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ABSTRACT. We establish optimal Lebesgue estimates for a class of general-
ized Radon transforms defined by averaging functions along polynomial-like
curves. The presence of an essentially optimal weight allows us to prove uni-
form estimates, wherein the Lebesgue exponents are completely independent
of the curves and the operator norms depend only on the polynomial degree.
Moreover, our weighted estimates possess rather strong diffeomorphism invari-
ance properties, allowing us to obtain uniform bounds for averages on curves
satisfying natural nilpotency and nonoscillation hypotheses.

1. INTRODUCTION

Let (P1, g1) and (P, g2) be two smooth Riemannian manifolds of dimension n—1,
with n > 2. In [27], Tao—Wright established near-optimal Lebesgue estimates for
local averaging operators of the form

Tf(zs) = / fOrmaO)alen O, Olndt,  feCO(P),  (L1)

with a continuous and compactly supported, under the hypothesis that the map
(22,t) = Ya, (t) € Py is a smooth submersion on the support of a.

Our goal in this article is to sharpen the Tao—Wright theorem to obtain optimal
Lebesgue space estimates, without the cutoff, under an additional polynomial-like
hypothesis on the map . We replace the Riemannian arclength with a natural gen-
eralization of affine arclength measure; this enables us to prove estimates wherein
the Lebesgue exponents are independent of the manifolds and curves involved (pro-
vided ~ is polynomial-like), and operator norms for a fixed exponent pair and
fixed polynomial degree are uniformly bounded. Our results are strongest at the
Lebesgue endpoints, where the generalized affine arclength measure is essentially
the largest measure for which these estimates can hold and, moreover, the resulting
inequalities are invariant under a variety of coordinate changes.

By duality, bounding the operator T in (1.1) is equivalent to bounding the bi-
linear form

B(f1, f2) == /M J1 (Yo (1)) fa () ala, 1) Vs, (t)]g, dva(z2)dt, (1.2)

where M := P, x R. For the remainder of the article, we will focus on the problem
of bounding such bilinear forms.

1.1. The Euclidean case. The Tao—Wright theorem, being local, may be equiva-

lently stated in Euclidean coordinates. Though we will obtain more general results

on manifolds (and also in Euclidean space) by applying diffeomorphism invariance
1
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of our operator and basic results from Lie group theory, the Euclidean version is,
in some sense, our main theorem.
Let 71,7 : R* — R®™! be smooth mappings. Define vector fields

X; = *(dW}A~--Ad7ro-L_1), (1.3)
where x denotes the map from n — 1 forms to vector fields obtained by composing
the Riemannian Hodge star with the natural identification of 1 forms with vector
fields given by the Euclidean metric. The geometric significance of the X is that

they are tangent to the fibers of the 7;, and their magnitude arises in the coarea
formula:

o=/ [ @@ aeod  9c(G 0 1)
7 (Q) S ()
where H! denotes 1-dimensional Hausdorff measure.
We define a map ¥ : R™ x R™ — R" by
U, (t) :=elnXro...0eltX1(x), (1.5)

where we are using the cyclic notation X; := Xj a2, j = 3,...,n. Given a
multiindex B, we define

b=b(8) = (3 148, 3 148) (1.6)

jodd jeven
pp(x) = | (97 det D, W) (0)| 777 (1.7)
(p1,p2) = (p1(b), p2(b)) = (1714357712—1, l>1+£722—1) (1.8)

Our main theorem is the following.

Theorem 1.1. Let n > 3, let N be a positive integer, and let B be a multiindex.
Assume that the maps w; and associated vector fields X;, defined in (1.3) satisfy
the following:

(i) The X; generate a nilpotent Lie algebra g of step at most N, and for each X € g,
the map (t,z) — e'X(z) is a polynomial of degree at most N ;

(ii) For each j = 1,2 and a.e. y € R"71, le({y}) is contained in a single integral
curve of X;.

Then with pg satisfying (1.7) and p1,p2 as in (1.8),

| - Jiomi(z) f2 oma(x) pp(x) d$| < COn|lfillpi 1 f2llpas (1.9)

for some constant Cn depending only on the degree N.

No explicit nondegeneracy (i.e. finite type) hypothesis is needed, because the
weight pg is identically zero in the degenerate case.

The weights pg were introduced in [25], wherein local, non-endpoint Lebesgue
estimates were proved in the C'° case for a multilinear generalization. In Sec-
tion 10, we give examples showing that the endpoint estimate (1.9) may fail in the
multilinear case, and that it may also fail in the bilinear case when Hypothesis (i),
Hypothesis (ii), or the dimensional restriction n > 3 is omitted.

Theorem 1.1 uniformizes, makes global, and sharpens to Lebesgue endpoints the
Tao—Wright theorem for averages along curves, under our additional hypotheses.
(As the Tao—Wright theorem is stated in terms of the spanning of elements from
g, not the non-vanishing of p, the relationship between the results will take some
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explanation, which will be given in Section 4.) Moreover, our result generalizes to
the fully translation non-invariant case the results of [8, 10, 15, 21, 23], wherein
endpoint Lebesgue estimates were established for convolution and restricted X-ray
transforms along polynomial curves with affine arclength measure.

1.2. Averages on curves in manifolds and other generalizations. As our
results are global and uniform, it is natural to ask whether they lead to global
results in the more general setting described at the outset, wherein operators are
defined for functions on manifolds. This is the content of our Theorem 9.3. Roughly
speaking, this theorem allows one to compute the X; and pg in local coordinates
and removes the polynomial hypothesis in (i) of Theorem 1.1. We leave the precise
statement for later because it requires some additional terminology.

Another natural question is the extent to which one can relax hypothesis (i).
In this article, we prove a local result (Proposition 9.1) for the mild generalization
considered in [13], wherein it is only assumed that there exist vector fields tangent
to the X; generating a nilpotent Lie algebra. A number of counter-examples to
other possible generalizations are given in Section 10.

1.3. Background and sketch of proof. We turn to an outline of the proof of
Theorem 1.1, and a discussion of the context in the recent literature.

We begin with the proof on a single torsion scale {pg ~ 2™}. By uniformity, it
suffices to consider the case when m = 0, and thus the restricted weak type version
of (1.9) is equivalent to the generalized isoperimetric inequality

1 1
Q] S [m (@) fme ()72, QS {pg ~1}. (1.10)
With b and p as in (1.6) and (1.8), b = (20—, o2 —1), so (1.10) s,

after a bit of arithmetic, equivalent to the lower bound

b1 b — 9
Qg 0122 g ‘Q|7 aj - |7T‘](S|2)‘ (111)

To establish (1.11), Tao-Wright [27], and later Gressman [13], used a version of
the iterative approach from [3]. Roughly speaking, for a typical point zo € €2, the
measure of the set of times ¢ such that e'*i(zg) € Q is ;. Iteratively flowing along
the vector fields X7, X5 gives a smooth map, ¥, (recall (1.5)), from a measurable
subset F' C R™ into Q. The containment ¥, (F) C Q must then be translated into
a lower bound on the volume of €2.

Tao-Wright deduce from linear independence of a fixed n-tuple Y7,...,Y, € g
(the Lie algebra generated by X1, X») a lower bound on some fixed derivative 9%
of the Jacobian determinant det D¥,,. For typical points ¢t € R™, we have a lower
bound |det D, (t)| 2 [t°||0° det D¥,,(0)], and this we should be able to use in
estimating the volume of €:

9 > \‘I’wo(F)|‘Z’/ | det DUy, (£)] dt 27| F|07 det DYy, (0) | max [¢7] 2 o,
F

Unfortunately, the failure of ¥,, to be polynomial in the Tao-Wright case and
the fact that F' is not simply a product of intervals means that this deduction is
not so straightforward; in particular, the inequalities surrounded by quotes in the
preceding inequality are false in the general case. More precisely, if ¥, is merely
C*, we cannot uniformly bound the number of preimages in F' of a typical point
in € (so the first inequality may fail), and even for polynomial ¥, , if F' is not an
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axis parallel rectangle, then the inequality |det DU, (¢)| 2 |t*| may fail for most
teF.

In the nonendpoint case of [27], it is enough to prove (1.11) with a slightly larger
power of « on the left; this facilitates an approximation of F' by a small, axis parallel
rectangle centered at 0, and (using the approximation of F') an approximation of
¥,, by a polynomial. These approximations are sufficiently strong that W, is
nearly finite-to-one on F' (see also [5]) and det DV, grows essentially as fast on
F' as its derivative predicts, giving (1.11). In [13], wherein the Lie algebra g is
assumed to be nilpotent, the map ¥, is lifted to a polynomial map in a higher
dimensional space, abrogating the need for the polynomial approximation. This
leaves the challenge of producing a suitable approximation of F' as a product of
intervals, and Gressman takes a different approach from Tao—Wright, which avoids
the secondary endpoint loss.

In Section 2, we reprove Gressman’s single scale restricted weak type inequality.
A crucial step is an alternate approach to approximating one-dimensional sets by
intervals. This alternative approach gives us somewhat better lower bounds for the
integrals of polynomials on these sets, and these improved bounds will be useful
later on.

An advantage of the positive, iterative approach to bounding generalized Radon
transforms has been its flexibility, particularly relative to the much more limited
exponent range that seems to be amenable to Fourier transform methods. A dis-
advantage of this approach is that it seems best suited to proving restricted weak
type, not strong type estimates. Let us examine the strong type estimate on torsion
scale 1. By positivity of our bilinear form, it suffices to prove

St [ g ome) omala)do S (32 B (3 27 B,

3.k {pp~1} g k

for measurable sets B, E¥ C R"™! j k € Z. Thus a scenario in which we might
expect the strong type inequality to fail is when there is some large set J and some
set IC such that the QJXE{, j € J, evenly share the LP' norm of f;, the 2’“XE§,
k € K evenly share the LP2 norm of f5, and the restricted weak type inequality is
essentially an equality

- 1
/ Xgi om ()X gy o m2(x) dz ~ |E] |71 | E5 Pz (1.12)
{ps~1}

for each (j,k) € J x K.

In [4] a technique was developed for proving strong type inequalities by defeat-
ing such enemies, and this approach was used to reprove Littman’s bound [16] for
convolution with affine surface measure on the paraboloid. This approach was later
used [8, 10, 11, 15, 21, 23] to prove optimal Lebesgue estimates for translation in-
variant and semi-invariant averages on various classes of curves with affine arclength
measure. Key to these arguments was what was called a ‘trilinear’ estimate in [4],
which we now describe. We lose if one E} interacts strongly, in the sense of (1.12)
with many sets E{ of widely disparate sizes. Suppose that E¥ interacts strongly
with two sets E{, 1 =1,2. Letting

Qi =y (B Ny H(B3) N {ps ~ 1},
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our hypothesis (1.12) and the restricted weak type inequality imply that mo(€2;)
must have large intersection with EX for i = 1,2; let us suppose that E§ = my(Q;) =
m2(2). Assuming that every s fiber is contained in a single X5 integral curve, for
a typical x¢ € €, the set of times ¢ such that e*2(zg) € €;; must have measure
about o := “%"k'“;
not Well—approxizmated by products of intervals centered at 0. In all of the above
mentioned articles [4, 8, 10, 11, 15, 21, 23], rather strong pointwise bounds on
the Jacobian determinant det DV, were then used to derive mutually incompat-
ible inequalities relating the volumes of the three sets, E?', E9*  E¥ (whence the
descriptor ‘trilinear’). In generalizing this approach, we encounter a number of dif-
ficulties. First, we lack explicit lower bounds on the Jacobian determinant. We can
try to recover these using our estimate 1 ~ |9” det D, (0)|, but this is difficult
to employ on the sets Fj;, since it is impossible to approximate these sets using
products of intervals centered at 0. Finally, in the translation invariant case, it is
natural to decompose the bilinear form in time,

CUNOES Y N B CER OGO

thus we have U, (F;) C Q; for measurable sets F;, which are

and, thanks to the geometric inequality of [9], there is a natural choice of intervals
I; that makes the trilinear enemies defeatable. It is not clear to the authors that
an analogue of this decomposition in the general polynomial-like case is feasible.

Our solution is to dispense entirely with the pointwise approach. In Section 5, we
prove that if the set 2 nearly saturates the restricted weak type inequality (1.10),
then  can be very well approximated by Carnot—Carathéodory balls. Thus, if F;
and FEs interact strongly, then F; and Fy can be well-approximated by projections
(via 71, ) of Carnot—Carathéodory balls. The proof of this inverse result relies on
the improved polynomial approximation mentioned above, as well as new informa-
tion, proved in Section 3, on the structure of Carnot—Carathéodory balls generated
by nilpotent families of vector fields. In Section 6, we prove that it is not possible
for a large number of Carnot—Carathéodory balls with widely disparate parameters
to have essentially the same projection; thus one set E5 cannot interact strongly
with many E{, and so the strong type bounds on a single torsion scale hold. In
Section 7, we sum up the torsion scales. In the non-endpoint case considered in
[25], this was simply a matter of summing a geometric series, but here we must
control the interaction between torsion scales. The crux of our argument is that
many Carnot—Carathéodory balls at different torsion scales cannot have essentially
the same projection.

Section 8 gives relevant background on nilpotent Lie groups which will be used
in deducing from Theorem 1.1 more general results, including the above-mentioned
result on manifolds. The results of this section are essentially routine deductions
from known results in the theory of nilpotent Lie groups, but the authors could
not find elsewhere the precise formulations needed here. In Section 9, we prove
extensions of our result to the nilpotent case and other generalizations. In Sec-
tion 10, we give counter-examples to a few “natural” generalizations of our main
theorem, discuss its optimality at Lebesgue endpoints, and recall the impossibility
of an optimal weight away from Lebesgue endpoints. The appendix, Section 11,
contains various useful lemmas on polynomials of one and several variables. Some
of these results are new and may be useful elsewhere.
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Notation. Constants are allowed to depend on N and may change from line-to-
line. Constants may depend on those that come logically before. Thus constants
in conclusions depend on those arising in proofs (or in lemmas used in the proofs),
which in turn depend on N and the constants in hypotheses. Further subscripts
will be used to denote other parameters on which constants depend. Capital letters
(usually C) will typically be used to denote large constants and lower case letters
(usually ¢) to denote small ones.

We will use the now-standard <, 2, ~ and the non-standard g, £, ~. We describe
their use using two nonnegative quantities A and B. When found in the hypothesis
of a statement, A < B means that the conclusion holds whenever A < C'B for any
C' (with constants in the conclusion allowed to depend on C'). In the conclusion,
A < B means that A < CB for some C. Later on, we will introduce a small
parameter 0 < € < 1, and many quantities depend on ¢ in some way as well. We
will use A < B to mean that A < Ce~YB for C quantified in the same way as
the implicit constant in the < notation. (In Section 7, this notation will depend
instead on a small parameter § > 0.) Finally A ~ B means A < B and B < A, and
A~ B means A g B and B T A. We will occasionally subscript these symbols to
indicate their dependence on parameters other than V.

2. THE RESTRICTED WEAK TYPE INEQUALITY ON A SINGLE SCALE

This section is devoted to a proof, or, more accurately, a reproof, of the restricted
weak type inequality on the region where pg ~ 1. The following result is due to
Gressman in [13]. (Uniformity is not explicitly claimed in [13], but the arguments
therein may easily be adapted.)

Proposition 2.1. [13] For each pair E1, E; C R~ of measurable sets,
Hps ~ 1} g (B Ny (Bo)| S |Bn| VP | B M/P (2.1)
holds uniformly, with definitions and hypotheses as in Theorem 1.1.

We give a complete proof of the preceding, using partially alternative methods
from those in [13], because our approach will facilitate a resolution, in Section 5,
of a related inverse problem, namely, to characterize those pairs (E7, Es) for which
the inequality in (2.1) is reversed. Our proof of Proposition 2.1 is based on the
following proposition.

Proposition 2.2. Let S C R be a measurable set. For each N, there exists an
interval J = J(N,S) with |J N S| 2 |S| such that for any polynomial P of degree
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at most N,
Y (1-e)j
JALEES S L PP (2.2)
i=0

The key improvement of this lemma over the analogous result in [13] is the gain
(%)“‘ﬂj in the higher order terms. This gain will allow us to transfer control

over [ |P| into control over the length of .J.

Proof of Proposition 2.2. If S has infinite measure, the left hand side of (2.2) is
infinite whenever it is nonzero. Thus we may assume that S has finite measure.
Replacing S by a bounded subset with comparable measure, we may assume that
S C I for some finite interval I. Now we turn to a better approximation.

Lemma 2.3. Given ¢ > 0, there exist intervals J, K C I with the following prop-
erties.

—-

1| ~ K| ~ dist(K, J)
lSnJlZ S

i SNK|Z ({Zhels].

| PR,
=

i

Proof. Let ¢ > 0 be a small constant, to be determined.
Starting from 7 = 0 and Iy = I, we use the following stopping time procedure.
Let m; := [log%(llgill)]. Divide I; = I} UI? U I} U I} into four non-overlapping
intervals of equal length, arranged in order of increasing index.
If

1SN > d27°mi|S NI,

for j =1 and j = 4, then stop. Set J = Iij7 where j is chosen to maximize |S N If\
and set K = I¥, where k € {1,4} is not adjacent to j. Then we are done, provided
SN 1| 2 |S].

If (say) [SNI}| < 27mi|SN ;| (the case where [SNTE| < /27| SN I;| being
handled analogously), discard I} and repeat the procedure on ;41 := IZ U I} U I}
Note that m;41 = m; — 1.

On the one hand, |I;| = 2(2)?|Io| tends to zero as i — oo, while on the other
hand,

i—1
L1 > 1505 = [ -¢2m9)18] 2 18],
j=0
where the last inequality is valid for ¢’ sufficiently small. Thus the process termi-
nates after finitely many steps. O

We apply Lemma 2.3 iteratively, N times, to obtain a sequence of pairs of
bounded intervals Ky, J; C I, K;11,Ji+1 € J;, 1 <i < N — 1, satisfying

S0 2 18]
1SN E| 2 (1) IS

Let m; := logQ(‘f;‘). We observe that m; > mo > --- > my.
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It remains to prove that if P is any degree N polynomial,

N
JIPI2 Y 1P e g 210 s, (23)
s )

We will repeatedly use, without comment, the equivalence of all norms on the
finite dimensional vector space of polynomials of degree at most N. (Examples
of norms that we use are |[P||L(o,1)), D_; |PU) (o) for a fixed ¢y € {[¢] < 1},
1Pl 21 (10,17)5 ||P||L(x,([§71]), | Pl o< ({]z|<1})> ete.) By scaling and translation, we can
map [0, 1] onto any closed interval, and the norms transform accordingly.

Multiplying P by a constant if needed, we may write P(t) = Hj.vzl(zf ¢;), where
the ¢; are the complex zeros, counted according to multiplicity.

First, suppose that dist((j, Jn) > 1oglJn| for all j. Then |P(t)| ~ [P(to)|
throughout Jy, so

N
/ B / P) 2 1Pl e iim) 18] ~ S 1P )] [ IS,
S SNJn

Jj=0

which dominates the right side of (2.3).
Now suppose that dist((1, Jn) < 165]/n|. We have that

N N—-1
1Pl Loe ) ~ D PO COITNE = 1In] Y (P (G| Tn )
j=0 j=0

N
~INIIP ooy ~ D NP noe ([T I

j=1

By construction, for each j > 2, dist((;, K;) < W%O|Ki| can hold for at most one
value of ¢. Thus there exists 1 < ¢ < N such that dist({;, K;) > ﬁ|K¢| for all j,
so |P(t)| ~ |P(t;)], for any t,t; € K;. Therefore

/ Pl 2 / P| ~ [P s |S 0V K| ~ [Pl (]S 1 K
S SNK;

N N (2.4)
2 Z IPI | oo ()| TP 1S NG| 2 Z [P oo () 207 SPHY,
j=1 j=1
which is again larger than the right side of (2.3). d

Proof of Proposition 2.1. We may assume that Fq, Fs are open sets. We take the
now-standard approach of iteratively refining the set

7T1_1(E1) N 71'2_1(E2) N{pg ~ 1}.

Since X; # 0 a.e. on {pg ~ 1}, 7; is a submersion a.e. on {pg ~ 1}. By the implicit
function theorem and hypothesis (ii) of Theorem 1.1, points x, 2’ at which 7; is
a submersion that lie on distinct X; integral curves cannot have w;(z) = m;(z2’).
Thus there exists an open set 2 C R” with

QCmy (B) Ny H(B2) N{pg ~ 1}, Q] ~ | (Br) Ny ' (B2) N {ps ~ 1},

such that for each y € R" ™1, W]_l({y}) N € is contained in a single integral curve of
X;.
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Define

Our goal is to prove that
b1 b
1 2 atay’,
where b = b(p) is as in (1.6); after some arithmetic, this implies (2.1). We may thus
assume that  is a bounded set.
We may write the coarea formula as

1] :/ / e (€% (o5 () de dy, @ CQ,
™5 ()

and we use this formula to refine iteratively, starting with j = n and Q,, := Q. For
x € ), we define

Si(x) = {t: e (z) € Q1.
Let o : m;(£2;) = €, be a measurable section of 7;, with further properties to be
determined later. If we define ¢;(z) € R by the formula x =: e (®Xi(o;(7;(z))),
we see that S;(x) +t;(x) = Sj(o;(m;(x))); in particular, both sides depend only on
7j(z). We further define

Jj(x) == J(N, Sj(z) +t;(x)) — t;(2),

where J(N,S) is the interval whose existence was guaranteed in Proposition 2.2.
We choose this somewhat cumbersome definition so that J;(x)+t;(x) depends only
on 7;(x) and |S;(x) N J;(x)| 2 |S;(z)|. Finally, we set

Qj*l = {.’E S Qj : ‘SJ(IE” > CIIO% 0e Jj(.’L')}, (25)

with C; sufficiently large. Note that 0 € J;(x) if and only if z € {eXi(z) : t €

Sj(x) N Jj(x)}-
We claim that [€2;_1| ~ [Q;|. Indeed,

|w:/ |&@@mw~/ 155(05 ()| dy
m;(Q;) ™5(27)

~/ 1505 (9)) 1 3 (05) | dy = 1951,
m; ()

where Qf := {z € Q; : |;(z)] > Cj_laj} (same constant as in (2.5)), and the
second ‘~’ uses Proposition 2.2.

We claim that that each €2; is open (possibly after a minor refinement). Since Q
is open, it suffices to prove that €2;_; is open whenever ); is open. By deleting a
set of measure much smaller than |2;|, we may assume that

Q= [J {9 (0;(y)) 1 y € Bast € Sa},
acA

where the B, are disjoint open subsets of R~ !, the S, are open subsets of R, and
(t,y) — eXi(o;(y)) is a diffeomorphism on B, X S,. (We make no hypotheses on
#A.) Then S;(e'i(cj(y))) = Sa +t and J;(e'i(0;(y))) = J(N, Sa) + t, for each
(y,t) € By X S4. By construction, there exists a subset A" C A such that we may
write
Q1= |J {9 (0j(y)) : y € Ba,t € S N J(N, Sa)},
ac A’
a union of open sets.
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Let zo € Qq, and for t € R™, define
Wy (1) = e %n o0 e X1 (). (2.6)
Define F; := S1(x0), and for each j =2,...,n,
Fi={{t t;)) eRI :t' € F;_y, t; € S;(V,, (t,0))}.

Thus for t € Fj, ¥y, (¢,0) € 5, 50 0 € J;(¥,(t,0)).
In particular, ¥, (F,) C €, so by Lemma 11.7,

Q] > [T, (Fu)| = / |det D, (1)) dt.

n

Since 0 € J;(¥,, (t',0)) for each ¢’ € F;, we compute

/ |det D, (t)| dt = / / |det DV, (t',t,)| dt,, dt’
Fn Fn—1 Sn(‘lj:r:o (t/,O))

2 aprtt / 07" det DV, (', 0)| dt’ (2.7)
f

n—1

> aﬁ”“ e afl'H \8? det DU, (0)] ~ all’lagz.

After a little arithmetic, we see that (2.1) is equivalent to Q| = of*ab?, so the
proposition is proved. O

We have not yet used the gain in Proposition 2.2; we will take advantage of
that in Section 5 when we prove a structure theorem for pairs of sets for which
the restricted weak type inequality (2.1) is nearly reversed. Before we state this
structure theorem, it will be useful to understand better the geometry of the image
under ¥, of axis parallel rectangles.

3. CARNOT-CARATHEODORY BALLS ASSOCIATED TO POLYNOMIAL FLOWS

In the previous section, we proved uniform restricted weak type inequalities at
a single scale. To improve these to strong type inequalities, we need more, namely,
an understanding of those sets for which the inequality (2.1) is nearly optimal.
In this section, we lay the groundwork for that characterization by establishing a
few lemmas on Carnot—Carathéodory balls associated to nilpotent vector fields with
polynomial flows. Results along similar lines have appeared elsewhere, [6, 17, 26, 27|
in particular, but we need more uniformity and a few genuinely new lemmas, and,
moreover, our polynomial and nilpotency hypotheses allow for simpler proofs than
are available in the general case.

We begin by reviewing our hypotheses and defining some new notation. We
have vector fields X1, Xo € X(R™) that are assumed to generate a Lie subalgebra
g C X(R™) that is nilpotent of step at most N, and such that for each X € g, the
exponential map (¢,7) — e'*(z) is a polynomial of degree at most N in ¢ and in z.

Lemma 3.1. The elements of g are divergence-free.

Proof. Let X € g. Both det De!* (z) and its multiplicative inverse, which may be
written det(De~'*)(e!*(z)), are polynomials, so both must be constant in ¢ and
z. Evaluating at t = 0, we see that these determinants must equal 1, so the flow of
X is volume-preserving, i.e. X is divergence-free. ([
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A word is a finite sequence of 1’s and 2’s, and associated to each word w is a vector
field X.,, where X(;) := X;, i = 1,2, and X(; ) := [Xi, X\w]. We let VW denote the
set of all words w with X,, # 0. For I € W", we define A\; := det(Xy,, ..., Xw,),
and we define A := (A1)rewn. We denote by |A| the sup-norm.

As in the proof of Proposition 2.2, we will repeatedly, and without comment,
use the fact that all norms on the finite dimensional vector space of polynomials of
degree at most (e.g.) N are equivalent.

Throughout this section, ¢ denotes a sufficiently small constant depending on N.

Lemma 3.2. Assume that |A;(0)| > 0|A(0)|, for some 6 > 0. Then for any w € W,
Ar(e® ()] ~ A1), [Ar(e = (0)] Z oJA(e ™ (0))],
for all |t| < cé.

Proof. By Lemma 3.1, X, is divergence-free. By the formula for the Lie derivative
of a determinant, for any I’ = (wf,...,w)) € W",

XAy = z": Arz,
i=1

where I is obtained from I’ by replacing the i-th entry with [X,,, X,]. Thus for
each k,

G A )] S AO)] £ 57 A (0)] (3.1)
As t + Ao e!¥w(0) is a polynomial of bounded degree, the first inequality in
(3.1) implies that |[A(e!*=(0))| ~ |A(0)| for |[t| < c¢. Moreover, (3.1) implies that
|4 X1 (et (0))] < 67HAL(0)], s0 [ A7 (et (0))] ~ [A7(0)] for [¢| < cd. The conclusion

of the lemma follows. O
For I = (wy,...,w,) € W", we define a map
@io (t1, ... ty) = etnXwn o0 et Xur (g0).

Lemma 3.3. Let I € W", and assume that |\ (0)| > §|A(0)|. Then for all |t| < cd,
| det DPG(1)] ~ [Ar o ®4(t)| ~ [Ar(0)], (3.2)
and |A o ®L(t)| ~ |A(0)].

Proof. By Lemma 3.2 and a simple induction, we have only to show that | det D®{ ()| ~
|A7(0)|, for all |¢t] < ¢d. Since the flow of each X,, is volume-preserving, we may
directly compute

det DBY(1) = det(Xou, (0), 67, x, Xua (), 18y 65 xu X (O),
where
¢xY (2) := De X (X (2))Y (¥ ().
Since
H0ixY = ¢ix[X, Y], (3.3)
this gives

107 det DD} (0)] < [A(0)] < 571 A7(0)] = 51| det DD} (0)],

for all multiindices 8. This gives us the desired bound on |det D®J(t)], for [t| <
cé. O
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Lemma 3.4. Assume that |A\;(0)| > §|A(0)|. Then ®} is one-to-one on {|t| < ¢},
and for each w € W, the pullback Y, = (®})*X,, satisfies |Y,,(t)] < 671 on
{Jt| < ¢d}.

Proof. We write D®y(t) = A(t, Po(t)), where A is the matrix-valued function given
by

A(ta l‘) = (qb*—tann T ¢tt2Xw2 le ($>7 e 7¢itann Xwn—l(‘r)7 Xwn (:L‘))

By the nilpotency hypothesis and (3.3), each column of A is polynomial in ¢, and
thus may be computed by differentiating and evaluating at ¢ = 0. Using the Jacobi
identity, iterated Lie brackets of the X,,, may be expressed as iterated Lie brackets
of the X;, and so

Pt X, ""b*—tmxw,-,H wy = Xu, + Z Pus,w () Xuw, (3-4)
wew
where each py, . is a polynomial in (¢;41,...,%,), with bounded coefficients and

Pw; w(0) = 0. By Cramer’s rule, for each w,
)\IXw = Z )‘I(w,i)X’ww (35)

where I(w, i) is obtained from I by replacing X,,, with X,,. Combining (3.4) and
(3.5), we may write
A= (Xu,, - Xu,)(In + A7 P),

where I, is the identity matrix and P is a matrix-valued polynomial whose entries
are linear combinations of the products pw, wAr(w,:)- Since py, . has bounded
coefficients and vanishes at zero, |p., (t)| < d on {|t| < ¢d}, and so by Lemma 3.3,

[P o®g(t)] S [Ar o ®h(t)] ~ [Ar(0)], (3.6)

on {|t| < ¢d}.
Recalling the definition of Y, in the statement of the lemma, Y, (0) = 5,
1<i7<n. Let
Y,, := Ar(0)7! (det D®})Y,,. (3.7)
By Cramer’s rule, Y, is a polynomial; we also have ?w(()) =Y, (0). We expand
Yw (t) = A(tv (I)O(t))_le © q)é(t)
= (In + A7 @GP 0 @5 () ™ (Xuy 0 BG(E), - -, X, 0 PG(1) ™! Koy 0 BY(D),
which directly implies
Yo, (1) = (L, + A7t o B (1) P o D} (1)) e, (3.8)
By (3.8) and inequality (3.6),
Y, — 5| S 1 (3.9)

on {|t| < ¢d}. By Cramer’s rule,
A1 >o<1>
Yy = Z A10¢10Yw"

while Lemma 3.4 bounds the coefficients; combined with inequality (3.9), we obtain
V] S 671 on {Jt| < cd}.
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By inequality (3.6), |% — 1] £ 1. Therefore,

Y, — 2151 (3.10)

on {|t| < ¢6}. The vector field Y, is a polynomial that satisfies Y,, (0) = %,
while (3.10) (and the equivalence of norms) implies bounds on the coefficients of

Yw,; taken together, these imply the stronger estimate
Yo, (8) = o3| S 07| (3.11)

det D®/ (¢

on {|t| < ¢d}. Similarly, | SYI0) ) _ 1| < 67 1|¢t|, whence, from the definition (3.7)

of Y, and (3.11),
|Yw7(t) - %| S/ 571|t|5
on {|t| < ¢d}. Therefore
|DgesnYun o0 e51Yur (0) = I,| < 671t t] < cd,

which, by the contraction mapping proof of the Inverse Function Theorem, implies
that

(815, 8n) — e Ywn o ... o1 Yw (0)
is one-to-one on {|t| < ¢6}. Finally, by naturality of exponentiation, ®] must also
be one-to-one on this region. O

Lemma 3.5. Let x; € R", j = 1,2, and assume that I; € W" are such that
A1, (x5)| > 0[A(z;)], j =1,2. Let 0 < p < cb. If ﬂ?:l <I>£’J({|t| < cdp}) # 0, then
7 ({It] < cdp}) C @22 ({[t] < p})-

Proof. By assumption, each element of ®21 ({|¢| < ¢dp}) can be written in the form

etan

with w; € W, j =1,...,3n, and [t| < 3cdp. Setting Y, := (@g)*Xw, Lemma 3.4
(together with the Mean Value Theorem) implies that

W3n Q «++ 0 ethwl (;1;2)’

|6t3nYw3n 0-+-0 etlywl (0)| <p

whenever [t| < 3cdp, and so the containment claimed in the lemma follows by
applying <I>£22 to both sides. ([

We recall that ¥, = @&{;2’1’2"“), and we define \Tlmo = @é%’l’z’l""). For g € Z%,
a multiindex, we define -

JP(x0) := 8% det DU, (0),  JP(x0) := 8° det DV, (0). (3.12)

Lemma 3.6.

AQO)] ~ 177 (0)] + 17°(0)]. (3.13)
E

Proof. The argument that follows is due to Tao—Wright, [27]; we reproduce it to
keep better track of constants to preserve the uniformity that we need.

Direct computation shows that the J? and J? are linear combinations of de-
terminants A7, and it immediately follows that the left side of (3.13) bounds the
right.

To bound the left side, it suffices to prove that there exists [¢| S 1 such that

A(0)] S | det DWo(t)| + | det DT (1),



14 MICHAEL CHRIST, SPYRIDON DENDRINOS, BETSY STOVALL, AND BRIAN STREET

which is equivalent (via naturality of exponentiation and Lemma 3.4) to finding a
point |s| < 1 such that

1 < |det Dge ¥ o -0 e51Y1(0)] + | det Dge*» Y"1 o 0 e51¥2(0)],

where the vector fields Y; are those defined in Lemma 3.4, the n-tuple I having
been chosen to maximize Ay (0).

By Lemma 3.4, [|[Yy|len (fjtj<epy S 1, for all w € W. By induction, this implies
that [V, (0)] S (Y (0)] + V2(0)]). Since [y, (0)] = 1, [¥1(0)] + [Y2(0)| ~ 1. Thus
(3.14) holds for k£ = 1, s = 0. Without loss of generality, we may assume that
|Y1(0)] ~ 1. Now we proceed inductively, proving that for each 1 < k < n, there

exists a point [(s1,...,Sk+1)] < ¢ such that
1~ ]01e* Y o 0e YL (O) A--- A Dpe®* o---0esY1(0)]; (3.14)
the case k = 1, s = 0 having already been proved. Assume that (3.14) holds for
some k < n, |s| = |s°] < c. Then (sq,...,s) > e ¥k o 0eY1(0), [s — 9 < ¢
parametrizes a k-dimensional manifold M, and the vector fields
Zi(e5Y% 0. 0 e5Y1(0)) i= 0,5 Y o0 -+ 0 e51Y1(0), i=1,...,k,

form a basis for the tangent space of M at each point.
Let us suppose that the analogue of (3.14) for k+1 fails. Then for all |s—s°| < ¢,
we may decompose Yy as

Yk+1(eskyko' 61Y1 Zaz z ‘”‘Y’“O 0631Y1 (O))—I—YL(eSkYkO' . _Oes1Y1 (0))7
(3.15)
with [|ai[|ev(s—soj<1p S 1, and [02Y+] = |22V 4] < ¢, for ¢’ as small as we

like and all || < N; otherwise, by equivalence of norms, the analogue of (3.14) for
k + 1 would hold. By construction, Z; = Y}, thus by induction and (3.15),

1ZUA - A Zig A Y (€Y 00 e51Y1(0))] < ¢,

for any word w with deg;(w) > 0, where i = k + 1 mod 2. By (3.14) and bound-
edness of the Y,

| det(Ya, ..., Y, ) (€575 001 (0))] < ¢,
for an (possibly different but) arbitrarily small constant ¢”. Thus
IAr(e%5X% o0 e IX1(0))] < ¢|A(0)],
which, by Lemma 3.2, contradicts our assumption that |A;(0)| ~ |A(0)]. O

We say that a k-tuple (wy,...,wg) € W is minimal if wy,ws € {(1),(2)}, and
for i > 3, w; = (J,w;) for some j = 1,2 and I < 4. It will be important later that a
minimal n-tuple must contain the indices (1), (2), and (1, 2).

Lemma 3.7. Under the assumption that |[A(0)| S > 4 |JB(0)|, there exists a mini-
mal n-tuple I° € W™ such that for all € > 0,
{a € Bo({Jt] <1}) : M po(@)] 2 A @)} = (1 = &) Wo({Jt] < 1})I. (3.16)

We recall that the implicit constants in the conclusion can depend on the implicit
constants in the hypothesis.
The proof of Lemma 3.7 will utilize the following simple fact.
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Lemma 3.8. Let P be a polynomial of degree at most N on R™. Then for each
>0,
{teT: [P(t)] < £ Pl S 240, 1= [—1,1]".

Proof of Lemma 3.8. Assume thatn =1, N > 1, and P(¢) = Hfil(t—wi). We may
assume |w;| < 2 for all 4, as for other 4, [t —w;| ~ |w;| on I. Thus A := || P|comy ~ 1.
The set {—£2A? < PP < ¢2A%} is a union of at most 2N bad intervals I on which
|P| < eA. For any interval I C L, ||P|cocpy > [PMIIN > IV, so a bad interval
has length || < e'/V.

Now assume that the lemma has been proved for dimensions at most n. Given
P, a polynomial of degree at most N on R, set

1
Q) ::/ |P(t' tyi1)|* dtpys, t' e R,

—1
a polynomial of degree at most 2N on R™. If | P(t)| < €| P|[con+1), then |Q(t')] <
6HP||2CO(H,,+1), or [P(t,t,)|? < €|Q(t')|. However, by equivalence of norms, |Q(t')| ~
1P, ')”200(]1)’ so [|Qllcoamy ~ HP||%O(Hn+1)7 and the conclusion follows from the 1
and n-dimensional cases.

O

\7\(0)|, where XI and A are defined using vector fields )N(w generated by the X :
KX;, i=1,2. (The constant K allows us to apply the technical lemmas above on
large balls.) By Lemma 3.4 (see also the proof of Lemma 3.5), for K sufficiently
large,

Proof of Lemma 3.7. Fix an n-tuple I = (wy,...,w,) € W™ such that |A;(0)] >

Wo({|t] < 1}) € 24({[tl < C}). (3.17)
With the vector fields Y,, defined as in Lemma 3.4 (using the X;, not the KXj,),
Lemmas 3.2 and 3.3 imply

|det(Ya,, ..., Yy, )| ~ 1, throughout {[¢t| < C}, (3.18)
provided K is sufficiently large.
We will prove that there exists a minimal n-tuple 19 = (w?,..., w?) such that
||det(ng’---7ng)||co({|t\<0}) ~ 1. (3.19)

Before proving (3.19), we show that it implies inequality (3.16).
By Lemma 3.2 |A(z)| ~ |A(0)| for all x € ®]({|t| < C}). Thus, unwinding the
definition (from Lemma 3.4) of the Y., (3.19) implies that

[Aro © ®fllcogiej<cy ~ [A0)] ~ [|A 0 Wol|coge<1y- (3.20)
By (3.20) and (3.17),
{z € Wo({|t| <1}) : [Apo(x)| < 0|A(2)[} € {z € @4({[t] < C}) : [Apo ()] < 6|A(0)]},

for 6 > 0. By the change of variables formula and (3.20), Lemmas 3.3 and 3.8,
our hypothesis and the equivalence of norms, and finally the change of variables
formula and Lemma 11.7,

{z € ®{({|t| < C}) : [Ap ()] S 5|A(0)]}]
< || det D& co(qej<epl{It] < C : [Apo 0 @F(t)] < 6l|Az0 0 B[lco((e1<cp
S 6YCIA0)] £ 61 det Dol (grej<ay) S 0V Wo({]t] < 1})].
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Setting § = ¢/e® with ¢ and ¢’ sufficiently large depending on C' and the implicit
constant in the hypothesis of the lemma yields (3.16).

It remains to prove (3.19). We will prove inductively that for each 1 < k < n,
there exists a minimal k-tuple (w?, ..., w?) such that 1Yo A== Ao [l o g <ayy ~
1. Boundedness of the Y’s and our hypothesis imply that |Y7(0)| ~ 1. For the
induction step, it will be useful to have two constants, ¢,dy > 0, depending only
on N. We will choose ¢ sufficiently small that the deductions below are valid, and
then choose dy sufficiently small (depending on ¢ and various implicit constants)
to derive a contradiction if the induction step fails.

Suppose that for some k < n, we have found a minimal k-tuple (w?,...,w}),
with w{ = (1), and some [t| < 1 such that
Vo (19) A== A Yoo (8°)] ~ 1. (3.21)

Set Wy = {w?,...,wp}.

By (3.18), we may extend Y,o0,...,Y,0 to a frame on {|t — t°] < ¢} by adding
vector fields Y,,,. Thus (after possibly reordering the w;) failure of the inductive
step implies that for each

_ Mm@} it k=1,
w e W}i = {Wgu{(z’w) = {172}7 w E W]?}, k> 1’

Yoo A= AYy0 AYy(t)] < Oy for all ¢ such that [t — t%] < c. Therefore we can write

k n

Volt) = S a, (OYus )+ S0 a0V, (1), weW),  (3.22)
i=1 ' G=kt1
where
. 1 1<i<k
4 _ . < ’ - - 3.23
lawllen (i—to)<cp) S {5% hel<j<n. (3.23)

Taking the Lie bracket of Y;, ¢ = 1,2 (or just Y7, when k = 1), with some Y,
we WL\ WY,

n

k k n
[Y;?Yw] :Zn(ai)yw? +Za?[Yi7Yw?]+ Z Yi(a’j)ij + Z aj[Y;7ij]7
i=1 i=1 j=kt1 j=k+1

and we see that (3.22-3.23) hold for
w € WE = WEU{(i,w) i€ {1,2}, w e Wi}
By induction, (3.22-3.23) are valid for each Y;,, w € W, so
| det(Ye, (t°), ..., Yu, (t°))] < 0N

(because the Y;,, must all lie near the span of Y,0,...,Y,0), a contradiction to
(3.18). m
For I = (wy,...,w,) € W"and o € S, a permutation, we set I, := (Wy(1), -+ Wo(n))-

Lemma 3.9. Assume that [A(0)] 5 >4 |JB(0)|. There ezist ¢/, C" such that for all
sufficiently small ¢ and large C, the following holds. There exists a minimal n-tuple
I € W", which is allowed to depend on the X;, such that for all € > 0, there exists
a collection A C Wo({|t| < 1}), of cardinality #A Sc.c 1, such that

() [Wo({t] < 1) NUseua Noes, @i (It < cc“H = (1 = o) To({[t] < 1})],
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and, moreover, for all z € A, 0,0’ € S, and y € ®L7 ({|t| < c£“}),
(ii) ®y" is one-to-one on {|t| < ¢=C"}, with Jacobian determinant

| det Dy (1)] ~ [Ar(y)| ~ [Ar(@)] Z [Ax)| ~ [A(@y (1)),
(i) Dl ({]t] < c=}) € By ({]t] < =),
Proof. By Lemma 3.7, there exists § £ 1 and a minimal I € W™ such that if
Gi={x e Wo({|t| <1}) : |As(2)] = 8]A(2)]},

then |G| > (1 — ¢)|Po({|¢t| < 1})|]. We may assume: that ¢’ is sufficiently small,
that £€¢" < ¢4, and that ce® < ¢332, Conclusions (i) and (iii) of the lemma for
any choice of such balls are direct applications of Lemmas 3.3, 3.4, and 3.5.

It remains to cover G by a controllable number of balls of the form

B.(p):= () ®F({ltl <p}), =€,
oSy

in the special case p = c£®. We will use the generalized version of the Vitali

Covering Lemma in [20], for which we need to verify the doubling and engulfing
properties. By Lemma 3.5, for all 0 < p < ¢/d, 0 € S,,, and x € G,

8 ({|t| < p}) 2 Bul(p) 2 8L ({Jt] < '3p}). (3.24)

Hence by Lemma 3.3, |B;(p)| = |Ar(z)|p™ = |A(0)|p™. Therefore the balls are in-
deed doubling. The engulfing property also follows from Lemma 3.5, since B, (¢/dp)N
B, (c'dp) # 0 implies that By, (¢'dp) C B, (p).

If we choose A C G so that {B,(c?c“)},e4 is a maximal disjoint set, then
Uzea Ba(c?e9) € Wo({[t] < 2}) and G C U, 4 Bo(ce®). Applying (3.24) and
Lemma 3.6,

#AIA0)|(c*9)" £ [Wo({[t] < 2})| < [A(0)].

4. CONNECTION WITH THE WORK OF TAO—WRIGHT

In this section, we translate Theorem 1.1 into results more closely connected
with the main theorem of [27]. We are also able to prove variants of Theorem 1.1
with weights that are, in principle, easier to compute.

The results of [27] are stated in terms of the Newton polytope associated to the
vector fields X7, X5. To define it (and two other, closely related, polytopes), we
need some additional notation. The degree of a word w € W is defined to be the
element degw € Z2, whose i-th entry is the number of i’s in w. The degree of a
k-tuple I € WF is the sum of the degrees of the entries of I. We denote by ch the
operation of taking the convex hull of a set. For E C R", we define

P :=ch U deg T+ [0, 00)2. (4.1)
Iewn:A\1Z0on E

Given x, we may define

Puo = Pluo}- (4.2)
Finally, given a set £ C R", we may define
Pai= () Pao- (4.3)

roeE
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In [27], Tao-Wright considered bounds of the form

|/f1 omi(z)f2 0 ma(2) a(x) dz| < Coxy s || fillpy [l f2lps (4.4)

with a a continuous function with compact support, 71, 7o smooth submersions (no
polynomial nor nilpotency hypothesis), and p1,ps € [1,00]. Such bounds are easily
seen to be true if p; ' 4+ py ' < 1. In the case p; ' + py ' > 1, we define

b(p) = (b1, b2) := (pfli;;_la p;1i;;1_1)~

Tao-Wright proved that (4.4) fails if (b1,b2) & Py, and holds if (b1,b2) €
int Ps?lpp ar

These results leave open two natural questions: what is the role played by the
behavior of a near its zero set, and what happens on the boundaries of these poly-
topes. This article answers these questions in some special cases. To understand
how, we first recall the connection between the polytopes defined above and the
weights pg.

Given a multiindex 3 € ZZ, we define

b(B) = (D 1+8;, > 1+5),
jeven jodd

and recall the definition (1.6) of b(/5) and (3.12) of Jg and jg. Proposition 2.3 of
[25] implies that

—1

(4.5)

Pop=ch|[( |J bBB+0,00)U( |J DbB)+[0.00)2)]. (46
B:J5(x0)#0 B:35(x0)#0

and further that for b an extreme point of Py,
o @)l ~ Y s+ Y [Ts(o)l. (4.7)
I:deg I=b B:b(B)=b B:b(B)=b

The comparison (4.7) is thus valid everywhere on E for b an extreme point of Py,
since both sides of (4.7) are zero when b is not an extreme point of P,,. Combining
these results with Theorem 1.1 and Proposition 2.2 of [25], we obtain the following
sharp result.

Theorem 4.1. Assume that hypotheses (i) and (ii) of Theorem 1.1 are in effect,
and that b := b(p) is an extreme point of Pg.. Then

2
sup |/ fiomi(x)a(x)dx| ~ H%H . , (4.8)
Frofaill fillpy =N F2llpy =1 an];[l J J wy OO ({z:wy, (x)#0})
where wy s the weight defined by
wpr= 37 [T (4.9)
I:deg I=b

Proof. The ‘<’ direction directly follows from Theorem 1.1, (4.7), and the comments
after (4.7). The ‘2’ direction is a direct application of Proposition 2.2 of [25] (a
different notation for polytopes was used in that article). O

Uniform upper bounds are also possible under slightly weaker hypotheses on b.
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Theorem 4.2. Under the hypotheses (i) and (ii) of Theorem 1.1, if b := b(p) is a
minimal element of Pg. under the coordinate-wise partial order on R2?, then

| | fiom(x) fa o ma(z) wy(z) do| S || fillp [ f2]lps-

]Rn
Proof. Set
To= Y Jsl+ Y sl
B:b(B)=b B:b(B)=b
By Lemma 3.6, for all a € (0,00)? and x¢ € R”, and deg I = b,
o’ Ar(zo)| S D" Ti(xo) = D ¥ I (). (4.10)
b b’ €Pghn

By our assumption on b and the definition of Pg,, there exists v € (0,00)? such
that b-v < b -v for all V¥ € Pg.. Replacing a = (aq,a2) with (6" aq,0"2az) in
(4.10) and sending § N\, 0, we see that

a’Ar(wo)| £ Y o T (o), (4.11)

b’ EF

where F := {0 € Pg. : V/ -v = b-v}. The face F is a line segment (possibly a
singleton),

F={+tw:0<t<1},
for some vector w perpendicular to v. Setting o := ¢, (4.11) is equivalent to

8% A (o) S 6% T, (wo),  6>0,

where b :=b° + fpw and FNN? = {8 + 0'w : 1 <i < m,}. By Lemma 11.1,
0;—00 00—0;
Ar(zo)| S Ji(@o) + Y (s (w0) 57 (T, (20)) 7 =2 (%) (o),
0;<00<0;
for all g € R™. Finally, by Theorem 1.1, complex interpolation, and the triangle
inequality,

1

|| from(x) faoma(x) | Jg (@) 7702 da| < | fillp |l folps-
Rﬂ,

Finally, we give the endpoint version of the main result of [27].

Theorem 4.3. Let a be a continuous function with compact support, and assume
that my,m2 obey the hypotheses of Theorem 1.1 and, in addition, that the m; are

submersions throughout suppa. If b(p) € PL,, ., then
| [ from(x) faom(x)a(x) de] Samms 1 f1]lpy | f2llps - (4.12)

R
Proof. Let 2y € suppa. By (4.6) and our hypothesis, there exist b, i = 0,1, and
0 < 6 < 1 such that b(p) = b? := (1 — 0)b° + 6b" and JZ(z0) ~a,my,ms 1.
By continuity, JE(m) ~a,m,m 1 for x in some neighborhood U of zy. By Theo-
rem 1.1,

2
|/Uf1 omi(z) f2 0 ma(w) dz| Samy ms H 1 £5ll s ;0 g€ l,00? (4.13)
j=1
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holds with ¢ = p’ computed from the b’ using (1.8). By interpolation, (4.13) also
holds with ¢ = p? computed from b? using (1.8). An elementary computation shows
that

(pitpa ) = (=)@ 1 =g ) +u(() 7 @)
Our hypothesis that the 7; are submersions on supp a and Holder’s inequality imply
that (4.13) holds whenever ¢;* 4 ¢; * < 1, and hence by interpolation, (4.13) holds
at p. Inequality (4.12) follows by using a partition of unity. O

5. QUASIEXTREMAL PAIRS FOR THE RESTRICTED WEAK TYPE INEQUALITY

The purpose of this section is to prove that pairs E7, F5 that nearly saturate
inequality (2.1) are well approximated as a bounded union of “balls” parametrized
by maps of the form ®!, with I a (reordering of a) minimal n-tuple of words.
Results of this type had been previously obtained in [4, 22] for other operators and
in [2] for a particular instance of the class considered here.

We begin with some further notation.

Notation. We recall the maps

@io (t) := elnXwn 0. 0 el Xwr(zq), I=(wy,...,w,) € W,
Vo = @5510’2"1’2"”), \IIIO t) = @&%’1’2’1"”) from the previous section. For a €
(0,00)2, we define parallelepipeds
QL :={teR": |t;| <al®¥ 1<i<n}, TeWn",
Qu = ((11’2’1’2"”), @a = Q(O?’I’Q’l"”). These give rise to families of balls,
Bl(zo;a) = @5, (Q4),  B™(w030) 1= Uiy (Qa) U Vg (Qar)-
For I = (wy,...,w,) an n-tuple of words and ¢ € S,, a permutation, we recall that

IU = (wa(l)a ey wa(n))'

Proposition 5.1. Let c,c’,C,C’ be as described in Lemma 3.9. Let E1, Eo be open
sets, and let € > 0. Define

Qi={ps ~ L3N (B) Ny H(Be), =

If
1 a1
| > e|Eq |7 | B2, (5.1)
there exist a set A C Q of cardinality #A Se,c 1 and a minimal n-tuple I € W"
such that

(i)
en|J () B (@iea) 2 10,
zeAoceS,
(i) For every x € A, 0,0’ € Sy, and y € B (x;cc), <I>£"' is one-to-one with
Jacobian determinant
|adee T det D®£”’| ~ a8\ (z)] = a® ~ |9,

I ’
on Qo . and, moreover, Ble(z,ceCa) C Bl (y;/e% ).

By applying Lemma 3.9 with C’e~% a3 X1, "~ ay X5 in place of X1, Xo, to
prove Proposition 5.1, it suffices to prove the following.
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Lemma 5.2. Under the hypotheses of Proposition 5.1, there exist a set A of car-
dinality #A < 1 such that
(i) 120U ea B"(@;C’ea)| 2 [0
(ii) For every x € A and y € B"(x;C'e=% ), 32, ad8 | \;(y)| = a.
Proof of Lemma 5.2. Inequality (5.1) implies, after some arithmetic, that

Q] 5 a”. (5.2)
Conversely, the conclusion of Proposition 2.1 is equivalent to || > af. We will
prove this lemma by essentially repeating the proof of Proposition 2.1, while keeping
in mind the constraint (5.2). In the proof, we will extensively use the notations
from the proof of Proposition 2.1.

In the proof of Proposition 2.1, we only needed to refine the set Q n times, but
here it will be useful to refine further. Letting o € Q_1 C Qy,

CI}mo(t) c Qn—b if tj S Sj—l(\Pxo(tla A ,tj_l,O)), j = 1, o, n
\IJZU(t) € Q,, if tj S Sj(\llxg(tlu . ,tj,hO)), j=1...,n.
Thus exactly the arguments leading up to (2.7) imply that

12 2" a?®)107 det DY, (0)] + ") |07 det DV, (0)].
5
As was observed in (2.7), the right side above is at least a’, and by (5.2), it is at
most '~ a®. Let Q0 := Q_;. We have just seen that

Z a?8)|9%" det DY, (0)] + ag(ﬁ,)|8ﬁl det DV, (0)] ~ o, zg € €,
ﬁ/
so by Lemma 3.6, N
Zadeg1|)\1(x0)\ ~ a’, xo € Q. (5.3)
I

Moreover, by the proof of Proposition 2.1, || ~ || & a’. Thus the proof of our
lemma will be complete if we can cover a large portion of Q using a set A C Q.

To simplify the notation, we will give the remainder of the argument under the
assumption that (5.3) holds on ; the general case follows from the same proof,
since (5.1) holds with € replaced by €. Our next task is to obtain better control
over the sets F;, S;(-) arising in the proof of Proposition 2.1. We begin by bounding
the measure of these sets.

If | S, (x)| > C'e= o, for all 2 in some subset Q' C Q with || > ||, we could
have refined so that Q,_1 C ', yielding

Q] 2 o (C'e=C ) / 108 det Dy, (¢',0)| dt’
Frn—1
> e alrale,
a contradiction to (5.2) for C” sufficiently large. Thus we may assume that |S, (z)|
o, on at least half of Q, and we may refine so that |S,(z)| < o, throughout Q,_;.
Similarly, we may refine so that |S,_1(z)| $ an—1 for each z € Q,_5. Thus, by
adjusting the refinement procedure at each step, we may assume that for each
1<j<n-1andeachtec F;_i,

155 (Wao (£,0))] = [{t; € R: (t,85) € Fj}| 5 o (5.4)
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We have not yet used the gain coming from Proposition 2.2. We will do so now
to control the diameter of our parameter set. The key observation is that we may
assume that > 4 6; and >, .., B; are both positive. Indeed, this positivity is
trivial for n > 4, because if t; = 0 for any 1 < j < n, then det D¥, (¢) = 0. Thus
the only way our claim can fail is if n = 3 and 8 = (0, &k, 0), but in this case,

07 det DU, (0) = 9,001 det DT, (0),

and we can simply interchange the roles of the indices 1 and 2 throughout the
argument.

Let j be the maximal odd index with 8; > 0. Suppose that on at least half
of Q;, |J;(z)| > C’e=¢"|S;(z)|. Then by adjusting our refinement procedure, we
may assume that z € ;_; implies that |J;(z)] > C'e="|S;(x)|; we note that this
implies |J;(z)| > C’e~% ;. In view of (5.4),

[e) zagﬁl---aff;“/ |95 - 97 det DV, (t',0)]

j—1

|75 (Wag (£,0)| (1-6)5 j+1
x (\s;(qug(t',o))\)( 18 (W (t,0))F dit!

> e abialz.
For C’ sufficiently large, this gives a contradiction. Thus on at least half of ;,
|J;(z)| £ o; = a1, so we may refine so that for each z € Q;_1, |J;(2)] $ 1.
Repeating this argument for the maximal even index j’ with £, > 0, we may ensure
that for each » € Qj 1, [Jj(2)| $ 2. Finally, replacing Q, with Quing; j/3—1 and
then refining, we can ensure that for zp € {29, 1 < j <n,and t € F;_,
|5 (Way (8,0))] = |[J(N,{t; € R: (t,t5) € Fj})| S oy (5.5)
Refining further, we obtain a set Q_,, C Qo, with |Q_,,| 2 ||, such that for each
xo € Q_,, there exists a parameter set
Fao C[-C'e 01,0 ] x [-C'e % 0, C'e 9] x - --
such that )
W, (Fn) € Qo N B(xo; C'e™ a),
Voo (Fu)| B 1B (w0; C'e ).
We fix a point z¢ € Q_,, and a parameter set F,, as above. We add z to A. If
(i) holds, we are done. Otherwise, we apply the preceding to

0\ U B"(z;C'e % a),
rzeA

and find another point to add to A. By (5.6) and || < o, this process stops while
#AS 1
This completes the proof of Lemma 5.2, and thus of Proposition 5.1 as well. [

(5.6)

6. STRONG-TYPE BOUNDS ON A SINGLE SCALE
This section is devoted to a proof of the following.

Proposition 6.1.

| from foomdz| < | fillp, 1f2llps-
{ps~1}
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Proof of Proposition 6.1. It suffices to prove the proposition in the special case

Fi=Y %, fil~1 i=12,
k

with the EF pairwise disjoint, and likewise, the E5. Thus we want to bound

STUHIF], = (o ~ 1) Ny (B) Ny L (ES).
7,k

We know from Proposition 2.1 that
0] S || | B
For 0 < £ < 1, we define
L) = () : bel BY|"/7 | BJ[10° < 0% < 24| B[/ B 1/,
We additionally define for 0 < 11,72 <1,
Le,m,me) = {(G, k) € L(e) : 27| B]| ~ 1, 22| ES| ~ o}
Let ,m1,m2 < 1 and let (j,k) € L(g,n1,m2). Set

gk gk

. Qj,k Qj,k
oﬂ’k:(al Lol )::(\ | | I)

|E7| 7 IES]

Proposition 5.1 guarantees the existence of a minimal I € W" and a finite set
AJk C 7k such that (i) and (ii) of that proposition (appropriately superscripted)
hold. (Since there are a bounded number of minimal n-tuples, we may assume in
proving the proposition that all of these minimal n-tuples are the same.) Set

Wrt=atn (J () B ealt). (6.1)
zeAIk oES,

Our main task in this section is to prove the following lemma.

Lemma 6.2. Fize,n,n2 S 1 and set £:= L(e,m1,12). Then

S m(@F) < (loge H|E]|,  jeiZ (6.2)
k:(j,k)eL
Y Im ()| < (loge |ES, ke (6.3)
j:(j,k)é[,

We assume Lemma 6.2 for now and complete the proof of Proposition 6.1. It
suffices to show that for each e, 71,9, if £ := L(g,m1,72), then

Y 2R S eonitg?, (6.4)
(G:k)eL

with each a; positive. Indeed, once we have proved the preceding inequality, we
can just sum on dyadic values of €,11, n2.
We turn to the proof of (6.4). It is a triviality that #L(c,n1,m2) < ny 'n;t, so

Z 2R QIF| ~ g Z 2K By |1/P1 |y |1/ P2
(k)L (k)L (6.5)
1 1 —1/p, —1/p!
~ e(#L)m Py S ey gy P
Define
q; ‘= (pl_l +p2_1)p27 1= 1727
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then since

_ _ b1 + by
p11+p21_ >1

Tbi by —1

we have ¢; > p;, i = 1,2, and ¢1 = ¢5. Applying Lemma 6.2,

Z 2RI ~ Z 21tk Q1| < Z 2IHE |7y ()| P1 | (QF) | 1/ P2

(7,k)eL (7,k)eL (5,k)eL
SO Pum@n/m) (3 e @hjele)
(5,k)eL (5,k)eL
< ni/prl/qlné/prl/qz
(3 P @) (YD 2@
(3,k)eL (5,k)eL
< log 6—1,'7%/111*1/11177;/?2*1/112 (Z 93P1 ‘E{ |) aq (Z 9kp2 |E§|) 1/q2
J k
< log 671771/171_1/‘1177;/172_1/‘12.

Combining this estimate with (6.5) gives (6.4), completing the proof of Proposi-
tion 6.1, conditional on Lemma 6.2. ([

We turn to the proof of Lemma 6.2. We will only prove (6.2), and we will take
care that our argument can be adapted to prove (6.3) by interchanging the indices.
(The roles of 1 and 75 are not a priori symmetric, because their roles in defining
the weight p are not symmetric.) The argument is somewhat long and technical,
so we start with a broad overview. _

Assume that (6.2) fails. By Proposition 5.1, the Q7% can be well approximated
as the images of ellipsoids (the Qi ;.x) under polynomials of bounded degree (the
@i .+). The definition of £ ensures that the a/**, and hence the radii of these ellip-
soids, live at many different dyadic scales (this is where the minimality condition
in Proposition 5.1 will be used). On the other hand, the projections 1 (7%) must
have a large degree of overlap (otherwise, the volume of the union would bound
the sum of the volumes). In particular, we can find a large number of Q7% that all
have essentially the same projection. These QFF all lie along a single integral curve
of X7. The shapes of the Q9% are determined by widely disparate parameters, the
a?* and polynomials, the @ij,k. We can take 23k = et”" X1 (z0), for a fixed x,
and we use the condition that the projections are all essentially the same to prove
that there exists an associated polynomial v : R — R™ that is transverse to its
derivative 7/ at more scales than Lemma 11.5 allows. B

We begin by making precise the assertion that many 7' must have essentially
the same projection. The main step is an elementary lemma.

Lemma 6.3. Let {E*} be a collection of measurable sets, and define E := |J, E*.
Then for each integer M > 1,

_ 1
Z|Ek|§M |E|—|—|E|%( Z |Eklm...ﬂEkl\/f|)M. (6.6)
k k1<---<kn
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Proof of Lemma 6.3. We review the argument in the case M = 2, which amounts
to a rephrasing of an argument from [4]. By Cauchy—Schwarz,

S = [ S <[ 1 )
k By E oy

1
|E|%(Z|Ek‘+2 Z |Ek1ﬂEk2|)2

k k1<ka

LN IB + B 420 (YD |BR A ER) 2,
k k1 <ko

IN

and inequality (6.6) follows by subtracting 1 >, |E*| from both sides.
Now to the case of larger M. Arguing analogously to the &k = 2 case implies that

M 1
STIEF S BT (Y S 1IN EM) (6.7)
k

=1 ki1 <...<k; I=1

Suppose that (6.6) is proved for 2,...,M — 1. Let 1 <i < M. For fixed k; < --- <
ki1,

Sur [BM 00 BRe|

S IEM Q- nEM
ki

—|—|Eklﬂ---ﬂEk“1|MI‘;:1( Z ‘Eklm_._mEkNIDﬁ
ki<o-<kn
Sy |EFn-nER 4+ Y |EM .0 ER
ki<--<kwm

By induction and (6.7),

SIEY Sar BT (S IEF 4 S0 [EM A BR )
k k k1<---<kn

which implies (6.6). O

Our next goal is to reduce the proof of Lemma 6.2, specifically, the proof of (6.2)
to the following.

Lemma 6.4. For M > M(N) sufficiently large and each A > 0, there exists B > 0
such that for all 0 < § < e, if jo € Z and K C Z is a (Blog §~')-separated set with
cardinality #K > M and {jo} x K C L, then

| () m(Q70F)| < A7gA27Iory, (6.8)
ke

Proof of Lemma 6.2, conditional on Lemma 6.4. We will only prove inequality (6.2).
The obvious analogue of Lemma 6.4, which has the same proof as Lemma 6.4, im-
plies inequality (6.3).

Fix M = M(N) sufficiently large to satisfy the hypotheses of Lemma 6.4 and
fix A > Mp,. Now fix B = B(M, N, A) as in the conclusion of Lemma 6.4. Let



26 MICHAEL CHRIST, SPYRIDON DENDRINOS, BETSY STOVALL, AND BRIAN STREET

§ := min{dp, e}, with §y to be determined, and let Ky C Z be a finite (Blogd1)-
separated set with {jo} x Ko C L. By Lemma 6.3, Lemma 6.4, then the approxi-
mation (#X°) ~ps (#Ko)™ and the definition of £,

~ . : s M -—1 ~ .

S w0 Sar (BRI IBP (ST () m(@R))

keKo KCKo;#K=M kek (6.9)
Sar [EP| + |BJo| 5 Ko (A1 64 | B0 |) 31

Quasiextremality and the restricted weak type inequality give
S| B [71 | EB|7 < 10°% | ~ [V0K] < [y ()| 7Y | ES |75,k € Ko
whence N _
37 m(QIF)| 2 #Koo" EL). (6.10)
kEK)

For 6y = do(p1, A, M) sufficiently small, §7* > CM(A_HSA)%, with Cy as large as
we like, so inserting (6.10) into (6.9) implies

D m (@) Sar B (6.11)
keKo
Since K was arbitrary and p;, M, A, B all ultimately depend only on N alone,
(6.11) implies (6.2). O

It remains to prove Lemma 6.4.

Lemma 6.5. For M = M(N) sufficiently large and each A > 0, there exists
B > 0 such that the following holds for all 0 < 6 < e. Fix jo € Z and let L C Z
be a (Blogd—1)-separated set with cardinality #K = M and {jo} x K C L. Let
ziok € Qiok ke K. Then

| ﬂ 71 ( ﬂ Blo(zdok 5 ad0R))| < A7LgA2Iorry, (6.12)
keK o€Sy,

We note that once the lemma holds for M = M (N), it immediately holds for all
M > M(N) as well.

Proof of Lemma 6.4, conditional on Lemma 6.5. By definition (6.1), each Qiok is
covered by Ce~¢ balls of the form Noes, Blo (2, ce€alo-*); in fact, by the proof of
Proposition 5.1, it is also covered by C6~¢ balls Noes, Bl (2, c6%ado*), for each

0 <6 <e Thus ek 71 (Q90F) is covered by (C6~)M M-fold intersections of
projections of balls, so (6.12) (with a larger value of A) implies (6.8). O

The remainder of the section will be devoted to the proof of Lemma 6.5. We will
give the proof when § = ¢; since an e-quasiextremal /0% is also §-quasiextremal for
every 0 < § < g, all of our arguments below apply equally well in the case § < €.
(We recall that allowing the more general parameter ¢ instead of € gave us slightly
more technical flexibility in the proof of Lemma 6.2 from Lemma 6.4.)

The potential failure of 71 to be a polynomial presents a technical complication.
(Coordinate changes are not an option in the non-minimal case.) By reordering
the words in I = (wy, ..., w,), we may assume that w, = (1). Fix kg € K, and set
xo = z7°k0 . We define a “cylinder”

C:= @QIEO(U), U:={{t' ty): (', 0)€ Qgscamko}.
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Set Uy := {(t',0) € U} and define

Up:={teU:t,>0and, forall 0 <s<t,, & (¢ s) ¢ @ (Uo)},

U_:={teU:t,<0and, forall 0> s>t,, & (¢ s) ¢ @ (Uo)},
and Co := ®L (Uy), C+ := ®L (U2).
Lemma 6.6. The map <I>£O s monsingular, with

| det D<I>3160| ~ Ar(zg) = (afokoyb—desl
on U. The sets Ux are open, and @éo is one-to-one on each of them. Finally,
CCCLUC_UCyUCy,
where Cy := ®L_(OU).
Proof of Lemma 6.6. Since X7 is divergence-free,
det D@L (t) = det D®L (t',0),

and thus the conclusions about the size of this Jacobian determinant follow from
Proposition 5.1.

By conclusion (ii) of Proposition 5.1 and continuity of ®£ , we see that Uy is an

open set containing
{(t' 1) : (t',0) € Quecpioko 0 < tt, < ceCadoko},

Suppose t,u € Uy, ®L (t) = ®L (u), and u, < t,. Then ®L (¥',t, — u,) =
®L (u',0). If t, = up, then t = u, because ®L is one-to-one on Q..cqioko 3
(v',0), (t',0). Otherwise, (t',t, — un) € Uy, so ®L (¢ t, — up) = ®L (v/,0) is
impossible. Thus <I>£0 is indeed one-to-one on U.

Finally, let ¢t € U, with ¢, > 0 and ¢ ¢ U;. We need to show that ®L (t)
C+ UCyUCy. The curve {®L (¢',s) : s € R} intersects Cy a bounded number of
times, so, by the definition of U, there exists some maximal 0 < s < ¢,, such that
®L (¢, s) = @ (u/,0), for some (v/,0) € Ug. Thus ®L (t',t,) = ®L (v, t, — ).
If s =ty, (W,0) € OU, or (v/,t, —s) € Uy, we are done. Otherwise, there exists
some 0 < r < t, — s and (v/,0) € Uy such that ®L (v/,r) = ®L (v/,0), whence

m

Py (', s+ 1) = DL (v/,0), contradicting maximality of s. O
On Uy, <I>JICO has a smooth inverse, and we define a map 7; on C4+ by
Fy i ((aok) 9o (@I )T, ., (aoko) ~des (@1 )1 ).

Lemma 6.7. Define
F(t') =m0 ®L ((ce¥aloto)deawny, ... (ceCalokoydeswny, (), [t'] < 1.
Then F is a bounded-to-one local diffeomorphism satisfying | det DF| = |E¥°| and
mle, = Fomile,-
Proof of Lemma 6.7. Let
Qb cioro =1t (£',0) € Quecaiono }-
We begin by proving that ¢’ — m10®Z (#',0) is bounded-to-one on Q By the

ceCaioko "
implicit function theorem, the definition of X, and hypothesis (ii) of Theorem 1.1,
for every y € R?— 1, T 1(y) intersects at most one nonconstant integral curve of

Xi. Therefore, since X; is nonvanishing on C, if m o ®1 (v/,0) = m o ®L (¢,0)
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for some ' # ', we may assume that ®L (¢',0) = ®L (v, u,) for some u, > 0.
By Lemma 11.7 and det D@io # 0 on U, given t' € Qigcamko, there are only a
bounded number of such u’.

Our definition of 71 implies that 71 = F o7 on Cp, and hence on all of C (since

both sides are constant on X;’s integral curves).
Let A C {|t/| < 1}. Then

B=7 (A)n{@L (t) 1t € U, [tn| < cc%afo™}

equals the image

{®L(t) : ((ceCafokoy=deawny,  (eeCloko)=degwn—1y y e A |t,| < ce€adoko},
and hence, by Proposition 5.1, has volume
|B| & (a7F0)de8 T\ (20)]| Al & |70 Al. (6.13)

By the definition of B, the coarea formula, (6.13), and the definition of aJoko
[F(A)| = [m1(B)| ~ (ad**) "} B| & (af*™) 7! |@70F| | A] = [E{||A].

The estimate on the Jacobian determinant of F' follows from the change of variables
formula. O

The next lemma, allows us to replace C with the domain of 7.

Lemma 6.8. If (6.12) fails for some M, A, B,§ = ¢ > 0, jo, K, {27°F } ek satisfying
the hypothesis of Lemma 6.5, then there exists K' C K, of cardinality #K' ~ M,
such that
| () 7€y () B (a7, ccCadoh))| > A7, (6.14)
ke’ €Sy
or such that (6.14) holds with ‘=’ in place of “+.” Here the quantity A depends on
the corresponding quantity in Lemma 6.5 and N.

Proof of Lemma 6.8. For k € IC, set

B* .= ﬂ Bl (giok; ce@qdok).
ocES,

Since 71 (B*0) C 11 (B! (z, cc€ ao*0)), our hypothesis that 7, fibers lie on a single
integral curve of X implies that ()¢ m1(B*) = Nexc m1(CN B¥). The projection
71(C) has measure zero. For a.e. y € (\yex m1(B"), 71 (y) N BF = @1, (0, J) for
some set J C R having positive measure; thus, | (e 71(B*)| = | Njex 71 (B¥\Co)|.
Putting these two observations together with Lemma 6.6 and using standard set
manipulations,

| ﬂm(CﬁBkﬂ:\ U mﬂ'l(C.kﬂBk)L
kek ec{+,—}< kek
Thus if (6.12) fails, there exists a decomposition K = K4 U K_ such that
min{| m 71 (Cy N B, | ﬂ 7 (C_ N BF)|} > A™leAo=doriy,
ke kek _

One of K, K_ must have cardinality #/Ks 2 M; we may assume that the larger
is K4 =: K. Inequality (6.14) then follows from Lemma 6.7 and the definition of
L. O
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The next lemma verifies that a slightly enlarged version of each B¥ has large
intersection with C,..

Lemma 6.9. Assume that (6.14) holds, and let k € K', y7°F € B*, with B* defined
as in the proof of Lemma 6.8. Set

GF:=c,n m Ble (yfok £ qdoky.
og€eSy

Then |G*| Z A=1e?|B*| and B*nC; C G*.

Proof of Lemma 6.9. By conclusion (i) of Proposition 5.1, B¥ N Cy C G*. Let
x € B*NC,. Solong as x ¢ Cy (which has measure zero), e!X1 (x) € C, for all except

finitely many positive values of ¢ (i.e. except for those t for which e*X1(x) € Cp).
Additionally,

tXl ﬂ BI jok Cé‘ ajok)
b
ocES),

for all |t| < ce€alok, so e!Xi(z) € GF for t in a set of measure 3 a/°F. By the

coarea formula, then Lemma 6.7 and (6.14), the definition of a/°*, and finally
Proposition 5.1,

|Gk| e j°k|ﬂ'1(Bk NCy)| = 1€Aa{“k|E{”| ~ A_1€A|Qj°k| ~ A_15A|Bk|.
O

To motivate the next lemma, we recall that our goal is to show that a certain
inequality holds at many points of the form et’" X1 (z9) € B¥. This will be possible
because the set of y/* € B* at which the inequality fails must be very small, and
hence have small projection.

Lemma 6.10. Under the hypotheses and notation of Lemma 6.9, there exists a
subset G¥ C G* such that |GF \ G*| < D~1eP|G¥|, with D = D(N, A) sufficiently
large for later purposes, such that for all x € G,

| D7y (z)(adok)deewi X, (z)| Sa 1, 1<i<n-—1 (6.15)

Proof of Lemma 6.10. To simplify our notation somewhat, we will say that a subset
Gk C G* constitutes the vast majority of GF if |GF\ G*| < D~1eP|G¥|, with
D = D(N, A) as small as we like.

Taking intersections, it suffices to establish the lemma for a single index 1 <17 <
n — 1. We recall that w; # (1). Fix a permutation o € S,, such that o(n) =i. By
construction, G¥ C Bl- (xj‘)k, e’ oﬂ”k) By Lemma 6.9,

| BLo (a90F, e a”k)ﬂC+| 2 A | Bl (z9oF; e Clajok)|,

so our Jacobian bound, |det D<I>Ijok| ~ [Ar(x7°%)| on QC 7ot o> implies that for
the vast majority of points z € G¥, e!Xv(z) € C, for all t € E,, E, some set of
measure |E,| Za (afok)deswi,

By Lemmas 11.8 and 11.9, F, can be written as a union of a bounded number
of intervals on which each component of %%1(6”(%1 (z)) is single signed. Thus,
using the semigroup property of exponentiation, we see that for the vast majority
of x € G¥, there exists an interval J,, 9 0 of length |J| Za (afoF)deewi guch that

et wi(z) € C4 and the components of 47 (e**w: (z)) do not change 51gn on J,.
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Let z € G* be one of these majority points. By the Fundamental Theorem of
Calculus and

T (e wi(z)) C7(Cy) C{u e R™1: |u| < 1}, t e Jy,
combined with the above non-sign-changing condition,

/\dtm( )| dt ~ |/ 43 (X (2)) df] < 1.

Jx

Thus on the vast majority of J,,

SR @) Sa 1l S (008w

dt
The conclusion of the lemma, follows from the Chain Rule and our Jacobian estimate
on q)ljo - U

Finally, we come to the main step in deriving the promised contradiction.

Lemma 6.11. Under the hypotheses and notation of Lemma 6.10, there exist a
point y° € B*o and times t°F € R, k € K' such that for any 1 < j < n and any
choice of 1 <iy <---<i;<n—1and ke K,
J
4ok ; . jok
|\ D (™ X () (k) X, (X ()] a1 (6.16)
=1

Proof of Lemma 6.11. Let G* be as in Lemma 6.10. For k € K/, and D = D(N,A)
as large as we like,

FGH\ )] S (%) IGR\ G < DD ()1 GH| 5 D 1P,
Thus if D = D(N, A) is sufficiently large,
| MG\ G| < 34712,
ke’
80 ek T (G*) is nonempty. Thus there exists a point y° € G* and times {t/*}

such that et X1 (y0) € Gk, k € K. We may assume that 0% = 0, and we set

= e )

By the Chain Rule and basic linear algebra, and then our Jacobian estimate on
det DL 209

\/\Dm )Xo, (4")]

= i (@?) 748 det D(@L0) T ()] det(Xu, (47, - X, ("))

- ko — deg 1 1A (4")]
aJOkO ajok[) deg[|17.
1 ( ) |)\I($O>|

By (ii) of Proposition 5.1 and the definition of a/*,
(@) BN (5]~ (a?F)" = (08| = oM B,
for all k, so

k
ajl'okf)(ajoko)fdeglp‘f(y )| ~ ajl'ok(ajok)fdegl.

|Ar(z0)]
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Putting these inequalities together
n—1
|\ DR () @ity X, () ~ 1,
i=1

and by (6.15), this is possible only if (6.16) holds. O
Finally, we are ready to complete the proof of Lemma 6.5.

Proof of Lemma 6.5. Let
(1) i= DT (e (%)) X2 (" (y0)) = DT (y%) De™ 1 (e (4°)) Xa (e ().
Then ~ is a polynomial, and
7'(t) = D7 (y") De™ ¥ (e (%)) X2 (e (%)) = D (e (4°) Xa2(e"* (0)).-
Thus by Lemma 6.11,
() ma (@3F) 7 () A )] ma (@)Y (1)) (6.17)
By the definition of £ and a bit of arithmetic,

jok oo 75 ok
ay't e en{t 270, 20,

and thus for B sufficiently large, (6.17) contradicts Lemma 11.5. (]
7. ADDING UP THE TORSION SCALES

In this section, we add up the different torsion scales, p ~ 27" thereby com-
pleting the proof of Theorem 1.1.
As in the previous section, we consider functions

fi:Z2kXEf7 Hfl pi'\’lv i1=1,2,
k

with the EF pairwise disjoint (as k varies) for each i. For m € Z, we define
Up = {p ~ 27™}. By rescaling Proposition 6.1, we know that

By (f1, f2) = fiomi(z) f2 oma(z) p(x) dz S 1.

For 0 < 6 < 1, define
M(0) :={m : Bp(f1, f2) ~ d}.
Define 0 := (p;' +p;')™'. Then 0 < 6 < 1. We will prove that for each
0<d<1,
> Bu(fi,f2)" < (logs™)“. (7.1)
meM(9)
Thus
> Bu(fi,f2) S (logs™h)®,
meM(5)
which implies Theorem 1.1.
The remainder of this section will be devoted to the proof of (7.1) for some fixed
§ > 0. We will use the notation A $ B to mean that A < C§~“B for some C
depending on N.
For m € M(9) and e,1m1,12 < 1, define

. ;o1 1
‘Cm(svnlan2) = {(jvk) :Bm(XE{7XE§) ~ 5|E{|p1 |E§|p27
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2974 | B]| ~ oy, 2572 B | ~ o}
By (6.4), the sum over all (j,k) lying in any L£,,(g,n1,72) with &, 1, or 72 much
smaller than 6¢ contributes a negligible amount to B, (f1, f2):
Z Z 2]+k8m(XE{>XE§) <cd < %Bm(flan)
min{e,n1,m2}<cdC (5,k)ELm (e,m1,12)

Thus the majority of each By, (f1, f2) is contributed by the C'(log6~1)? parameters
g,m,n2 ~ 1. By the triangle inequality and pigeonholing, there exists (at least)
one such triple for which

> Bulfi f2)? S loga ) Y > Bu(@xp2xm)”
meM(8) meM(8) (4,k)ELm (e,mn1,m2)

Henceforth, we will abbreviate £, := L,,,(£,71,72), for this choice of &,711, n9.
For m € M(§) and (j,k) € L, we set

" i (g, b o (0
W= U, o (B g (B), o= (128 1),

There exist finite sets AF™ C Q5™ satisfying the conclusions of Proposition 5.1,
appropriately rescaled. We proceed under the assumption that the minimal n-tuple
I for all of these sets are the same; the general case follows by taking a sum over
all possible minimal n-tuples. We set

Qikm . U ﬂ Bl- (z; cécajkm).
IE.Aj’“" ocesS,
We recall that on these balls,
(Oéjkm)ngI|/\[| ~ (ajkm)b2—7n(|b\—1) ~ |ijm| ~ |§jkm‘.
(The factor |[b| — 1 in the exponent is due to the form of the weight p.)

__As in the preceding section, we let ¢; := 6~ 'p;. By the definition of Q7+
|Qik™ | > |Q7F™ | the restricted weak type inequality (2.1), and Holder’s inequality,

> D2 Ba@xpp 2y

meM(d) (j,k)ELm

< S Y @ () () 7

mGM((S) (4,k)ELm

Z Z 2][)1|ﬂ. Q]k‘m <11 Z Z 2k‘p2|ﬂ_ Q]km)|

meM(6) (4,k)ELMm meM(8) (j,k)ELm

Thus the inequalities

YooY Im@F™) S (logs )OIE],  jez (7.2)
meM(8) k:(j,k)ELm
> > Im(@Fm) < (logs™)Y|ES, ke, (7.3)

meM(8) j:(4,k)ELm
together would imply (7.1). The rest of the section will be devoted to the proof of
(7.2), the proof of (7.3) being similar.
The proof is similar to the proof of Lemma 6.2; so we will just review that
argument, giving the necessary changes. Let K C Z?2 be a finite set such that
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(4, k) € Ly, for all (k,m) € K and such that the following sets are all (Blogdé—1!)-
separated for some B = B(N) sufficiently large for later purposes:
{k: (k,m) € K, for some m}, {m : (k,m) € K, for some k},
{m+ %Zk : (k,m) € K}.

(In the case of the last set, we recall that Z—? is rational.) It suffices to prove that
2

Y Im@F S 1B (7.4)
(k,m)eK
By the proof of Lemma 6.2, failure of (7.4) implies that there exists a subset X' C K
of cardinality #K' > M, with M = M (N) sufficiently large for later purposes, and
points 2™ € A7*™ such that

() m([) B @™ el )| % B, (7.5)
(k,m)eK’ 0ES

with T = (wy,...,w,) minimal and w, = (1). By rescaling Lemma 6.5 to torsion
scale p ~ 27 for each m, #(Z x {m}) N K < 1. Thus we may assume that

’C/ = {(kla ml)a sy (kM7mM)}a
with the m; all distinct. Set a := akimi,
As in the proof of Lemma 6.5, we can construct a submersion 7, and find points
y' = e X1(y) such that

27D p(y)PE & (af) 7 ma(al) A (3 (7.6)

L _ _
| \ D71 (y) De X2 () (@) 15 X, (v')] 2 1, (7.7)

foralll<i< Mand 1 <[ < --- <l <n-1.
By construction, the m; are all (Blogd~!)-separated. Thus by Lemma 3.2 and
(7.6), for B sufficiently large,

[t — | 2 od + ol for each i # i'; (7.8)

otherwise, two distinct balls would share a point in common, whence 2™¢ a2 2
a contradiction. With () := D7y (y) De!X1 (etX1 (y)) Xa(e! X1 (y)), (7.7) gives

() = (@)™ W) = (e1a) ™ () AN ()] = ()| ()] (7.9)
Since

1

i ~ m1+k1 /
5~ ENt N, 22 ) ,

and the set of values m; + kz’ﬁ takes on is (Blogd~!)-separated, by Lemma 11.5,
2

we may assume that m; + ki% is constant as i varies. Thus we may fix as so that
2

ab ~ ag for all 4.
We note that )
s o L
i Len, 177222 JP/12mi kz

Since

m; — kl = _*(mz +k7, / ) +p2mz

: = Ly + k1) + phm,

our prior deductions imply that the m; — k; are all distinct, (B log §~1)-separated.

Reindexing, we may assume that mi —ky < --- < mp; — kpr. Thus a% << a{\/[.
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By Lemma 11.4 (after a harmless time translation), we may assume that all of
the ¢* lie within a single interval I C (0, 00) on which

S O] < exl by D),k # ko, (7.10)

with ¢y sufficiently small. As we have seen, |y(t*)| = a5y ', for all i. On the other
hand, for cy sufficiently small, and any subinterval I’ C I,

/ /
[ Ot~ a0

(We can put the norm outside of the integral by (7.10).) Specializing to the case
when I’ has endpoints 1, t2, and using (7.8),

af(agaz)™" 3|t =ty (t2)| S |v(t2) —v(t1)| = (a2) ™7,
Hagan) ! St — o[y (B2)] S y(t2) —v(t1)] ~ ()"

ie. af = ai, which is impossible for B sufficiently large. Thus we have a contradic-
tion, and tracing back, (7.2) must hold. This completes the proof of Theorem 1.1.

8. NILPOTENT LIE ALGEBRAS AND POLYNOMIAL FLOWS

In the next section, we will generalize Theorem 1.1 by relaxing the hypothesis
that the flows of the vector fields X; must be polynomial. In this section, we lay the
groundwork for that generalization by reviewing some results from Lie group theory.
In short, we will see that if M is a smooth manifold and gp; C X(M) is a nilpotent
Lie algebra, then there exist local coordinates for M in which the flows of the
elements of g are polynomial. These results have the advantage over the analogous
results in [13] that the lifting of the vector fields is by a local diffeomorphism, rather
than a submersion; this will facilitate the global results in the next section.

Throughout this section, M will denote a connected n-dimensional manifold,
and gy C X(M) will denote a Lie subalgebra of the space X' (M) of smooth vector
fields on M. We assume throughout that gy, is nilpotent, and we let N := dim gy.
We further assume that the elements of gj; span the tangent space to M at every
point. We will say that a quantity is bounded if it is bounded by a finite, nonzero
constant depending only on N, and our implicit constants will continue to depend
only on N.

For the moment, we will largely forget about the manifold M.

Let G denote the unique connected, simply connected Lie group with Lie algebra
gr - For clarity, we denote the Lie algebra of right invariant vector fields on G by g,
and we fix an isomorphism X +— X of gy onto g. Under the natural identiAfica‘Eion
of G as a subgroup of Aut(G), G = exp(g), and the group law is given by e* -e¥ =

eXoe¥ = eX*Y where X Y a Lie polynomial in X and Y, which is given explicitly

by the Baker—Campbell-Hausdorff formula.

Let S be a Lie subgroup of G. The Lie algebra 3 of S is a Lie subalgebra of
g, and Z := exp(3) is the connected component of S containing the identity. In
addition, Z is a normal subgroup of S. Let n := N — dim 3. (Later on, we will set
3= 32, ={X €g:X(29) =0} and S = S, := {eX : eX(20) = 70}.)

Let I : G — G/Z denote the quotient map. For g € G and s € S, left multipli-
cation by ¢ and right multiplication by s have well-defined pushforwards; in other
words, there exist automorphisms ILl,, II,r; on G/Z such that

(ILlg)(hZ) = (gh)Z,  (ILrs)(hZ) = (hs)Z,
for every h € G.
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Our next task is to find good coordinates on G.

Lemma 8.1 ([7, Theorem 1.1.13]). There exists an ordered basis {X1,...,Xn} of
g, such that for each k, the linear span gi of {Xk+1,...,Xn} is a Lie subalgebra
of g and such that g,, = 3.

We will not replicate the proof.

Such a basis is called a weak Malcev basis of g through 3. As we will see,
the utility of weak Malcev bases is that they give coordinates for G and G/Z in
which the flows of our vector fields are polynomial. We will say that a function
g is a polynomial diffeomorphism on R¥ if ¢ : RY — R¥ is a polynomial having
a well defined inverse ¢—' : RY — RY that is also a polynomial. Polynomial
diffeomorphisms must have constant Jacobian determinant; we will say that they
are volume-preserving if this constant equals 1.

Fix a weak Malcev basis {)A( Lo X ~ } for g through 3. For convenience, we will
use the notation z - X := Zjvzl a:j)A(j, for x € RY. Define

Y(x) = e""/’l)?1 .. ~e“’N)?N.

Lemma 8.2. There exists a polynomial diffeomorphism p on RN such that 1 (z) =
exp(p(z) - X). In particular, ¢ is a diffeomorphism of RN onto G. In these co-
ordinates, the right and left exponential maps are polynomial. More precisely, for
xz!, 2% e RV,

e K@) = dlg(at,2?),  wahe” X = p(r(at,2?)),

where q,r : R2Y — RN are polynomials, q(-,z%) and r(-,2%) are volume-preserving
polynomial diffeomorphisms for each 2, and for each 1 < i < N, q;(z*,z?) only
depends on 1, ...z}, and 22.

sy

Proof. The assertion on p is just Proposition 1.2.8 of [7]. That ¢ and r are polyno-
mial just follows by taking compositions:

exp(q(a’,2%)) = exp(a®- X )y (') = exp((2®- X) xp(z")) = ¢(p~ (2% X) xp(a)));

similarly for r.

The inverse of (-, 2?) is (-, —z?), also a polynomial. Since r(r(z!,z?), —2?) =
2l det(Dyar)(r(zt, 2%), —2?) det Dyar(xt,22) = 1, and since both determinants
are polynomial in z! and 22, both must be constant. Finally, since r(z!,0) is the
identity, this constant must be 1.

We turn to the dependence of ¢; on 22 and the first ¢ entries of z!. Set G} :=
exp(gxr) (in the notation of Lemma 8.1). Our coordinates ¢ on G give rise to
diffeomorphisms

or 1 RY — G/Gy, o (y) == ¥(y,0)Gi.

In these coordinates, the projections ITy : G — G/Gy may be expressed as coordi-
nate projections: gi),:l oIl o ¥(y, 2) = y. Since left multiplication pushes forward
via Hk,

(Q1» ceey ql)(ya 2, 12) = ¢1:1 o Hk(leml)?w(yv Z)) = ¢];1((Hk)*lem2~)? ka(yv Z))
= Qslzl((ﬂk)*le;?)?gbk(y))a
which is independent of z. O
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Recalling that Z = G,,, we set ¢ := ¢,,. The pushforwards IL.X , X € g, are
well-defined and have polynomial flows; indeed,

exp(IL(z - X))(¢(y)) = d(a1((y.0),), .-, 4u((y,0),2)).

Furthermore, II, is a Lie group homomorphism of g onto a Lie subgroup of X' (G/Z),
and, since II, is a submersion and g spans the tangent space to RY at every point,
II.g spans the tangent space to R™ at every point.

Next we examine the pushforwards IL,r; of right multiplication by s € S. First, a
preliminary remark. Since Z is a normal subgroup of S, S acts on Z by conjugation.
Replacing G with Z, Lemma 8.2 implies that the pushforward ¢.dz of (N — n)-
dimensional Hausdorff measure on Z is a bi-invariant Haar measure on Z. We may
uniquely extend this to a bi-invariant Haar measure on S. Both Z and this Haar
measure on S are invariant under the conjugation action, so ,dz is invariant under
the conjugation action of S.

Lemma 8.3. In the coordinates given by ¢, the pushfoward Il.rs is a volume-
preserving polynomial diffeomorphism.

Proof. By Lemma 8.2, for each s € S, there exists a polynomial r* : RY — RV
such that rs(¢¥(x)) = ¥(r®(x)). From the definition of the pushforward,

ILrs(¢(y)) = I(rs(¢(y, 0))) = I(¥(r*(y,0))) = o((r1, -, 77)(y,0)),
and taking the composition with ¢~! yields a polynomial. Since (r*)~! = =%, this
is also a polynomial diffeomorphism. It remains to verify that this diffeomorphism
is volume-preserving.

For simplicity, we will use vertical bars to denote the pushforward by ¢ of
Lebesgue measure on R™ to G/Z and also the pushforwards by ¢ of Lebesgue
measure on RY to G and Hausdorff measure on RV~" x {0} to Z. Fix an open,
unit volume set B C Z. By the remarks preceding the statement of Lemma 8.3,
|s'Bs| = |B| = 1. Let U C G/Z be measurable, and let o : G/Z — G denote the
section o(u) := ¥ (¢~ 1(u),0). By the coarea formula,

L7 U| = |o(IrU) (s~ Bs)|.

Of course, o(IL.rsU)(s7 ' Bs) = (¢(U)B)s, so using the fact that right multiplica-
tion by s is volume-preserving, and using the coarea formula a second time,

[rsU| = |o(U)B| = |U].
(]

Now we are ready to return to our n-dimensional manifold M from the opening
of this section. Fix g € M, and set 3 = 34, := {X € g : X(z9) = 0} and
7 = Zy, = exp(3).

We consider the smooth manifold H = H,, := R" x M, and view g >~ gy as a
tangent distribution on H, with elements (gb*H*)?) @ X € gy. By the Frobenius
theorem, there exists a smooth submanifold (0,z¢) € L = L,, C H whose tangent
space equals the span of the elements of gy at each point. The dimension of this
leaf equals n; indeed, the map ¢*H*)A((O) — X (x0) is an isomorphism, so its graph,
T(0,00)H , has dimension n.

We let p; : L — R™ and py : L — M denote the restrictions to L of the
coordinate projections of H onto R™ and M, respectively. These restrictions are
smooth, because ¢*Il, g and gps span the tangent spaces to R™ and M, respectively,
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at every point. For this same reason, they are in fact submersions, and hence local
diffeomorphisms. Composition of ps with a local inverse for p; immediately yields
the following.

Lemma 8.4. Let v9 € M and fiz a weak Malcev basis {)A(l, . ,)?N} of g through
3z,- Then there exist neighborhoods Vy, of 0 in R™ and Uy, of xo such that the map

By (1) = 5o (ay)

s a diffeomorphism of Vg, onto Uy,, and, moreover, the pullbacks X = (Ps)* X,
X € gm may be extended to globally defined vector fields on R™ for which each
exponentiation (t,z) — e (x¢) is a polynomial of bounded degree.

We would like to remove the restriction to small neighborhoods of points in M
from the preceding.

Lemma 8.5. The projection ps : Ly, — M is a covering map.

Proof of Lemma 8.5. That ps is surjective follows from Hormander’s condition and
connectedness of M. Indeed, any point of the form eX! - .. eX (x4) (here we assume
that each of the exponentials is defined) is in the range of ps, and the set of such
points is both open and closed in M. (This is Chow’s theorem.)

Let x € M. Fix a weak Malcev basis {Wl, ceey WN} of g through 3,. Then there
exist neighborhoods 0 € V,, CR" and =z € U, C M such that

(I)x(w) .= eu)1W1 . ew,,,Wn (l‘)

is a diffeomorphism of V,, onto U,, so

' WU) = |J A Wr(y), dp(w) s w e V],
y:(y,x) €Ly,
where Wn = gf)*H*Wn, and the restriction of py to each set in this union is a
diffeomorphism. O

Lemma 8.6. Assume that the exponential eX (x¢) is defined for every X € g.
Then the projection py : Ly, — G/Zy, is one-to-one.

Proof. The projection p; fails to be one-to-one if and only if there exist X Tyeees X K €
g such

X1 .. XK (z0)
is defined and not equal to xg, but )?1 Kook )?K = 0. Thus it suffices to show that
if eX1...eXK () is defined, it equals eX1**Xx (z4). By induction, it suffices to

prove this when K = 2.
Assume that eXeY (zg) is defined, and let

E:={te[0,1]:e*Xe¥ (x9) = Y (1), 5 € [0,1]}.

Let V; := (tX) =« Y, t € [0,1]. It suffices to prove that there exists § > 0 such
that for each t € [0,1] and 0 < s < §, e5Xe¥t(xg) = e(*X)*Yi(x4). From our initial
remark, p; is one-to-one on each of the sets

T = {e(0,20) s s € [0,1]}, Y=Y, @Y, € g
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Since p; is a local diffeomorphism, the I'; are compact, and t varies in a compact
interval, there exists § > 0 such that p; is a diffeomorphism on the neighborhoods

Ns(Ty) = {eZ(2): Z € gu, |Z| < 6, z € Ty ).
Since po Opf1| N5 (1) is a diffeomorphism, for s sufficiently small (independent of ¢),
eSX Yt (370) =pyo p;l(esxey‘ (0)) = py Opfl(e(sx)*yt (O)) — (8X)xY: (x0>_
O
Taking the composition py o pl_l, we obtain the following.

Proposition 8.7. Let 2o € M, and assume that e (zo) is defined for each X € gp.
Fiz a weak Malcev basis {X1,..., XN} of g through 3,,. Then the map

By (1) = 5o (ay)

is a local diffeomorphism of R™ onto M, which is also a covering map. For each
X € gu, the flow (t,x) v e (z) of the pullback X = ;X is polynomial.
Finally, the covering is regular, and elements of the deck transformation group are
volume-preserving.

Much of the proposition has already been proved; our main task is the following.

Lemma 8.8. Let S := {e)? € G :eX(xg) = xo}. Then the deck transformation
group Aut(®y,) of P, coincides with the group S C Diff(R™) whose elements are
the pushforwards 7 := ¢*IL.rs of right multiplication by elements of S.

Proof of Lemma 8.8. Let s = eX € S. Then
(I)afo © d)il © (H*Ts) © d)(y) = ey1Y1 e 6ann€X(z0) = (I)afo (y)7

s0 8 C Aut(Py,). If yo € @5 (20), then we may write yo = e (0), with e* € 5, so
S acts transitively on the fiber ®,!(z).

Let f € Aut(®y,), and set yo := f(0). By the preceding, there exists an element
r € § such that 7(0) = yo. We claim that f = r. The set of points where the maps
coincide is closed by continuity. If f(y) = r(y), then the maps must coincide on a
neighborhood of y, because ®,, is a covering map. Thus the set of points where
the maps coincide is also open. Since f(0) = r(0), f =r. O

Proof of Proposition 8.7. It remains to prove that the covering ®,, is regular, and
that the elements of its deck transformation group are volume-preserving. By
Lemma 8.3, the deck transformations are all volume-preserving, and as seen in
the proof of Lemma 8.8, Aut(®y,) acts transitively on @ !(z¢), which is to say
that ®,, is regular. g

9. GENERALIZATIONS OF THEOREM 1.1

In [13], which sparked our interest in this problem, Gressman established un-
weighted, local, endpoint restricted weak type inequalities, subject to the hypothe-
ses that the 7; : R" D U — R”~1 are smooth submersions and that there exist
smooth, nonvanishing vector fields Y7, Y5 on U that are tangent to the fibers of the
m; and generate a nilpotent Lie algebra. Thus the results of [13] are more general
than Theorem 1.1 in two respects: The hypotheses are made on vector fields par-
allel to the fibers, and these vector fields are only assumed to generate a nilpotent
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Lie algebra, not to have polynomial flows. In this section, we address both of these
generalizations.

Changes of variables, changes of measure, and the affine arclengths. The
above mentioned generalizations will be achieved by using the results of the previous
section, so we begin by observing how the weights pg transform under compositions
of the m; with diffeomorphisms. We note that the same computations also show
how the pg transform under smooth changes of the measures on M and the N;.
(Changes of measure change the vector fields associated to the maps mq, w2 by the
coarea formula.)

Let F': R" — R™ be a diffeomorphism, and let G, : R"™! — R"~! be a smooth
map, j = 1,2. Define 7; := G o mj o F. These maps give rise to associated vector
fields X j» and a simple computation shows that

X, = [(det DG,) o 7; o F](det DF)F*X;, (9.1)
where F* denotes the pullback F*X; := (DF)"'X; o F. We continue to let

VU 5 (2)(t) denote the map obtained by iteratively flowing along the X; and let

W, (t) denote the map obtained by iteratively flowing along the X;.
By naturality of the Lie bracket and the Chain Rule, we thus have for any
multiindex 3 that

97 det DU, (0) = > _ G5, (F(0))0” det DUy, (0). (9.2)
B’ =B
Here ‘<’ denotes the coordinate-wise partial order on multiindices,

Gg(F(aco)) = (det DF (z0))"**2 7Y (det DG o7y 0 F(z0))" (det DGy om0 F(x0))"2,

and for 5’ < S, Gg, is a smooth function involving derivatives of the Jacobian
determinants det DF’, det DG;.
This allows us to bound the weight associated to the maps 71, T2 and multiindex

B:
95| <|det DF||(det DG1) o 1 o F|71|(det DGa) o my 0 F|#z pg o F

, -t 9.3
SO TRy .
B'<B

where the ggl are continuous and equal zero if det DF', det DG4, and det DG are
constant, and b’ = b(f') and pg: are as in (1.6), (1.7), respectively, p is as in (1.8),
and vertical bars around b’s denote the ¢! norm.

We turn to an estimate for

2
/H If; 0 7,175 ala) da,
j=1

with |a| <1 a cutoff function (possibly identically 1). We begin with the contribu-
tion from the main term of (9.3). Assuming (1.9), the change of variables formula
gives
2 ) 2
J (L1 0751 1det DGy o 1y FI77) | det DF | p o Fade S [T 14, (90
j=1 j=1
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Now we turn to the error terms. Fix 3’ < 8 and assume that a has compact

support. The analogue of (1.9), with £’ in place of 3, together with the change of
variables formula, yields

2 2
[ 206 0w o Fade] Srn [L 151 99)
Jj=1 j=1

where ¢ = p(t/) = (‘b/blfl, Ib/b‘;l) and 0 = ‘ﬁ;‘ljll. Provided that the 7; are submer-

sions on the support of a, Holder’s inequality gives

2 2
|[(T] 5 0%) ada| S Gumms diamasuppa) [T 150, (00)
j=1

j=1

b|—|b'| |b|—|b . — _ _ — _ _
where (r1,r2) = (WL =) Since (pi ! pyt) = 0yt g5 )+ (1-0)(ry Lr ),

complex interpolation gives

2 2
=~ ! ] : 1-6
|/(H fj Oﬂj)gg (,0,8/ © F) ad:z:| S/F,GLGQJUJTQ dlam(a) H ”fj“;llja (97)
j=1 j=1
so the error terms are harmless for sufficiently local estimates in the special case
that the 7; are submersions on the support of a.

Uniform local estimates. For simplicity, we will give our local estimates in co-
ordinates. Let U C R™ be an open set, let w1, 75 : U — R™ be smooth maps, and
let X1, X5 denote the vector fields associated to the 7; by (1.3). Assume that:
(i) For j =1,2 and a.e. y € m;(U), ﬂ{l(y) is contained in a single integral curve of
X]';
(ii) The Lie algebra generated by X;, Xo spans the tangent space to R™ at every
point of U;
(iii) There exist smooth, nonvanishing functions hi, he such that the vector fields
Y; :=h;X;, j = 1,2, generate a nilpotent Lie algebra of step at most V.

We note that even if one knows that (i-iii) hold, it may be very difficult to find
h1, he. Our next proposition allows one to use the “wrong” vector fields (the X;),
at least locally, and for certain f3.

Proposition 9.1. Fiz xg € U. If 8 is minimal in the sense that 8’ < B implies
ppr =0, or if dri(xo) and dma(xg) both have full rank, then there exists a neigh-
borhood Uy, of o, depending on xo and the 7;, such that for all fi, fo € CO(U),

2 2
| 155 0mi(@) ps(@) dal < Cn T 11l (9.8)
j=1

Usp j=1

here pg is the weight (1.7), defined using the X;, not the Yj.

Proposition 9.1 implies a uniform, strong type endpoint version of the restricted
weak type result in [13]. We remark that uniform bounds are impossible if we define
the weight ps using the Y;. This can be seen by replacing Y; with \Y; and sending
A — o0. In Section 10, we will give a counter-example showing the impossibility of
global bounds under these hypotheses in the case that 8 is non-minimal.

Proof of Proposition 9.1. By Lemma 8.4, we may find neighborhoods U,, of zy and
Va, of 0, and a diffeomorphism &, : V, — Us, such that the pullbacks Y; of the
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Y; with respect to ®,, extend to global vector fields with polynomial flows. Let

2j denote the vector field associated to 7; := m; o O, via the natural analogue of
(1.3). Then

= (det Dq)lo)(b:DXj = iY], hj = hj o ‘I)l-o.
Lemma 9.2. There exist functions g; on m;(Uy,) such that ﬁj =g;0Tj, a.e. on
Us,-

Proof of Lemma 9.2. Since EAG is polynomial, it is divergence free, and since Ej is
defined by (1.3), it is also divergence free. Since

0=m@:im%+%%)?%ﬁ

h; is constant on the integral curves of }A/J By our hypothesis on the fibers of the
7, the lemma follows. O

0/ = /Q)/ Z;(t)|"Lan (1) dy

/TFJ(Q)/I V()| dH (£) g (y) dy.

Thus the change of variables formula and the proof of Theorem 1.1 (c.f. the argu-
ment leading to (9.11)) imply that

|/ Hfjoﬁypﬁoq) | det D@, |~ da| = ‘/ Hfjoﬂjpﬁdﬂ

z(,]l $0]1

2
S H Hfj”ij (g5 dy)>»
j=1

fQCV,,,

(9.9)

where pg is defined using }71 and 172 We have seen that hi = g;jom;, so computations
J
similar to those leading up to (9.3) give
a1 a1 3 1o/ ]-1 3
19l < | det DBy | g1 0 m [T |ga 0 mal 7255 0 B2 + Y g o7 T 0 B,
B=pB’

where the gg’ are continuous and involve derivatives of det D®,,,, g1, and g».
Finally, (9.8) follows from (9.4) and (9.7) in the case that 8 is minimal or dm ()
and dma(xo) both have full rank. O

A “global” version on manifolds. Let M be a smooth n-dimensional manifold,
let P, P> be smooth (n — 1)-dimensional manifolds, and assume that w; : M —
P; are smooth maps with a.e. surjective differentials. Assume that we are given
measures U, vy,vs on M, P;, P, that have smooth, nonvanishing densities in local
coordinates.

For instance, in the setting of (1.1) and (1.2), we are given Riemannian manifolds
(P1,h1), (Pa,ha) and a map

P2 xR > (l’,t) —> ’}/z(t) c Pl;
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here the measures vy, v5 are the Riemannian volume elements, the manifold M is
simply M = P x R, and du = |7}, (t)|n, dva dt.

By (9.1), we may define (up to a sign) vector fields X3, Xy € X' (M) such that in
any choice of local coordinates,

Xj=dmj Ao Adrf T (G o) (B2).
We observe that f is invariant under the flow of the X}, and hence is also invariant
under the flow of elements of the Lie algebra gj; generated by X; and X5. We
assume that:
(i) The Lie algebra gy generated by Xi, X5 is nilpotent of step N, and the flows
of its elements are complete;
(ii) For a.e. y € P}, 7rj_1(y) is contained in a single integral curve of Xj.

Let My denote the (open) submanifold of M on which gp; spans the tangent
space to M, and decompose My into its connected components, My = |J,, Mo . By
the Frobenius Theorem, gy C X (Mo ) for each k. We now put local coordinates
on My by fixing points x, € My and letting @, := &,, : R"™ — My be the
covering map guaranteed by Proposition 8.7.

Fix k. Then & is a local diffeomorphism, and the pullbacks of vector fields in
gu by ®x have polynomial flows. By composing ®;, with an isotropic dilation, we
may assume that for U, C R™ open with ®|y, one-to-one, (Pi|y, )«(dz) = dy on
@4, (Ug). (Such a dilation exists because dp and the pushforward of dx are both
invariant under the flows of the X; and hence differ from one another by a constant
by Chow’s theorem.) The vector fields X ;= ®; X, are divergence-free and tangent
to the fibers of T := 71 o ®}, and Ty := wy o Py, respectively. For 8 a multiindex,
the X ; give rise to a measure pgdz on R™. If r € Aut(®) is an element of the deck
transformation group, then pg or = pg, and thus we can define a measure pug on
My i by setting pgle, w,) := (Pr)«(Pp dz|v,) whenever ®|y, is a diffeomorphism.
We extend this to a measure on M by setting ug = 0 on M \ M.

The measure p plays a slightly lesser role than the v; in the construction of the
tg. The measure p affects the definition of the vector fields X;, and hence the
nilpotency hypothesis, but in the minimal case (that pg: = 0 for all 8/ < ), all
choices of p lead to the same definition of pg by (9.2). Moreover, in the case that
B is minimal, by (9.2), the analogous construction carried out with respect to any
choice of local coordinates on M would give rise to the same measure y1ig. When
[ is non minimal, the measure depends on the choice of coordinates, but in any
coordinates, the analogue of g would vanish on M \ M.

Theorem 9.3. Under the notation and hypotheses above, let V. C M be an open
set. For each k, let Vi, := V. N My, let Uy € R™ be an open set, and as-
sume that for a.e. ¥ € Vi, #(®. (x) N Uy) > Ax, and for a.e. y € 7;(Vi),
Uk N <I>,;1(7r;1{y}) is contained in the union of at most Bjy integral curves of
)?j, with 0 < Ay, By, Ba i, < o0o. Then
< oy B
| | fiom(z)f2ome(x)dus(x)| < (SI;P T)||f1HLm(Pl;u1)||f2||LP2(P2;u2)~
1%

(9.10)

Here the exponent pair p = (p1,p2) is defined as in (1.8).

The quantities Ay, By, B2, count (in the absence of the polynomial hypothesis)
oscillations naturally associated to the ;. The pre-image <I>k_,1(:n) is in one-to-one
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correspondence with Aut(®x) and may be viewed as the set of distinct paths of
the form t — e'X(x), 0 <t < 1, X € gy, that start and end at x. Assume that
mj(z) = y. The set of Xj integral curves containing @ '( ]_1(y)) equals the set
of X ;j integral curves containing @k (), and thus is in one-to-one correspondence
with the set of distinct paths of the form t — m;(e!X(2)), 0 <t <1, X € gu,
that start and end at y. Both of these sets are either singletons (the trivial loop)
or are countable; intersecting with the set U as in the hypothesis of the theorem
makes other finite cardinalities possible. As seen in the next section, the analogue
of Theorem 9.3 without some accounting for oscillations is false.

Proof of Theorem 9.3. Let Py j := m;(Mo ). By hypothesis (ii), for each j = 1,2,
the Py ; have measure zero (pairwise) intersection. Therefore by Holder’s inequality
and pl_1 +p2_1 > 1,

D Alee peswn 2l mrepeswsy < Q0 1Al (5 i) ™ Z 12l ey yin)) 72 z
k k

= Hf1||L1’1(P1;V1)||f2HLP2(P2;V2)a

so it suffices to prove (9.10) when V = V4, for some k. This reduces matters to
consideration of the special case when M is connected and the elements of g,; span
the tangent space to M at every point, and we may henceforth omit the subscript
k from the various objects in the setup of the theorem.

Define P =R"/[x ~ et i(z)], i.e. the set of all X integral curves in R”, let 7; :
R™ — P denote the quotient map, and endow P with the quotient topology. The
image 7; (R”\{X’] = 0}) is then a smooth (n—1)-dimensional manifold. Since 7;0®
is constant along integral curves of X ; (and hence on the level sets of 7;), we may
define a map &) P — P; by D, i (Ti(z)) == m;(®(x)). We observe that &)j is a local
diffeomorphism from 7; (R™\ {X = 0}) onto m;(M \{X; = 0}). Our hypothesis on
the B, is precisely the statement that for a.e. y € m;(V), #((IDJ_ (y)nm;(U)) < Bj.

Because the flows of the X j preserve Lebesgue measure, we may define Borel
measures 7; on the P; by setting 7;(7;({X; = 0})) = 0 and, for every finite
measure  C {)A(J # 0},

1 .
0= [ L, @S0 o .

Equivalently, if V' is open and ‘5j|v is a diffeomorphism, v; = (E)jh/); Ly,

By the proof of Theorem 1.1, which did not use the global Euclidean structure
of R~ ! nor its algebraic properties, nor the specific measure dz, but only the local
Euclidean structure of m;({X; # 0}),

2 2
[ 115 o5t do < TT 17 ooy (9.11)
R™ =1 j=1

for all pairs of continuous, compactly supported functions fj on P ,j=12.
Taking V,U, A, By, Ba, ® as in the hypothesis of the theorem and f] a continuous

function with compact support on Pj, j = 1,2, we set fj = (f;0 ‘Pj)X%,-(Uy By
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construction,

|/nyowjduﬁ|< /Hlf]wyo@lpﬁ /Hmowﬂ ) de

and /~ ;1P do; gBj/ \f51P7 dv;.

J J

Together with (9.11), the preceding two inequalities imply (9.10). O

10. EXAMPLES, COUNTER-EXAMPLES, AND OPEN QUESTIONS

The translation invariant case. We begin with a concrete example. The weights
pp were originally conceived in [25] as a generalization of the affine arclength mea-
sure associated to curves, and the results of this article include, as a special case,
results on translation invariant averages on curves with affine arclength measure.
Let v : R — R? be a polynomial of degree at most N. Consider the maps
m; : R — R? given by

m(z,t) ==z, ma(zx,t):=x— ().
The vector fields associated to these maps are
Xi=%& Xa=§£+71) Vo

and X, X, generate a nilpotent Lie algebra on R**t! whose elements have polyno-
mial flows. As discussed in Section 4, it is slightly easier to compute determinants
of vector fields arising as iterated Lie brackets of the X;, rather than derivatives of
Jacobian determinants, so we look to Theorem 4.2. Provided that the polytope P
associated to X, Xo via (4.1) is nonempty,

P =ch{((d, 1+ %) 4 [0,00)?) U (1 + 242 d) 4 [0,00)%) }.

Thus minimal elements b of P lie on the line segment joining (d, 1 + @) and
(1+ d(d D) ,d). The corresponding Lebesgue exponents are those (pi,p2) with
(7t py ) lying on the line segment joining

2d  2+d(d—1) 24d(d—1) 24
(d(d-i-l)’ d(d+1) ), ( d(d+1) ’d(d+1))’

and the corresponding weights are all equal:
AT = | det(y/ (1), .., (1)) | 7.

Theorem 4.2 thus states that

[ @it = 1(0) et/ /@)D dtda] S gl 1

for all p1,ps as above, which is precisely the main theorem of [23]. One may
analogously obtain the main result of [10], which considered the X-ray transform
restricted to polynomial curves, as a special case of Theorem 4.2.
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Independence and necessity of Hypotheses (i) and (ii). Hypothesis (ii) of
Theorem 1.1 certainly does not imply (i); nor does (i) imply (ii), as can be seen by
considering, on the domain U := (1,00) x R x R, the maps

m(@y,2) = (1.2), male,y.2) = (weosly + D)sin(y+0)), (10.0)

for which X; = 0, and Xy = 0y — x0,.

Hypothesis (ii) can be weakened to the assumption that a bounded number of
integral curves constitute each fiber; this can be carried out by factoring the =;
through the quotients of R™ by the integral curves of the X;, as in the proof of
Theorem 9.3. The necessity of some hypothesis in this dlrectlon follows from the
example (10.1) above. Indeed, with this choice of 71, 72, (1.9) would suggest

| / from(@) fo o ma(w) da| < [l fullsjelfellsyo:
U

which can be seen to fail for f1 := xqy|<r}, f2 = X{1<|y|<2}, a5 R — 0.

We expect that hypothesis (i) can weakened substantially, though at a cost of
losing some uniformity (as will be seen momentarily). Indeed, in the translation
invariant case, this has been done [18, 11, 14]. That being said, the conclusions of
the theorem are false if we completely omit this hypothesis. To see this, we consider
first Sj6lin’s [19] counter-example

m(z) = (21, 22)  ma(x) := (21, 22) — (w3, d(x3)),
d(x3) = sin(zz F)e /7 e R? x (0,00),
for k sufficiently large. Inequality (1.9) would suggest

|/ fromi(x) fooma(x) | (w3)Y3 dz| < || f1lla/2]l 2132,
{0<z3<1}

but this can be seen to fail for the characteristic functions f; = xg;,
E={yeR?:0<y <6402 |y <e /%)
Eyi={y e R*: || S 6% |yo| Se /),

as d \ 0.

Malcev coordinates and the linear operator. For simplicity, we consider the
Euclidean case. We recall that we were initially interested in bilinear forms arising
in the study of averages on curves, B(f1, f2) = (f1,T f2), where

T o / Fo (e () dpy, (8):

Thus we are particularly interested in the case when 7 is a coordinate projection,
and dualizing the linear operator corresponds to changing variables so that ms is
a coordinate projection. As we will see, weak Malcev coordinates are sometimes
useful in carrying this out.

Fix a nilpotent Lie algebra g generated by vector fields X1, Xo € g. Let IV
denote the dimension of g, and let 3 denote an (N — n)-dimensional Lie subalgebra

of g. As we have seen, there exists a weak Malcev basis {W7,..., Wy} for g, with
{Wh+1,...,Wn} a basis for 3, and, in the coordinates
(T1y ey Ty Zngly - ooy ZN) eTtWi g Waoznp1Wair | o2n W
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for the associated Lie group G := exp(g), the flows of the elements of g are polyno-
mial, and, moreover, the projection map (z, z) — x defines a Lie group isomorphism
of g onto a Lie subgroup of R", in which 3 pushes forward to 3¢, the algebra con-
sisting of vector fields in (the pushforward of) g that vanish at 0. Thus we may
identify R™ with G/Z, where Z := exp(3).

If Wi = X, then we define 71 (z) := (z2,...,2,). (Alternately, there are local
coordinates in which 7; may be written in this form.) If there exists another
weak Malcev basis {f/lvfl, . .,WN} for g through 3 with W, = X5, then the map
F : x — Z is a polynomial diffeomorphism, and so mo(z) := (Za,...,Z,) is also a
polynomial. The map F', being a polynomial diffeomorphism, has constant Jacobian
determinant. By scaling the W;, we may assume that this constant is 1. Our
bilinear form is

B(fi. f2) = / fr o m(x) f2 0 ma(x) pa(x) da

= /fl om o F 1 (z) faomao F 1 (z) pg o F(z)dx.

Thus the associated linear and adjoint operators are

Tf(y) = / Flmalt, ) patoy) i, T*gly) = / g(m o F=1(t,y)) ps o F~ (1) dt,

averages along curves parametrized by polynomials.

It is therefore natural to ask when it is possible to find a weak Malcev basis of
g through 3 whose first element is X;.

Initially fix any weak Malcev basis {W7,...,Wx}. Let g := [g,g], and let
h:=g® 43 Then b is an ideal in g. In fact, it is a proper ideal, because the
linear span RW5 + - - - + RWy is an ideal (being a codimension 1 subalgebra) of g
that contains both g(® and 3. Since h C RWs + --- + RWy, if X € b, we cannot
take W7 = X;. If X, € B, then there exists a weak Malcev basis {Wy, ..., Wy} of
b through 3, which we may complete to a basis B := {X1, Wa,..., Wy} of g. For
each 2 < j < k, the linear span RW; + --- + RWy is an ideal in g, so B is a weak
Malcev basis of g through 3.

Since X1, X2 generate g, both cannot lie in the proper subideal h, and so there
does exist a weak Malcev basis with either X; or X5 as the first element.

Malcev coordinates aside, we can ask when it is possible to express m; as a
coordinate projection and me as a polynomial, without changing the Lie algebra.
The authors have not strenuously endeavored to determine necessary and sufficient
conditions, but it is clear that it is not possible in general, even locally around
points where both maps are submersions. Indeed, local polynomial maps extend to
global ones generating the same Lie algebra, and a necessary condition for 71 to be
a coordinate projection is that

X1 ¢{X*xZx(—X):Z €30, X €g},
since jex () = {X * Z* (=X) : Z € 30}
Optimality of the weight. It is proved in [25] that if b is an extreme point of
the Newton polytope P defined in (4.1), then the corresponding weight ps is (up

to summing weights corresponding to the same degree) the largest possible weight
for which (1.9) can hold. It is also shown that if b is not on the boundary of P,
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then it is not possible to establish a pointwise bound on weights p for which (1.9)
might hold.

Changes of speed and failure of global bounds. The analogue of Proposi-
tion 9.1 with Uy, replaced by the full region U can fail if 5 is not minimal and the
Hodge-star vector fields are not themselves nilpotent, even when the Hodge-star
vector fields are real analytic and have flows satisfying natural convexity hypothe-
ses. We see this by considering the example U := {z € R? : 23 > 0} and

m(x) = (z1, 22), mo(z) == (21, 22) — (log 23, (log x3)?).
The Hodge-star vector fields are
1 2
X1 :83, X2 = —81+—10gx382+83.
I3 T3
Taking Y7 := x3X; and Y5 := x3X5, we have Yio = 205, and all higher order
commutators are zero. Taking 5 = (0,2,0),

O |i—o det Dy e'3X1 0 ¢t2X2 5 1 X1 () = 734.
T3
Thus (9.8) would suggest the bound
[ from@) fooma(@) ez dof S Il falls (10.2)
U

Changing variables, (10.2) becomes

[ fior) faan — o = ) dtda] S il el
R

which is easily seen to be false by scaling.
It is still conceivable that global bounds are possible in the real analytic case
when f§ is minimal and some convexity /non-oscillation assumption is made.

Failure of strong type bounds in dimension 2. The hypothesis n > 3 in
Theorem 1.1 cannot be omitted. Indeed, consider 71 (z1, z2) := x1, T2 (x1, 22) := x5.
Then X; = 0%27 Xy = kmgfla%l, which together generate a nilpotent Lie algebra
with polynomial flows. Moreover, if we take § = (k — 1,0), then the corresponding
weight is pg ~ 1, so (1.9) would suggest

|/f1($1)f2($§)d$1 dzo| S | f1ll1ll f2llks

which is false in general (take e.g. fa(y) = (y% logy) ™ x(0,1])-

We recall, however, that the argument in [13] (and also the proof of Proposi-
tion 2.1) did not require the hypothesis n > 3 to obtain the restricted weak type
inequality on the single scale pg ~ 1.

Failure of global estimates for an analogue on manifolds. An interesting
question that we do not investigate is whether there are natural, simple hypotheses
leading to global estimates in Theorem 9.3. Without further hypotheses, such a
result is false, as can be seen in the following counterexample.

Let M =R/ZxR/Z xR and P, = P, = R/Z xR/Z, all equipped with Lebesgue
measure. Define projections

7T1(01,92,t) = (01,02), 7T2(01,02,t) = (91 +t, 02 +t2)
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Then the m; naturally give rise to the vector fields

__ 0 _ 0 o o
Xi=51 Xo= g5 — 55 — 25

These generate a nilpotent Lie algebra obeying the Hormander condition, and,
moreover, each point of P; has its m;-preimage contained in a unique integral curve
of X;. A naive analogue of Theorem 1.1 might suggest

[ inem feoml S Il 125,
M

but this is obviously false, as can be seen by taking f1 = fo = 1.

Multilinear averages on curves. In the multilinear case considered in [24, 25],
the natural generalization of the map W, used to define p involves iteratively expo-
nentiating the vector fields in some specified order, and the single-scale restricted
weak type inequality is known to hold under the natural analogue of the hypotheses
of Theorem 1.1. Indeed, the proof in Section 2 readily generalizes. Unfortunately,
the analogy breaks down in Section 5, where we need to use the gain coming from
nonzero entries of the multiindex 8. To rule out such examples in the multilinear
case would require rather more complicated hypotheses, particularly if we want a
theory that includes examples such as the perturbed Loomis—Whitney inequality,
where the endpoint bounds are known to hold [1].

We record here two multilinear examples that may be of interest in future ex-
plorations of this topic.

The first is a Loomis—Whitney inspired variant on the above two-dimensional
example. Define

7.(-7,(x) = (xla"'a'i\ia"'vxn)7 1§ZS7’Z—1, Tr’ﬂ(x) = (x]f7x27"'7xn—1)'

Our vector fields are X; = %, 1<i<n-1,and X, = kx’f*%, and the
endpoint inequality

|/Hfiomdm|sﬂ||fi|
7 =1

is false for & > 1, as can be seen by considering f; := xp, and fi(z1,2') =

D pl:%k_{]?i:n-f—k—Q,iZQ,...,n

\xl\_ﬁﬂog |x1||_ﬁxg1 (), where B; denotes the unit ball.

The second is a hybrid of a well-studied convolution operator with this example.
For (z,t,s) € R"M1 L et my (2,8, 5) := (z, 8), ma(z, t,8) := (x—7(t), 8), m3(z, 1, 8) :=
(z,t%), where y(t) := (¢,t2,...,t"). Our vector fields are X; = %, Xo = % —4(t)-
Vi, X3 = kth—1 %. From the preceding examples, we might guess that the endpoint
inequality

3 3
|/Hfiomdx\ <Ll
=1 =1

 2k+n(n+1)  2k+n(n+1)

 2k+n(n+1)
C 2k+n(n—1) b2 2n ’ B

p1: ps - 5

fails. In fact, this inequality is true, as can be seen from Holder’s inequality and
Theorem 2.3 of [11].
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11. APPENDIX: POLYNOMIAL LEMMAS

In this section, we collect together a number of lemmas on the size and injectivity
of polynomials.

The next lemma shows that if a polynomial bounds a monomial, then the mono-
mial must in fact be bounded by two terms of the polynomial; this facilitates a
complex interpolation argument used in the deduction of Theorem 4.2 from Theo-
rem 1.1.

Lemma 11.1. Let p(t) = Zf:;o ant™ be a polynomial with nonnegative coeffi-
cients, and let k € Zso. If t* < p(t) for all t > 0, then ar, = 1 or there exist

~

no—k k—nq )
ny < k < ng such that (an,)™ "1 (an,)™2—"1 = 1. Conversely, if a > 1 or
no—k

k—n
(ap,) ™2™ (anz)"rnll > 1 for some ny < k < ng, then t* < p(t) for all t > 0.

Proof. If t* < p(t) for all t > 0, but a < %, then t* < 2(p(t) — axt"), so we may as
well assume that a; = 0.

Let pio(t) := >, cp @nt™ and pyui(t) := > -, ant™. By considering small ¢, we
see that p;, # 0, and by considering large ¢, we see that pp; # 0. By a routine
application of the Intermediate Value Theorem, there exists a unique tg > 0 such
that pio(to) = pni(to). We may choose n; < k < ng such that pj,(to) ~ an,ty*
and ppi(to) ~ anyty?. Thus t§ < an,ty' ~ an,ty?, from which we learn that ¢y ~

an 1 ng—k kong . .
(5%+)™71 and, consequently, 1 < (an,)™2 "1 (ayn,) ™ "1 . In the converse direction,
e

. no—k k—nq an 1
if (an,)™ "1 (an,)™2~ "1 > 1, then at to := ()71, th < A, t0" = an,t(?, so
ng

thF < ap,t™ for all t <ty and t* < a,,,t"* for all t > t. O

A lemma in [9] states that if P is a finite collection of polynomials on R, each
of degree at most N, then there exists a decomposition R = ch:(’fﬁP’N) I;, with
each I; an interval, such that on I;, each p has roughly the same size as some fixed

monomial, centered at a point that depends only on j, not p:
p(t)| ~ ap;(t = b)), ap; €[0,00), b; ¢ L, ky; 0.

Our next lemma strengthens this to show that we may take each monomial to be
an entry of the Taylor polynomial centered at b; of the polynomial p and ensures
that the other entries of that Taylor polynomial are as small as we like.

Lemma 11.2. Let P denote a finite collection of polynomials on R, each having
degree at most N, and let € > 0. There exist a collection of nonoverlapping open in-

tervals I, ..., Ins, with N' = N'(N,#P,e) and R = |, I;, and centers bi,... by,
with bj ¢ I, such that for each j and p € P, there exists an integer kj,, such that

™ (0)) (= 0))*| < ety lp® ) (b))t = 0))*5r |, kFkjy, t€ L (1L1)
In particular, provided we take £ < ﬁ,
[p(D)] ~ Ajplt —bjl v, for t € I, where Aj, = | yp00) (b;)]. (11.2)

Proof of Lemma 11.2. We modify the approach from [9]. We will allow the integer

N’ to change from line to line, subject to the constraint N’ = N'(N,#P,¢).
Without loss of generality, all elements of P are nonconstant, and P contains all

nonconstant derivatives of its elements. Let {z1,...,2n/} denote the union of the
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(complex) zero sets of the elements in P. Set
Si={teR:|t—z| <|t—zl j#i}.

Then R = (J, S;. We will further decompose each S;, and by reindexing, it suffices to
further decompose S;. Reindexing, we may assume that |21 — 29| < -+ < |21 — zn].
Define

Tj:={te St —z| < |t—=| < 3|z — zjl} j=1,...,N —1,
Tn =51\ Tni—1.
If ¢ € T}, then by the triangle inequality,
t—z1| < ft—zpr| <Bft—z|, 5 <5 Fla—zpl <lt-zp| <Sla-zl, >4

Writing p(t) = A, Hj'ejp (t — z;)""», where J, denotes the set of indices corre-
sponding to zeros of p,

|p(t)| ~ ‘Ap H (1 — Zj/)"j/vp H (t— zl)”j’,p‘.

J<i'€Ip J>3'€Tp

Thus p is comparable to a complex monomial. Let by := Rezy, ¢; := [Imz;|. On
{lt=b1| < er}, [t—21| ~c1, and on {|t —b1| > 1}, [t — 21| ~ [t — b1], so subdividing
one more time, we obtain intervals on which each polynomial is comparable to a
real monomial.

More precisely, at this point, we have simply reproved the lemma from [9]: There
exists a decomposition R = Ujvzll I; such that [p(t)| ~ ap j|t — b;|™»7, p € P and
t € I;. We want a bit more, which requires us to subdivide further. Reindexing, it
suffices to subdivide I;. Translating, we may assume that b; = 0, and by symmetry,
we may assume that I; = (¢,r) C (0,00). To fix our notation,

()| ~ aplt|™,  tel:=I. (11.3)

If I = (0,00), then each p must in fact be a monomial, and we are done. Other-
wise, by rescaling, we may assume that either = 1 or that £ = 1,r = co.

Case I. I = (¢,1). By construction, z;, which is purely imaginary, is no further
from 1 than any zero of any nonzero derivative of any element of P. Thus no
element of P (nor any nonzero derivative of any element) has a zero inside the
disk {]z — 1] < 1}. Therefore for each p € P, |p| is monotone on (0,2). If |p| is
decreasing, by equivalence of norms,

[p(0)| = llpllcoo,2) ~ llpllco,2) = [p(L)]-
Thus either |p| is increasing or |p| ~ ¢, on all of (0, 1). In either case, for ¢t € (0,1),
N N
p(®)] ~ Pl 0.0) ~ D FIPP O ~ >~ 69|l L (0.0 (11.4)
3=0 §=0
Let e7' < j < e 2 and let n > 1. By (11.4), [p™ (je?)|(je*)™ < |p(j€?)], so
Ip™ (je2)|(e?)™ < e™|p(je?)|. Therefore (11.1) holds for t € [je2, (j + 1)&?] with
bj = j€2 and kj,p =0.
It remains to decompose (¢, ¢), supposing this interval is nonempty. Evaluating
(11.4) at t = 1, and recalling (11.3),

Yl O0) S ap

n>np
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Thus for 0 < t < ¢ and n > n,, [p™ (0)[t" < ea,t™. Evaluating (11.4) at t = ¢,
D MO < apt,

n<np
so fort > e~ and n < n,, [p™ (0)|t™ < eayt™. Therefore (11.1) holds on (714, ¢)
with b; = 0 and k;,, = n,. This leaves us to decompose (¢,e~'¢). By scaling, this
is equivalent to decomposing (e, 1), which we have already shown how to do.

Case II: I = (1,00). By construction, z; is nearer to each ¢ > 1 than any zero
of any derivative of any element of P. Thus no element of P has a zero with
positive real part, so each |p(¢)| is nonvanishing with nonvanishing derivative on
(0,00), and thus must be increasing on (0,00). Therefore (11.4) holds for each
t € (0,00). Taking limits, we see that for 0 # p € P, n, = degp and a, =
%p!p("zq)(o). Evaluating at 1, )" %|p(")(0)| < n%!\p("P)(O)L so for t > ¢7! and

n < ny, [pM(0)[t" < e[p™)(0)|¢t"». This leaves us to decompose (1,e71), which
rescales to (e, 1), so the proof is complete. O

The next lemma applies Lemma 11.2 to make precise the heuristic that products
of polynomials must vary at least as much as the original polynomials.

Lemma 11.3. Let p1 and ps be polynomials on R of degree at most N, and let
a1, as be positive integers. The number of integers k for which there exists t, € R
such that

pr(ti)] ~27%, |pa(te)] ~ 2702 (11.5)

is bounded by a constant depending only on N.

Proof of Lemma 11.3. The conclusion is trivial for monomials, so by Lemma 11.3,
it follows for arbitrary polynomials. O

The next lemma extends Lemma 11.2 to polynomial curves v : R — R"”, allowing
us to closely approximate a given polynomial curve by a constant vector multiple
of a monomial.

Lemma 11.4. Let N be an integer and let € > 0. Let v : R — R" be a polynomial
of degree at most N. There exist nonoverlapping open intervals Iy, ..., Ins, with

N’ = N'(N,n,e) and R = Uj I;, and centers by,...,bn/, with b; ¢ I;, such that

for each j, there exists an integer k; such that
i@ ) = 0)F < el ™ b))t = b)5 |, k# kit e ;. (11.6)

Proof of Lemma 11.4. By Lemma 11.2, it suffices to decompose an interval I C R
for which there exists a point b ¢ I and integers 0 < ki,...,k, < N such that the
coordinates of ~ satisfy

2P ) = b)F| < el E (o) — b)),

?

tel, k+ k. (11.7)

Making a finite decomposition of I and reindexing our coordinates if needed, we
may assume that

|2 O -0 | > A0 -0, i=2,...n tel
Thus for t € I,
|G P B E=0)F SIEAT @) E=0)"], @) ~ [EyF B) (- b)* . (11.8)

Translating, reflecting, and rescaling, we may assume that b = 0 and that I = (¢, r).
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Define curves
No(t) =D WO, i)=Y Gy PO, () = g ® 0"
k<ki k>k1
and intervals
I = (te™hr), L= (U L+ 1), e ?<j<e®
), = (L re), I, = (re%j,re?(j + 1)), e '<j<e?
Since [ is a bounded union of ‘/o’ intervals and also a bounded union of ‘hi’ intervals,
I may be written as a bounded union of intersections of one ‘lo’ interval with one
‘hi’ interval. We will show that such intersections have the properties claimed in
the lemma.
Evaluating (11.8) at ¢, &y (0)|¢F < k%!|'y(k1)(0)|€k1. Therefore
Mo S el ()], te I,

By (11.8) and a Taylor expansion of v(™) about 0,
O™ S ) S, tel

Thus form >1,e2<j<e3 and t € I

lo’
(2|t — L) < G (L)) I(E2)™ S el (L),
Arguing analogously,

()] S el Ot e Iy,
W eIt —rei) " Seh(re®))l,  m21tel et <j<e
Putting these inequalities together, (11.6) holds:
-On ID N IY. with center by = 0 and ko = kq
-On I/* N I}2, for (j1,j2) # (0,0), with center b; = ¢e%5 and ko = 0.
([l

The next lemma applies Lemma 11.4 to make precise the heuristic that, for
~v: R — R", since the derivative +" drives the curve forward, v and ' are typically
almost parallel. This result is crucial to proving Proposition 6.1.

Lemma 11.5. There exists M = M(N) sufficiently large that for all € > 0, there
exists § > 0 such that if

)] < Ol(tin),  i=1,., M-, (10.9)
then

[y () A (8)] < ely(E)Il (E:)], (11.10)
for some 1 <i < M.

Proof of Lemma 11.5. Performing a harmless translation and applying Lemma 11.4,
it suffices to prove that there exists M such that (11.10) holds whenever (11.9) holds
with all ¢; lying in some interval I on which

7)) < [T )| ~ [y (1)), (11.11)

for all 0 < k < N and some 0 < kg < N. Moreover, by (11.9), we may assume that
ko # 0.
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For § > 0 sufficiently small, and each kg # k, by (11.9) and (11.11) the inequality
el iy " ) | < [y (0)¢5]

can only hold for a bounded number of ¢;, so we may assume further that

LB )] < el 2y ™ O)efol,  k # k.
Therefore
y(t) A )< 1O AP 0)tF) A Foqy o) (o) ko=
k#ko

+ 2y E ) A (Y EyB(0)tF)]
k;éko

HICE PO A (S a0
k£ko k£ko
Sely)|ly &)l

O

Next, we use basic facts from algebraic geometry to prove several lemmas about
polynomials of n variables of degree at most N. We say that a quantity is bounded
if it is bounded from above by a constant depending only on the dimension n and
the degree N, not on the particular polynomials in question.

Our main tool for lemmas below is the following theorem from algebraic geom-
etry.

Theorem 11.6 ([12]). Let f1,..., fr : C* — C be polynomials of degree at most
N and let Z C C" be the associated variety, i.e.

Zim {2 €C": fi2) =+ = fil2) = O},
Then we may decompose
C(k,n,N)

7 = U Z;, (11.12)

where each Z; is an irreducible variety.

In particular, the decomposition in (11.12) involves a bounded number of dimen-
sion zero irreducible subvarieties. We recall, and will repeatedly use the fact that
the irreducible subvariety containing an isolated point of Z must be a singleton.

Theorem 11.6 follows from the refined version of Bezout’s Theorem, Example
12.3.1 of [12], which implies that Y7 ; deg(Z;) < Hle deg(f;). Since degZ; > 1
for each 4, this suffices.

Lemma 11.7. Let P : R™ — R" be a polynomial. Then, with respect to Lebesgue
measure on R™, almost every point in P(R™) has a bounded number of preimages.

Proof. Tt suffices to show that if y ¢ P({det DP # 0}), then y has a bounded
number of preimages. For such a point y, define

Zy, ={z€C": P(z) —y =0}.
By the Inverse Function Theorem and our hypothesis on y, real points z € Z, NR"
are isolated (complex) points of Z,. By Theorem 11.6 and the fact that dimension

zero irreducible varieties are singletons, Z, contains a bounded number of isolated
points. [
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Lemma 11.8. Let T denote the tube
T:={z=(2,z,) eR": |2'| < 1}.

Let P : R" — R" be a polynomial of degree at most N and assume that det DP
is nonvanishing on T. If v : R — R™ is a polynomial of degree at most N, then
v~ L[P(T)] is a union of a bounded number of intervals.

Proof. Consider the complex varieties

n—1
Ci={veC:) v}=1}
=1

Z = {(u,v) € C**" : y(u) = P(v), v € C}.

Suppose that (t,z) € Z NR"™ is a regular point of some subvariety Z' C Z, with
dim Z' > 0. If det DP(z) # 0, then by the implicit function theorem, Z’ can have
complex dimension at most one, and, moreover, if the dimension of Z’ is one, then
there exists a complex neighborhood U of ¢ such that v(U) C P(C). Shrinking U if
necessary, and again using det DP(z) # 0, v(UNR) C P(CNR™) = P(9T). Thus a
boundary point of v ~![P(T)] must be a regular point of a dimension zero subvariety
7' C Z, so by Theorem 11.6, the number of boundary points is bounded. (I

Lemma 11.9. Let P:R" - R", v: R = R", and Q : R® — R"™ be polynomials of
degree at most N, and assume that P~ is defined and differentiable on a neighbor-
hood of the image ¥(I), for some open interval I. Then no coordinate of the vector
[(DP~1) o~](Q o) can change sign more than a bounded number of times on I.

Proof. Multiplying the vector [(DP~!)o~](Qo~) by (det DP)? and using Cramer’s
rule, it is enough to prove that if R : R™ — R" is a polynomial of bounded degree,
then

(RoP ov)-(Qon) (11.13)

changes sign a bounded number of times on I.
We consider the complex variety

Z :={(u,v,w) e CxC" x C": v(u) = P(v) =w, R(v)-Q(w) = 0}.

If (11.13) vanishes at t € I, then (¢, P~(vy(t)),y(t)) =: (t,x,y) € Z and det DP(x) #
0.

Let Z' C Z denote an irreducible subvariety from the decomposition (11.12)
for which (¢,x,y) is a regular point. By the Implicit Function Theorem and
det DP(z) # 0, either Z’ has dimension zero, or Z’ has (complex) dimension one
and (11.13) vanishes on a (complex) neighborhood of t. Only a bounded number
of points can lie on dimension zero subvarieties, and if (11.13) vanishes on a neigh-
borhood of ¢, then it vanishes on all of I by analyticity. Either way, the number of
sign changes is bounded. U
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