities of sensing,
computing, communication, and actuation. They share
information, work collaboratively, and form networks,
also known as Internet of Things (IoT). Such devices
can have different sizes and physical forms at micro-
or macro-scales. They are the essential elements in
smart home and office, intelligent manufacturing,
personalized medicine, autonomous and safe

transportation, omnipresent energy supplies, and
many other applications. Given the intensive
interactions between CPS and human society as well
as human’s heavy reliance on CPS, the term cyber-
physical-social systems (CPSS) is also used by
researchers to describe the highly integrated systems
with the social dimension.

In CPS, information collection, processing, and
decision making are done in a decentralized fashion.
The intelligence level of CPS is enhanced by intensive
information sharing, as more high-quality information
leads to better decisions. The level of dependencies
among CPS devices for their computation and
decision making is unprecedented. There is a strong
need to understand the deep information dependency
between devices in a CPS network. The knowledge
about the behaviors of the complex system can help us
to design more reliable and dependable systems.

Currently there is a lack of study of information
propagation in CPS networks. Existing research on
information diffusion focused on computer networks
and social networks. The uniqueness of CPS networks
is the sensing and control capabilities which do not
exist in traditional computer networks. Information
diffusion in traditional computer networks can be
regarded as passive. In contrast, in CPS networks,
information is generated and shared intensively
among nodes. The risk that inaccurate information
causes bad decisions is also much higher because
more decisions are made locally. It is important to
understand the evolution of information in CPS
networks such that the adaptability and scalability of
the systems can be properly engineered. Therefore,
understanding how information propagates in the CPS
networks and the sensitivity of the behavior with
respect to network architecture and topology is a
challenge for CPS design.

In a dynamically evolving CPS network, the effects of
information generation and sharing need to be
quantified and analyzed so that the long-term
behaviors of such networks can be predicted, which is
useful to test systems engineering strategies towards
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the system design. To model the effects of information
exchange, here an information dynamics modeling
approach is proposed to analyze the information
interdependency among CPS nodes and subnetworks.
The proposed model provides the insight of how nodes
have influence on each other when information is
exchanged and how the behavior of networks evolves
dynamically. This dynamics analysis is useful for
design of an open system with good adaptability,
where nodes can be added and removed arbitrarily.

The proposed information dynamics modeling
approach is based on a generic probabilistic graph
model of networks ([1], [2]), where information
exchange and processing at nodes are modeled at the
mesoscale. In the probabilistic graph model, the
sensing and computing capabilities of each node are
characterized by a prediction probability, whereas the
communication capabilities between nodes are
characterized by pairwise reliance probabilities. The
prediction probability measures how well a node can
gather information and make sound judgement. The
reliance probabilities capture the extent of influences
for one node to another via information exchange. In
the proposed information dynamics models, the
evolution of prediction capabilities of nodes is
captured, where the prediction accuracies of nodes are
influenced by each other, given that the decision of
each node is made based on information gathered from
itself as well as its neighboring nodes.

Two types of models are proposed here to capture the
information dependency. The first one is called copula
dynamics model, where correlations between
prediction capabilities are explicitly modeled and
represented by joint probabilities. The dynamics is
modeled with the copulas of extremal probabilities.
The second one is the functional interdependency
model, where the correlations are captured by linear or
nonlinear functional relationships. A data-driven
approach is taken to build the information dynamics
models, where simulations are performed and the
models are trained based on the simulation data.

In the remainder of this paper, the background of CPS
design, existing models of information diffusion in
networks, and the probabilistic graph model is given
in Section 2. The proposed information dynamics
models are introduced in Section 3. The models are
demonstrated and compared with a CPS simulator in
Section 4.

2. BACKGROUND
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2.1. CPS Design Challenges and
Principles

There are unique engineering challenges in designing
CPS. First, given the evolution nature of cyber and
physical technologies, adaptability that enables the
capabilities of self-learning, self-organization, and
context awareness is important to design open systems
that can evolve along technology advancement [3][4].
Using new technologies as the augmentation to
existing products can effectively enhance adaptability
[5]. Second, the complexity of the CPS has
significantly increased from traditional products and
devices. The CPS products are connected through loT
and heavily rely on data exchange from each other to
realize their functions. Communication between
devices plays a major role. Therefore, how to design
systems of CPSS which have dependable
communication is important. Reliable large-scale
networked systems that do not fail are impossible to
achieve. Resilient systems that can recover
automatically from partial failures are more likely to
be realized [1][2]. Third, the high-dimensional design
space of CPSS includes not only the cyber and
physical subspaces, but also the social subspace.
Examples of the emerging research issues are how to
design the modalities for human-system interaction
[6], how to enable context awareness and personalized
communication between CPSS and humans [7], and
how to quantify trustworthy strategic relationships for
information sharing [8]-[10].

In general, the design factors and design principles to
be considered for CPSS can be categorized in
physical, virtual, and mental worlds. In the physical
world, sustainability, reliability, resilience,
interoperability,  adaptability, = biocompatibility,
flexibility, and safety need to be considered. In the
virtual world, we need to emphasize the principles of
human-in-the-loop, data-driven design, co-design,
scalability, usability, and security. In the mental
world, the perceptions of risk, trust, and privacy, as
well as memory capacity and emotion need to be
incorporated in design. Those design factors and
principles are summarized in Table 1. Note that not
all factors need to be considered for every design.
Some are more important than others for a particular
CPS device.

Network connectivity is essential for CPS. A
standalone CPS device cannot perform the functions
which it is designed for. Compared to traditional
products, the design of CPS requires engineers to have
better understanding of the systems level behaviors, as
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well as the new methodology for the optimization in
large-scale networks. Systems level modeling
methods and tools have been developed for CPS
design and analysis, such as hybrid discrete-event and
continuous simulations [11]-[13], inductive constraint
logic programming [14] abductive reasoning [15],
hybrid timed automaton [16], ontologies [17],
information schema [18], UML [19], and SysML [20].

2.2,

The information flow in computer networks and social
networks has been studied. The propagation of
information can be modeled in different ways. One of
the most used approaches is the epidemic model of
networks, where transmission probabilities of virus
between nodes are mainly used to model the speed of

Information Diffusion in Networks

infection and the dynamics of outbreak and decay is
captured with ordinary differential equations [21][22].
The epidemic model has been widely applied to study
the propagation of keywords or phrases among blogs
[23] and within social networks [24]. In the linear
influence model [25], the propagation of information
is modeled and parameterized by the influences of
individual nodes in the network. In the event-driven
modeling approaches, the adoption of new
information by nodes is characterized by discrete
Poisson processes [26][27] or continuous hazard
function [28].

There is still no study of information diffusion in CPS
networks, which have different behaviors from
computer networks, given that CPS nodes possess
complex functionalities of sensing, computing,

Table 1 Major design factors and principles to be incorporated in physical, cyber, and social design subspaces

respectively.
Domain Factor Note
Physical World Sustainability The energy consumption of CPSS networks will be significant as the number of nodes
grows exponentially.

Reliability The reliability CPSS components needs to be maintained as complexity increases with
highly integrated functions.

Resiliency It is impossible to ensure millions of CPSS nodes be functioning at all time in large
networks. Local disruption should not affect the overall functionality.

Interoperability Standards of communication for both hardware and software can continuously evolve
while legacy systems need to be supported.

Adaptability Open architecture is needed for systems that can adapt to different working environments
and conditions. The system may evolve by itself.

Biocompatibility | CPSS should be compatible with biological systems of human or animal for medical
purposes.

Flexibility CPSS materials that support sensing, computing, communication, and actuation can be
soft materials.

Safety The operations of CPSS should not bring safety of human users and general public at
risk.

Virtual World Human-In-The- The level of automation can be very high in CPSS. Yet human involvement can improve

Loop the robustness of algorithms and decision making.

Data Driven The incorporation of product usage data can help identify design constraints and improve

Design the product quality.

Co-Design Design of the complex systems requires the simultaneous consideration of software,
algorithms, and hardware for better integration.

Scalability The software and algorithms should be functional when the complexity of applications
increases with growing network and data sizes, and processing heterogeneous data.

Usability The design of software and user interface should maintain easy-to-use properties.

Security The information collected and shared by CPSS needs to be kept away from illegal access
or use.

Mental World Risk Perception The perceived risks associated with CPSS usage are personal and vary by individual
users.

Trust Trust is essential for using CPSS where intensive human entanglement for information
gathering, sharing, augmentation, and automation will affect the daily lives of their users
and customers.

Privacy The extent of data collection and sharing by CPSS needs to be customizable to individual
users.

Memory Capacity | The different mental capacities of human individuals when using and interaction with
complex CPSS need to be considered.

Emotion In human-system interaction, the emotion of human can vary consistently along time,

and the intention can be disguised and difficult to detect.
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communication, and control.

2.3. Probabilistic graph model

A recently developed probabilistic graph model [2] for
CPS networks, as the foundation of the information
dynamics models, is introduced here. In the
probabilistic graph model, each node has its own
sensing, reasoning, and communication units. As
illustrated in Figure 1, there are probabilities
associated with information gathering and exchange
between nodes. For each node, there is a prediction
probability indicating the capabilities of information
gathering and reasoning. For each directed edge
indicating information exchange, there are two
reliance probabilities associated with it. The three
probabilities are defined as follows.

Figure 1 Probabilistic graph model of CPS systems

The prediction probability that the k™ node detects the
true state of world 8 is

P(x, = 0) = px (D

where x;, is the state variable. For convenience, we
denote q; = 1 —p;. The information dependency
between mnodes is modeled with probabilistic
adjacency matrix Rp with elements as P-reliance
probabilities

P(x; = 6]x; = 6) = py @)

which is the probability that the j* node predicts the
true state of world given that the i™ node predicts
correctly. Similarly, we also have adjacency matrix

R with elements as Q-reliance probabilities
P(x = 6]x; # 6) = q;; (3)

because nodes could be negatively correlated, or
miscommunication between nodes could exist. The
reliance probability can be used to model reliability of
communication between nodes, e.g. in moving
vehicles’ ad hoc wireless networks, data packet loss is
not uncommon.
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Therefore, different from the adjacency matrix in
traditional graph model with binary “yes-or-no” edge
connection topology, there are reliance probabilities
associated with each pair of nodes in the new
probabilistic graph model. If the communication
channel from node i and node j is disrupted, both p;;

and q;; are zeros.

The random state variables with binary values ( =
6 or # 0) can be extended to multiple values or
continuous. For instance, one sensor measures a value
(e.g. temperature or flow speed) which follows some
distribution, as in prediction probability. If there are a
finite set of possible values {6,...,0y} for state
variables. The prediction probability IP(x; = 6,,) and
P-reliance probability ]P(xj = 9n|xl- = Bm), where
1 <m,n < N, can be enumerated similarly.

The edges in the probabilistic graph are directional.
The neighbors of each node can be further
differentiated as source nodes or destination nodes, as
illustrated in Figure 2. For one node, its source nodes
are those sending information to this node, whereas
the destination nodes are those receiving information
from it. When receiving different cues from source
nodes, a CPS node can update its prediction
probability to reflect its perception of the world. The
aggregation of prediction probabilities sensitively
depends on the rules of information fusion during the
prediction update.
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Figure 2 Source and destination nodes with respect to
node j

If P(x;) and P(xf) denote the probabilities of a
positive and a negative prediction from node k
respectively, we define the best-case fusion rule as

P'(0) = 1= (1= P(x) 2, P(x) (1 -

M
P [x)) TT;24 PP ) (1 = P (x| %)) “
where node & updates its prediction based on its own
current prediction and those cues from its Mp + My

source nodes, out of which Mp of the source nodes
provide positive predictions whereas My of them
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provide negative predictions, P(xj|x;) indicates the
probability that a positive message from node i leads
to a positive prediction of node &, and P (xj, |x]-C) is the
probability that a negative message from node j leads
to a positive prediction of node k. Therefore, if any of
the cues from the source nodes is positive, the
prediction of the node is positive. Some variations of
this fusion rules exist. For instance, the previous
prediction from itself can be either included or
excluded during the update.

Similarly, the worst-case fusion rule can be defined as
P'(x) =

P (i) T2, P () P (e o) T2 P(ef )P (xie|xf) (5)
That is, if any of the cues from the source nodes is
negative, the prediction of the node is negative. The
Bayesian fusion rule is defined as

P max{ (P (1-P(x)” )

P’ =
2 J (P(xk))r(l—P(xk))S_rdP

(6)

where the prediction of the node is updated to P’ from
prior prediction P, and out of S cues that the
neighboring nodes provide, » of them provide are
positive, if the maximum likelihood principle is taken.

The probabilistic graph model provides a system level
abstraction and a mesoscale description of CPS
networks, where information exchange and
aggregation are captured. More details about the
probabilistic graph model can be found in Ref.[2].

3. THE INFORMATION DYNAMICS
MODEL

Based on the probabilistic graph model, we propose
two types of information dynamics models to capture
the information diffusion in CPS networks based on
the probabilities that the nodes produce meaningful
information. The information dynamics models are to
characterize and predict how information is produced
and consumed in a networked CPS environment. In
CPS networks, each node produces information by
sensing and processing. Information is exchanged
among nodes. When a node receives some information
from others, the received information is combined and
digested, which is then used to update the prediction
of the node. Thus the prediction probabilities of CPS
nodes are dynamically updated with the mutual
influences among each other. Therefore, strong
dependencies exist among the prediction probabilities
from different nodes.

To understand the propagation of information in CPS
networks, the influences and interdependency among
information producers and consumers need to be
modeled. The high correlation between nodes need to
be incorporated in modeling the dynamics. In the
proposed information dynamics model, two
approaches are taken to capture the interdependency.
One is using joint probabilities, and the other is based
on functional relationships.

In the first approach, the joint probabilities of
prediction capabilities instead of the marginal
probabilities are used to model the information
dynamics. Joint probabilities explicitly capture the
correlation among nodes. However, joint probabilities
with a large number of variables are not easy to
calculate, given that the number of nodes in a CPS
network can be very large. Therefore copulas are
proposed here to estimate the joint probabilities of
prediction. The precise joint probabilities or copulas
are unknown but can be estimated from the ones in
some extreme scenarios, such as perfectly positive or
negative correlation, or completely independence. The
joint probabilities or copulas are known as extremal
distributions. The extremal probabilities can be
regarded as the vertices that form a convex hull of
unknown joint probabilities in the space of
distributions. If the copulas for extremal probabilities
can be obtained, then the joint probabilities can be
estimated. From the joint probabilities, the marginal
probabilities of predictions can be easily calculated. In
the information dynamics model, the evolutions of
extremal probabilities are explicitly modeled. Here, a
data-driven approach is taken to model the dynamics
of extremal probabilities. The interactions between
nodes can be simulated from the probabilistic graph
model. The copulas for extremal probabilities then can
be obtained. Time series models can be used and
trained from the simulation data. Then the future
behavior of the system can be predicted. Because the
number of copulas grows exponentially as the number
of nodes increases, it will be computationally
challenging to use joint probabilities to keep track of
the evolution of large-scale networks.

In the second approach, the marginal prediction
probabilities are used in the dynamics model, where
the interdependency and coupling between them are
captured implicitly as functional relationships. That is,
the prediction probability of one node is a function of
the probabilities from its neighbors.

Here, the copula approach is introduced in Section 3.1,
where the construction of extremal probabilities and
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the estimation of joint probabilities are described. The
functional approach to capture interdependency is
described in Section 3.2.

3.1. Copula Dynamics

For n random variables Xy, ..., X,;, each of which has
the marginal cumulative distribution function U; (x) =
P(X; < x), the copula C:[0,1]™ — [0,1] describes
the joint cumulative distribution function of these
random variables from their marginal distributions
and is generally defined as

C(uq, ., up) =PlU; S uy, ..., Up < uy] (7)

In a probabilistic graph model with n nodes, given the
joint probability P(xq,..,x,) =P[x; =0, ..,x, =
0] for the case that all predictions are positive, the
corresponding copula is

C(P1,-»Pn)
= P[P(x1) < P(x1), ..., P(x,) < P(xp)]

= P(xq, ., Xp) )

This is due to the simplicity of P(x; <6)=
P(x; = ) in the case of binary values x; = 6 or x; #
6. The copulas are typically difficult to calculate. But
their bounds, known as extremal probabilities, are
much easier to obtain.

Extremal Probabilities

The well-known Fréchet bounds of the copula are
given as

max{0, P(x;) + -+ P(x,) +1—n} <
C(P(xy), ..., P(x)) < min{P(xy), .., P(x,)}  (9)

where the lower bound corresponds to the perfectly
negative correlation, whereas the upper bound
corresponds to the perfectly positive correlation. For
two random variables, the bounds are

max{0, P(x;) + P(x;) — 1} < C(P(x), P(x,)) <
min{P(x;), P(x;)} (10)

The bounds for perfectly positive and negative
correlations are regarded as the extremal probabilities.
The perfectly positive correlation case is also called
comonotonic, whereas the perfectly negative
correlation case is called countercomonotonic. There
are different ways to quantify correlation. In the sense
of linear correlation, defined as p(x,y) = Cov(x,y)/

Jo2(x)a?(y), the linear correlation coefficient takes

the maximum value p = +1 for the perfectly positive
linear dependency and the minimum value p = —1 for
the perfectly negative linear dependency. Other
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correlation definitions include Spearman’s rank
correlation pg(x,y) = p(F(x), F,(y)) defined by the
linear correlation of random variables’ distribution
functions, Kendall’s rank correlation p.(x,y) =
P[(xy — x2) (1 — ¥2) > 0] = P[(xy — x2) vy —

¥2) < 0] defined by the probability of monotonicity
trend in the random values.

The extremal probabilities can be extended to multiple
variables or nodes. The nodes in V = {V;,V,} are
categorized into two subsets. Within the first subset
Vi = {x4, ..., xpn}, all nodes are perfectly positively
correlated. Within the second subset V, =
{%m+1, --»Xn}, all nodes are also perfectly positively
correlated. However, between any node in V; and
another one in V,, they are negatively correlated. That
is, the opposite opinions are formed between the two
homogenized groups. The predictions between the
two groups are contradictory. Given the partition V =
V; UV, the extremal joint probability is

C{Vl,vz}(]P(xl), ---;]P)(xn)) =P(xqy, oo, X |[{V1, V2})
= max{0, rirel]i]n{IP’(xi)} + glré%]n{]P(xj)} -1} (11)

when the correlation within either group is perfectly
positive but perfectly negative between the two
groups. When all nodes have perfectly positive
correlation without partition, the extremal joint
probability is

C{V+}(]P(x1)l L ]P)(xn)) = IF)(xll 'xnl{v+}) =

min{P(x;)} (12)
Another extremal joint probability is

Cory(PCx1), oo, P(x)) = P(xg, oo, X |[{V 13) =
[Tiev P(x;) (13)
when all nodes are independent from each other.
Although the precise form of the copula
C(P(xy), ..., ]P’(xn)) is unknown, it can be

approximated by the combination of extremal
distributions, based on the decomposition principle as

C(]P(Xl), ey P(Xn)) = CIC{V+} + 2?1:1 ﬁjC{V;l,Vz} +
A—a—-3Y,B8)Cwy, (14)

where N = 21 — 1 indicates all possible partitions
of n nodes into two subsets, weight coefficients a and
B;’s can be regarded as the chances that the copula
takes the respective forms of extremal distributions.
All coefficients sum up to one. For instance, the case
that @ =1 and B; =0 (j = 1, ..., N) corresponds to
the perfect positive correlation among all nodes,
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whereas @ = ; = 0 (j = 1, ..., N) corresponds to the
complete independence among all nodes. The copula
C([F’(xl), e ]P’(xn)) thus is located in the convex set
formed by the extremal distributions, if all extremal
distributions can be calculated. The challenge of
estimating copulas however is to find out the weight
coefficients.

The decomposition principle in Eq. (14) can be further
generalized. If the nodes are self-organized into M
different independent groups and nodes between
groups are uncorrelated, then

C(]P(xl): e ]P(xn)) = H%:l Cin (15)

where copulas C,,’s are estimated according to Eq.
(14) from the extremal distributions for partitions and
independence within each group. Furthermore, if
nodes are conditionally independent within each
partition, the extremal distributions can also be
estimated more accurately. In other words, additional
dependency information among nodes helps identify
the extremal probabilities more precisely.

Data-Driven Dynamics Modelling

The evolution of copulas with extremal probabilities
can be generally modelled as

dCy, v, (t)/dt = f(Cp, v,) (1)) + € (16)

where {V;, V,} corresponds to any partition of nodes
as in Eq. (11), and € is the random noise term. Each
copula in Eq. (14) has a respective dynamics model. A
simple numerical approximation of Eq. (16) as time
series autoregressive (AR) model is

Coowy (k) = vo + Xica viCwyppk =D +e  (17)

where the k-th time step value depends on the values
of previous L steps, ¥, is the intercept, y;’s are the
model coefficients, and e~N'(0, 62) follows a normal
distribution. The AR model in Eq. (17) captures the
time correlation of the expected values of copulas.
Other more complex models such as autoregressive
moving average (ARMA) can also be applied.

The data-driven approaches are necessary to calibrate
the dynamics models. Based on the probabilistic graph
model in Section 2.3, Monte Carlo sampling can be
used to simulate the evolutions of the prediction
probabilities. The information dynamics model can be
trained through regular data fitting or Bayesian
approaches. For the copula dynamics modelling, two
training procedures are needed. First, the weight
coefficients a and f;’s in Eq. (14) need to be trained
and calibrated so that the actual joint probabilities of

state variables can be estimated from the extremal
probabilities. Second, the parameters y, and y;’s of
the dynamics models of copulas in Eq. (17) also need
to be calibrated. After parameter calibration, the
models can be applied to predict the future values.

3.2. Functional Interdependency

The second approach to model the interdependency
between predictions is to use analytical functions. The
dynamics of prediction probabilities can be modelled
by

dP(xy,t)
LD - £ (PO, ), oo, Pt 1) + €1

: (18)
dP(xn,t)
T = (PO, ), PO, 1) + €
where fi, ..., f, can be linear and nonlinear functions

to capture the interdependency between prediction
probabilities P (x; )’s. If the prediction probabilities of
all nodes are considered as a vector (t) =
[P(x1,t), ..., P(x,,, £)]T , the model is written as

PO F(P1) +e

(19)

A simple linearized vector autoregression (VAR)
model is

Pk)=Ag+Y APk-D+e (20)

where the vector value at the k-th time step is related
to the values at the previous L steps, A, is the vector
of intercepts, e~N(0, X, ) is the multi-variant normal
random variables, and the n X n coefficient matrices
A;’s capture the interdependency between prediction
probabilities. The VAR model in Eq. (20) captures the
time and location dependencies of nodes
simultaneously as the linear relationships.

More complex models can be applied to capture the
functional interdependency between prediction
probabilities. For instance, latent variables or hidden
state variables can be introduced to capture the
inherent correlations between prediction capabilities.
An example of hidden state models can be defined as

P(k)=B,+BV(k) +1 1)
V) =Ty +TV(k—1) +¢ (22)

where Eq. (21) captures the relation between
observable P and hidden variables V, the evolution of
hidden state variables or state transition is modelled in
Eq.(22). Here, T is the transition matrix, T is the
vector of intercepts, B is the observation matrix, and
B, is the vector of observation bias. Notice that the
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dimension of state vector V is not necessarily the same
as the dimension of observable vector P.
n~N(0,%,) and e~N(0,Z,) are associated with the
noises of observation and state transition respectively.
In the hidden state model, the interdependency among
nodes is captured through the hidden state variables.
The correlations between state variables or the
common state variables corresponding to the
observable variables represent the inherent
correlations between the observables. More complex
nonlinear models can be obtained similarly. The
computational costs associate with nonlinear models
however are higher than those with linear ones.
Therefore nonlinear models are often approximated by
linear models to reduce the computational complexity.

The parameter calibration process here will be similar
to the ones for the copula dynamics models. In the
VAR model in Eq. (20), the parameters to be
calibrated are vector Ay and matrices A;’s. For the
hidden state model in Egs. (21) and (22), parameters
T, T, B, and B, need to be calibrated.

4. DEMONSTRATIVE EXAMPLES

In this section, several examples are used to
demonstrate the proposed information dynamics
models. The copula dynamics model will be
demonstrated with a simple three-node network. The
VAR functional interdependency model are
demonstrated with some larger networks. A CPS
network simulator is developed to simulate the
information update based on Monte Carlo sampling.
The proposed information dynamics models were
developed and compared with the Monte Carlo
simulation results. Both the simulator and the
information dynamics models were implemented in
python programming language.

4.1. Demonstration of The Copula
Dynamics Model

In the first example, a three-node random network is
created where the nodes are connected at different
probabilities. The values of the initial prediction
probabilities as well as the P- and Q-reliance
probabilities are randomly generated.

Monte Carlo sampling is applied to simulate the
process of prediction probability updates. The
simulation algorithm is listed in Table 2. In each time
step, random samples of observations are generated
for each node based on its current prediction
probability. Then the observations are shared to the
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neighboring nodes, and the shared information is
sampled based on the reliance probabilities. When a
node receives the information from its source nodes, a
fusion rule (e.g. worst-case, best-case, Bayesian) is
applied to update its prediction. The predictions are
compared with the randomly generated ground truth
state value and the correct instances are recorded. The
above sampling procedure repeats many times, and the
probability of correct prediction for each node is
obtained and updated for this time step. The joint
probabilities for all nodes for all possible
combinations of correct and incorrect predictions are
also obtained. The simulation clock advances and the
next iteration of update is done in the same way.

Table 2  The simulation algorithm to generate sequences
of prediction and joint probabilities for nodes

along time.

Input: A probabilistic graph model with initial
prediction probabilities and reliance probabilities
Output: Time sequences of prediction probabilities
P(x;)’s and joint probabilities P (Xq, ..., X,)’s.

(1) While maximum time steps is not reached:

2) Randomly generate the ground truth state
value. Randomly generate a sample of
correct observation for each node based
on its prediction probability.

3) Based on the observations from its source
nodes, each node obtains samples of
observations based on P-reliance
probabilities P (x|x;)’s if the source
node predicts correctly, or based on Q-
reliance probabilities P (xy, |xjc)’s if the
source node predicts incorrectly.

4 Update the prediction probability of each
node according to a fusion rule (e.g.
worst-case, best-case, Bayesian)

(5) Repeat Steps (2-4) for N times.

(6) Calculate the probabilities of correct
prediction for individual nodes and the joint
probabilities

5) Update the prediction probability for each

node in the graph
(6) Go to Step (1) for the next time step

After the simulation data are obtained, the extremal
probabilities also need to be calculated based on Egs.
(11)-(13). To calibrate the weight coefficients a and
Bj’s in Eq. (14), these copulas of extremal
probabilities will be used as the inputs for model
training, whereas the outputs will be the joint
probabilities. For a network of three nodes, the
number of extremal probabilities according to the
number of node partitions is 5. The number of joint
probabilities as the number of binary-valued
combinations is 2°=8. Therefore, for the three-node
network, a total of 5x8=40 different extremal
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probabilities are used as the inputs during the training
of the copula model in Eq. (14). The outputs are the 8
joint probabilities. The training can be done by solving
the least-squared error optimization problem under the
constraints that the weight coefficients are
nonnegative and sum up to one. After the training, the
relation between the extremal probabilities and joint
probabilities is obtained to predict future joint
probabilities.

The AR model in Eq. (17) is also built for each of the
40 extremal probabilities. The purpose is to predict the
future copulas with extremal probabilities from the
existing data. The calibration of coefficients y, and
y:’s can be similarly done with regressions.

After the two training procedures, the 40 AR models
are used to predict the future values of the 40
respective extremal probabilities from existing
simulation data. From the forecast of extremal
probabilities as the inputs of Eq. (14), the 8 joint
probabilities for a future time step can be estimated.
From the 8 joint probabilities, 3 marginal prediction
probabilities can be easily obtained.

For the first three-node example, all nodes are fully
connected with all 6 directional edges, as in Figure 3. The
randomly generated initial prediction probabilities and
reliance probabilities are listed in Table 3 to Table 5. The
probability update is simulated for 60 time steps. The
simulated data are used to train the copula model and the
AR models. After training, the calibrated weight
coefficients in Eq. (14) are shown in Table 6. Three
examples of the calibrated coefficients for the 40 AR
models are shown in Table 7. Here the lag order is L=2. The
obtained standard deviations corresponding to the three
models are listed in The variances of the marginal
probability values are the sum of the ones of the joint
probability values, assuming that the joint probabilities are
independent combinations.

Table 8. Sensitivity studies of choosing different lag order
L’s were also conducted. The results showed that the model
predictions are not sensitive to the choice of lag order in our
model. Higher orders cause slightly higher computational
costs. The lag order is also independent from the number of
nodes. After training, the models are applied to predict the
probability update for additional 30 time steps. In Figure 3,
the simulated prediction probability update and the forecast
are compared, where the mean and the bounds of two
standard deviation are shown. The standard deviations of
the marginal prediction probabilities shown in Figure 3 are
estimated from the standard deviations of the extremal
probabilities such as the ones listed in The variances of the
marginal probability values are the sum of the ones of the
joint probability values, assuming that the joint
probabilities are independent combinations.

INFORMATION DYNAMICS IN THE NETWORKS OF CYBER-PHYSICAL SYSTEMS

Table 8. It is assumed that the variances associated
with the extremal probability values are the same as
the ones with joint probabilities.
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Figure 3 The simulated prediction probabilities and
forecast starting from time step 60 by the
copula dynamics model in a three-node-six-
edge example.

Table 3  The initial prediction probabilities.
Node 0 Node 1 Node 2
P(x) 0.223014 0.096656 0.321909
Table 4  The pairwise P-reliance probabilities.
P(x]x;) | Node 0 Node 1 Node 2
Node 0 0.171229 0.945277
Node 1 0.094149 0.265593
Node 2 0.257377 0.856983
Table 5 The pairwise Q-reliance probabilities.
P(xi|x{) | Node 0 Node 1 Node 2
Node 0 0.608827 0.548566
Node 1 0.917376 0.271680
Node 2 0.383766 0.364328
Table 6 Calibrated weight coefficients in Eq. (14) for
the 3-node example in Figure 3.
Index Coefficient
1 0.171246
2 0.171111
3 0.171105
4 0.171483
5 0.315056
Table 7 Three examples of the calibrated coefficients
for the AR models to predict future extremal
probabilities.
Yo Y1 Y2
example 1 | 0.0075325 0.27051428 —0.18069243
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0.1269418
0.0243994

—0.03805253
0.0312964

—0.14354211
—0.14376424

example 2
example 3

The variances of the marginal probability values are the
sum of the ones of the joint probability values, assuming
that the joint probabilities are independent combinations.

Table 8 The standard deviations for the three calibrated

AR models Table 7.

GE
example 1 0.0208359986
example 2 0.1614207112
example 3 0.0347577082

It is seen that the general trends of probabilities are
predicted well by the models. The fluctuations are also
enclosed by the error bounds. The bounds of two
standard deviations are supposed to enclose 95% of
samples in a normal distribution. The mean values of
forecast are stabilized after a few steps, indicating that
the system remains equilibrium in long term. The
variances of the forecast for all three prediction
probability values are similar. This is because all
variances are estimated from those ones associated
joint probabilities, which have all nodes involved.

To assess the robustness of the proposed copula
dynamics model for the three-node network,
sensitivity analyses are performed by reducing the
number of edges. In Figure 4, the number of the
directed edges is reduced to 2. The initial prediction
probabilities and reliance probabilities are randomly
generated. Simulation data collection and model
training are similarly done. The results in Figure 4
show that the model can predict the trend well.
Compared to the previous three-node-six-edge case in
Figure 3, the variabilities of predictions by nodes
increase. Therefore, the variances of forecast are also
increased. The increased error bounds tend to
overestimate the fluctuation range for those nodes
which provide more stable predictions, such as Node
1 in Figure 4. Node 1 in this case receives information
from Node 0 directly and Node 2 indirectly. The
general trend is that when a node receives more
information, its prediction capability increases with
smaller fluctuations. Here, Node 2 fluctuates the most,
since it does not receive information from others.
Node 0 receives information from Node 2, and its
prediction is more stable than the one by Node 2.

When the number of edges is further reduced to 1, the
results of simulation and forecast are shown in Figure
5. Without receiving information, the prediction
capabilities of Node 0 and Node 1 fluctuate
significantly. As a result, the error bounds of the
forecast further increase from the previous cases.

22

It is seen in this example that the copula dynamics
model can provide accurate estimations of the trends
and variances associated with prediction capabilities
for the nodes. As the number of nodes increases, the
number of joint probabilities and copulas of extremal
distributions will increase exponentially. Therefore,
the disadvantage of the copula dynamics model is the
computational complexity for larger systems.

1
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Figure 4 The simulated prediction probabilities and
forecast starting from time step 60 by the
copula dynamics model in a three-node-two-
edge example.
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4.2. Demonstration of The Functional
Interdependency Model

The functional interdependency model captures the
correlations of prediction capabilities between nodes
by functional relationships. This approach has the
lower computational complexity than the copula
dynamics model, since the prediction probability
values are directly modelled.
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Table 9  The calibrated VAR model parameters in
Figure 6 for the three-node-six-edge graph.

Aq [1.28702158 0.59495947 0.4537085]T
[—0.32078891 0.08630353 —0.11113924]

A, —0.72776017 0.01507701 0.33916682
1—0.14554776 —0.20091567 —0.06757319]
[ 0.0236274 —0.04637095 —0.03657765]

A, —0.15761436 —0.00410451 0.0106602
1—0.25973278 —0.03305852 —0.065953821
[ 0.02736594 —0.01089281 —0.00164103]

) —0.01089281 0.00535025 0.00067239
1—0.00164103  0.00067239 0.00078254 |

Here, the VAR model in Eq. (20) is demonstrated. The
VAR model is applied to the previous three-node-six-
edge example. The simulation data are collected to
train the VAR model with lag order L=2. The training
data and forecast results are shown in Figure 6. The
calibrated model parameters are listed in Table 9. The
error bounds are defined as two standard deviations,
which are directly obtained from the covariance
matrix in Table 9 after the training procedure. The
model predicts the trend well. Compared to the copula
dynamics model, the predicted error bounds are more
precise and specific for different nodes associated

with their forecasted values. This indicates that the
VAR model can provide more information about the
dynamics of prediction capabilities than the copula
dynamics model can.
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Figure 7 The simulated prediction probabilities and
forecast starting from time step 60 by the
VAR model in the 8-node-56-edge example.
(a) with the best-case fusion rule; (b) with
the worst-case fusion rule.
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More examples are tested for the VAR model. In
Figure 7, an 8-node-56-edge example is shown, where
both best-case and worst-case fusion rules are applied.
It is seen that the prediction capabilities of nodes
fluctuate significantly.
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Figure 8 The simulated prediction probabilities and
forecast starting from time step 60 by the
VAR model in the 8-node-10-edge example.
(a) with the best-case fusion rule; (b) with
the worst-case fusion rule.
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With the full connections between nodes, nodes share
information among each other extensively. The
mutual influences cause a large level of fluctuations.
It is also seen that the fluctuations among nodes are
synchronized. Strong correlations exist between them.

When the number of edges is reduced to 10 for the 8
nodes, the simulated and forecasted prediction
capabilities are shown in Figure 8. Compared to the
previous full-connection case in Figure 7, the extent of
fluctuation is reduced. The forecasts are also more
accurate with reduced error bounds.

5. CONCLUDING REMARKS

The analyses of the systems level behavior of CPS
networks enable us to design better systems. How to
design a CPS system which promotes effective
information sharing is one of the major aspects of
design. Therefore, we need models that can
characterize and predict the information sharing
behaviors of such systems.

In this paper, information dynamics models are
proposed to predict the information propagation
within a CPS network. Based on a recently developed
mesoscale probabilistic graph model, two dynamics
models are introduced to capture the mutual
influences between nodes on their reasoning
processes. The representation of correlations between
nodes is the central theme in both models.

The first model represents the interdependency
between nodes for their prediction capabilities
explicitly with the joint probabilities of successful
predictions. Theoretically the evolution of joint
probabilities can capture the complete correlation
information and help us to understand the information
interdependency. However, the computational
complexity increases exponentially as the number of
nodes increases. Here, a data-driven copula dynamics
model is proposed to capture the evolution of joint
probabilities for the nodes’ correct predictions via the
copulas for extremal probabilities. Instead of
modeling the dynamics of joint probabilities directly,
the dynamics of their convex hulls known as the
extremal probabilities are modeled. The advantage of
this approach is that it is easier to estimate the
extremal probabilities than the joint probabilities
themselves in practice. Nevertheless, from the
extremal probabilities, the joint probabilities still need
to be estimated by interpolating the extremal
probabilities. The data-driven approach demonstrated
in this paper shows the possible ways of estimating the
joint probabilities with the interpolation from their
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bounds as well as predicting the dynamics of the
bounds.

In the second model, the correlation between
prediction capabilities is captured analytically with
functional relationships, such as linear and nonlinear
ones. This approach simplifies the dependencies as
mathematical relations. Existing statistical models for
time series analyses can be adopted for this purpose.
The main limitation however is that the details of
interdependency can be lost in the general
mathematical models.

The prediction accuracy from the data-driven models
sensitively relies on the training datasets. In general,
larger datasets are always better for model training and
calibration. For situations where there is a lack of
training data, the proposed modeling approach will not
be feasible. Alternative modeling approaches that are
based more on the detailed knowledge about the
systems will be needed. The current information
diffusion models are only evaluated with a mesoscale
network simulator. The comparisons with the detailed
network simulators and actual experimental data are
needed in further evaluations in the future.
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