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ABSTRACT 11 

Sampling intervals of precipitation geochemistry measurements are often coarser than those 12 

required by fine-scale hydrometeorological models. This study presents a statistical method to 13 

temporally downscale geochemical tracer signals in precipitation so that they can be used in high-14 

resolution, tracer-enabled applications. In this method, we separated the deterministic component 15 

of the time series and the remaining daily stochastic component, which was approximated by a 16 

conditional multivariate Gaussian distribution. Specifically, statistics of the stochastic component 17 

could be explained from coarser data using a newly identified power-law decay function, which 18 

relates data aggregation intervals to changes in tracer concentration variance and correlations with 19 

precipitation amounts. These statistics were used within a copula framework to generate synthetic 20 

tracer values from the deterministic and stochastic time series components based on daily 21 

precipitation amounts. The method was evaluated at 27 sites located worldwide using daily 22 

precipitation isotope ratios, which were aggregated in time to provide low resolution testing 23 

datasets with known daily values. At each site, the downscaling method was applied on weekly, 24 

biweekly and monthly aggregated series to yield an ensemble of daily tracer realizations. Daily 25 

tracer concentrations downscaled from a biweekly series had average (+/- standard deviation) 26 

absolute errors of 1.69‰ (1.61‰) for δ2H and 0.23‰ (0.24‰) for δ18O relative to observations. 27 

The results suggest coarsely sampled precipitation tracers can be accurately downscaled to daily 28 

values. This method may be extended to other geochemical tracers in order to generate downscaled 29 

datasets needed to drive complex, fine-scale models of hydrometeorological processes.   30 
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1. Introduction  31 

Naturally occurring chemical signatures in precipitation (e.g. Bailey et al. 2018, Bowen et 32 

al. 2019, Gibson et al. 2005, Kendall and McDonnell 2012, Moerman et al. 2013, West et al. 2010, 33 

Wiederhold 2015) are frequently used as hydrometeorological tracers, especially when inferring 34 

transport or chemical transformations through terrestrial, aquatic, and atmospheric environments 35 

(e.g. Abbott et al. 2016, Brooks et al. 2014, Good et al. 2015, Gupta et al. 2020, Kanner et al. 2014, 36 

Remondi et al. 2018). Tracer-enabled modeling allows for process-level inference based not only 37 

on the size of fluxes, but also on the spatial and temporal transport and mixing of the geochemical 38 

signatures associated with the fluxes, thereby facilitating improved understanding and multi-39 

response model evaluation (Bowen and Good 2015, Krause et al. 2005, McGuire and McDonnell 40 

2006, Sprenger et al. 2019, Turnadge and Smerdon 2014). Researchers have used tracers within 41 

global climate models to evaluate processes that are challenging to observe (e.g. ageostrophic 42 

circulations, convection and turbulence) or are modeled at sub-grid scales and are therefore not 43 

explicitly simulated but parameterized (e.g. Gupta et al. 2020, Orbe et al. 2020, Rosa et al. 2012). 44 

For instance, isotope-enabled general circulation models (GCMs) have explicitly simulated water 45 

isotope ratios within the critical zone on sub-daily time scales (e.g., a version of the Community 46 

Earth System Model (iCESM1); Brady et al. 2019, Nusbaumer et al. 2017, Wong et al. 2017) and 47 

provide outputs which have been evaluated against observational datasets at various scales (e.g., 48 

Hoffmann et al. 2000, Nusbaumer et al. 2017, Risi et al. 2012, Steen-Larsen et al. 2016, Wong et 49 

al. 2017). 50 

In many modeling applications, observed and modeled temporal resolutions are different 51 

and, in these cases, a downscaling method is required in order to use observed datasets within a 52 

model to evaluate processes with dynamic fluctuations over short temporal intervals (Ebtehaj and 53 
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Foufoula-Georgiou 2013). The temporal resolution at which many geochemical tracers are 54 

collected, a result of analytical or logistical cost or the need to aggregate them in time to achieve 55 

a measurable signal due to low tracer concentrations, contrasts with the time steps typical of many 56 

hydrometeorological models (Rosa et al. 2012, Gupta et al. 2020). Accordingly, a method is 57 

needed to generate higher frequency datasets of precipitation chemistry from low frequency 58 

collections. 59 

Statistical downscaling leverages relationships observed in both fine- and coarse-scale 60 

measurements to predict fine-scale variations where only coarse-scale data are available (Ebtehaj 61 

and Foufoula-Georgiou 2013, Goncu and Albek 2016). Extensive work has focused on 62 

downscaling precipitation rate, including through use of temporal neural networks (e.g. Coulibaly 63 

et al. 2005), stochastic methods (e.g. Bordoy and Burlando 2013, D’Onofrio 2013, Poduje and 64 

Haberlandt 2017), and conditional multivariate statistical models (e.g. Yang et al. 2010). However, 65 

past studies have not temporally downscaled precipitation chemistry data, as is warranted for tracer 66 

applications. 67 

Precipitation stable isotope ratios (δ2H and δ18O) are an ideal test case for developing a 68 

downscaling method that can benefit tracer applications, if the downscaling can preserve multi-69 

scale statistical properties (Ebtehaj and Foufoula‐Georgiou 2013). Not only is such downscaling 70 

in demand, decades of research demonstrate patterns in precipitation isotope ratios that could be 71 

leveraged in downscaling; specifically, precipitation amount often covaries with isotopic 72 

composition, attributable to the interplay of diverse climatological, physiographical, and 73 

meteorological factors in the evaporation, condensation, and transport of atmospheric moisture 74 

(e.g. Aggarwal et al. 2016, Aggarwal et al. 2012, Bowen et al. 2019, Ingraham 1998, Konecky et 75 

al. 2019, Lee and Fung 2008, Moore et al. 2016, Risi et al. 2008, West et al. 2010). This (typically 76 
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inverse) covariation between precipitation rates and isotope ratios, often referred to as an “amount 77 

effect”, represents partially systematic variations at sub-seasonal, monthly, and event time scales 78 

(Celle-Jeanton et al. 2001, Conroy et al. 2016, Craig 1961, Craig and Gordon 1965, Gat 1996, Lee 79 

and Fung 2008, Moore et al. 2013, Tharammal et al. 2017). If these amount effects share statistical 80 

similarities across various time scales, they could support downscaling methods to predict short-81 

term fluctuations. Hypothetically, relationships inferred from sporadic or brief datasets could be 82 

used to predict short term variations in precipitation isotopic composition. Those patterns could be 83 

superimposed on the longer timescale seasonal patterns, which tend to follow regional patterns 84 

(Bowen et al. 2019, Dansgaard 1964, Feng et al. 2009, Allen et al. 2019), to potentially generate 85 

realistic, continuous, high-frequency time series of precipitation isotope ratios. 86 

    In this study, we developed and evaluated a downscaling method that uses the statistical 87 

structure of observed stable isotope time series to downscale and generate stable isotope time series 88 

at finer resolutions. We used daily observations of precipitation amounts and isotope ratios from 89 

27 monitoring stations across the globe. The daily data were artificially aggregated to weekly, 90 

biweekly and monthly scales, using amount-weighted running means to simulate coarser-scale 91 

datasets on which to apply the method. These aggregated time series were evaluated for statistical 92 

trends, specifically characterizing how the time-series means, standard deviations and correlation 93 

structures changed as the temporal sampling interval increased. Then, the statistical downscaling 94 

method was applied on each of the weekly, biweekly and monthly aggregated tracer time series to 95 

generate downscaled tracer values. An ensemble of downscaled realizations was generated at each 96 

site, the statistics of which were compared to those of the original daily observations. Our objective 97 

was to generate downscaled realizations that accurately preserved the observed daily δ2H and δ18O 98 
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means and standard deviations and the correlation structure between precipitation amount, δ2H, 99 

and δ18O, so that these realizations could be suitable for various potential modeling applications. 100 

 101 

2. Data and Methods 102 

a. Site Information and Tracer Datasets  103 

Daily precipitation stable water isotope time series were downloaded from the International 104 

Atomic Energy’s (IAEA) Global Network of Isotopes in Precipitation (GNIP) and Water Isotope 105 

System of Data Analysis, Visualization and Electronic Retrieval (WISER) database (IAEA/WMO 106 

2020). Each time series was filtered to ensure precipitation values were greater than zero and had 107 

corresponding δ2H and δ18O isotope ratios. All time series with greater than one year of 108 

observations were selected, resulting in the 27 datasets used in the subsequent analysis; details 109 

pertaining to each site are included in Table S1 located in the Supplementary Materials. A 110 

minimum time series length of one year was chosen because we wanted to account for site-specific 111 

seasonal precipitation patterns in the generated downscaled tracer time series. We acknowledge 112 

seasonality is usually characterized over time scales greater than one year, however for this 113 

analysis we decided on a minimum of one year so the downscaling method could be applied to as 114 

many datasets as possible. In the Discussion, the downscaling method’s performance was 115 

evaluated against the number of years represented in the time series and the frequency of 116 

collection, i.e. the number of recorded precipitation events divided by the total number of days 117 

represented in the time series. The time series lengths ranged from 1.22 to 15.94 years, with an 118 

average of 5.34 years. The total number of samples in a time series ranged from 33 to 1026, with 119 

an average of ~210. The site with 33 samples (Barasat, Kolkata; Table S1) was sampled over 1.33 120 

years.  121 
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All hydrogen and oxygen isotope ratios of precipitation were denoted as δ2H and δ18O, 122 

defined by 123 

 124 

𝛿 (‰) =  𝑅𝑠𝑎𝑚𝑝𝑙𝑒− 𝑅𝑠𝑡𝑑 
𝑅𝑠𝑡𝑑

 1000   Eq. 1 125 

 126 

where 𝛿 was the isotope ratio in delta notation, Rsample was the ratio of concentrations between the 127 

rare and abundant isotopologues, and Rstd was the isotopic ratio standard; for this analysis, that 128 

standard was the Vienna Standard Mean Ocean Water (VSMOW). The site locations and average 129 

stable water isotope observations were represented in Figure 1. The 27 sites have an average mean 130 

(+/- standard deviation) daily observed precipitation of 22.80 (21.38) mm, δ2H of -37.77 (24.62) 131 

‰ and δ18O of -6.03 (3.21) ‰. The maximum recorded total daily precipitation ranged from 43.0 132 

to 317.5 mm across sites. At the 27 sites, the observed isotope ratios ranged from -228.0 to 43.35 133 

‰ for δ2H and -30.50 to 8.81 ‰ for δ18O. The site list included geographic locations across 134 

different climates and with uniform and seasonally varying precipitation amounts.  135 

Isotope ratios are often evaluated relative to the Global Meteoric Water Line (GMWL), 136 

which is defined as δ2H =  8δ18O + 10 ‰ (Craig, 1961). Deuterium excess (d-excess 137 

(‰)  = δ2H − 8δ18O) measures the deviation of a water sample’s composition from the GMWL 138 

(Dansgaard, 1964) and is a useful secondary tracer in that it varies with respect to the evaporation 139 

and mixing history of airmasses (e.g., Benetti et al. 2014, Fröhlich et al. 2002, Pfahl and Sodemann 140 

2014). One can use d-excess to understand both the source of precipitation and the evolution of 141 

moisture during transport (Fröhlich et al. 2002, Good et al. 2014). We aimed to preserve a site’s 142 

d-excess in the downscaled time series because it can be informative for a variety of hydrological 143 

and meteorological applications.  144 
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 145 

b. Constructing Low-resolution Datasets  146 

We aggregated each of the 27 GNIP site’s datasets using a moving, precipitation amount-147 

weighted average (Eq. 2). This provided us with datasets of low-resolution tracer time series on 148 

which to apply the downscaling method to generate downscaled daily estimates to compare with 149 

the observed daily values. The precipitation amount-weighted average was defined as  150 

 151 

𝛿2𝐻̅̅ ̅̅ ̅̅ 𝑡 =  ∑ 𝑃𝑖𝛿2𝐻𝑖
𝑡
𝑖=1
∑ 𝑃𝑖

𝑡
𝑖=1

  𝑎𝑛𝑑  𝛿18𝑂̅̅ ̅̅ ̅̅ ̅𝑡 =  ∑ 𝑃𝑖𝛿18𝑂𝑖
𝑡
𝑖=1

∑ 𝑃𝑖
𝑡
𝑖=1

  Eq. 2 152 

 153 

where P was total precipitation (mm), 𝛿2𝐻 (‰) and 𝛿18𝑂 (‰) were the daily observed stable 154 

water isotope tracer values at time t (days), and 𝛿2𝐻̅̅ ̅̅ ̅̅ 𝑡 (‰) and  𝛿18𝑂̅̅ ̅̅ ̅̅ ̅𝑡 (‰) were the t-day average 155 

tracer value within the specified aggregated temporal interval. 𝛿2𝐻̅̅ ̅̅ ̅̅ 𝑡 and  𝛿18𝑂̅̅ ̅̅ ̅̅ 𝑡̅ values populated 156 

a time series at t level of aggregation. We focused on downscaling time series aggregated at t 157 

values of 7-, 14-, and 28-days (weekly, biweekly, and monthly).  158 

Time series statistics were evaluated across a range of temporal intervals. Moerman et al. 159 

(2013) investigated the correlation structure between precipitation amount and δ18O at Mulu 160 

Meteo, Sarawak (Table S1) at daily to 12-week (84-days) time scales. Following their approach, 161 

we evaluated trends in the mean (𝜇), standard deviation (𝜎), and Pearson correlation coefficient 162 

(𝜌) at different temporal intervals to capture the time series response and prediction accuracy. The 163 

𝜌 measures the linear correlation between two variables and has a value between -1 and 1, where 164 

1 is a total positive linear correlation, 0 is no linear correlation, and -1 is total negative linear 165 

correlation. At the daily scale for the 27 GNIP sites, the average (+/- standard deviation) 𝜌(P, δ2H) 166 

was -0.18 (+/- 0.18), 𝜌(P, δ18O) was -0.20 (+/- 0.17) and 𝜌(δ2H, δ18O) was 0.96 (+/- 0.03).   167 
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 168 

c. Statistical Precipitation Tracer Downscaling Method 169 

1) REMOVAL OF THE DETERMINISTIC TIME SERIES COMPONENT  170 

 Each aggregated weekly, biweekly and monthly time series (Eq. 2) was treated as an 171 

example of a low-resolution dataset on which to apply the downscaling method. We considered 172 

each tracer time series to have a deterministic component and a stochastic component. In the first 173 

step, the deterministic component was characterized by the seasonality in the precipitation signal 174 

and was removed from each set of observations. Isotope ratios in precipitation frequently have 175 

been observed to exhibit distinct seasonal signals. These can be approximated as a combination of 176 

sinusoidal functions through Fourier decomposition (Allen et al. 2018, Allen et al. 2019, Dutton 177 

et al. 2005, Feng et al. 2009, Halder et al. 2015, Vachon et al. 2007, Wilkinson and Ivany 2002). 178 

Sinusoidal functions effectively describe the collinear structure and fluctuations in the covariation 179 

of δ2H and δ18O relative to the GMWL (Figure 1; Allen et al. 2018, Craig 1961, Dansgaard 1964). 180 

The sine curve parameters (amplitude, phase, and offset) are often predictable in space (Allen et 181 

al. 2018, Jasechko et al. 2016) and succinctly represent temporal dynamics because they express 182 

continuous, cyclic time series. Allen et al. (2019) used monthly isotopes in precipitation GNIP 183 

datasets from across the globe to capture patterns in the precipitation isotope seasonality using 184 

sinusoidal functions. When predicting the isotope seasonality, the values of the sine parameters 185 

can be described as functions of climate and geography. Additionally, sine curves are useful when 186 

describing the propagation of cyclic signals, this has been done to infer catchment-scale mixing 187 

processes using the dampening ratio of seasonal isotope amplitudes in streamflow versus 188 

precipitation (Kirchner 2016a, 2016b; also see Clow et al. 2018, von Freyberg et al. 2018, Gallart 189 

et al. 2020, Jacobs et al. 2018, Jasechko et al. 2016, Lutz et al. 2018, Song et al. 2017). 190 
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 We fitted sinusoidal functions to each of the site’s daily to 12-week aggregated time series 191 

to describe the deterministic components using a non-linear, least squares fitting routine, 192 

“curve_fit” in Python’s (v3.7.6) SciPy Library (v1.2.1), following the methods from Allen et al. 193 

(2018). We used a time-weighted fit routine (i.e., not amount weighted and each daily sample had 194 

equal weight) to approximate the parameters of the sinusoidal function (Eq. 3) because our ultimate 195 

goal related to predicting daily precipitation variations in isotopic composition, regardless of 196 

whether or not they are associated with larger events. The sine functions were defined with a fixed 197 

period of one year and  198 

 199 

𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝛿2𝐻 or 𝛿18𝑂(𝑓) = 𝐴 𝑠𝑖𝑛(2𝜋𝑓 − 𝜙) + 𝑏,  Eq. 3 200 

 201 

where f was the fractional year and b was an offset parameter (Allen et al. 2018). All fitted 202 

amplitudes (A) and phases (𝜙) were bounded so the amplitude values were positive and the phase 203 

ranged between −𝜋 and 𝜋. The presence of large seasonal isotope cycles enables the quantification 204 

of mixing, transport and turnover of water in landscape and/or biota. Amplitude dampening reflects 205 

mixing processes, phase shifts reflect advective travel times and offset differences reflect 206 

proportional contributions of different seasons’ precipitation (Kirchner 2016a, 2016b). The 207 

defined sinusoidal functions were subtracted from the daily to 12-week aggregated series, thus 208 

removing the deterministic time series components.  209 

 210 

2) GENERATION OF STOCHASTIC TRACER REALIZATIONS  211 

Next, the daily statistics of the stochastic hydrogen (δ2H∗) and oxygen (δ18O∗) isotope 212 

time series were estimated by using the relationship between the observed daily stochastic statistics 213 
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and the stochastic signal’s statistics across a range of aggregation intervals (𝑡) multiplied by each 214 

site’s specific precipitation frequency (𝜆; defined as the number of days with precipitation divided 215 

by the total number of days in a time series). The statistics of the stochastic signal at aggregation 216 

interval t were denoted with * as 𝜇𝑡
∗, 𝜎𝑡

∗, and 𝜌𝑡
∗ and estimates of these at the daily (t=1) resolution 217 

were denoted as 𝜇̂1
∗, 𝜎̂1

∗, and 𝜌̂1
∗. After removal of the deterministic component, the stochastic 218 

signals had mean isotope values of approximately zero across all ranges of 𝑡𝜆 (Figure 2.a,b). 219 

Consequently, we assumed the stochastic signal to behave as a purely random mean zero process 220 

(𝜇̂1
∗ = 0), which was further substantiated using tests for independence, autocorrelation, and 221 

normality on the stochastic signal (refer to Sections 2.d and 3.d).  222 

The time series standard deviations were greatest at daily time scales and decreased with 223 

increasing 𝑡𝜆 as a power law function (Figure 2.c,d). This decrease resulted from the averaging 224 

and weighting of individual daily tracer concentrations by precipitation amounts over longer 225 

temporal intervals. By the Central Limit Theorem and the Law of Large Numbers, as the sampling 226 

size increases, the sampling distribution converges to a normal distribution where the standard 227 

deviation decreases at a rate of 1/𝑛0.5, where n is a number of samples. It should be noted, the 228 

results from the Central Limit Theorem and the Law of Large Numbers holds as long as the signal 229 

is purely stochastic and there are no trends or heteroscedasticity in the time series. It was assumed 230 

a similar relationship was held between the daily standard deviation of days with precipitation 231 

tracer values (𝜎1
∗, ‰) and the series of known t-day aggregation intervals (days) with their 232 

corresponding standard deviations in time (𝜎𝑡
∗, ‰). 𝑡𝜆 estimated the expected number of 233 

precipitation events in each aggregation level because precipitation does not occur every day (e.g. 234 

n ≈ 𝑡𝜆). We expressed this relationship as 235 

 236 
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𝜎𝑡
∗ =  𝜎̂1

∗

(𝑡𝜆)𝑎 ,  Eq. 4   237 

 238 

where a is a site-specific parameter defining the rate decrease in 𝜎𝑡
∗ with increasing t. We used the 239 

non-linear, least-squares fitting routine, “curve_fit”, in Python’s (v3.7.6) SciPy Library (v1.2.1) to 240 

estimate the a and 𝜎̂1
∗ parameters in Eq. 4. 𝑎 was constrained between 0.2 and 0.5 in order to 241 

bound the curve fitting routine. When 𝜎̂1
∗ was compared with 𝜎1

∗, 𝑎 values below 0.2 often 242 

underpredicted 𝜎̂1
∗ and above 0.5 often overpredicted 𝜎̂1

∗.  The initial value predicted for a was set 243 

at 0.3, however varying this had negligible influence on the final a parameter estimates and the a 244 

parameter estimates were not strongly related to observed standard deviation (for δ2H∗ and δ18O∗ 245 

R2 < 0.002 and p-value > 0.75). To estimate the daily standard deviation at a site with a biweekly 246 

(t = 14) sampling frequency, first 𝜆 must be calculated and the time series can be aggregated to 247 

28-, 42-, 56-, 70-, and 84-day intervals (Eq. 2) for 2t to 6t, giving 6 points to fit Eq. 4. Weekly time 248 

series were aggregated from 2t to 12t (12 points), while monthly time series were aggregated from 249 

2t to 3t (3 points). This quantified the decrease in 𝜎𝑡
∗ from the available data resolution out to 12 250 

weeks (84-days), and allows a and 𝜎̂1
∗ to be estimated. 251 

The ratio of 𝜌𝑡
∗ divided by 𝜌1

∗  across 𝜆𝑡 was relatively invariant and centered around one 252 

(Figure 2.e-g). Thus, Pearson correlation coefficients at a t-day aggregation interval (𝜌𝑡
∗) were used 253 

to describe the daily correlations (𝜌̂1
∗) between precipitation amount and the stochastic signal’s 254 

δ2H∗ and δ18O∗ values.  255 

Pseudo-random numbers were generated using a Gaussian copula (Sklar 1959), defined by 256 

the estimated daily statistics, 𝜇̂1
∗’s, 𝜎̂1

∗’s, and 𝜌̂1
∗’s, and conditioned on the observed daily 257 

precipitation amounts. Other copula families are possible (e.g. Archimedean copula, Gumbel 258 

copula); however, here the Gaussian copula was used because it offered a simple approach for 259 
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modeling the dependence of multivariate states (Schneider and Ramos 2014). In probability theory 260 

and statistics, the marginal distribution of a subset of a collection of random variables is the 261 

probability distribution of one random variable without any reference to other random variables. 262 

Copula models separate the dependency structure of multiple random variables from their marginal 263 

distributions by mapping each variable through its cumulative distribution functions (CDF) to the 264 

unit interval (i.e. closed interval [0,1]). This captures the dependence between the variables using 265 

a copula or coupling term, allowing a different marginal distribution for each variable while 266 

capturing the multivariate dependencies (Schneider and Ramos 2014, Sklar 1959). Here, a copula 267 

captured the multivariate dependencies between precipitation amount, δ2H∗ and δ18O∗. Refer to 268 

Supplemental Material for further detail on the definition of the Gaussian copula used here. Models 269 

using copula techniques have captured the spatial and temporal patterns of precipitation 270 

characteristics (Kuhn et al. 2007, Gao et al. 2018), temporally downscale precipitation datasets 271 

(Gyasi-Agyei 2011, So et al. 2017), to forecast precipitation events (Bárdossy and Pegram 2009, 272 

Khedun 2014) and across other hydrological disciplines (e.g. temperature and rainfall dynamics 273 

(Cong and Brady 2012, Schölzel and Friederichs 2008), extreme-value stochastic rainfall events 274 

(Kuhn et al. 2007, Laux et al. 2011, Huang et al. 2012), drought distributions from monthly rainfall 275 

(Laux et al. 2009), hydraulic conductivity of aquifer systems (Haslauer et al. 2012), and 276 

groundwater recharge from precipitation events (Jasechko and Taylor 2015). 277 

For each observed precipitation amount, values of δ2H∗ and δ18O∗ (a 2-number sample  278 

representing the stochastic signal) were drawn from a multivariate Gaussian distribution using 279 

Python’s (v3.7.6) SciPy Library (v1.2.1) with parameters described by 𝜌̂1
∗(𝑃, 𝛿2𝐻∗), 280 

𝜌̂1
∗(𝑃, 𝛿18𝑂∗) and 𝜌̂1

∗(𝛿2𝐻∗, 𝛿18𝑂∗) (refer to Eq. 9 and 10 in the Supplemental Material). The 281 

covariates used here were precipitation amount and its isotopic composition, however it should be 282 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-20-0142.1.
BAD� C�CA�FAD��F�4/�5
12����0��4�	��*�4#�DC �#C!��C�:�*��AE#"A�:�:� ��������������	��4��



 

 14 

noted the covariates can change depending on the method’s application and data availability. Next, 283 

Gaussian CDF values were calculated for each of the generated series. The resulting uniform 284 

values were then used to resample from the coarse resolution empirical distribution of isotope 285 

ratios for each site, formed by the deseasonalized time series. Each of these values was then 286 

rescaled by 𝜎̂1
∗/𝜎𝑡

∗. The resulting stochastic time series were daily δ2H∗ and δ18O∗ values 287 

conditioned on observed precipitation amounts with means of zero, standard deviations of 𝜎̂1
∗ and 288 

Pearson correlation coefficients of 𝜌̂1
∗. 289 

 290 

3) FULL SYNTHETIC TIME SERIES GENERATION  291 

The deterministic component, the sinusoidal function from Eq. 3, was added to each 292 

generated stochastic time series. The result was a downscaled tracer time series which captured 293 

site-specific daily precipitation amount effects, seasonal signals and stochastic variability. Finally, 294 

we applied a residual correction on the downscaled synthetic series to preserve the observed 295 

aggregated weighted tracer values. For each synthetic value within each aggregation interval, an 296 

interval-specific, single correction factor was subtracted from the downscaled values so that there 297 

was no difference between that period’s downscaled synthetic values aggregated for that interval 298 

and the observed coarse-resolution interval’s value. In doing so, the precipitation-weighted values 299 

of the synthetic time series then equaled the known aggregated value. This property is particularly 300 

important as it closes the tracer mass balance. The statistical downscaling method applied to a 301 

dataset with a biweekly sampling frequency was summarized and visualized in Section (ii) of the 302 

Supplemental Material. 303 

  304 

d. Evaluation of Precipitation Tracer Downscaling Mythology 305 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-20-0142.1.
BAD� C�CA�FAD��F�4/�5
12����0��4�	��*�4#�DC �#C!��C�:�*��AE#"A�:�:� ��������������	��4��



 

 15 

The statistical method was iterated over 100 times generating an ensemble of downscaled 306 

isotope time series at each of the 27 GNIP locations. The large number of time series generated 307 

for each ensemble allowed for us to quantify the performance of the downscaling method. Each 308 

ensemble was expected to capture the observed site-specific tracer means and standard deviations 309 

and the correlation coefficients between precipitation amount, δ2H and δ18O. The statistical 310 

downscaling method was evaluated using multiple techniques, detailed in the subsequent 311 

paragraphs.  312 

After removing the deterministic components, the stochastic time series were expected to 313 

have means of approximately zero, a predicable decrease in standard deviation (Eq. 4) and Pearson 314 

correlation coefficients at low temporal resolutions appropriately defining daily covariate 315 

structures. To test this, 𝜎1
∗ and 𝜌1

∗ of the observed datasets were compared to 𝜎̂1
∗ and 𝜌̂1

∗ of 316 

downscaled ensembles using root-mean squared error (RMSE), mean bias error (MBE), and R-317 

squared (R2). Autocorrelations with lags ranging from 1- to 20-days (Figure 6, refer to Section 3.c) 318 

and tests for normality were calculated for the stochastic signal of the observed datasets and 319 

downscaled ensembles.  320 

The average of ensemble means (𝜇̂1̅̅ ̅) and standard deviations (𝜎̂1̅̅̅) for each isotope ratio 321 

and the Pearson correlation coefficients (𝜌̂1̅̅̅) between precipitation amount and each isotope ratio 322 

were compared to the observed daily statistics. R2 values were calculated for the downscaled 323 

ensembles and observed daily site statistics. Each site’s observed d-excess was evaluated against 324 

the downscaled ensemble’s d-excess. Lastly, we compared the absolute error between the 325 

downscaled ensemble and observed time series means to various site-specific and time series 326 

characteristics. 327 

 328 
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3. Results 329 

a. Evaluation of Estimated Daily Stochastic Signal Statistics 330 

 The estimated daily stochastic signal statistics from weekly, biweekly and monthly 331 

aggregation intervals accurately described the observed statistics (Figure 3). The method best 332 

predicted 𝜎̂1
∗ when applied to a weekly series, while the worst approximations of 𝜎̂1

∗ occurred when 333 

it was applied to a monthly series. We expected the weekly time series to best predict 𝜎̂1
∗ because 334 

it better characterizes the change in tracer concentration variance as more values of t were used to 335 

fit the 𝜎̂1
∗ and a parameters in Eq. 4. For all 27 GNIP sites, the δ2H 𝜎̂1

∗ had RMSEs of 2.73 ‰ 336 

(MBE = -1.92 ‰) for a weekly series, 5.21 ‰ (MBE = -3.72 ‰) for a biweekly series, and 7.83 337 

‰ (MBE = -6.02 ‰) for a monthly series. The δ18O 𝜎̂1
∗ had RMSEs of 0.35 ‰ (MBE = -0.77 ‰) 338 

for a weekly series, 0.64 ‰ (MBE = -0.48 ‰) for a biweekly series, and 0.98 ‰ (MBE = -0.24 339 

‰) for a monthly series. For weekly, biweekly and monthly series, 𝜌̂1
∗(P, δ2H), 𝜌̂1

∗(P, δ18O), and 340 

𝜌̂1
∗(δ2H, δ18O) had low RMSEs ranging from 0.01 to 0.18 ‰ and MBEs ranging from -0.01 to 341 

0.03 ‰ across all sites. 𝜌̂1
∗(P, δ2H) and 𝜌̂1

∗(P, δ18O) were more likely to be overestimated for sites 342 

with 𝜌1
∗(P, δ2H) and 𝜌1

∗(P, δ18O) near zero, most likely a result of a site’s weak amount effect that 343 

can become less significant and sometimes positive as a time series is aggregated. More data could 344 

improve estimates of 𝜌̂1
∗. The Discussion provides further detail on methods for potentially 345 

improving statistical estimates at sites where errors were more apparent. 346 

  347 

b. Evaluation of the Downscaled Tracer Realizations 348 

The average of each ensemble’s means (𝜇̂1̅̅ ̅) and standard deviations (𝜎̂1̅̅̅) for each isotope 349 

ratio and the Pearson correlation coefficients (𝜌̂1̅̅̅) between precipitation amount and its 350 

corresponding isotope ratios were compared to the observed daily statistics at each site before 351 
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applying the residual correction (Figure 4). The downscaled time series with the most accurate 𝜌̂1̅̅̅ 352 

were calculated when the method was applied to a weekly time series. After applying a residual 353 

correction on each realization in an ensemble, the residual corrected downscaled series accurately 354 

captured the 𝜇1, 𝜎1, and 𝜌1 (Figure 5), though slightly altered R2 values. The R2 between 𝜇1and 𝜇̂1̅̅ ̅ 355 

and 𝜎1 and 𝜎̂1̅̅̅ were similar for the original downscaled (Figure 4.a-d) and residual corrected 356 

ensembles (Figure 5.a-d). The residual correction increases the R2 between 𝜌1 and 𝜌̂1̅̅̅ (Figure 4.e-357 

g, Figure 5.e-g), especially when it is applied on a downscaled weekly series. For a downscaled 358 

weekly series, the R2 of 𝜌1(𝑃, 𝛿2𝐻) and 𝜌̂1̅̅̅(𝑃, 𝛿2𝐻) and 𝜌1(𝑃, 𝛿18𝑂) and 𝜌̂1̅̅̅(𝑃, 𝛿18𝑂) increased 359 

from 0.88 to 0.93 with a residual correction. For applications where model outputs are directly 360 

compared to observation datasets, a residual correction should be applied to generate tracer 361 

ensembles which are comparable to the coarser resolution observed values. The average bias 362 

between the downscaled and observed time series means and standard deviations were summarized 363 

in Table 1. The residual correction on the downscaled ensembles reduced bias in the standard 364 

deviations, but had little effect on the means. The Discussion provides further detail on potential 365 

methods for adding informative covariates (e.g. air temperature) to the downscaled time series 366 

estimates at sites where errors were more apparent. 367 

 368 

c. Conserved Processes with the Method  369 

An analysis of the observed time series demonstrates strong autocorrelation; when the 370 

seasonal signal is removed, the observed autocorrelation is nearly all removed (Figure 6). In fact, 371 

the median autocorrelation of the observed time series stochastic signals falls below 5 % after 3-372 

day lags and are approximately zero at 4-day lags, supporting the assumption that the sinusoidal 373 

function adequately described the deterministic component and the residual was stationary (i.e. 374 
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white noise). The Shapiro-Wilk and the D’Agostino’s K2 normality tests suggest that we could not 375 

reject the assumption of normality in the weekly, biweekly and monthly time series (p-value > 376 

0.05). Histograms of the stochastic signals for both isotope ratios across all 27 sites are provided 377 

in the Supplemental Materials (Figure S3). Next, we calculated autocorrelations from 1- to 20-day 378 

lags of the residual corrected downscaled ensembles.  The autocorrelations mimicked the observed 379 

temporal trends and memory of the daily time series. Autocorrelations for δ2H and δ2H∗ (Figure 380 

6) and are highly correlated with trends observed in the autocorrelations for δ18O and δ18O∗ (refer 381 

to Supplemental Materials, Figure S4). Based on the results from the autocorrelation analysis and 382 

normality tests, we concluded the addition of the seasonal signal to the generated stochastic time 383 

series captured the large majority of the observed tracer memory in the system. 384 

The means and standard deviations in d-excess were accurately captured in the resulting 385 

downscaled time series (Figure 7). At each site, d-excess was calculated for the observed daily 386 

series and each ensemble from the downscaled weekly, biweekly and monthly time scales. The 387 

downscaled d-excess was over-estimated for the three sites with lowest observed d-excess, 388 

indicating potential effects to the downscaling method’s performance when precipitation is 389 

predominantly composed of evaporated waters. These d-excess estimates provide a metric for 390 

evaluating the downscaled series relative to the GMWL and increases the applicability of this 391 

method for tracing meteorological forcing variables and their constituents through modeling 392 

environments. Alternative downscaling approaches that independently model δ2H and δ18O may 393 

not preserve d-excess signals and thus would provide precipitation predictions that should not be 394 

used in simulations that leverage the information provided by dual-isotope analyses.  395 

 396 

4. Discussion 397 
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a. Method Evaluation for Select Site Characteristics 398 

We compared the absolute error, calculated by taking the absolute value of the mean of the 399 

downscaled ensembles minus the observed mean, to the site’s latitude, calculated rainfall 400 

frequency (𝜆), and total length of the time series in years (Figure 8). The largest absolute errors of 401 

the mean resulted from downscaling calculations that used monthly aggregated data, yielding 402 

average (+/- standard deviation) absolute errors of 2.26 ‰ (2.54 ‰) for δ2H and 0.33 ‰ (0.35 ‰) 403 

for δ18O. Linear regressions between site latitude and absolute errors in the means (derived from 404 

monthly, biweekly, and weekly ensembles) showed no strong correlations, suggesting that 405 

performance may be partially climate independent (Figure 8). Absolute errors were also not related 406 

to the strength of the seasonal isotopic variation, nor were they related to the overall variability in 407 

isotopic composition (as quantified by the standard deviation; Figure 9). Alternatively, a weak, but 408 

significant relationship was observed between absolute error and 𝜆 (R2 = 0.25 and p-value = 0.0001 409 

for δ2H, R2 = 0.23 and p-value = 0.0002 for δ18O) and average recorded precipitation amount (R2 410 

= 0.12 and p-value = 0.009 for δ2H, R2 = 0.13 and p-value = 0.0003 for δ18O) for downscaled 411 

weekly ensembles, but not for downscaled biweekly or monthly ensembles (Figures 8 and 9). 412 

Although not a site characteristic, time-series length significantly influenced absolute errors of 413 

downscaled biweekly and monthly ensembles. Longer time series spanning many years support 414 

better accounting for interannual variability and removing potential biases towards certain seasons. 415 

Nonlinear effects (e.g., continentality (Dansgaard 1964, Rozanski et al., 1993)) may be 416 

contributing to relatively high absolute errors, especially at the subtropics and mid-latitudes 417 

(Figure 8.a-b). When applying the downscaling method to datasets from these regions, one can 418 

adapt the copula framework to account for other influential site-specific characteristics (refer to 419 

Section 2.b).  420 
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 421 

b. Method Adaptation for Broader Applications 422 

In this study, weekly, biweekly, and monthly data were used to generate daily observations, 423 

but more sophisticated applications could potentially be supported by different datasets. As a 424 

general rule, the deterministic time series component can be more accurately estimated with 425 

increased tracer sampling frequencies (Figure 8.c-d) and samples collected over longer time frames 426 

(Figure 8.e-f). Accurately representing the deterministic component increases the likelihood of a 427 

downscaled synthetic time series effectively representing the underlying seasonal patterns and 428 

interannual variability at a site. Depending on the application, one may increase or decrease the 429 

temporal downscaling intervals beyond daily or 12-week timescales. While not evaluated in this 430 

study, one could predict sub-daily datasets with appropriate observation datasets or known 431 

statistical properties (i.e., mean, standard deviation, covariance structure of precipitation and its 432 

tracer composition) of a site at sub-daily scales (e.g., diurnal cycle).  433 

Theoretically, the downscaling methods used in this study can be expanded to higher 434 

dimensions and account for other tracer covariates including site conditions such as air temperature 435 

and relative humidity. At sites where the method under or overestimates the site statistics, other 436 

meteorological variables, such as air temperature, may correlate more strongly with isotope signals 437 

than precipitation amount. To do this, one needs to increase the number of covariates accounted 438 

for and the matrix dimensions within the copula framework (refer to Supplemental Materials (i) 439 

Definition of a Gaussian Copula). In these instances, adding more known dimensions to Equations 440 

6 and 7 will incorporate additive information into the generated downscaled time series. Including 441 

additional known covariates within the copula framework may improve the representation of 442 

nonlinear effects at sites in the subtropics and mid-latitudes if meteorological variables (e.g., 443 
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relative humidity, air temperature) are highly correlated with changes in tracer concentrations 444 

(Figures 8.a-b). 445 

Not only would a downscaled time series facilitate running more detailed models that 446 

improve process understanding, but they also allow for better tracking of uncertainties associated 447 

with inferences drawn from those models. We compared the mean of the observed biweekly series 448 

and the mean of the downscaled biweekly ensemble aggregated to biweekly time scales using Eq. 449 

2. The absolute error of the mean across all sites was 0.90 ‰ for δ2H and 0.14 ‰ for δ18O. This 450 

suggests models using downscaled tracers would mimic temporal trends observed at biweekly time 451 

scales, while also tracking processes and uncertainties only discernible at finer time scales. As 452 

expected, when the residual corrected downscaled biweekly ensemble was aggregated to biweekly 453 

time scales, the absolute error of the mean was approximately zero. To evaluate how the 454 

downscaling method compared to a naive downscale with no high-frequency statistical 455 

information, we created a daily time series where all precipitation events that occurred within each 456 

14-day interval had the same isotopic composition equal to the observed biweekly values. The 457 

absolute error of the mean across all sites (+/- standard deviation) was 2.74 ‰ (2.24 ‰) for δ2H 458 

and 0.39 ‰ (0.31 ‰) for δ18O, which was higher than the absolute error of the mean calculated 459 

for all the downscaled biweekly ensembles (1.69 ‰ (1.61 ‰) for δ2H and 0.23 ‰ (0.24 ‰) for 460 

δ18O).  461 

Due to limited data, all of the above analyses used the entire dataset to calculate the 462 

statistics, fit the models and apply the downscaling method. At sites with more than 5 years of 463 

data, we used the first 4 years to build a downscaling model to apply on the 5th year’s precipitation 464 

time series. We generated an ensemble of 100 downscaled δ2H and δ18O time series at each site 465 

and compared it to the observed δ2H and δ18O from the 5th year of the time series. Based on 466 
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training and testing sizes, eight sites were used in this analysis and the absolute error of the mean 467 

(+/- standard deviation) for δ2H was 4.80 ‰ (3.17 ‰), 4.89 ‰ (3.26 ‰) and 5.52 ‰ (3.50 ‰) 468 

downscaled from weekly, biweekly, and monthly series, respectively. The absolute error of the 469 

mean (+/- standard deviation) for δ18O was 0.79 ‰ (0.59 ‰), 0.78 ‰ (0.63 ‰) and 0.85 ‰ (0.67 470 

‰) downscaled from weekly, biweekly, and monthly series, respectively. Based on these 471 

promising results, our downscaling method could be built using several years of precipitation data 472 

with a known concentration and then applied to years where only precipitation amount is available.  473 

This method can be broadly applied to produce ensembles of downscaled datasets for 474 

various geochemical modeling applications. Ensembles decrease the risk of tying conclusions to 475 

one specific time series. The downscaled ensembles can be generated using the same statistics 476 

(like shown here) or multiple ensembles can be generated with varying statistical properties. 477 

Examples of different ensembles include time series generated from downscaled statistics 478 

estimated from different aggregation intervals (e.g. weekly and biweekly), employing a non-479 

Gaussian copula framework (e.g. Gumbel copula, Extreme-value copula) to populate a conditioned 480 

stochastic signal’s time series, and increasing dimensions of the copula framework by including 481 

additive meteorological variables (e.g. air temperature). Correspondingly, the geochemical tracer 482 

ensembles could be used for model selection and with numerous model and parameter sensitivity 483 

and uncertainty analyses. Ensembles could be useful in developing frameworks for model-data 484 

fusion by merging observational data with model outputs to improve model quality and 485 

characterize its uncertainty.  486 

This downscaling approach could be extended across large spatial extents for use in global 487 

isotopic models or empirically based geographic simulations to represent sites with limited or no 488 

high-frequency observations available. To do this, one could generate downscaled geochemical 489 
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tracers correlating with precipitation inputs at the grid-scale. Lastly, the methodology can be 490 

applied to other geochemical tracers for understanding site-specific dynamics (e.g. chemical 491 

leaching, sediment transport and loading) or climatological applications (e.g. nitrogen deposition, 492 

carbon sequestration).  493 

 494 

5. Conclusions 495 

This statistical downscaling method generates datasets that maintain informative site-496 

specific correlation structures between covariates and the geochemical tracer and retains the 497 

statistical properties of underlying processes (e.g., d-excess, amount effects). By modeling 498 

hydrologic dynamics using downscaled tracers, researchers can enhance understanding of physical 499 

processes without collecting fine temporal in-situ data. While an individual realization of this 500 

downscaling approach may generate reasonable estimates of true high-frequency values, iterating 501 

analyses using an ensemble of realizations allows for uncertainties in generated time series to be 502 

propagated through subsequent modeling and tracer-based analyses. The method is sufficiently 503 

general and can be applied for a variety of applications to generate downscaled ensembles for use 504 

in meteorological and hydrometeorological models to evaluate model performance, investigate 505 

system processes across spatial scales and is additive to model-data fusion frameworks.  506 
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Data Availability Statement 513 

Python code is provided in the Supplemental Material to generate geochemical synthetic 514 

time series based on the user’s site-specific time series statistics. The code is intended to be easily 515 

adaptable to higher dimensions or other user specific applications. Additional materials can be 516 

made available upon request. 517 
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TABLES 877 

Table 1. Average bias (predicted - observed statistic) (+/- standard deviation) for downscaled and 878 

residual corrected downscaled ensembles 879 

 Bias in the Means (‰) Bias in the Standard Deviations (‰) 

 𝛅𝟐𝐇 𝜹𝟐𝑯 𝛅𝟏𝟖𝐎 𝜹𝟏𝟖𝑶 𝛅𝟐𝐇 𝜹𝟐𝑯 𝛅𝟏𝟖𝐎 𝜹𝟏𝟖𝑶 

Weekly -0.10 

(1.39) 

0.01 

(1.79) 

-0.02 

(0.20) 

-0.03 

(0.26) 

0.02 

(2.38) 

1.95 

(3.30) 

0.004 

(0.34) 

0.25 

(0.46) 

Biweekly -1.00 

(2.20) 

-0.68 

(3.50) 

-0.16 

(0.30) 

-0.12 

(0.46) 

1.04 

(3.95) 

2.76 

(4.14) 

0.17 

(0.56) 

0.39 

(0.59) 

Monthly -1.43 

(3.08) 

-0.13 

(5.86) 

-0.23 

(0.43) 

-0.05 

(0.74) 

2.20 

(8.75) 

3.28 

(8.81) 

0.28 

(1.12) 

0.43 

(1.12) 

 880 
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 882 

Figure 1. The large map displays the 27 GNIP site locations and their average 𝛅𝟐𝐇 precipitation 883 

measurements. The smaller figure is a dual isotope plot with the mean and standard deviations of 884 

all daily precipitation stable water isotope measurements (δ2H, δ18O) at the 27 GNIP sites. The 885 

Global Meteoric Water Line (GMWL) is included in the subplot. Refer to Table S1 in the 886 

Supplemental Material for more site-specific characteristics.  887 
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 889 

Figure 2. The x-axis is 𝝀 (recorded events / number of days in the time series) multiplied by daily 890 

to 12-week aggregation intervals (days) and the y-axes were the deviations for each of the 27 sites 891 

in their stochastic time series a,b) means (𝝁𝒕
∗; note the scale of the y-axis), c,d) standard deviations 892 

at t-day (𝝈𝒕
∗) divided by the daily standard deviation (𝝈𝟏

∗ ) with blue dashed lines at (𝝀𝒏)𝟎.𝟓 and 893 

(𝝀𝒏)𝟎.𝟐, and e-g) Pearson correlation coefficients at t-day divided by daily (𝝆𝒕
∗/𝝆𝟏

∗ ) with blue 894 

dashed lines at y-axis = 1. Refer to Supplemental Materials (Fig. S1) for larger ranges in y-axis 895 

values for (𝝆𝒕
∗/𝝆𝟏

∗ ). 896 
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 898 

Figure 3. The estimated standard deviations (a,b) and Pearson correlation coefficients (c-e)  of 899 

the stochastic signal from downscaled weekly, biweekly and monthly time series compared to 900 

the observed daily stochastic statistics. Each data point is one site location and the black lines are 901 

the 1:1 lines. The means were not shown because they are approximately zero (refer to Figure 902 

S2.a,b). 903 
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 905 

Figure 4. The average means (a,b), standard deviations (c,d) and Pearson correlation coefficients 906 

(e-g) of the downscaled ensembles from the weekly, biweekly and monthly time series compared 907 

to the observed daily site statistics. Each data point is one location and the black lines are the 1:1 908 

lines. 909 
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 911 

Figure 5. The average means (a,b), standard deviations (c,d) and Pearson correlation coefficients 912 

(e-g) of the residual corrected downscaled ensembles from the weekly, biweekly and monthly 913 

time series compared to the observed daily site statistics. Each data point is one location and the 914 

black lines are the 1:1 lines. 915 

 916 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-20-0142.1.
BAD� C�CA�FAD��F�4/�5
12����0��4�	��*�4#�DC �#C!��C�:�*��AE#"A�:�:� ��������������	��4��



 

 46 

 917 

Figure 6. a,c,e) Median autocorrelation of the observed daily 𝛅𝟐𝐇 datasets and the daily residual 918 

corrected ensembles (solid lines). b,d,f) Median autocorrelations of the 𝛅𝟐𝐇∗ stochastic signals for 919 

the observations and the downscaled ensembles. The 5th to 95th percentiles of the observed and 920 

ensemble autocorrelations are represented as shaded regions. Horizontal red dashed line indicates 921 

where 𝝆 is +/-5%. 922 
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 924 

Figure 7. The average d-excess of the residual corrected downscaled ensemble at each site location 925 

compared to the average observed d-excess. Each data point is one site location and the black line 926 

is the 1:1 line. 927 
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 929 

Figure 8. Absolute error (E) of the residual corrected ensemble means compared to various site-930 

specific characteristics: a,b) latitude, c,d) 𝝀, and e,f) total length of the time series. Each data 931 

point is one site location, dashed lines represent p-values > 0.05, and solid lines represent p-932 

values < 0.05.  933 
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 935 

Figure 9. Absolute error (E) of the residual corrected ensemble means compared to various site-936 

specific characteristics: a,b) the sinusoidal function’s estimated amplitude, c,d) standard deviation 937 

of each isotope ratio and e,f) average daily precipitation. Each data point is one site location, 938 

dashed lines represent p-values > 0.05, and solid lines represent p-values < 0.05. 939 
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