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A Physics-Constrained Dictionary Learning Approach for Compression of
Vibration Signals

Abstract

Monitoring the health condition of rotating machinery in manufacturing systems
usually requires vibration signals to be continuously collected, transmitted, and stored.
The available bandwidth in communication channels for transmission of a large amount
of data is limited in an industry setting. Therefore, reducing the amount of data in
communication and storage without sacrificing the amount of information collection is
necessary. Here, a new technique called physics-constrained dictionary learning is
proposed to reduce the volume of data in storage and communication using compressed
sensing. In compressed sensing, the original signals can be reconstructed with a much
smaller amount of data determined by a measurement matrix, if the representation of
signals in the reciprocal space is sparse. The proposed physics-constrained dictionary
learning approach optimizes the measurement and basis matrices simultaneously to
improve the accuracy of reconstruction, where physical constraints of time stamps of
sampling and sampling intervals are considered. New training algorithms are
developed. The proposed scheme is applied to compress the vibration signals of roller
bearings. It is shown that the reconstruction performance of the proposed scheme is

significantly improved from traditional dictionary learning.

Keywords: Compressed sensing; Dictionary learning; Sparse coding; Data compression;

Rotating machinery
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1. Introduction

Monitoring the health condition of rotating machinery in manufacturing systems usually requires
vibration signals to be continuously collected and transmitted. The available bandwidth in communication
channels for transmission of a large amount of data is limited in an industry setting where different machine
conditions need to be monitored. Therefore, reducing the amount of data in communication and storage
without sacrificing the amount of information gathered and exchanged is necessary. In the most recent
decade, compressive sampling or compressed sensing (CS) [1, 2] was developed as a new sampling
approach which requires less data storage and the original signal can be reconstructed. If the original signal
has a data size of N and its representation in the reciprocal space is sparse with only K non-zero coefficients
(K<<N), standard CS for generic signals allows for robust recovery from M=0(Klog(N/K)) measurements.

The main idea of CS is as follows. Suppose that the original signal is represented in a discrete form as
vector s € RN, It can be represented in the reciprocal space via transformations as s = Wy, where ¥ €
RN*N s the transformation or basis matrix and ¥ € R" is the vector of coefficients. When the signal is
projected into the M-dimensional measurement subspace (M<N) with measurement matrix ® € RM*N as
y = ®s, the recovery of the original signal s from the measured data y is to solve the linear equations
y = ds = ®Wy. Theoretically the recovery can be precise when the vector of coefficients y is sparse
and the transformation and projection operations are incoherent. The basis matrix ¥ is often predefined
as some known transformation matrices such as Fourier transformation, discrete cosine transformation,
wavelet transformation, or some random matrices that satisfy the restricted isometry property.

One issue with the predefined basis matrix W is that it is not directly related to the observed signals.
If the sparsity level of the coefficient vector ¥ is low, CS will not perform well. Therefore, dictionary
learning approaches have been developed to train a dictionary D specifically based on the collected data
to replace ®W. Given P sets of collected data Y = [y, Y5 ... ¥p] € RM*P the dictionary D needs to be
optimized so that Y can be sparsely represented as Y = DY, where Y = [y1,¥2 ... ¥p] € RW*P is a

matrix that includes the sparse vector of coefficients for each collected dataset and W > N. Thus,
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dictionary D € RM*W

is over-complete since M < W.

Although existing dictionary learning approaches have been applied to learn the dictionary D for
natural images, vibration signals and others, they cannot be used to determine the locations of pixels to be
measured and stored for two-dimensional images or the time stamps of measurements for one-dimensional
signals, because the measurement matrix @ is not designed explicitly. For instance, to select data points
for storage and communication from all collected vibration signals, the measurement matrix @ needs to
be optimized to determine the total number of stored and transmitted measurements. For the measurement
matrix @, there should be only one non-zero entry in each row of @ and other entries are zeros. The index
of non-zero entry in each row indicates the time stamps of sampling or when to store and transmit data.
Therefore, the optimization of @ and W individually provides more physical meanings of the optimized
dictionary. Furthermore, the columns of the trained dictionary D in traditional dictionary learning are not
always orthogonal, which affects the CS performance. A well-designed measurement matrix @ can also
improve the orthogonality of the columns in D.

In this paper, a new physics-constrained dictionary learning scheme is proposed to reduce the amount
of data in storage and communication. From all collected data points, only a few of them are stored and
transmitted. The original signal can be reconstructed from the compressed data with CS. The actual storage
space and communication cost are determined by the optimized measurement matrix @, and the signal can
achieve a high sparsity level with respect to the optimized basis matrix. Some physical constraints such as
the data storage space, the number of measurements, sensor accessibility, and the energy consumption of
data collection can be considered in the learning process to optimize the basis and measurement matrices.
Here, the minimum sampling interval between compressed data points is used as the physical constraint to
demonstrate the new physics-constrained dictionary learning approach for vibration signals of roller
bearings, which can reduce the redundancy for the storage and communication of temporally correlated
data. The main contributions of this paper include the new formulation of dictionary learning subject to
physical constraints, as well as new algorithms to simultaneously optimize the basis matrix ¥ for sparse
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representation and the measurement matrix @ for the physical time stamps of sampling.

In the remainder of the paper, the background of dictionary learning methods and their applications are
introduced in Section 2. The proposed physics-constrained dictionary learning method is described in
Section 3. The demonstration of its application to compress the roller bearing vibration signal for the storage

and communication, and experimental results are given in Section 4.

2. Background

Various dictionary learning methods [3] have been developed to search for the sparsest representation
of signals. The purpose is to find the optimal dictionary so that the sparsity is maximized for a specific type
of signals. As a result, the original signals can be represented in a form of linear combinations of the learned
dictionary and the sparse vector of coefficients. Some commonly used dictionary learning algorithms
include the method of optimal directions [4], K-SVD [5], the online dictionary learning [6] and others. The
training process is also based on the maximum likelihood [7], least-square error [8, 9], and hidden Markov
model [10].

Dictionary learning methods have been applied in combination with CS. For conventional CS, the basis
matrix is usually predefined, so it is not directly related to the observed signals. Therefore, dictionary
learning approaches have been developed to improve the sparsity level of the coefficient vector with a
trained dictionary specifically based on the collected data. For example, Chen et al. [7] applied the
dictionary learning method to improve the CS performance in extracting impulse components from noisy
vibration signals. Lorintiu et al. [11] reconstructed ultrasound data with CS and dictionary learning by K-
SVD. It was shown that reconstruction errors are lower than conventional dictionaries based on Fourier or
discrete cosine transformations. CS with learned dictionary was also applied for the reconstruction of
magnetic resonance images [12-15], videos [16] and electrocardiogram signals [17], and image denoising
[18-20]. The existing dictionary learning approaches can improve the performance of CS. However, they

are limited in practical applications because the measurement matrix is not designed explicitly. The
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measurement matrix is necessary to determine the locations of pixels to be measured and stored for two-
dimensional images or the time stamps of measurements for one-dimensional signals.

Instead of learning the dictionary, which is the combination of the measurement matrix and the basis
matrix, approaches to design the measurement and basis matrices separately were also developed. Duarte-
Carvajalino and Sapiro [21] simultaneously optimized the measurement matrix and basis matrix with a new
scheme called coupled-KSVD. The incoherence between the measurement and basis matrices was
improved and resulted in better reconstruction performance. Bai et al. [22] further improved the framework
with analytical solutions to update the measurement and basis matrices. It was shown that the convergence
and accuracy of the solutions were improved for reconstruction of natural images. Nevertheless, in the
above approaches, the optimized measurement matrix is dense. The dense measurement matrix cannot be
used to determine the locations or time stamps of measurements or sampling in physical experiments. To
be physically meaningful, measurement matrices should have only one non-zero entry in each row. The
index of non-zero entry in each row indicates the time stamps to sample and store signals. Furthermore,
physical constraints such as the data storage space, the number of measurements, sensor accessibility, and
the energy consumption of data collection are important but considered in the existing approaches. Physical
constraints ensure that the optimal performance is realizable in practical applications.

The proposed physics-constrained dictionary learning framework optimizes the measurement and basis
matrices simultaneously where the measurement matrix with only one non-zero entry in each row can
directly indicate the time stamp of sampling. The physical constraint of the minimum sampling interval
between stored and transmitted measurements is considered to reduce the redundancy for the storage and
communication of temporally correlated data. The number of required measurements thus is optimized

based on the physical constraints.

3. Methodology

The proposed physics-constrained dictionary learning scheme is to optimize the measurement matrix
@ and the basis matrix ¥ simultaneously under the physical constraints related to the time stamps for
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sampling. It is formulated as

ming yy allS —WY|IF + | @S — ®WY||% €Y)
subject to ® = f (W) 2)

llyillo < To, Vi 3)

Lij(®) = 7, Vi,j 4)

where F denotes the Frobenius norm, S = [sq, s, ...5p] € RV*? contains P sets of training signals and
each set of signals has the length of N. ¥ € RN*W is the basis matrix with W <« P and W > N. Y =
[¥1, V2 - ¥Yp] € RW*P contains the sparse coefficients that represent the training signals in S with
respect to the basis matrix. A Lagrange multiplier a is applied to combine the objectives of recovery
accuracy and measurement accuracy. A small value of @ such as 0.01 is used in practice because a
relatively larger control weight of the error term ||®S — ®WY||% is necessary to design the measurement
matrix to minimize the reconstruction error. The constraint in Eq.(2) indicates the training sequence, where
basis matrix W is updated before measurement matrix ®. With the fixed basis matrix ¥, measurement
matrix @ can be optimized based on f(¥W). The constraint in Eq.(3) is the upper limit of the sparsity
level, where y; is the i-th column of coefficient matrix, and T, is the target number of non-zero values in
the sparse vectors of coefficients. The constraint in Eq.(4) shows the physical limitations of sampling, which
is the lower limit of the time interval I;; between the i-th and j-th stored or transmitted measurements,
for instance, between any two consecutive measurements. If the time interval between stored or transmitted
measurements is too small, more redundant information is collected because of large similarities between
temporally correlated measurements. Other physical constraints can be added similarly.

The physics-constrained dictionary learning problem is solved to optimize the measurement and basis
matrices by two stages iteratively as shown in Figure 1. It starts with an initial guess of the basis matrix
which can be some known transformation matrices such as discrete cosine transformation and wavelet
transformation. In the first stage, with the basis matrix fixed, the measurement matrix is optimized by

determining suitable measurements to be stored and transmitted from originally collected signals under the
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constraint that there is only one non-zero entry in each row to determine the time stamp of the measurement.
This can be solved based on algorithms such as the FrameSense [23]. In the second stage, with the
measurement matrix fixed, the basis matrix is then optimized. This can be done with dictionary learning
algorithms such as the K-SVD. The above two optimization steps are repeated until both the optimal
measurement and basis matrices converge without further improvement. Physical constraints such as the

total number of collected data points and the minimum sampling interval can be incorporated.

[ Create initial basis matrix ]

v

Update measurement matrix

with physical constraints
Update basis matrix ]
N
Converge?
Y

Output measurement and
basis matrices

Figure 1. Two-stage optimization scheme.

3.1. Stage one optimization

At the stage one, the basis matrix W is fixed, and the measurement matrix @ is optimized. Instead of
directly searching for the optimal time stamps of stored and transmitted measurements which is often NP-
hard if the number of measurements is large, the near-optimal time stamps of sampling can be obtained
based on the greedy algorithm FrameSense in Table 1. Given all available time stamps N = {1, ..., N}, an
unsuitable set of time stamps T can be iteratively identified as the index of the row in the basis matrix ¥
by solving
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maxF(T) = H(W) = H(¥yr) ©

where H(W) is the so-called frame potential and represented as
H(®) = X142 (6)
where A; is the i-th largest eigenvalue of W*W and W* is the conjugate transpose of W. ¥y, = W if
all time stamps of measurements are used. Wy is a sub-matrix of Wy  with rows corresponding to
indices with the unsuitable ones excluded. After determining the unsuitable time stamps 7', the new
available time stamps are updated as N\T.
If M measurements are desirable, the time stamps of M measurements are optimized by excluding
(N — M) unsuitable time stamps iteratively. Eventually the time stamps of the desirable measurements can

be identified in the optimized M X N measurement matrix in a form of

01 0 0
[100---0]
<I>=[001 0 (7
000 - 0

where the column index of the value of 1 in each row indicates the time of each stored and transmitted
measurement.

Here, the original FrameSense algorithm is modified to check if the additional physical constraints in
Eq.(4) are satisfied. If the time interval between any of two stored and transmitted measurements is less
than the threshold value r, one of the measurements in the pair is eliminated. For one-dimensional signals,

r indicates the minimum time interval between two adjacent data points.
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Table 1. The constrained FrameSense algorithm

1. Initialize time stamps of stored and transmitted
measurements L, all available time stamps N, and desired
number of stored and transmitted measurements m;

2. Determine the first two removed rows in ¥ by solving
T = argmaxi'jeN|< Vi, P; >|2 and update remaining
time stamps £ = N\T by excluding T

3. WHILE the length of £ <m; DO

Find the i*-th row in W to eliminate by solving i* =
argmax;c F(T U {i}) , where FT U{i}) is the
function in Eq.(5)
Update unsuitable time stamps of stored and
transmitted measurements as 7 = T U {i*}
Update available time stamps of stored and transmitted
measurements, £ = L\{i"}
END WHILE
4. FORi=1 to the length of L
FOR j =1 to length of £
If Ijj(®) = |tL- -t | <r, where t; and ¢; are
time stamps for i-th and j-th data, £ = L\{j}.
END FOR
END FOR

5. Generate measurement matrix @ in the form of Eq.(7)

with optimized time stamps £

3.2. Stage two optimization

A simplified form of the objective function in Eq.(1) can be written as

. asS al z
min - Y 8
oy [[(gs) (o) ¥¥], ®)
At the stage two, Wand Y are optimized with the fixed measurement matrix @ obtained in the stage one

subject to the constraint in Eq.(3). With new notations X = (gss) and Z = ((g)‘l’, Eq.(8) can be

rewritten, and Z and Y can be optimized by solving
mingy [IX — ZY||% €)
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subjectto |[yillo < Ty, Vi (10)
The optimal Z and Y are found iteratively. With an initialized and fixed basis matrix W, the coefficient
matrix Y can be obtained with the orthogonal matching pursuit (OMP) [24] algorithm in solving Eqs.(9)
and (10). With the obtained coefficient matrix Y fixed, one column of the basis matrix is then updated
each time by solving Eq.(9), which is re-written as

. / 2 . !
mank”(X - ,l'/];/:k ZjY}) - Zk}’k”F = mlnzk”Ek - Zk}’k”zzr (11)

where z; is the j-th column of Z, y;- indicates the j-th row of Y, and E; represents the errors of all
sample signals except k-the atom. Here, zj as the k-th column of Z is updated iteratively. In order to
satisfy the sparsity constraint in Eq. (10), additional modification of the objective function is needed. We
define
wr ={i|1 <i < W,y (@) # 0} (12)
as the set of indices where training signals {s;}/_; rely on atom z,. Eq. (11) is further written as
min||Ef — 2, vE]l, (13)
where ER = E,Q; and y} = y}ﬂk. Q. is a matrix of size PX|wy| with ones on the (w(i),i) entries
and zero elsewhere. Following the K-SVD algorithm, ER can be decomposed to UAVT with the singular
value decomposition (SVD). Then updated z, is the first column of U and the coefficient vector y& is

the first column of V multiplied by A(1,1). After each column of Z is updated, basis matrix W can be
obtained with the pseudo-inverse as

W= (a21+®T0) (ol @T|Z (14)

In this paper, a modified K-SVD algorithm is developed. Different from the conventional K-SVD which

requires a prefixed number of non-zero values in the sparse vectors, the modified K-SVD can adaptively

determine the most appropriate sparsity level T, in order to reduce the reconstruction error. Depending on

different training datasets, initial basis matrices, and the number of available measurements, the optimal

sparsity level Ty can be different. In the adaptive K-SVD algorithm listed in Table 2, S,, represents n
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randomly selected training data from S. With optimized ® and W, coefficient vectors Y, can be

recovered by solving ®S, = ®WY, with OMP. The average of reconstruction errors is computed as
eave = 1/(N x 1) - T XH(([Snlij — [¥Ynli))/[Snlij X 100%). T, is determined adaptively by finding

the minimum e,,.

Table 2. Adaptive K-SVD algorithm

Input: Training signals S; initial basis matrix W,; measurement matrix &, initial
number of non-zero values Ty; sparsity adjustment step size AT,; weight of error
a; number of selected training data used to compute the reconstruction error n;
maximum number of iterations C; target training error e;

Output: Estimated sparse coefficients or parameters Y; basis matrix W; desired sparsity
level T,
Procedure: Initialize the average of reconstruction errors e2,, and el,, with e},, >

ed,.,and m = 0.
WHILE m < C and e}y, < egye DO
0 — 1
€ave = €ave
WHILE [|X — ZY||2 > e, DO
Compute Y by solving Egs.(9) and (10) with OMP.
FOR k=1to W
Update w; with Eq.(12)
Compute E;, ER and y&
Apply SVD to ER = UAVT,
Update z, as first column of U
Update YR as first column of V multiplied by A(1,1).

END FOR
Update W with Eq.(14).
END WHILE
Compute e},, with optimized ®, ¥ and S,,.
m=m+1
To =Ty + AT,
END WHILE

4. Experiments

The proposed physics-constrained dictionary learning scheme was applied to compress roller bearing

vibration signals to reduce the storage space and communication cost. The run-to-failure data from
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accelerated degradation tests of bearings were acquired by Wang et al. [25]. The major components of the
test bed include digital force display, motor speed controller, support bearings, AC motor, hydraulic
loading, tested bearing and accelerometers. Two PCB 352C33 accelerometers were used to acquire the run-
to-failure data of the tested bearings. One of them was placed on the vertical axis and the other one was on
the horizontal axis. The vibration signals were collected with a sampling rate of 25.6 kHz. For every minute,
only the first 32768 data points (i.e. 1.26s) were recorded.

To test the proposed scheme, the vibration signals in both of horizontal and the vertical axes were used
and 115000 data points were extracted from the run-to-failure data in each axis. These data points were
divided into 1150 segments, and each segment contains 100 data points. After reconstructing each segment
with a few data points, the complete signal can be obtained by combing all segments. Therefore, the number
of data points in each segment is not critical, whereas the compression ratio is important for the
reconstruction performance. Therefore, different compression ratios are used when the original signal is
reconstructed. These 1150 segments were used as the training dataset. For the testing dataset, 115000 data
points were extracted from a different period of time. 5000 consecutive data points is then randomly
selected from 115000 data points and further divided into 50 segments as the testing dataset. Training and
testing datasets are extracted from different sections of the run-to-failure data such as the beginning (i.e.
0~50s), middle (i.e. 50~100s), and near end (i.e. 100~160s) of life to demonstrate the robustness of the
proposed scheme. The complete and different sections of the run-to-failure data in horizontal axis are seen
in Figure 2 (a). The x axis in Figure 2 (a) shows the time period of the recorded signals. Both vibration and
noise levels increase as bearings reach their later stage of lives.

Dictionary learning tends to perform better for more uniform signals in a narrower bandwidth.
Therefore Fourier transform is applied to decompose the original signal into signals with different
bandwidths. The proposed dictionary learning scheme is applied to decomposed signals individually. The
vibration signal between the vertical dash lines in Figure 2 (a) near the end of life is extracted and shown
in Figure 2 (b). The extracted signal in the frequency domain after Fourier transform is shown in Figure 2

(c). The original vibration signal in Figure 2 (b) is decomposed into signals with six different bandwidths
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shown in Figure 3. The testing signal is extracted near the end of life data but from a different period of
time, as shown in the region between two solid lines in Figure 2 (a). The extracted testing signal is shown
in Figure 4 (a). The testing signal is similarly decomposed into six different bandwidths, as shown in Figure
4 (b). With the proposed physics-constrained dictionary learning scheme, one basis matrix is optimized for
each decomposed training signal within the individual bandwidth. Six optimal basis matrices are obtained.
Only one measurement matrix is generated, because the same time stamps are physically required during
the sampling for storage and transmission for all decomposed signals. The training of the measurement

matrix is based on the signal with a bandwidth of 0 ~ 2.5 kHz.
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Figure 2. Extract the training signal from the complete run-to-failure data.
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4.1. Experimental results without considering the physical constraint

In the first scenario, the constraint in Eq.(4) that indicates the minimum sampling interval is not
considered. The measurement matrix @ and the basis matrix ¥ are trained with the 1150 training
segments. The size of the basis matrix ¥ is 100 X 300. The maximum number of non-zero values in each
coefficient vector Y = [y4,¥; ... ¥Yp] is determined by the modified K-SVD with adaptive T,. Since a
high sparsity level in the coefficient vectors is preferred, initial Ty is settobe 1 and ATy is 1. The desired

T, can be found by gradually increasing its magnitude. Among the 100 collected data points in a segment,
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the number of stored and transmitted measurements was set to be 35. The time stamps for these 35
measurements are optimized with the physics-constrained dictionary learning scheme. The initial basis
matrix ¥ is the discrete cosine transformation matrix. For the decomposed training and testing signals
with a bandwidth of 0 ~ 2.5 kHz, the average reconstruction error for each iteration is shown in Figure 5. It
is seen that the reconstruction converges after 10 iterations. In each segment, there are 100 data points and
the time period is 0.0039s. The optimal 35 time stamps for samplings are selected from 100 available time
stamps and marked as stars in Figure 6 (a), where unselected time stamps are marked as circles. The
compression ratio is 100/35=2.86. With 35 measurements in each testing segment, all data points in all
testing segments can be reconstructed with very small errors. The reconstruction errors of decomposed
signals from 50 testing segments are shown in Figure 7 (a). The reconstructed signals with different
bandwidths are combined and compared with the original signal in Figure 4 (a). The reconstruction errors
of the combined signal are seen in Figure 7 (b). The maximum reconstruction error of the combined signal
is 1.159%, the average error is 0.0024%, and the standard deviation (STD) of errors is 0.0267%.

Sensitivity analysis is also performed with different number of stored and transmitted measurements.
With 40 and 45 measurements in each segment, the maximum reconstruction errors of combined signals
are 0.4256% and 0.0899% respectively, the average errors are 0.000272% and 0.000117% respectively,
and the STD of errors are 0.0063% and 0.0015% respectively. When more measurements are used,
reconstruction errors can be reduced. It was found that if the number of measurements in each segment is
less than 35, the reconstruction error can become large quickly. Therefore, there is a lower limit on the
number of stored and transmitted measurements.

Three different bearing datasets collected in [25] are used to demonstrate the robustness of the proposed
framework. Training and testing signals from both of horizontal and vertical axes in the beginning, middle
and near end of the life period are used, and the average reconstruction errors are compared in Table 3. It
is found that the reconstruction errors for all periods and both axes in three bearing datasets are very small.

The proposed framework is compared with the traditional dictionary learning with K-SVD algorithm

by randomly selecting time stamps for stored and transmitted measurements. With a total of 35
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measurements in each segment, the reconstruction errors of the combined signal with the traditional K-
SVD algorithm can be found in Figure 8. The maximum reconstruction error is 6.09%, the average error is
0.0196%, and the STD of errors is 0.1737%. It is seen that the proposed physics-constrained dictionary

learning can significantly improve the reconstruction performance by optimizing the measurement matrix

and the basis matrix separately.

10?
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Figure 5. Convergence history of the reconstruction
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Figure 6. Optimized time stamps for data storage and transmission
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Figure 7. Reconstruction error of 50 testing segments

Table 3. Comparison of average reconstruction errors of signals collected for two axes during three
different life periods in three datasets

Bearing dataset # | Axis Beginning Middle Near End
1 Horizontal | 0.0033% 0.0034% 0.0024%
Vertical 0.0034% 0.0026% 0.0025%
2 Horizontal | 0.0039% 0.0018% 0.0036%
Vertical 0.0038% 0.001% 0.00075%
3 Horizontal | 0.0041% 0.0028% 0.003%
Vertical 0.0034% 0.0022% 0.00073%
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Figure 8. Reconstruction errors of the combine signal from 50 segments with traditional K-SVD

The target sparsity level T, in Eq.(3) can affect the training process and reconstruction performance.
With a smaller Ty, the original signal is reconstructed with fewer measurements. However, the training
error of ||S — ‘PYIl% can be large, because too few non-zero values in the coefficient vector can cause
significant information loss and the original signal can no longer be represented with the basis matrix.
Instead of assuming a constant T}, the modified K-SVD can determine the desired T, adaptively. Here,
the result of the adaptive K-SVD is verified with the physics-constrained dictionary learning based on the
conventional K-SVD when different values of T, are assigned. The reconstruction errors from the
conventional K-SVD with different T, values are listed in Table 4. For all tests, the number of
measurements is 35. The size of the basis matrix ¥ is 100 X 300. It is seen in Table 4 that the
reconstruction error has the lowest level when T, = 5. When T, > 11, the reconstruction error becomes
very large, because the lower limit of the number of stored and transmitted measurements is not satisfied.
More measurements are needed to reconstruct the original signal if Ty > 11. The convergence to the
optimal T, with the adaptive K-SVD algorithm is shown in Figure 9, which matches the trend in Table 4.
The initial value of T, is 1 in the adaptive K-SVD algorithm and adjustment step size AT, is 1. The
incremental process is shown with the solid line. In the second test of the adaptive K-SVD, the initial value
of T, is 10. The decrease of sparsity level is shown as the dashed line. The average reconstruction error
decreases as T, decreases and the optimal T, is also 5. Comparing results from conventional and

modified K-SVD algorithms, the same desired T,, can be found whichis T, = 5. Since the computational
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cost is more expensive when T, is larger because more non-zeros values in coefficient vectors need to be

determined and higher sparsity level is preferred during the reconstruction process, initial T, of 1 is

suggested.

Table 4. Reconstruction errors with different sparsity levels

Ty Max error (%) Average error (%) | STD (%)
1 15.55 0.0072 0.2322
3 6.721 0.0029 0.0961
5 1.159 0.0024 0.0267
7 2.591 0.0035 0.0547
9 8.795 0.0369 0.2835
11 270.5 0.5521 6.0274

average reconstruction error (%)
3
N

Figure 9. Convergence of T

4.2. Experimental results with the physical constraint considered

In the second scenario, the constraint in Eq.(4) with the minimum sampling interval is considered. The
sampling rate of the training signal is 25.6 kHz, and the sampling interval between consecutive data points
is 7, = 1/25600 s. In this scenario, different minimum sampling interval of stored and transmitted data
points are tested to optimize the measurement matrix. The minimum sampling interval is set to be r; and
21, respectively.
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The initial number of stored and transmitted measurements in one segment is set to be 60 and optimized
time stamps of measurements are indicated in Figure 10 (a) when the minimum sampling interval is 75. It
can be found that some stored and transmitted measurements are too close to each other. The collected
information can be redundant. When the minimum sampling interval of 2r; is used, some close-by
measurements are eliminated as in Figure 10 (b). The 23 eliminated measurements are marked with circles
and the 37 remaining data points to be stored and transmitted are marked as stars in Figure 10 (b).

The reconstruction errors with different minimum sampling intervals are shown in Figure 11. For the
minimum sampling intervals of 7y and 27y, the maximum reconstruction errors are 0.1499% and 0.9944%,
the average errors are 0.0000773% and 0.0022%, and the STD of errors are 0.0022% and 0.0222%
respectively. It is seen that the reconstruction errors increase when the sampling interval is increased,
because fewer measurements are used. Compared to the reconstruction result in the first scenario in Section
4.1, where 35 measurements in each segment is used, the compression ratios between the two scenarios are
similar. However, less redundant information is stored and transmitted with a higher level of reconstruction
accuracy when the physical constraint is applied. The physical constraint of minimum sampling intervals
is particularly useful when low cost sensors have limitations in sampling rates or there are bandwidth

limitations in transmitting data in a distributed environment.
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(b) Sampling interval is 275

Figure 10. Optimized measurements with different minimum sampling intervals as the physical
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Figure 11. Reconstruction errors with different minimum sampling intervals as the physical

Conclusion

In this paper, a new technique is presented to reduce the amount of data in storage and communication
to monitor machinery health with vibration signals. Instead of all collected signals, only a few data points
are stored and transmitted, which can be used to reconstruct the complete signals. The energy consumption
and memory usage in both data storage and communication can be saved. Different from other dictionary
learning methods, the measurement matrix in the proposed physics-constrained dictionary learning
formulation directly indicates the time stamps of collected data points or measurements. The basis matrix
is optimized to sparsely represent the available data points. Compared to the conventional dictionary

learning, the measurement and basis matrices are trained separately in the physics-constrained dictionary
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learning, which significantly reduces the reconstruction errors. The minimum sampling interval is applied
as an additional physical constraint to minimize the redundant information of measurements. The
constrained FrameSense algorithm allows us to impose physical constraints during the training of
measurement matrix. An adaptive K-SVD algorithm is also developed to train the basis matrix and
determine the desired number of non-zero values in coefficient vectors on the fly. The proposed approach
can be used to customize the basis matrices that target at decomposed signals with different bandwidths. In
this way, the information loss due to compression can be minimized.

The major challenge of the proposed physics-constrained dictionary learning is related to the
optimization in the high-dimensional space formed by the measurement and basis matrices. One limitation
of the current computational scheme comes from the training algorithm that is based on the K-SVD. The
K-SVD can only find the local optima. The performance of reconstruction depends on the choices of the
initial basis matrix and the reconstruction algorithm. Instead of using the K-SVD, other dictionary learning
algorithms can be applied. For instance, the online dictionary learning is more efficient than the K-SVD
algorithm when monitoring real-time systems, because it does not need to store and access the entire dataset.
The performance of reconstruction also depends on the dimensions of the dataset. High-dimensional data
usually exhibit more correlations along multiple dimensions. Basis matrices may not be able to capture all,
which affects the accuracy of reconstruction.

In this paper, one-dimensional vibration signals are used to test the proposed approach. In future work,
the physics-constrained dictionary learning will be used to reconstruct higher dimensional data such as
images and videos. Application-specific physical constraints need to be considered in order to store and
transmit signals more efficiently. For example, the constraints can be related to the similarity between
frames of the video to minimize the redundant information stored. In large-scale sensor networks, the
physical constraints can be designed based on the limitations of communication between sensors and the

coverage of the sensor network.
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