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A Physics-Constrained Dictionary Learning Approach for Compression of 
Vibration Signals 

 
 
Abstract 

Monitoring the health condition of rotating machinery in manufacturing systems 

usually requires vibration signals to be continuously collected, transmitted, and stored. 

The available bandwidth in communication channels for transmission of a large amount 

of data is limited in an industry setting. Therefore, reducing the amount of data in 

communication and storage without sacrificing the amount of information collection is 

necessary. Here, a new technique called physics-constrained dictionary learning is 

proposed to reduce the volume of data in storage and communication using compressed 

sensing. In compressed sensing, the original signals can be reconstructed with a much 

smaller amount of data determined by a measurement matrix, if the representation of 

signals in the reciprocal space is sparse. The proposed physics-constrained dictionary 

learning approach optimizes the measurement and basis matrices simultaneously to 

improve the accuracy of reconstruction, where physical constraints of time stamps of 

sampling and sampling intervals are considered. New training algorithms are 

developed. The proposed scheme is applied to compress the vibration signals of roller 

bearings. It is shown that the reconstruction performance of the proposed scheme is 

significantly improved from traditional dictionary learning.  

Keywords: Compressed sensing; Dictionary learning; Sparse coding; Data compression; 

Rotating machinery  
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1. Introduction 

Monitoring the health condition of rotating machinery in manufacturing systems usually requires 

vibration signals to be continuously collected and transmitted. The available bandwidth in communication 

channels for transmission of a large amount of data is limited in an industry setting where different machine 

conditions need to be monitored. Therefore, reducing the amount of data in communication and storage 

without sacrificing the amount of information gathered and exchanged is necessary. In the most recent 

decade, compressive sampling or compressed sensing (CS) [1, 2] was developed as a new sampling 

approach which requires less data storage and the original signal can be reconstructed. If the original signal 

has a data size of N and its representation in the reciprocal space is sparse with only K non-zero coefficients 

(K<<N), standard CS for generic signals allows for robust recovery from M=O(Klog(N/K)) measurements.  

The main idea of CS is as follows. Suppose that the original signal is represented in a discrete form as 

vector ࢙ ∈ Թே. It can be represented in the reciprocal space via transformations as ࢙ ൌ શࢽ, where શ ∈

Թேൈே is the transformation or basis matrix and ࢽ ∈ Թே is the vector of coefficients. When the signal is 

projected into the M-dimensional measurement subspace (M<N) with measurement matrix ઴ ∈ Թெൈே as 

࢟ ൌ ઴࢙, the recovery of the original signal ࢙ from the measured data ࢟ is to solve the linear equations 

࢟ ൌ ઴࢙ ൌ ઴શࢽ. Theoretically the recovery can be precise when the vector of coefficients ࢽ is sparse 

and the transformation and projection operations are incoherent. The basis matrix શ is often predefined 

as some known transformation matrices such as Fourier transformation, discrete cosine transformation, 

wavelet transformation, or some random matrices that satisfy the restricted isometry property.  

One issue with the predefined basis matrix શ is that it is not directly related to the observed signals. 

If the sparsity level of the coefficient vector ࢽ is low, CS will not perform well. Therefore, dictionary 

learning approaches have been developed to train a dictionary ۲ specifically based on the collected data 

to replace ઴શ. Given ܲ sets of collected data ܇ ൌ ሾ࢟ଵ, ࢟ଶ …࢟௉ሿ ∈ Թெൈ௉, the dictionary ۲ needs to be 

optimized so that ܇ can be sparsely represented as ܇ ൌ ۲ળ, where ળ ൌ ሾࢽଵ, ଶࢽ ௉ሿࢽ	… ∈ Թௐൈ௉  is a 

matrix that includes the sparse vector of coefficients for each collected dataset and ܹ ൒ ܰ . Thus, 
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dictionary ۲ ∈ Թெൈௐ is over-complete since ܯ ൏ ܹ.  

Although existing dictionary learning approaches have been applied to learn the dictionary ۲ for 

natural images, vibration signals and others, they cannot be used to determine the locations of pixels to be 

measured and stored for two-dimensional images or the time stamps of measurements for one-dimensional 

signals, because the measurement matrix ઴ is not designed explicitly. For instance, to select data points 

for storage and communication from all collected vibration signals, the measurement matrix ઴ needs to 

be optimized to determine the total number of stored and transmitted measurements. For the measurement 

matrix ઴, there should be only one non-zero entry in each row of ઴ and other entries are zeros. The index 

of non-zero entry in each row indicates the time stamps of sampling or when to store and transmit data. 

Therefore, the optimization of ઴ and શ individually provides more physical meanings of the optimized 

dictionary. Furthermore, the columns of the trained dictionary ۲ in traditional dictionary learning are not 

always orthogonal, which affects the CS performance. A well-designed measurement matrix ઴ can also 

improve the orthogonality of the columns in ۲.  

In this paper, a new physics-constrained dictionary learning scheme is proposed to reduce the amount 

of data in storage and communication. From all collected data points, only a few of them are stored and 

transmitted. The original signal can be reconstructed from the compressed data with CS. The actual storage 

space and communication cost are determined by the optimized measurement matrix ઴, and the signal can 

achieve a high sparsity level with respect to the optimized basis matrix. Some physical constraints such as 

the data storage space, the number of measurements, sensor accessibility, and the energy consumption of 

data collection can be considered in the learning process to optimize the basis and measurement matrices. 

Here, the minimum sampling interval between compressed data points is used as the physical constraint to 

demonstrate the new physics-constrained dictionary learning approach for vibration signals of roller 

bearings, which can reduce the redundancy for the storage and communication of temporally correlated 

data. The main contributions of this paper include the new formulation of dictionary learning subject to 

physical constraints, as well as new algorithms to simultaneously optimize the basis matrix શ for sparse 
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representation and the measurement matrix ઴ for the physical time stamps of sampling.  

In the remainder of the paper, the background of dictionary learning methods and their applications are 

introduced in Section 2. The proposed physics-constrained dictionary learning method is described in 

Section 3. The demonstration of its application to compress the roller bearing vibration signal for the storage 

and communication, and experimental results are given in Section 4.   

 

2. Background 

Various dictionary learning methods [3] have been developed to search for the sparsest representation 

of signals. The purpose is to find the optimal dictionary so that the sparsity is maximized for a specific type 

of signals. As a result, the original signals can be represented in a form of linear combinations of the learned 

dictionary and the sparse vector of coefficients. Some commonly used dictionary learning algorithms 

include the method of optimal directions [4], K-SVD [5], the online dictionary learning [6] and others. The 

training process is also based on the maximum likelihood [7], least-square error [8, 9], and hidden Markov 

model [10].  

Dictionary learning methods have been applied in combination with CS. For conventional CS, the basis 

matrix is usually predefined, so it is not directly related to the observed signals. Therefore, dictionary 

learning approaches have been developed to improve the sparsity level of the coefficient vector with a 

trained dictionary specifically based on the collected data. For example, Chen et al. [7] applied the 

dictionary learning method to improve the CS performance in extracting impulse components from noisy 

vibration signals. Lorintiu et al. [11] reconstructed ultrasound data with CS and dictionary learning by K-

SVD. It was shown that reconstruction errors are lower than conventional dictionaries based on Fourier or 

discrete cosine transformations. CS with learned dictionary was also applied for the reconstruction of 

magnetic resonance images [12-15], videos [16] and electrocardiogram signals [17], and image denoising 

[18-20]. The existing dictionary learning approaches can improve the performance of CS. However, they 

are limited in practical applications because the measurement matrix is not designed explicitly. The 
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measurement matrix is necessary to determine the locations of pixels to be measured and stored for two-

dimensional images or the time stamps of measurements for one-dimensional signals.  

Instead of learning the dictionary, which is the combination of the measurement matrix and the basis 

matrix, approaches to design the measurement and basis matrices separately were also developed. Duarte-

Carvajalino and Sapiro [21] simultaneously optimized the measurement matrix and basis matrix with a new 

scheme called coupled-KSVD. The incoherence between the measurement and basis matrices was 

improved and resulted in better reconstruction performance. Bai et al. [22] further improved the framework 

with analytical solutions to update the measurement and basis matrices. It was shown that the convergence 

and accuracy of the solutions were improved for reconstruction of natural images. Nevertheless, in the 

above approaches, the optimized measurement matrix is dense. The dense measurement matrix cannot be 

used to determine the locations or time stamps of measurements or sampling in physical experiments. To 

be physically meaningful, measurement matrices should have only one non-zero entry in each row. The 

index of non-zero entry in each row indicates the time stamps to sample and store signals. Furthermore, 

physical constraints such as the data storage space, the number of measurements, sensor accessibility, and 

the energy consumption of data collection are important but considered in the existing approaches. Physical 

constraints ensure that the optimal performance is realizable in practical applications. 

The proposed physics-constrained dictionary learning framework optimizes the measurement and basis 

matrices simultaneously where the measurement matrix with only one non-zero entry in each row can 

directly indicate the time stamp of sampling. The physical constraint of the minimum sampling interval 

between stored and transmitted measurements is considered to reduce the redundancy for the storage and 

communication of temporally correlated data. The number of required measurements thus is optimized 

based on the physical constraints. 

3. Methodology 

The proposed physics-constrained dictionary learning scheme is to optimize the measurement matrix 

઴ and the basis matrix શ simultaneously under the physical constraints related to the time stamps for 
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sampling. It is formulated as  

	 min஍,ஏ,ળ	 ܁‖ߙ െ શળ‖ி
ଶ ൅ ‖઴܁ െ઴શળ‖ி

ଶ	 ሺ1ሻ	

	 subject to ઴ ൌ ݂ሺશሻ	 	 	 ሺ2ሻ	

	 ௜‖૙ࢽ‖ ൑ 	 ଴ܶ,			∀݅	 	 	 ሺ3ሻ	

	 ௜௝ሺ઴ሻܫ ൒ ,݅∀			,ݎ	 ݆	 ሺ4ሻ	

where F denotes the Frobenius norm, ܁ ൌ ሾ࢙ଵ, ࢙ଶ … ࢙௉ሿ ∈ Թேൈ௉ contains ܲ sets of training signals and 

each set of signals has the length of ܰ. શ ∈ Թேൈௐ is the basis matrix with ܹ ≪ ܲ and ܹ ൐ ܰ. ળ ൌ

ሾࢽଵ, ଶࢽ ௉ሿࢽ	… ∈ Թௐൈ௉  contains the sparse coefficients that represent the training signals in ܁  with 

respect to the basis matrix. A Lagrange multiplier ߙ is applied to combine the objectives of recovery 

accuracy and measurement accuracy. A small value of ߙ  such as 0.01 is used in practice because a 

relatively larger control weight of the error term ‖઴܁ െ઴શળ‖ி
ଶ  is necessary to design the measurement 

matrix to minimize the reconstruction error. The constraint in Eq.(2) indicates the training sequence, where 

basis matrix શ is updated before measurement matrix ઴. With the fixed basis matrix શ, measurement 

matrix ઴ can be optimized based on ݂ሺશሻ.  The constraint in Eq.(3) is the upper limit of the sparsity 

level, where ࢽ௜ is the i-th column of coefficient matrix, and ଴ܶ is the target number of non-zero values in 

the sparse vectors of coefficients. The constraint in Eq.(4) shows the physical limitations of sampling, which 

is the lower limit of the time interval ܫ௜௝ between the ݅-th and ݆-th stored or transmitted measurements, 

for instance, between any two consecutive measurements. If the time interval between stored or transmitted 

measurements is too small, more redundant information is collected because of large similarities between 

temporally correlated measurements. Other physical constraints can be added similarly.  

The physics-constrained dictionary learning problem is solved to optimize the measurement and basis 

matrices by two stages iteratively as shown in Figure 1. It starts with an initial guess of the basis matrix 

which can be some known transformation matrices such as discrete cosine transformation and wavelet 

transformation. In the first stage, with the basis matrix fixed, the measurement matrix is optimized by 

determining suitable measurements to be stored and transmitted from originally collected signals under the 
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constraint that there is only one non-zero entry in each row to determine the time stamp of the measurement. 

This can be solved based on algorithms such as the FrameSense [23]. In the second stage, with the 

measurement matrix fixed, the basis matrix is then optimized. This can be done with dictionary learning 

algorithms such as the K-SVD. The above two optimization steps are repeated until both the optimal 

measurement and basis matrices converge without further improvement. Physical constraints such as the 

total number of collected data points and the minimum sampling interval can be incorporated. 

 

 

Figure 1. Two-stage optimization scheme. 
 

3.1. Stage one optimization  

At the stage one, the basis matrix શ is fixed, and the measurement matrix ઴ is optimized. Instead of 

directly searching for the optimal time stamps of stored and transmitted measurements which is often NP-

hard if the number of measurements is large, the near-optimal time stamps of sampling can be obtained 

based on the greedy algorithm FrameSense in Table 1. Given all available time stamps ࣨ ൌ ሼ1,… ,ܰሽ, an 

unsuitable set of time stamps ࣮ can be iteratively identified as the index of the row in the basis matrix શ 

by solving  

Create initial basis matrix 

Update measurement matrix 
with physical constraints 

Update basis matrix 

Converge? 

Output measurement and 
basis matrices  

Y 

N 
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 max
࣮

Fሺ࣮ሻ ൌ Hሺશሻ െ Hሺશࣨ\࣮ሻ	 	 	 ሺ5ሻ	

where Hሺશሻ is the so-called frame potential and represented as 

 Hሺશሻ ൌ ∑ ௜|ଶߣ|
ே
௜ୀଵ 	 	 	 ሺ6ሻ	

where ߣ௜ is the i-th largest eigenvalue of શ∗શ and શ∗ is the conjugate transpose of શ. શࣨ ൌ શ if 

all time stamps of measurements are used. શࣨ\࣮  is a sub-matrix of શࣨ  with rows corresponding to 

indices with the unsuitable ones excluded. After determining the unsuitable time stamps ࣮ , the new 

available time stamps are updated as ࣨ\࣮.  

If ܯ measurements are desirable, the time stamps of ܯ measurements are optimized by excluding 

(ܰ െܯሻ unsuitable time stamps iteratively. Eventually the time stamps of the desirable measurements can 

be identified in the optimized ܯ ൈܰ measurement matrix in a form of  

 ઴ ൌ

ۏ
ێ
ێ
ێ
ۍ
૙ ૚ ૙
૚ ૙ ૙
૙ ૙ ૚

⋯
૙
૙
૙

⋮ ⋱ ⋮
૙ ૙ ૙ ⋯ ૙ے

ۑ
ۑ
ۑ
ې

 (7) 

where the column index of the value of 1 in each row indicates the time of each stored and transmitted 

measurement.  

Here, the original FrameSense algorithm is modified to check if the additional physical constraints in 

Eq.(4) are satisfied. If the time interval between any of two stored and transmitted measurements is less 

than the threshold value ݎ, one of the measurements in the pair is eliminated. For one-dimensional signals, 

  .indicates the minimum time interval between two adjacent data points ݎ
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Table 1. The constrained FrameSense algorithm 
 

1. Initialize time stamps of stored and transmitted 
measurements ࣦ, all available time stamps ࣨ, and desired 
number of stored and transmitted measurements ݉௧ 

2. Determine the first two removed rows in શ by solving 

࣮ ൌ argmax௜,௝∈ࣨห൏ ࣒௜,࣒௝ ൐ห
ଶ
 and update remaining 

time stamps ࣦ ൌ ࣨ\࣮ by excluding ࣮ 
3. WHILE the length of ࣦ ൏ ݉௧ DO 

Find the ݅∗-th row in શ to eliminate by solving ݅∗ ൌ
argmax௜∈ࣦFሺ࣮ ∪ ሼ݅ሽሻ , where Fሺ࣮ ∪ ሼ݅ሽሻ  is the 
function in Eq.(5) 
Update unsuitable time stamps of stored and 
transmitted measurements as ࣮ ൌ ࣮ ∪ ሼ݅∗ሽ 
Update available time stamps of stored and transmitted 
measurements, ࣦ ൌ ࣦ\ሼ݅∗ሽ 

END WHILE 
4. FOR i = 1 to the length of ࣦ 

   FOR j = 1 to length of ࣦ 
If ࢐࢏ܫሺ઴ሻ ൌ หݐ௜ െ ห	௝ݐ ൑ ݎ , where ݐ௜  and ݐ௝  are 

time stamps for ݅-th and ݆-th data, ࣦ ൌ ࣦ\ሼ݆ሽ. 
END FOR 

END FOR 
5. Generate measurement matrix ઴ in the form of Eq.(7) 

with optimized time stamps ࣦ 

 

3.2. Stage two optimization 

A simplified form of the objective function in Eq.(1) can be written as 

	 min஍,ஏ,ળ	 ቛቀ
܁ߙ
઴܁

ቁ െ ቀ۷ߙ
઴
ቁશળቛ

ி

ଶ
	 ሺ8ሻ	

At the stage two, શ	and	ળ are optimized with the fixed measurement matrix ઴ obtained in the stage one 

subject to the constraint in Eq.(3). With new notations ܆ ൌ ቀ܁ߙ
઴܁

ቁ  and ܈ ൌ ቀ۷ߙ
઴
ቁશ , Eq.(8) can be 

rewritten, and ܈ and ળ can be optimized by solving  

	 min܈,ળ	‖܆ െ ળ‖ி܈
ଶ 	 ሺ9ሻ	
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	 subject to ‖ࢽ௜‖૙ ൑ 	 ଴ܶ,			∀݅	 	 	 	 	 ሺ10ሻ	

The optimal ܈ and ળ are found iteratively. With an initialized and fixed basis matrix શ, the coefficient 

matrix ળ can be obtained with the orthogonal matching pursuit (OMP) [24] algorithm in solving Eqs.(9) 

and (10). With the obtained coefficient matrix ળ fixed, one column of the basis matrix is then updated 

each time by solving Eq.(9), which is re-written as 

 minܢೖฮሺ܆ െ ∑ ௝ࢽ௝ࢠ
ᇱ ሻௐ

࢐ஷ࢑ െ ௞ࢽ௞ࢠ
ᇱ ฮ

ி

ଶ
ൌ minܢೖ‖۳௞ െ ௞ࢽ௞ࢠ

ᇱ ‖ி
ଶ  ሺ11ሻ 

where ࢠ௝ is the j-th column of ࢽ ,܈௝
ᇱ  indicates the j-th row of ળ, and ۳௞ represents the errors of all 

sample signals except k-the atom. Here, ࢠ௞	as the k-th column of ܈ is updated iteratively. In order to 

satisfy the sparsity constraint in Eq. (10), additional modification of the objective function is needed. We 

define  

 ω௞ ൌ ሼ݅|1 ൑ ݅ ൑ ܹ, ௞ࢽ
ᇱ ሺ݅ሻ ് 0ሽ	 	 	 ሺ12ሻ	

as the set of indices where training signals ሼ࢙௜ሽ௜ୀଵ
௉  rely on atom	ࢠ௞. Eq. (11) is further written as 

 min
ೖܢ
ฮ۳௞

ୖ െ ௞ࢽ௞ࢠ
ୖฮ

ி

ଶ
	 	 	 ሺ13ሻ	

where ۳௞
ୖ ൌ ۳௞ષ௞ and ࢽ௞

ୖ ൌ ௝ࢽ
ᇱષ௞. ષ௞	is a matrix of size P×|߱௞| with ones on the (߱௞ሺ݅ሻ, ݅ሻ entries 

and zero elsewhere. Following the K-SVD algorithm, ۳௞
ୖ can be decomposed to ܃ઢ܄୘ with the singular 

value decomposition (SVD). Then updated ࢠ௞ is the first column of ܃ and the coefficient vector ࢽ௞
ୖ is 

the first column of ܄ multiplied by ઢሺ1,1ሻ. After each column of ܈ is updated, basis matrix શ can be 

obtained with the pseudo-inverse as  

	 શ ൌ ൫ߙଶ۷ ൅ ઴୘઴൯
ି૚
ሾ	۷ߙ ઴୘ሿ܈	   ሺ14ሻ	

In this paper, a modified K-SVD algorithm is developed. Different from the conventional K-SVD which 

requires a prefixed number of non-zero values in the sparse vectors, the modified K-SVD can adaptively 

determine the most appropriate sparsity level ଴ܶ in order to reduce the reconstruction error. Depending on 

different training datasets, initial basis matrices, and the number of available measurements, the optimal 

sparsity level ଴ܶ can be different. In the adaptive K-SVD algorithm listed in Table 2, ܁௡ represents ݊ 
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randomly selected training data from ܁ . With optimized ઴  and શ , coefficient vectors ળ୬  can be 

recovered by solving ઴܁୬ ൌ ઴શળ୬  with OMP. The average of reconstruction errors is computed as 

݁௔௩௘ ൌ 1/ሺܰ ൈ ݊ሻ ∙ ∑ ∑ ൫ሺሾ܁௡ሿ௜௝ െ ሾશળ୬ሿ௜௝ሻ/ሾ࢔܁ሿ࢐࢏ ൈ 100%൯
௡
௝

ே
௜ . ଴ܶ is determined adaptively by finding 

the minimum ݁௔௩௘.  

 

 

Table 2. Adaptive K-SVD algorithm 
 

Input: Training signals ܁ ; initial basis matrix શ଴;	measurement matrix ઴ , initial 
number of non-zero values ଴ܶ; sparsity adjustment step size ∆ ଴ܶ; weight of error 
 ;݊ number of selected training data used to compute the reconstruction error ;ߙ
maximum number of iterations ܥ; target training error ݁௧ 

Output:  Estimated sparse coefficients or parameters ળ; basis matrix શ; desired sparsity 
level ଴ܶ 

Procedure: Initialize the average of reconstruction errors ݁௔௩௘଴  and ݁௔௩௘ଵ  with ݁௔௩௘ଵ ൐
݁௔௩௘଴ , and ݉ ൌ 0. 
WHILE ݉ ൏ and ݁௔௩௘ଵ ܥ ൏ ݁௔௩௘଴  DO 
    ݁௔௩௘଴ ൌ ݁௔௩௘ଵ  
    WHILE ‖܆ െ ળ‖ி܈

ଶ ൐ ݁௧ DO 
        Compute ળ by solving Eqs.(9) and (10) with OMP. 

         FOR k=1 to W 
             Update ߱௞ with Eq.(12) 
             Compute ۳௞, ۳௞

ୖ and ࢽ௞
ୖ 

             Apply SVD to ۳௞
ୖ ൌ   ,୘܄ઢ܃

             Update ࢠ௞ as first column of ܃  
             Update ࢽ௞

ୖ as first column of ܄ multiplied by ઢሺ1,1ሻ. 
         END FOR 
        Update શ with Eq.(14). 
    END WHILE 
    Compute ݁௔௩௘ଵ  with optimized ઴, શ and ܁௡. 
    ݉ ൌ ݉ ൅ 1 
    ଴ܶ ൌ ଴ܶ ൅ ∆ ଴ܶ  
END WHILE 

 

4. Experiments 

The proposed physics-constrained dictionary learning scheme was applied to compress roller bearing 

vibration signals to reduce the storage space and communication cost. The run-to-failure data from 
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accelerated degradation tests of bearings were acquired by Wang et al. [25]. The major components of the 

test bed include digital force display, motor speed controller, support bearings, AC motor, hydraulic 

loading, tested bearing and accelerometers. Two PCB 352C33 accelerometers were used to acquire the run-

to-failure data of the tested bearings. One of them was placed on the vertical axis and the other one was on 

the horizontal axis. The vibration signals were collected with a sampling rate of 25.6 kHz. For every minute, 

only the first 32768 data points (i.e. 1.26s) were recorded.  

To test the proposed scheme, the vibration signals in both of horizontal and the vertical axes were used 

and 115000 data points were extracted from the run-to-failure data in each axis. These data points were 

divided into 1150 segments, and each segment contains 100 data points. After reconstructing each segment 

with a few data points, the complete signal can be obtained by combing all segments. Therefore, the number 

of data points in each segment is not critical, whereas the compression ratio is important for the 

reconstruction performance. Therefore, different compression ratios are used when the original signal is 

reconstructed. These 1150 segments were used as the training dataset. For the testing dataset, 115000 data 

points were extracted from a different period of time. 5000 consecutive data points is then randomly 

selected from 115000 data points and further divided into 50 segments as the testing dataset. Training and 

testing datasets are extracted from different sections of the run-to-failure data such as the beginning (i.e. 

0~50s), middle (i.e. 50~100s), and near end (i.e. 100~160s) of life to demonstrate the robustness of the 

proposed scheme. The complete and different sections of the run-to-failure data in horizontal axis are seen 

in Figure 2 (a). The x axis in Figure 2 (a) shows the time period of the recorded signals. Both vibration and 

noise levels increase as bearings reach their later stage of lives. 

Dictionary learning tends to perform better for more uniform signals in a narrower bandwidth. 

Therefore Fourier transform is applied to decompose the original signal into signals with different 

bandwidths. The proposed dictionary learning scheme is applied to decomposed signals individually. The 

vibration signal between the vertical dash lines in Figure 2 (a) near the end of life is extracted and shown 

in Figure 2 (b). The extracted signal in the frequency domain after Fourier transform is shown in Figure 2 

(c). The original vibration signal in Figure 2 (b) is decomposed into signals with six different bandwidths 
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shown in Figure 3. The testing signal is extracted near the end of life data but from a different period of 

time, as shown in the region between two solid lines in Figure 2 (a). The extracted testing signal is shown 

in Figure 4 (a). The testing signal is similarly decomposed into six different bandwidths, as shown in Figure 

4 (b). With the proposed physics-constrained dictionary learning scheme, one basis matrix is optimized for 

each decomposed training signal within the individual bandwidth. Six optimal basis matrices are obtained. 

Only one measurement matrix is generated, because the same time stamps are physically required during 

the sampling for storage and transmission for all decomposed signals. The training of the measurement 

matrix is based on the signal with a bandwidth of 0 ~ 2.5 kHz.  
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Figure 2. Extract the training signal from the complete run-to-failure data. 

 
 

(a) The complete run-to-failure data in horizontal axis 

(b) The signal extracted from the near-end of life-time  

(c) The extracted signal in frequency domain 

Beginning  Middle Near-end 
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Figure 3. Decomposed training signals with different bandwidths. 
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Figure 4. Testing signal and the compositions with different bandwidths 

 

4.1. Experimental results without considering the physical constraint 

In the first scenario, the constraint in Eq.(4) that indicates the minimum sampling interval is not 

considered. The measurement matrix ઴  and the basis matrix શ  are trained with the 1150 training 

segments. The size of the basis matrix શ is 100 ൈ 300. The maximum number of non-zero values in each 

coefficient vector ળ ൌ ሾࢽଵ, ଶࢽ  ௉ሿ is determined by the modified K-SVD with adaptive ଴ܶ. Since aࢽ	…

high sparsity level in the coefficient vectors is preferred, initial ଴ܶ is set to be 1 and ∆ ଴ܶ is 1. The desired 

଴ܶ can be found by gradually increasing its magnitude. Among the 100 collected data points in a segment, 

(a) Original testing signal  

(b) Decomposed testing signals with different bandwidths 



18 
This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Mechanical Systems & 
Signal Processing, copyright © Elsevier. The final edited and published work is at https://doi.org/10.1016/j.ymssp.2020.107434  

the number of stored and transmitted measurements was set to be 35. The time stamps for these 35 

measurements are optimized with the physics-constrained dictionary learning scheme. The initial basis 

matrix શ is the discrete cosine transformation matrix. For the decomposed training and testing signals 

with a bandwidth of 0 ~ 2.5 kHz, the average reconstruction error for each iteration is shown in Figure 5. It 

is seen that the reconstruction converges after 10 iterations. In each segment, there are 100 data points and 

the time period is 0.0039s. The optimal 35 time stamps for samplings are selected from 100 available time 

stamps and marked as stars in Figure 6 (a), where unselected time stamps are marked as circles. The 

compression ratio is 100/35=2.86. With 35 measurements in each testing segment, all data points in all 

testing segments can be reconstructed with very small errors. The reconstruction errors of decomposed 

signals from 50 testing segments are shown in Figure 7 (a). The reconstructed signals with different 

bandwidths are combined and compared with the original signal in Figure 4 (a). The reconstruction errors 

of the combined signal are seen in Figure 7 (b). The maximum reconstruction error of the combined signal 

is 1.159%, the average error is 0.0024%, and the standard deviation (STD) of errors is 0.0267%.  

Sensitivity analysis is also performed with different number of stored and transmitted measurements. 

With 40 and 45 measurements in each segment, the maximum reconstruction errors of combined signals 

are 0.4256% and 0.0899% respectively, the average errors are 0.000272% and 0.000117% respectively, 

and the STD of errors are 0.0063% and 0.0015% respectively. When more measurements are used, 

reconstruction errors can be reduced. It was found that if the number of measurements in each segment is 

less than 35, the reconstruction error can become large quickly. Therefore, there is a lower limit on the 

number of stored and transmitted measurements.  

Three different bearing datasets collected in [25] are used to demonstrate the robustness of the proposed 

framework. Training and testing signals from both of horizontal and vertical axes in the beginning, middle 

and near end of the life period are used, and the average reconstruction errors are compared in Table 3. It 

is found that the reconstruction errors for all periods and both axes in three bearing datasets are very small. 

The proposed framework is compared with the traditional dictionary learning with K-SVD algorithm 

by randomly selecting time stamps for stored and transmitted measurements. With a total of 35 
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measurements in each segment, the reconstruction errors of the combined signal with the traditional K-

SVD algorithm can be found in Figure 8. The maximum reconstruction error is 6.09%, the average error is 

0.0196%, and the STD of errors is 0.1737%. It is seen that the proposed physics-constrained dictionary 

learning can significantly improve the reconstruction performance by optimizing the measurement matrix 

and the basis matrix separately. 

 

 

Figure 5. Convergence history of the reconstruction 
 

 

 

Figure 6. Optimized time stamps for data storage and transmission 
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Figure 7. Reconstruction error of 50 testing segments 
 
Table 3. Comparison of average reconstruction errors of signals collected for two axes during three 

different life periods in three datasets 
 

Bearing dataset # Axis Beginning Middle Near End 
1 Horizontal   0.0033% 0.0034% 0.0024% 

Vertical 0.0034% 0.0026% 0.0025% 
2 Horizontal   0.0039% 0.0018% 0.0036% 

Vertical 0.0038% 0.001% 0.00075% 
3 

 
Horizontal   0.0041% 0.0028% 0.003% 
Vertical 0.0034% 0.0022% 0.00073% 

 
 
 
 

(a) Reconstruction errors of decomposed signals  

(b) Reconstruction errors of the combined signal 
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Figure 8. Reconstruction errors of the combine signal from 50 segments with traditional K-SVD 
 
 

The target sparsity level ଴ܶ in Eq.(3) can affect the training process and reconstruction performance. 

With a smaller ଴ܶ, the original signal is reconstructed with fewer measurements. However, the training 

error of ‖܁ െ શળ‖ி
ଶ  can be large, because too few non-zero values in the coefficient vector can cause 

significant information loss and the original signal can no longer be represented with the basis matrix. 

Instead of assuming a constant ଴ܶ, the modified K-SVD can determine the desired ଴ܶ adaptively. Here, 

the result of the adaptive K-SVD is verified with the physics-constrained dictionary learning based on the 

conventional K-SVD when different values of ଴ܶ  are assigned. The reconstruction errors from the 

conventional K-SVD with different ଴ܶ  values are listed in Table 4. For all tests, the number of 

measurements is 35. The size of the basis matrix શ  is 100 ൈ 300 . It is seen in Table 4 that the 

reconstruction error has the lowest level when ଴ܶ ൌ 5. When ଴ܶ ൐ 11, the reconstruction error becomes 

very large, because the lower limit of the number of stored and transmitted measurements is not satisfied. 

More measurements are needed to reconstruct the original signal if ଴ܶ ൐ 11. The convergence to the 

optimal ଴ܶ with the adaptive K-SVD algorithm is shown in Figure 9, which matches the trend in Table 4. 

The initial value of ଴ܶ is 1 in the adaptive K-SVD algorithm and adjustment step size ∆ ଴ܶ is 1. The 

incremental process is shown with the solid line. In the second test of the adaptive K-SVD, the initial value 

of ଴ܶ is 10. The decrease of sparsity level is shown as the dashed line. The average reconstruction error 

decreases as ଴ܶ  decreases and the optimal ଴ܶ  is also 5. Comparing results from conventional and 

modified K-SVD algorithms, the same desired ଴ܶ can be found which is ଴ܶ ൌ 5. Since the computational 
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cost is more expensive when ଴ܶ is larger because more non-zeros values in coefficient vectors need to be 

determined and higher sparsity level is preferred during the reconstruction process, initial ଴ܶ  of 1 is 

suggested.  

 

Table 4. Reconstruction errors with different sparsity levels  
 

଴ܶ Max error (%) Average error (%) STD (%) 
1 15.55 0.0072 0.2322 
3 6.721 0.0029 0.0961 
5 1.159 0.0024 0.0267 
7 2.591 0.0035 0.0547 
9 8.795 0.0369 0.2835 
11 270.5 0.5521 6.0274 

 
 

 

Figure 9. Convergence of ࢀ૙ 
 
 
 

4.2. Experimental results with the physical constraint considered 

In the second scenario, the constraint in Eq.(4) with the minimum sampling interval is considered. The 

sampling rate of the training signal is 25.6 kHz, and the sampling interval between consecutive data points 

is ݎ௦ ൌ 1/25600 s. In this scenario, different minimum sampling interval of stored and transmitted data 

points are tested to optimize the measurement matrix. The minimum sampling interval is set to be ݎ௦ and 

  .௦ respectivelyݎ2
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The initial number of stored and transmitted measurements in one segment is set to be 60 and optimized 

time stamps of measurements are indicated in Figure 10 (a) when the minimum sampling interval is ݎ௦. It 

can be found that some stored and transmitted measurements are too close to each other. The collected 

information can be redundant. When the minimum sampling interval of 2ݎ௦  is used, some close-by 

measurements are eliminated as in Figure 10 (b). The 23 eliminated measurements are marked with circles 

and the 37 remaining data points to be stored and transmitted are marked as stars in Figure 10 (b).  

The reconstruction errors with different minimum sampling intervals are shown in Figure 11. For the 

minimum sampling intervals of ݎ௦ and 2ݎ௦, the maximum reconstruction errors are 0.1499% and 0.9944%, 

the average errors are 0.0000773% and 0.0022%, and the STD of errors are 0.0022% and 0.0222% 

respectively. It is seen that the reconstruction errors increase when the sampling interval is increased, 

because fewer measurements are used. Compared to the reconstruction result in the first scenario in Section 

4.1, where 35 measurements in each segment is used, the compression ratios between the two scenarios are 

similar. However, less redundant information is stored and transmitted with a higher level of reconstruction 

accuracy when the physical constraint is applied. The physical constraint of minimum sampling intervals 

is particularly useful when low cost sensors have limitations in sampling rates or there are bandwidth 

limitations in transmitting data in a distributed environment. 

 

 

Figure 10. Optimized measurements with different minimum sampling intervals as the physical 

(a) Sampling interval is ݎ௦	 

(b) Sampling interval is 2ݎ௦	 
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constraint 

 

Figure 11. Reconstruction errors with different minimum sampling intervals as the physical 
constraint 

 
 

5. Conclusion 

In this paper, a new technique is presented to reduce the amount of data in storage and communication 

to monitor machinery health with vibration signals. Instead of all collected signals, only a few data points 

are stored and transmitted, which can be used to reconstruct the complete signals. The energy consumption 

and memory usage in both data storage and communication can be saved. Different from other dictionary 

learning methods, the measurement matrix in the proposed physics-constrained dictionary learning 

formulation directly indicates the time stamps of collected data points or measurements. The basis matrix 

is optimized to sparsely represent the available data points. Compared to the conventional dictionary 

learning, the measurement and basis matrices are trained separately in the physics-constrained dictionary 

(a) Sampling interval is ݎ௦	 

(b) Sampling interval is 2ݎ௦	 
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learning, which significantly reduces the reconstruction errors. The minimum sampling interval is applied 

as an additional physical constraint to minimize the redundant information of measurements. The 

constrained FrameSense algorithm allows us to impose physical constraints during the training of 

measurement matrix. An adaptive K-SVD algorithm is also developed to train the basis matrix and 

determine the desired number of non-zero values in coefficient vectors on the fly. The proposed approach 

can be used to customize the basis matrices that target at decomposed signals with different bandwidths. In 

this way, the information loss due to compression can be minimized. 

The major challenge of the proposed physics-constrained dictionary learning is related to the 

optimization in the high-dimensional space formed by the measurement and basis matrices. One limitation 

of the current computational scheme comes from the training algorithm that is based on the K-SVD. The 

K-SVD can only find the local optima. The performance of reconstruction depends on the choices of the 

initial basis matrix and the reconstruction algorithm. Instead of using the K-SVD, other dictionary learning 

algorithms can be applied. For instance, the online dictionary learning is more efficient than the K-SVD 

algorithm when monitoring real-time systems, because it does not need to store and access the entire dataset. 

The performance of reconstruction also depends on the dimensions of the dataset. High-dimensional data 

usually exhibit more correlations along multiple dimensions. Basis matrices may not be able to capture all, 

which affects the accuracy of reconstruction.  

In this paper, one-dimensional vibration signals are used to test the proposed approach. In future work, 

the physics-constrained dictionary learning will be used to reconstruct higher dimensional data such as 

images and videos. Application-specific physical constraints need to be considered in order to store and 

transmit signals more efficiently. For example, the constraints can be related to the similarity between 

frames of the video to minimize the redundant information stored. In large-scale sensor networks, the 

physical constraints can be designed based on the limitations of communication between sensors and the 

coverage of the sensor network.  
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