EXTREMIZERS FOR ADJOINT FOURIER RESTRICTION ON
HYPERBOLOIDS: THE HIGHER DIMENSIONAL CASE
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ABSTRACT. We prove that in dimensions d > 3, the non-endpoint, Lorentz-invariant L? — LP
adjoint Fourier restriction inequality on the d-dimensional hyperboloid HY C R+ possesses
maximizers. The analogous result had been previously established in dimensions d = 1,2 using
the convolution structure of the inequality at the lower endpoint (an even integer); we obtain the

generalization by using tools from bilinear restriction theory.

1. INTRODUCTION

1.1. Setup. In this note we continue the study initiated in [3],[12] on sharp Fourier restriction theory

on hyperboloids. Let us start by recalling the basic terminology and the main definitions.

Throughout this work we adopt the following normalization for the Fourier transform in R*+1:
30 = [ e g (11)
Rd+1
If € € R?, we define (¢) := (1 + |£|2)2. The hyperboloid H* ¢ R4 is the surface defined b
H? = {(¢,7) eR*xR:7=(£)},

and comes equipped with the Lorentz-invariant measure
dedr
do’(&vT) = 6(7— - g )77
)
which is defined by duality on an appropriate dense class of functions via the identity

_ de
| etemnanen = [ eeieni

The Fourier extension operator on H? (or adjoint Fourier restriction operator) is given by

o) e [ et pe &
(et = | &) (1.3

where (2,t) € R x R and f belongs to the Schwartz class in R?. Throughout this note we identify
a function f : H? — C with a complex-valued function defined on R?. The norm in LP(H¢) =

(1.2)
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de\ »
P = pi .
||fHLP(]HI‘1) (/]Rd |f(§)| <§>>
With the Fourier transform normalized as in (1.1)), note that

LP(H?, o) is then given by

T(f)(x,t) = fo(—z,—t). (1.4)
The seminal work of Strichartz [I6l Theorem 1, Cases III (b)(c)] establishes the estimate
1T e oy < Hap [ £l 2qma) , (1.5)

with a finite constant Hg, (independent of f), provided that

6<p<oo,ifd=1;

(1.6)
A2 <p< AT itd> 2.
We reserve the symbol Hg, for the optimal constant
T » 1
Hy, 1T e ma+r) an

o£rer2@d) | fllzz@e

and say that a nonzero function f € L?(H¢) is an extremizer of (L.5)) if it realizes the supremum in
(1.7), and we call a nonzero sequence {f,} C L?(H?) an extremizing sequence of (L.5) if the ratio

1T (fr)ll Lo ra+1)/| frll L2 (1ay converges to Hg,, as n — oo.

1.2. Main theorem. The first result to address the sharp form of is due to Quilodrén [12],
in which he computes the exact values of Hy, in the endpoint cases (d, p) = (2,4),(2,6) and (3,4),
and establishes the non-existence of extremizers in these casesﬂ A crucial element of his proof is
the fact that the Lebesgue exponents p under consideration are even integers, which in turn allows
one to use the convolution structure of the problem via an application of Plancherel’s theorem.
In [12], Quilodrén also raises two interesting questions: What is the value of the sharp constant
at the endpoint (d,p) = (1,6) (the remaining case with p even); and do extremizers exist in the

non-endpoint cases.

The precursor [3] of the present work contains two main results. The first result [3, Theorem 1] is
the explicit computation of the optimal constant Hy ,, in the case (d,p) = (1,6) and the proof that
extremizers do not exist in this case. The second result [3, Theorem 2] establishes the existence of
extremizers in all non-endpoint cases of in dimensions d € {1,2}. The proof of the latter result
is obtained by establishing that extremizing sequences converge modulo certain symmetries of the

problem. In the present case, by a symmetry we mean an operator S : L2(H¢) — L?(H%) such that

1S fllL2@ey = 1 fllz2@ey and [[T(SF)llLe@a+ry = 1T (Pl e @esr)-

2By contrast, the recent work [I3] establishes existence of extremizers for the endpoint L? to L* adjoint Fourier
restriction inequality on the one-sheeted hyperboloid in dimension 4.
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Such an operator can shift the mass of sequences and destroy strong convergence while still man-
taining its extremizing properties, hence the study of these symmetries is fundamental. In the case
of the hyperboloid, one has to account for the action of the Lorentz group and space-time mod-
ulations (and their compositions), which we introduce in more detail in the next section. In [3],
the convergence is obtained via a direct and self-contained approach that explores the convolution
structure of the problem at the lower endpoint (which is an even integer in these low dimensions).
The drawback of this particularly simple proof is that it does not work in the higher dimensional
cases d > 3.

In this note we return to this problem and extend the result of [3, Theorem 2| to dimensions

d > 3. Our main result is the following.

Theorem 1. Let d > 3. Extremizers for inequality (1.5)) exist if Q(d;r2) <p< lejll). In fact, given
any extremizing sequence { f,}, there exist symmetries S,, such that {S, fn} converges in L?(H?) to

an extremizer f, after passing to a subsequence.

The main new ingredient of the proof, when compared to that of [3, Theorem 2], is the use of
machinery from bilinear restriction theory to obtain a refined version of inequality . Asin [2 3],
we exploit the fact that the hyperboloid is well approximated by the paraboloid and the cone. The
geometric construction underlying the bilinear restriction machinery accounts for this fact: in some
sense, it interpolates between the two endpoint cases, which we will refer to as the elliptic and the

conic regimes, respectively.

Estimates for Fourier extension operators are related to estimates for dispersive partial differential
equations. In our case, the extension operator T' defined in (|1.3) is related to the Klein—-Gordon
equation 92u = A,u — u for (z,t) € R? x R. Defining the (half) Klein-Gordon propagator as

it/ T— 1 im€ it(E) -~
VIRl = s [ e e a,

one readily sees that

T(f)(a,t) = (2m)? ™12 g(x), (1.8)
with g(¢€) = (£) 71 f(€). Therefore, inequality (1.5)) can be restated as
itvVI—A

—A _
le 9z, oxr) < 27) 7 Hap llgl 4 gay.

where for s > 0 we denote by H*®(R?) the nonhomogeneous Sobolev space, defined as

R = {g € 2RY: Nolfpmo = [ BOFE©>dE < o0},

The reader should keep in mind this equivalent formulation, since some of the results we quote from

[3, Section 6] are stated in terms of the Klein—-Gordon propagator.

Extremal problems related to Fourier restriction theory have attracted a lot of attention in
recent years, and a large body of work has emerged. Several authors have investigated the interface

between bilinear restriction theory and these extremal questions, both from the restriction side and
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the partial differential equations point of view. Here we mention the works [T} 2 [l [6] [7, 10} [14],
all of which deal with these connections. Many other authors have contributed to the development
of the area, and we refer the reader to [3] for an exposition of related literature on sharp Fourier

restriction theory.

1.3. Outline. We discuss the Lorentz symmetry of the problem in Section[2] where we also establish
an annular decoupling inequality which implies a modest gain of control over extremizing sequences.
The actual proof starts in Section [3] with a simple but useful argument that allows us to restrict
the angular support of the functions under consideration. In Section [d] we describe a geometric
decomposition of space into caps and sectors, and the corresponding bilinear restriction estimates
that will play a key role in the analysis. As in [3], the crux of the matter is the construction of
a distinguished region, i.e. the lift of a cap or a sector to the hyperboloid that contains a positive
universal proportion of the total mass in an extremizing sequence. We establish this fact via a
refined Strichartz inequality, formulated as Theorem [4] and proved in Section [f] Once the existence
of a special region has been established in dimensions d > 3, the proof of Theorem [l|is finished by
invoking the concentration-compactness material of [3, Section 6], which was already tailor-made to

receive the input in any dimension. The details are outlined in Section [6}

1.4. Notation. Universal quantities will be allowed to depend only on the dimension d and the
Lebesgue exponent p. In a similar spirit, given A, B > 0, we write A ~ B (resp. A < B) and say
that A, B are comparable if there exists a finite constant C = C(d, p) > 0, such that %B <A<CB
(resp. A < COB). A number N is said to be dyadic if it is an integral power of 2, i.e. N € 2%

2. PRELIMINARIES

2.1. Lorentz boosts. The Lorentz group, denoted L, is defined as the group of invertible linear
transformations in R¥*! that preserve the bilinear form (z,y) € R**! x R4l s z . Jy, where
J = diag(—1,...,—1,1). In particular, if L € £, then |det L| = 1. Denote the subgroup of £
that preserves H? by £1. A one-parameter subgroup of £% is {Lt}te(q,l), where the linear map
Lt R¥*T 5 R4 g defined via
Lt(fl,...,fdﬂ'): <£1+t7—7 T+t€1>
Ve N

Given an orthogonal matrix A € O(d), the map (£, 7) — (A&, 7) belongs to LT. A way to parame-

627"'75117

trize more general Lorentz boosts is as follows. Given a frequency parameter v € R%, we define the

Lorentz boost in the direction v as

Ly(&7) = (" + el —vr (w)r —v-8). (2.1)

Here ¢+ and €/l denote the components of & which are orthogonal and parallel to v, respectively.

The boost L, preserves space-time volume since its determinant is one, and acts on R¢ via

L&) =&+ (el —w(g). (2.2)
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Note that L;' = L_,, and likewise (L?)~! = L° ,. We also have that L, (v, (v)) = (0,1), and
correspondingly L’ (v) = 0. For p € [I,00], L € L, and f € LP(H?), define the composition
L*f = fo L. Then one easily checks that

1L fll ey = 1 | r ey @and | T(L* f)llr@arry = 1T ()|l rgatr)-

2.2. Annular decoupling. The extension operator 7" defined in satisfies more general mixed-
norm estimates of which is a particular case. As pointed out in [§] and the references therein,
the inequality
”T(f)HLfLT Ri+1) S ||< > Tf”LQ (H4) (2~3)
holds, provided ¢ € [2,00], 7 € [2,2d/(d — 2)] (r € [2,00] if d € {1,2}), and
2 d-1+60 d—-1+490

g—i_ r = 2 ’ <Q7T)7é(27oo)a

for some 0 € [0,1]. A pair (¢,7) of Lebesgue exponents satisfying these conditions will be referred to
as an admissible pair. Certain instances of inequality ([2.3)) together with a variant of the Littlewood—

Paley decomposition yield an annular decoupling inequality which we now prove.

We will use a dyadic frequency decomposition. To implement it, let N > 1 be a dyadic number.
Given f € L?(H%), we denote by fx the smoothed out restriction of f to frequencies |¢| ~ N. More
precisely, fix a smooth radial bump function 1 : R — [0, 1] supported in the ball {¢ € R? : [¢] < %
and equal to 1 on the unit ball {¢ € R : |¢| < 1}, and define

_ | ¢©r©, it =1,
fﬁa'{(wﬁ—w%»ﬂ& if N> 1.

Note that supp(f1) € {¢ € R?: [¢] < 2} and supp(fn) C {¢ € R?: & <|¢] < 2N}, for N > 1. The
following annular decoupling is in the spirit of 7], [10].

Proposition 2. Let d > 3 and (d+2) <p< 2(d_+11). Then

TN gy S 500 WTCNIE 2 |2y (24)
Ne2kzo

for every f € L2(H?).

Proof. By the Littlewood—Paley square function estimate, we have that

T, (2 i)

N€22>0

Indeed, F[T(f)](&,t) = M (€)~1f(€), where F, denotes the Fourier transform in the variable
x € R%. Standard Littlewood-Paley theory yields

(s ~M2wm 2

for each fixed ¢ € R. Estimate (2.5)) then follows from integration in the time variable ¢.

3 (2.5)

p
Ly ¢

)

L
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Since d > 3, we have that £ <2, and thus the sequence space embedding 0% < (2 implies

(S irunr) < (S i)’
N N
We can estimate

I, < [ (S DT PIECMECREED 9D ML

M N<M z,t
(2.6)

where the last inequality follows from Fubini’s theorem and symmetry. We control each of the
summands of the right-hand side of (2.6)) using the mixed-norm estimates (2.3). With this purpose
in mind, fix admissible pairs (go,70) and (g1,71) with g1 < p < go and 79 < p < r1, which additionally

satisfy

2 1 1 1 1
—=— 4 —=—4 —. (2.7)
P G @ o T1

Then, invoking Holder’s inequality twice, we have that

1T (far) T ()

21

g <|T Fan)ll 2 1T IT DTN

21 21

1T e NTUNNLe I Tl pgo o 1T o ez

ST NS TN E 1) ™76 farll o 1) T 7 vl oy

where the last line is a consequence of (2.3). Since (£) ~ M inside the support of fys, and similarly
for fn, from this and (2.7) it follows that

P N\~ p_ p_
ITOTUNE 5 (S) ™ I lE TN NE el s

Going back to (2.6) and noting that q% — % > 0, we use Holder’s inequality and the elementary

estimate 2ab < a® + 0% with @ = || fn||z2(me) and b = || far|| 12y, and sum a geometric series to

p
2
L

IN

finally conclude that

1

> S TN < st S (5 ) W arlzmuoll vl

M N<M M N<M
—2
S sup [T(/n)7 11172 (gaay-

This finishes the proof of the proposition. O

3. BEGINNING OF THE PROOF: ANGULAR RESTRICTION

Let {fy}nen € L*(H?) be an extremizing sequence for (L5). We may assume that || fn || r2ma) = 1
and that || T(fn)l e a+1)y — Hap as n — oo. Recall from the Introduction that each f,, is regarded
as a function on R%. Given K € N, consider a finite partition of the unit sphere S¥~! = {¢ € R? :
|€] = 1} into K disjoint regions,

K
-1 _ U Ck
k=1
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Given a function f: R? — C, let f*) := f 1p,, where R, = {€ € R : £/|¢| € Cf}. In this way we

split R? into K angular sectors. The triangle inequality implies

K
||T(fn)||LP(]Rd+1) < Z ||T(f12k))||Lp(Rd+1).
k=1

Observe that, possibly after extraction of a subsequence, there exists ko € {1,2,..., K} such that
{fﬁkO)}neN is a quasi-extremizing sequence for (L.5)). By this we mean that Hf,(lk‘)) L2 mey < 1, and

T () Loy > 61, (3.1)

for every n € N and some universal 6; > 0 (we may take for instance 6; = I;;{p ).

Under these circumstances, we will establish the existence of a universal ball B ¢ R? centered at

the origin, a universal d; > 0, and a sequence of Lorentz transformations { L, },cn such that
||L’>rkbf’r(7,k0)HL2(B) > 0,
for every n € N. This naturally implies

Ly frll2(m) = 02,

for every n € N. The latter inequality is of the sort which is required in order to invoke the machinery
from [3l Section 6] and conclude the proof of Theorem

Throughout the upcoming Sections [4] and [5] we will thus assume that our functions are supported
in a small angular region R; (the corresponding C; C S?~! is described at the beginning of Section

. Henceforth, such functions will be referred to as admissible.

4. CAPS, SECTORS AND BILINEAR ESTIMATES

As mentioned in the Introduction, one of the key ingredients in the proof of Theorem [I] is the

use of tools from bilinear restriction theory. Classical works on the topic include [I7, 18], 20].

In this section, we define the appropriate geometric regions and the notion of separation between

them, and establish the bilinear restriction estimates that will be of relevance in the sequel.

4.1. Definition of dyadic regions. Let d > 3 be a fixed dimension. Consider the (d — 1)-

dimensional cube
Ci={n=0n,n2,-..,M4-1) € R L. || < ¢, i=1,2,...,d—1}

of sidelength 2¢ centered at the origin. The quantity ¢ < i is a small fixed number which depends
only on the dimension d, and shall be appropriately chosen in due course. Given a dyadic number
M € 2%<0 let T'j; denote the usual dyadic decomposition of the cube C; into cubes of sidelength
2(M on R4~1. In particular, Ty = {C;}, and T'5; consists of M (4= essentially disjoint cubes (i.e.
the intersection of any two distinct cubes is a Lebesgue null-set). Let * : C; — S?~! be the lift of
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a point in C; to a point in the unit sphere S¢~! C R?, defined via
" 1
n* = (0, (1—[nl*)?).
For each cube @ € T'yy, let
Q ={n":neqQ}
denote the lift of the cube @), and let I'}, denote the collection of the lifted cubes of I"j;.

For the purposes of the present construction, we may think of distances in C; C S~! ¢ R? as
being almost the same as Euclidean distances in C; C R?~!. More precisely, given any constant

€1 > 0, we may choose ¢ = £(d,e1) > 0 sufficiently small, such that

In —¢| < dist(n*, (") < (1+¢€1)|n— (] (4.1)

for all n,¢ € C; € R%!. Here |- | denotes Euclidean distance in R?~!, and dist(-,-) denotes the

geodesic distance on S~ ¢ R?. We may take for instance e, = ﬁ.
Given N € 2%>0_ define the restricted dyadic annulus
Ay = {6 eR?: N <[¢| <2N and ¢/[¢| € CF Y, (4.2)

and set A; ;= {¢ € R9: |¢] <2 and ¢/|¢| € CF}.

Given N € 2%20_ let r € 2% be such that 0 < r < N. If 0 < r < 1, then we further decompose

the restricted annulus Ay into an essentially disjoint union of regions
AP = {ee Ay IN(1+3jr) < €] < LN +3( + 1)r)}, (4.3)

for j € J:={0,1,...,771 —1}. If 1 <7 < N, then we unify the notation below by letting J = {0}
and Ag\?) := An. In both cases we then have that #.J = max{1,7~1}.

Given N € 2220 and r € 2% such that 0 <7 < N, let M = r/N and consider
Dy = {rN" (k) € J x {1,2,... . M~=1}},

. ik
where the regions k = k%, are defined as

wi = {6 € AV ¢/lel € @i, (4.4)
and @, is a cube in the collection I'},. The center of a region xk = ng\’,]fr as in is defined to be
c(k) == $N(1+3min{l,r}(j + 1)) wi, (4.5)

where wj, € ST ig the lift of the center wy, of the cube Q) € I's.

If 0 < r <1, then an element of Dy, is called an r-cap at scale N. If 1 < r < N, then an
element of Dy, is called an r-sector at scale N. The Lebesgue measure of an r-cap at scale IV is

comparable to N7¢, and the Lebesgue measure of an r-sector at scale N is comparable to Nr¢~1.

By a region we will continue to mean a set which is either a cap or a sector. For fixed N,r,

the regions in Dy, are essentially disjoint. If » < N, then each x € Dy, is contained in a unique
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k° € Dy 2r, and we refer to xk° as the parent of k. In a similar spirit, each x € Dy has either 2d-1

or 2% children, according to the change of regime when r = 1.

The construction outlined above can be regarded as a hybrid between a dyadic decomposition
on R? (caps) and on R?~! (sectors), and is convenient to treat the elliptic and conic regimes in a

unified way.

4.2. Separated regions. We call two regions adjacent if their closures intersect, possibly at bound-
ary points. We say that two regions k, k" € Dy, are separated, and write k ~ &’ € Dy, if k, k" are
not adjacent, their parents are not adjacent, their 2-parents (i.e. grandparents) are not adjacent,
..., their (d — 1)-parents are not adjacent, and their d-parents are adjacent. Naturally, this assumes
that 7 < N/29, so that &, x’ indeed have ancestors up to the d-th generation. The main reason why
we climb up d degrees in the genealogical tree when defining separation is to ensure that certain
naturally arising geometric regions which contain «, " are also “separated”. In fact, as will become
clear from the proof below, around k generations up in the tree with k ~ log, d would morally
suffice.

If k, k" € Dy, are separated regions, then either: (i) the angular distance between ¢(x) and c¢(x')
(which is ~ N|w} — wy,|) is comparable to r; or (ii) the radial distance between c¢(x) and c(x’) is
comparable to Nr. Note that option (ii) is available if 0 < r < 2749

Defining the regions and the separation between them in this way, we ensure that the union in
the forthcoming expression is essentially disjoint, an important step in the proof of the refined

Strichartz estimate.

4.3. Bilinear estimates. If x € Dy, is a dyadic region as defined in the previous subsection, then

we set f. := f1,. The main result of this section is the following.

Proposition 3. Let d > 3 and Q(d%j% <p< %. Then there exists an exponent 1 < s < 2,
which can be taken arbitrarily close to 2, for which the following bilinear extension estimates hold,
uniformly in N,r, f,g. Let f,g € L?*(R%) be admissible functions, and let N > 1 be a dyadic number.
(i) If 0 <r <1 is a dyadic number, and k ~ k' € Dy, then
7T (90 5 oy S N3 552 oy i o (46)
(ii) If 1 <r < N is a dyadic number, and k ~ k' € Dy, then

2 2(d—1) 2(d+1)

ITCOT G0 5 gy 5o N F 77552 gy

LS(R‘Z)”9H’| LS(Rd)‘ (47)

Proof. We first establish the estimate in the elliptic regime 0 < r < 1. The proof consists of a
rescaling of the bilinear extension result of Tao [I7]. We start by constructing affine transformations
that map separated caps k ~ £’ € Dy, into unit separated regions.

Boosted caps. Let N > 1 and 0 < r < 1 be dyadic numbers, and let £ ~ k' € Dy,.. Let K, &’
denote the lifts of the caps &, & into the hyperboloid H?, defined as

E={(©):¢ert,  F={&()):{en} (4.8)
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Let &y = ¢(k) denote the center of the cap  as in , and let L¢, be the Lorentz transformation
defined in with v = §. Then L¢, maps &,< into the lifts X, XN of sets A\ = LZO(H) and
N o= LZO(KJ/ ) which are contained in r-separated cubes of sidelength comparable to r. Moreover,
we can take the center of the cube containing A to be LZO (&) = 0. Recall that the Lorentz boost
L¢, is volume preserving, det(L¢,) = 1. Moreover, on K Ux', the map LZO has Jacobian determinant
det(DLg )~ N~

Parabolic rescaling. The region {(¢, (£)) € R x R : ¢ < 1} is of elliptic type, in the terminology
of [I7, Section 9]. The parabolic rescaling

Pr(&7) = (5, 53),
maps the lifts X, X defined above to the lifts P, p into the compact hypersurface
—1
o= {(6 8 g S 1) (4.9)

of O(1)-separated sets p, p’ of diameter comparable to 1. Let P’ : R? — R denote the map
¢ +— r~1¢, whose Jacobian determinant satisfies det(DP?) = r~?. Note that P’ o P’ =1d, and

that P, is an affine map whose linear part has determinant equal to r—(4+2),

Bilinear extension of caps. With p, p’ as defined above, set f, := f1, and g, := gl,. Let &,
denote the Fourier extension operator associated to the hypersurface ¥, defined in (4.9)),
E(Pat) = [ e (e de,
Rd

with phase function given by ®,.(¢) := <T§T>{1. The hypersurfaces {3, }o<r<1 are uniformly elliptic

in the sense of [I§]. As a consequence of Tao’s bilinear extension theorem for general elliptic

hypersurfaces [I7, Section 9], the estimate

IE-(Fo)Er(go)ILs S Follzallgollce, @ > &, (4.10)

holds, uniformly in 0 < r < 1. Using the Riesz—Thorin convexity theorem to interpolate the latter

inequality with the trivial estimate
1€r (o) (g Mo < [ follLrllgprllir, (4.11)

we conclude the existence of sg < 2, such that
||5r(fp)gr(9p')||L§ S ol

for every s € (so,2). We claim that (4.6) follows from (4.12) by a standard change of variables,
which we now present in detail. Start by noting that f, = f. o L" o o P’_,. It follows that

Ls, (4 12)

Ls||9p’ |

1ol

Le = / |fa(L2 g, 0 Poa (€))[*d€ = (Nr) 1 i
p

(4.13)

since on x the change of variables £ = (P? o LZO)(C) has Jacobian determinant comparable to

det(DP})det(DLy ) ~r N1
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On the other hand, a straightforward computation shows that

Er(fo)(z,t) = de—is /

Rd+1

I EN (L, (6,7) 8(7 - (6)2)(€) dér,
and so another change of variables L_¢ (¢, 7) = (¢, 7') yields

En(fo) (@, t) = e [ e (FEO) b )12 (€)=
R TS

This in turn can be rewritten as
E(fp) () = r e R T(f (L2 () (LE (2, %)),
and so, in particular,
&0 (£,) (2, 8)] = =T (ful L2 ON((LL 0 D) (x, 1)),
where D, denotes the parabolic dilation D, (z,t) := (£, %). It follows that
1€ (p)E g |2y = 1 r 2| T fud L, (DT (g (L2, (D) - (4.14)

Since <LZ0 (&)) ~1if £ € kUK, inequality (4.6 is now easily seen to follow from (4.12)), (4.13) and
(4.14). This concludes the verification of the elliptic case.

For the conic case 1 < r < N, we can follow a similar path, invoking either Wolff’s bilinear
estimates for the cone [20] or a variant on Tao’s estimates for the paraboloid noted in [1I]. We
choose to take a shortcut, noting that Candy’s recent work [2] on bilinear restriction estimates for
general phases already implies the adequate rescaled substitute of in the conic regime. More
precisely, [2l Theorem 1.10] specializes to the inequality

1 d—1_df1
IT(fe)T (g )lLa S N 50 | full e llgnr 22, @ > %53 (4.15)
As before, this can be interpolated with the trivial
IT(f)T(gu )z S N2 Fiall o lgmr [ 2o

to yield (4.7)). The proof is now complete. O

5. A REFINED STRICHARTZ ESTIMATE

There exists a well-established program, using tools from Littlewood—Paley theory, Whitney-
type decompositions and quasi-orthogonality, to derive refined inequalities of Strichartz type from
bilinear restriction estimates, see for instance the works [I1, [9] 10} [14].

The goal of this section is to establish the following refinement of inequality which holds

for admissible functions in each dyadic annulus.
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Theorem 4. Let d > 3 and Q(df;ﬂ) <p< %. Then there exists v € (0,1 — %) such that the
following inequality holds

p_d+2yq_
ITUN oy S| sup (HETDOD( sup [T(EIF ooy )

<r<1 KEDN,
+ sup (" HEEDOD(Csup T ) ) (015D, (5.1)
1<r<N KEDN,r

for every dyadic number N > 1 and admissible function f € L*(H?).

Remark. Both exponents in r appearing on the right-hand side of inequality (5.1]) are favorable:

B d42 > ( (in case r < 1) and £ — 95 < 0 (in case r > 1), with strict inequality except for the

case of endpoint exponents.

We start with two technical lemmata which bound certain quantities that will naturally appear

in the course of the proof of Theorem [4

Lemma 5. Let d > 3 and M <p< %. Then the following inequality holds

H S Y rgar <f~>L2(Rd+l) SN ITGOT (e H“(W) (5.2)

0<r<N k~k'E€EDnN,r 0<r<N k~k'€EDnN,

for every dyadic number N > 1 and admissible function f € L*(H?).

Proof. Let k € Dy, be given, and let {; = ¢(k) denote its center as in (4.5). For every £ € &, one
easily checks that

|1€] = [€0]] < min{1,7}N, (5.3)

(€llol — € &) * S (5.4)

Indeed, inequality follows from the fact that the length along the radial direction of r-caps
and r-sectors at scale N is comparable to rN and to N, respectively, and inequality amounts
to the fact that the angle between the vectors £ and & is O(§). Now, given k ~ £’ € Dy, with
corresponding centers & = ¢(k) and &) = ¢(x'), the following estimate follows from the definition of
the separation relation ~:

leol — 16611, (ollesl— &0-0)* _ 655
N2 N TN’ ’
Let % and £’ be the lifts of the regions x and &’ into the hyperboloid H? as defined in (4.8).

We aim to use [14, Lemma 2.2] (which is a slightly more general version of [9, Lemma A.9] and
[18, Lemma 6.1]) to obtain the quasi-orthogonality proposed in ([5.2). Our first task is to understand
the geometry of the sumset

R ={E+E,(+ () (6€) enxw'} CRML



EXTREMIZERS FOR ADJOINT FOURIER RESTRICTION ON HYPERBOLOIDS 13

Using (5.3), (5.4) and (5.5, one may reason as in [3, Proof of Prop. 15] to further check thatﬂ

€+ (€)Y —(E+E) =1, (5.6)
€+ €| — |60 + €)]| < min{1,r}N, (5.7)
(€ +€lleo+ )| — (E+E) - (&0 +6))7 < (5.8)

Step 1. Observe that (5.6), (5.7) and (5.8) imply that the sumsets K + &’ are almost disjoint, in the
following sense: There exists a universal constant such that, for any pair (k, ') with K ~ &’ € Dy .,

the number of pairs (p, p’) with p ~ p’ € Dy 5 and
(F+R)N(p+7)#0 (5.9)

is bounded by this constant. In fact, if (5.9) occurs, then estimate (5.6)) implies the existence of
universal constants a,b € Z such that 297 < s < 2°r. Let 19 = c(p) denote the center of p. Once s

is trapped, then (5.3), (5.5) and (5.7) imply that the lengths of |ng| and || are not far from each
other, in the sense that

[I0] = l€ol| < min{1, 7}N. (5.10)

In a similar way, , and together imply that the angle between 19 and & is controlled,
that is

(Imol]&ol —770'50)% NES (5.11)

Expressions and imply that, given &y, the number of possible choices for 7y in the

dyadic decomposition is finite and universally bounded. For each possible 1y = ¢(p), the number of

regions p’ separated from p is also finite and universally bounded.

Step 2. Observe that
sSupp ft,m[T(fﬁ)T(fn/)] Ckh+ %,7 (512)
where F; , denotes the space-time Fourier transform. In order to use [I4], Lemma 2.2], it is convenient

to place the sumsets  + ¥’ inside regions which are geometrically simpler but still almost disjoint.
Expression (5.6) already implies that

R+ C{(6m) eRIXR: (ot el ST €2+ and Een+r} = Tow,  (5.13)

for some universal constants c1,cs. Note that equations and imply that the set k + &’
lies inside a rectangle centered at o := & + &), of height comparable to min{1l,r}N (the major
axis being aligned with the vector o) and of sidelength comparable to r. Denote this rectangle by
R, .. Consider a centered dilatiorﬁ Ry . = (14 &) - Ry v of Ry v, with o > 0 sufficiently small
and independent of (k, '), such that the sets

M

S = {(6,7) ERTXR: (€)a+ S % <7< (E)o+20% and £ €R; )}

3Here we use the notation (z)s := (s2 + |x\2)% Estimates (5.6)—(5.8]) also appear in [2| Proof of Theorem 2.6].
4More generally, given a parallelepiped P and A > 0, we denote by A - P the centered dilate of P. In other words, if
cp denotes the center of P, then A- P := A\(P —cp) + cp.
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still have bounded overlap. We may now decompose the collection {(k,%’) : k ~ '} as a union of
a finite (universal) number of subsets whose corresponding {¥, ./} are pairwise disjoint. By the
triangle inequality, it suffices to bound the sum over just one of these subsets, which we henceforth
denote by 7.

Step 3. We claim the existence of a universal number K with the following property: For every

(k, k") € T, there exist parallelepipeds {P, = Py(k, x')}£, with disjoint interiors, satisfying

K
Fn,n’ C U Pﬁa
(=1
and such that (14 3) - P, C ¥, for some universal g > 0.

Indeed, given a point v € R?, define T'(7) to be the tangent plane to the hyperboloid HY at the
point (7, {(7)2), i.e.
T(7) = A{(v,{1)2) +v: v € R wl(y/(7)2, ~ 1)}
Let e1,ea,...,eq41 denote the canonical basis vectors in R?*t!. Without loss of generality, assume
7o to be parallel to eq. At a vector teq, the slope of the tangent to the hyperbola {(teq, (t)2) : t € R}
equals t/(t)2. We may then consider a point v = tey sufficiently close to 7o, and the corresponding
hyperplane

TH) ={(v,(v)2) + (x1, 22, ..., 2q_1, T4, zqt/(t)2) with each z; € R}.

Lifting the rectangle R, .+ to the hyperplane T'() amounts to choosing |(z1, z2,...,2q—1)| S 7 and

xq ~ min{l,r}N. Set y = (z1,z2,...,24-1), and assume
ly| < csr and |z4| < g min{1,r}N, (5.14)

for some constants c3, ¢4 which are yet to be chosen. Under these assumptions, we may estimate the
largest displacement in the vertical direction e4y1 between the hyperplane T'(v) and the hyperboloid
H¢ as follows. Recalling that ¢t ~ N, this displacement is given by

trg 422 + |y2 (4 + t2)
4+12) N3 '

VA+ (E+29)% + Y2 — (\/4+t2+

By choosing the constants cs, ¢4 sufficiently small (but universal), we can bound this displacement
%%, where 6 < 1 is chosen so ¢y + 61% < 3%, ie. § < %,
the universal constants appearing in the definition (5.13)) of I',; ,.». This implies the existence of a

constant K, such that the original rectangle R, ./ can be decomposed into a union of K smaller

from above by § where c1,co are

rectangles {R, = Ry(k, ')}, of the same size having disjoint interiors and verifying conditions

(5.14). We again emphasize that, once c3 and ¢4 are chosen, the number K is universal.

For each ¢, let ay be the center of the rectangle Ry, and let T'(Ry) denote the lift of R, into the
hyperplane T'(c). Define the region Py = Py(k,x') C R4t as the sumset

Py :=T(Ry) + {seq1: 01% <s< (e + %1)%}
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Note that each P, is a parallelepiped lying above the hyperboloid H¢ of height comparable to r2/N.

Moreover, distinct elements of the family {Pg}f:l have disjoint interiors. Further observe that

K
R+ CTow C|J P (5.15)

=1
It follows from the construction of Ry, and {R,} that there exists 3 > 0, such that (1 + 3)- R, C
R}, ./, for every £ € {1,2,...,K}. From the aforementioned displacement considerations and the

choice of § (by possibly choosing a smaller 8, depending only on ¢, ¢2), we may guarantee that the

parallelepipeds {P;} further satisfy
(14+8) - P C Xy (5.16)

This concludes the the verification of claim.

Step 4. Define ¢y := 1p,. We claim that the estimate

I|.f * TZeHLq(RdH) < Ol pa(ra+rys (5.17)

which holds for any exponent ¢ > 1, follows from a simple application of the boundedness of the
Hilbert transform, yielding a constant C' = Cy 4 < oo that does not depend on ¢ nor on (k,~').
Indeed, the parallelepiped P, can be written as the intersection of 2¢+1 half-spaces,

2d+1

P = () H,
=1

d+1
and consequently 1, = Hf; 1g,. Boundedness of the Hilbert transform implies that each map
f — f*1p, is bounded on LI(R4T), and the claim follows since the Fourier transform takes
products into convolutions. By the support considerations from (5.12)) and (5.15)), we have that

K

T(f)T(far) = D (T(f)T(fur)) * P

{=1

By the triangle inequality, it suffices to establish the estimate

| (N’NZ;ET(TUK)TW)) 01 (MZ;ET ITGITEN g oy B19)
for each ¢ € {1,2,..., K}. From [14, Lemma 2.2], we have that
| X aaraen b,y S X NCEITED 0y 0 619

(k,w")ET (k,w")ET

In fact, the Fourier transform of each function (T'(f.)T(fx)) * ¥y is supported in Py, and as we
have seen there exists # > 0 such that the elements in the family {(1 4 3) - P} (. x/)e7 are pairwise
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disjoint. Moreover, for each (k,k’) € T, one easily constructs a function ¢ = (k, &) satisfying

supp(p) C (1+8) - P,
plx) =1, if x € P,
1211 (ra+1y < C,

where the constant C' is uniform in (k, £’). One just has to observe that each parallelepiped Py is

an affine image of the unit cube. Therefore (5.19) follows from a direct application of [I14], Lemma
2.2]. To finish, invoke (5.17) with ¢ = p/2 > 1 in order to obtain (5.18) from (5.19). The proof is

now complete. ([

Lemma 6. Letd23and% Spg%. Let1§s<2and0<’y<1—%. Then the
following inequality holds

> (W

0<r<N k€Dn,,

21— 1
S A [/ (s vt (5.20)

for every dyadic number N > 1 and admissible function f € L*(H?).

Proof. We may assume that || fy||r2 = 1. The strategy, suggested by the proof of [I, Theorem 1.3],
amounts to decomposing the function fy into low and high frequencies, depending on the size of
the region k. More precisely, write

N =Ly eim 4y st 1IN = IR AT

Set a := (1 — 7). To estimate the low frequencies, use Holder’s inequality to bound

2
”f]%L()S

which holds provided 2a > s, or equivalently v < 1 — i In this case,

Z Z \"f Ls(n) Z Z G 1HfN||L2“(n) (5.21)

0<r<N k€DnN,r O<T<N KEDN,»

n+1

1_1
2| 5l 2o (o),

|k

Let Vi, denote the volume of a region x € Dy . Recall that Vi, ~ N7r¢ when 0 < r < 1, and
that Vi, ~ Nr?~! when 1 < 7 < N. The right-hand side of (5.21]) can be estimated as follows:

a—1
S B /Iw<

0<r<N k€DnN,»

(VN,T)Q1> [F(&)]?de. (5.22)
0<r<N: 1

[FOIS(VNr)™ 2
Thus the sum on the right-hand side of (5.22]) amounts to two geometric series, both of which can

be estimated by their largest terms:

/£~N< 2 (VN,T)C‘l)f(i)Iz“d&S / POV dE = [ fwllZe = 1.

0<r<N: €l=N
1
[FOIS(VN,r) ™2
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Note that the latter inequality only holds provided o — 1 > 0, or equivalently v < 1 — %, which is a
valid constraint since p > 2.

To estimate the high frequencies, use Minkowski’s inequality to bound

S Y (W REw) < XY W R |

0<r<N KEDN.» 0<r<N K€D

which as before holds provided 2« > s. The right-hand side of this expression can be estimated as

before:
Yoo WETIR e S / < > <VN,T)5—1>|f<£)|Sd£
0<r<N KE€Dn., €l=N 0<r<N:
[F(OI>(VN,r) ™2
S [ OO Pdg = s = 1
[§]~N
This concludes the verification of ([5.20)). O

We are now ready for the proof of the refined Strichartz inequality.

Proof of Theorem[j) We recall the following simple geometric observation: Given dyadic numbers
N >1and 0 <r <N, and a region k € Dy ,, the number of regions x’ € Dy, which are separated

from k is universally bounded. In other words,
#{r' :k~K €Dn,} Sal (5.23)

Via a standard decomposition argument, see [Tl [I§], we have that

YooY TUIT(fe)

0<r<N k~k'€DnN,r

(SIS

1T(fN)IEe = (5.24)

p
L2

To verify this, recall the definition (4.2]) of the restricted annulus Ay, and consider the diagonal

I:={(n) € An x Ay : £ =n}.

Then the following Whitney-type decomposition is a consequence of the construction performed in
Section [t

(Ax x AN\T = U rxw. (5.25)

0<r<N k~kK'€DN, r

Identity (5.24) follows from this by writing || T'(fn)[%, = HT(fN)QHE

1T < Y. > ITFIT(fe)

0<r<N k~k'E€EDnN,r

». By Lemma we then have

\fp . (5.26)

On the one hand, each of these summands can be bounded by Hélder’s inequality as follows:

ITDT )3 S NTENTNTENENT ST Fa)I S (5.27)
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where v € (0,1) is a parameter to be chosen below. On the other hand, we can split the sum on
the right-hand side of ([5.26)) into two pieces, depending on whether 0 < r < 1lorl <r < N. Let us
focus on the first sum, that over caps. We claim that

S Y ITUIT(fe)

0<r<1 k~K'€EDN,»

2, SNEO ([ sup sup (b)) B0 1) |12
L2 0<r<1KkEDN,,

_2
x> > (sl
0<r<1 KEDN,,

This follows from inequality , the case f = g of the bilinear extension estimate , and the
observation that allows to bound the double sum >
to recall that the Lebesgue measure of an r-cap at scale N is comparable to Nr?

Lemma@then 1mpheb that the last factor on the right-hand side of inequality (5.28)) is O(|| fx ||p (=,

provided v < 1 — ;. As a consequence, the following inequality for r-caps at scale N holds:

Yo X ITUITe)

0<r<1 k~k'€EDN,r

2.)20 (5.28)

by a single sum EK. One just has

KR!

P g7d+2
£ < <sup sup () B0 (1) |17 )ansz(Hz)

0<r<1k€DnN,r

(5.29)

In a similar way, recalling that the Lebesgue measure of an r-sector at scale IV is comparable to
Nr=1 and using (£.7)) instead of (4.6]), one can show the corresponding inequality for r-sectors at
scale N,

>y ||T(fK)T(fnf)|]Eg,<v<sup sup (r)E-EDOD (5 ) |2 )||fN||’;J(HZ§,

1<r<N k~K'€DN,r L<r<N w€DN,r

(5.30)

under the same assumption v < 1 — %. Inequality (5.1]) follows from (|5.26]), (5.29) and (5.30f). The

proof is now complete. ([l

6. END OF THE PROOF: CONCENTRATION-COMPACTNESS

As we left off in Section |3 let {f,}nen C L2(H?) be an extremizing sequence for (1.5), with
I fallL2@ay = 1 for all n € N, and let {fflko)}neN be a quasi-extremizing sequence in the sense of
(3.1). Assuming without loss of generality that ky = 1, the sequence { f,gl)}neN belongs to our class

of admissible functions considered in Sections [ and [Bl

From Proposition [2 for each n € N, there exists N = N,, € 2220 such that

||T((fr(bl))N)) HLp(Rd+1) > 637

where 3 > 0 is a universal constant.
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If (dﬁ) <p< Z(derll), then Theorem [4| ensures for each n € N the existence of a dyadic number

r=Tp satlsfylng r < 29 for a universal constant a, and of a region x = x,, € Dy, such that

() o any = 8

where §4 > 0 is a universal constant. This implies at once that

H(fél))KHL%Hd) > Js,

where 05 > 0 is a universal constant. Set L, := L), where c(x) denotes as usual the center of
the region . Since r < 2, a standard computation shows that the image L’ (k) is contained in a

universal ball B C R? centered at the origin. Therefore
||L:1f7(11)||L2(B) > dg,
where dg > 0 is a universal constant. As already observed in Section [3] this plainly implies that

Ly frllL2(B) > d6-

2(d+2) 2(d+1)
d

This establishes the existence of distinguished region when <p<

2(d;r2) <p< 2(dd+11)7
2(d+2)
—a <

We can now invoke the machinery of [3, Section 6], which only works when
to arrive at the existence of extremizers stated in Theorem (1| in the non-endpoint range

p < 2(d+1) . We provide the details below.

By [3, Proposition 18], there exists (x,,t,) € R? x R such that the sequence {h, },en defined by

ha(©) = e € £, (6)

admits a subsequence that converges weakly to a nonzero limit, say h # 0, in L?(H?). For this

subsequence, possibly after extracting a further subsequence, [3, Proposition 19] implies
T(hy)(x,t) = T(h)(x,t), as n — oo,

for almost every (z,t) € R% x R. The existence of extremizers then follows from a straightforward

application of [4, Proposition 1.1]. This completes the proof of Theorem
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