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Abstract. In this article, we study the problem of obtaining Lebesgue space

inequalities for the Fourier restriction operator associated to rectangular pieces

of the paraboloid and perturbations thereof. We state a conjecture for the
dependence of the operator norms in these inequalities on the sidelengths of

the rectangles, prove that this conjecture follows from (a slight reformulation

of the) restriction conjecture for elliptic hypersurfaces, and prove that, if valid,
the conjecture is essentially sharp. Such questions arise naturally in the study

of restriction inequalities for degenerate hypersurfaces; we demonstrate this

connection by using our positive results to prove new restriction inequalities
for a class of hypersurfaces having some additive structure.

1. Introduction

Recent work [2] establishing bounds for restriction operators associated to higher
order surfaces on which the curvature may vanish at some points naturally gives
rise to the study of the restriction operator R`d associated to the rectangular piece
of the paraboloid,

{(|ξ|2, ξ) : ξ ∈ Q`}, Q` :=

d∏
j=1

(−lj , lj), ` = (l1, . . . , ld) ∈ (0,∞]d,

and perturbations thereof.
In this article, we consider the problems of establishing finiteness and under-

standing the dependence on ` of the Lp → Lq operator norms of R`d. We then
apply such results to obtain new, sharp restriction inequalities for a collection of
“degenerate” hypersurfaces (i.e. hypersurfaces whose curvature vanishes on some
nonempty set). We are motivated by the recent success of the first author [13] (cf.
[4]) in directly deducing sharp estimates for model convolution operators by using
a generalization of this approach.

The natural interpretation of ellipticity in this context leads to a slight general-
ization of the traditional notion of ellipticity formulated by Tao–Vargas–Vega [16].
We introduce some additional notation, letting

A`(ξ1, . . . , ξd) := (l1ξ1, . . . , ldξd), ` ∈ (0,∞)d,

and

1 := (1, . . . , 1).

Definition 1.1. Let ` ∈ (0,∞)d and let g be a CN+2
loc function on Q` for some

` ∈ (0,∞]d, with N ≥ 0 sufficiently large, possibly infinite. Assume that D2g is
positive definite throughout Q`, and let 0 < ε0 ≤ 1

2 . We say that g is elliptic over

Q` (with parameters N, ε0) if g(ξ) = |ξ|2 + h(ξ), where the perturbation h satisfies
1
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h(0) = 0, ∇h(0) = 0, D2h(0) = 0, and

‖(D2h) ◦A˜̀‖CN (Q1) < ε0,

for every bounded Q
˜̀

contained in Q`. If g is elliptic over Q` with parameters
N, ε0, we will also say that the surface

Σg := {(g(ξ), ξ) : ξ ∈ Q`}

is elliptic over Q` (with parameters N, ε0).

This definition of ellipticity is invariant under parabolic rescalings in the sense
that g is elliptic over Q` if and only if λ2g(λ−1·) is elliptic over Qλ`. In the special
cases that d = 1 or ` = 1 = (1, . . . , 1), our definition of ellipticity coincides with
that in [16], but ours is strictly more general in the sense that a surface elliptic over
some Q` may not be coverable by a bounded (independent of `) number of surfaces
elliptic in the sense of [16]. We will see the utility of this generalization once we
turn to applications.

Associated to a function g elliptic over some Q` are the familiar restriction and
extension operators,

R`gf(ξ) := f̂(g(ξ), ξ), ξ ∈ Q`

E`gf(t, x) :=

∫
Q`
ei(t,x)(g(ξ),ξ)f(ξ) dξ, (t, x) ∈ R1+d.

Since these operators are dual to one another, it suffices to state our results for the
extension operator.

Ellipticity over some Q` is a more general concept than ellipticity in the sense
of Tao–Vargas–Vega, and the following conjecture seems to be a reasonable gener-
alization of the corresponding conjecture for elliptic hypersurfaces.

Conjecture 1.2. For N sufficiently large, 0 < ε0 < 1
2 , and 1 ≤ p, q ≤ ∞ in

the range q = d+2
d p′ > p, there exists a constant Cp,q,d < ∞ such that for any

` ∈ (0,∞]d, ‖E`g‖Lp→Lq ≤ Cp,q,d, for any g elliptic over Q` with parameters N, ε0.

This conjecture is already verified in the case d = 1 by Fefferman–Stein [6] and
Zygmund [19], and its deduction in the bilinear range in higher dimensions is rela-
tively straightforward (Theorem 1.3). The authors have not investigated whether
the results of [10, 11, 12, 18] extend to imply progress toward Conjecture 1.2, though
the possibility of such an extension seems likely.

Theorem 1.3. Conjecture 1.2 holds for all d ≥ 1 and q > 2(d+3)
d+1 .

In certain cases, this theorem is already known [3, 6, 14, 16, 19]; we will give the
short deduction of the remaining cases in Section 4.

As promised, we turn now to the dependence of operator norms on the side-
lengths.

Conjecture 1.4. Let ` ∈ (0,∞]d satisfy l1 ≤ · · · ≤ ld. For g elliptic over Q` with
parameters N sufficiently large and 0 < ε0 <

1
2 , depending on d, p, q, we have the

following operator norm bounds for E lg, with implicit constants independent of g and

`. If q > p satisfy q = d−j−θ+2
d−j−θ p′, for some 0 ≤ j < d and 0 ≤ θ ≤ 1, then

‖E`g‖Lp→Lq . (l1 · · · lj lθj+1)
1
p′−

1
q ; (1.1)
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in particular, this quantity is finite whenever lj+1 < ∞. If ld < ∞, we have, in
addition:

‖E`g‖Lp→Lq .ε (l1 · · · ld)
1
q−

1
p ( ld
lj+1

)ε(l1 · · · lj lθj+1)1− 2
q , (1.2)

for q = 2(d−j−θ+1)
d−j−θ ≤ p, 0 < θ ≤ 1, ε > 0, and j = 0, . . . , d− 2; and

‖E`g‖Lp→Lq . (l1 · · · ld−1)
1
p′−

1
q l

1− 3
q−

1
p

d , (1.3)

for q > 4 and p ≥ ( q3 )′.

Modulo the precise definition of ellipticity, the two-dimensional version of this
conjecture was essentially formulated by Buschenhenke–Müller–Vargas in [2] (one
must rescale).

We have the following positive result.

Theorem 1.5. Conjecture 1.2 implies Conjecture 1.4. In particular, Conjec-
ture 1.4 holds unconditionally for q > 10

3 for all d ≥ 2, and, when d ≥ 3 and

Pk := (1− k+2
k ·

k+1
2(k+3) ,

k+1
2(k+3) ), (1.4)

for ( 1
p ,

1
q ) in the convex hull of [(1, 0), Pd−j)∪[(1, 0), Pd−j+1), for each 1 ≤ j < d−1.

More precise statements of the conditional part of Theorem 1.5 may be found in
the lemmas leading to the proof of Theorem 1.5.

In addition, we prove that Conjecture 1.4, if true, is essentially optimal, excepting
the precise asymptotics as ld

lj+1
→∞ in the region q ≤ p, q ≤ 4.

Theorem 1.6. Let ` ∈ (0,∞]d satisfy l1 ≤ · · · ≤ ld. Let g be elliptic over Q` with
parameters N ≥ 2 and 0 < ε0 <

1
2 . Then E lg does not extend as a bounded linear

operator for (p, q) lying outside of the region q ≥ d+2
d p′, q > 2(d+1)

d . If lk = ∞,

some 1 ≤ k ≤ d, then E lg does not extend as a bounded operator from Lp to Lq for

any p ≥ q nor q ≤ d−k+3
d−k+1p

′. More precisely, if q > p satisfy q = d−j−θ+2
d−j−θ p′, for

some 0 ≤ j < d and 0 ≤ θ ≤ 1, then

‖E`g‖Lp→Lq & (l1 · · · lj lθj+1)
1
p′−

1
q . (1.5)

If q = 2(d−j−θ+1)
d−j−θ ≤ p, 0 < θ ≤ 1, and j ∈ {0, . . . , d− 2}, then

‖E`g‖Lp→Lq & (l1 · · · ld)
1
q−

1
pα( ld

lj+1
)(l1 · · · lj lθj+1)1− 2

q . (1.6)

Here α depends on d, p, and q; α & 1; and α(r)→∞ as r →∞. Finally, for q > 4
and p ≥ ( q3 )′,

‖E`g‖Lp→Lq & (l1 · · · ld−1)
1
p′−

1
q l

1− 3
q−

1
p

d . (1.7)

Attribution for the statement of Conjecture 1.4 and prior progress toward The-
orems 1.5 and 1.6 is somewhat ambiguous, particularly as some prior progress on
these questions was not formalized into precisely stated theorems, the hypotheses
and generality elsewhere differ, and the implications of earlier methods and results
seem not to have been fully exploited. We give a recounting of the progress of which
we are aware. For the fully conditional part of Theorem 1.5, we use an elementary
deduction, which was used to obtain an alternate proof of the restriction inequality
for the cone in [5]. In two dimensions, under a more restrictive hypothesis, lower
bounds matching those from Theorem 1.6 in the region 2p′ ≤ q ≤ 3p′, p < q were
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obtained, as were the lower bounds in the region 3 < q < 4, modulo the additional
gain in ld

lj+1
; it was also remarked that the methods in [9] (which, in turn, attributes

the method to [5]) lead to the conditional result in this region. Nevertheless, the
question seems not to have been formulated in this level of generality (particularly
with regard to dimension), some of our lower bounds seem to be new in all dimen-
sions, and some of our positive results (in the bilinear range) are obtained by means
that also seem to be new in this context.

Two natural open questions are whether, for particular values of `, there is
a larger range of exponents for which unconditional progress toward Theorem 1.5
can be made, and whether unconditional results could be extended along horizontal
lines in greater generality than just the bilinear range in two dimensions.

Our main application is to determine new inequalities and give a simpler proof
of known inequalities for a class of degenerate hypersurfaces. Given β ∈ (1,∞)d,
we define an extension operator

Eβf(t, x) =

∫
Q1

ei(t,x)(gβ(ξ),ξ)f(ξ) dξ, gβ(ξ) :=

d∑
j=1

|ξj |βj .

In the case d = 2, this extension operator was considered in [9] in the Stein–Tomas
range and in [2] in the bilinear range.

Varchenko’s height [17] associated to these surfaces is the quantity h defined by
1
h := 1

β1
+ · · ·+ 1

βd
.

In determining bounds for Eβ , intermediate dimensional versions of the height be-
come relevant. Thus, taking the convention that β1 ≥ β2 ≥ · · · ≥ βd, we also
define

Jn := 1
β1

+ · · ·+ 1
βn
, 0 ≤ n ≤ d.

We obtain an essentially optimal conditional result for the operators Eβ . To
facilitate its statement, we let Td denote the set of all (p, q) ∈ [1,∞]2 for which the
local elliptic extension operator is conjectured to be bounded, that is,

Td := {(p, q) ∈ [1,∞]2 : q > 2(d+1)
d , q ≥ d+2

d p′}. (1.8)

Theorem 1.7. Assume that Conjecture 1.4 holds for all (p̃, q̃) in a relatively open
subset V ⊆ Td containing (p, q). Then Eβ extends as a bounded operator from Lp

to Lq if at least one of the following conditions hold:
(i) q > p and q

p′ ≥ 1 + 1
Jn+ d−n

2

, for all 0 ≤ n ≤ d;

(ii) q ≤ p and 1+Jn+d−n
q < Jn

p′ + d−n
2 , for all 0 ≤ n ≤ d; or

(iii) q = p, 1+Jd
q = Jd

p′ , and 1+Jn+d−n
q < Jn

p′ + d−n
2 , for all 0 ≤ n < d.

Furthermore, Eβ is of restricted weak type (p, q) if

(iv) q ≤ p ≤ ∞, 1+Jd
q = Jd

p′ , and 1+Jn+d−n
q < Jn

p′ + d−n
2 , for all 0 ≤ n < d.

Here we use the not-completely-standard definition that a linear operator T ,
initially defined on L1(Rd), is of restricted weak type (p, q) if

|〈TfE , gF 〉| . |E|
1
p |F |

1
q′ ,

for all measurable, finite measure E,F and measurable functions |fE | ≤ χE and
|gF | ≤ χF . (It will be convenient to note that we may equivalently replace ‘≤’
by ‘∼’ in the conditions on fE , gF .) For finite p, this is equivalent to the usual
definition of restricted weak type boundedness.
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Conditional on the restriction conjecture above rectangles, both the strong and
restricted weak type estimates arising in Theorem 1.7 are sharp.

Proposition 1.8. If (p, q) ∈ [1,∞]2 does not satisfy any of Conditions (i-iii) of
Theorem 1.7, then Eβ is not of strong type (p, q). If (p, q) ∈ [1,∞]2 does not satisfy
any of Conditions (i-iv) of Theorem 1.7, then Eβ is not of restricted weak type (p, q).

When d = 2, Proposition 1.8 is due to [2], and Theorem 1.7 is due to [2] in
the bilinear range (where it is unconditional) and to [9] in the Stein–Tomas range.
For d > 2, Theorem 1.7 is due to [8] in the Stein-Tomas range. Our main new
contribution is a direct deduction of the result from Conjecture 1.2, which leads to
a simpler approach that avoids the complicated step of obtaining bilinear restriction
estimates between rectangles at different scales. This simplification enables us to
address the higher dimensional case, as well as the case when some exponents βi
are less than 2.

The region ( 1
p ,

1
q ) described in Theorem 1.7 and Proposition 1.8 can be somewhat

difficult to visualize, so we make a few simple observations. We see the familiar

conditions q ≥ d+2
d p′ and q > 2(d+1)

d in the n = 0 case of each of the constraints.

The lower bound on q
p′ in (i) of Theorem 1.7 is strongest when Jn+ d−n

2 is minimal,

which occurs when n = n0, the minimal index for which βi < 2 for all i > n0. Thus
the constraint in (i) is strictly stronger than that in the elliptic restriction conjecture
unless n0 = 0, i.e. βi ≤ 2 for all i.

The condition (ii) may introduce some vertices in the Riesz diagram; these all
lie on or above the line 1

q = 1
p . For each n, the lines q

p′ = 1 + 1
Jn+ d−n

2

(seen in (i))

and 1+Jn+d−n
q = Jn

p′ + d−n
2 (seen in (ii)) intersect when q = p = 2 + 1

Jn+ d−n
2

, and

these two lines are equal when n = d. The slope of the line 1+Jn+d−n
q = Jn

p′ + d−n
2

is − Jn

1+
1+d−n
Jn

, which equals 0 when n = 0 and decreases as n increases. The

intersection point of such a line with q = p is q = p = 2 + 1
Jn+ d−n

2

, which moves

closer to (0, 0) as n increases until n reaches n0, at which point it begins to increase.
Thus only those lines with n ≤ n0 play a role in determining the boundary of the
region.

Notation. Admissible constants may depend on the dimension d, the exponents
p, q, and the d-tuple β in the definition of Eβ , as well as any operator norms on
whose finiteness results may be conditioned. For nonnegative real numbers A,B,
we will use the notation A . B, B & A to mean that A ≤ CB for an admissible
constant C, which is allowed to change from line to line; A ∼ B means A . B
and B . A. We will occasionally subscript constants or the . notation to indicate
dependence on an additional parameter. For λ ∈ R, λ+ denotes the positive part,
λ+ := max{λ, 0}.
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2. Ellipticity over subsets of rectangles and other technical
lemmas

In this section we will prove a handful of technical lemmas extending known
results to surfaces elliptic over rectangles (and slices thereof). Most of these results
use only basic calculus.

The statements of the results will be simpler if we generalize the notion of ellip-
ticity.

Definition 2.1. Let K be a convex subset of Rd with nonempty interior, and let
g ∈ CN+2

loc (K), with D2g positive definite throughout K. We say that g is elliptic

over K, with parameters N, ε0, if there exist ξ0 ∈ K, U ∈ O(d), and ` ∈ (0,∞]d

such that

K ⊆
√

2[D2g(ξ0)]−
1
2UQ` + ξ0,

and the functions

g̃(ξ) := g(
√

2D2g(ξ0)−
1
2Uξ + ξ0)− g(ξ0)−

√
2D2g(ξ0)−

1
2Uξ · ∇g(ξ0) (2.1)

and h̃(ξ) := g̃(ξ)− |ξ|2 obey

‖`α∂αD2h̃‖CN (K̃) < ε0, (2.2)

where

K̃ := 1√
2
D2g(ξ0)

1
2UT (K − ξ0)). (2.3)

2.1. Dicing. Here we will prove that the restriction of a function elliptic over a
rectangle is elliptic over smaller rectangles, with improved parameters. This result
will allow us to assume that ε0 is sufficiently small in later arguments. More spec-
ulatively, such a result is potentially of use in induction on scales type arguments.

Lemma 2.2. Let ` ∈ (0,∞]d and let g be elliptic over Q` with parameters (N, ε0),
some N ≥ 1. Let K ⊆ Q` be a convex set with nonempty interior, and assume that
ε−1(K − ξ0) ⊆ Q` for some ξ0 ∈ K and 0 < ε ≤ 1. Then g is elliptic over K with
parameters N,CN,dεε0.

Proof of dicing lemma. By taking limits, we may assume that K is compact. By
the John ellipsoid theorem, there exists ˜̀∈ (0,∞)d and U ∈ O(d) such that

cdUQ
˜̀⊆ 1√

2
D2g(ξ0)

1
2 (K − ξ0) ⊆ UQ˜̀

.

Define g̃ as in (2.1) and K̃ as in (2.3). For |α| ≥ 1,

‖˜̀α∂αD2g̃‖C0(K̃) = ‖2UTD2g(ξ
− 1

2
0 (
√

2D2g(ξ0)−
1
2U ˜̀)α∂αD2gD2g(ξ0)−

1
2U‖C0(K)

≤ 2‖D2g(ξ0)−
1
2 ‖2‖θα∂αD2g‖C0(Q`),

where

θ :=
√

2D2g(ξ0)−
1
2U ˜̀∈ K − ξ0 ⊆ c−1

d εQ`.

As ‖D2g(ξ0)−
1
2 ‖ ≤ Cd, in the case |α| ≥ 1, (2.2) follows from the ellipticity hy-

pothesis. In the case α = 0, (2.2) follows from the |α| = 1 case, D2g̃(0) = 2Id, and
the fundamental theorem of calculus. �
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2.2. Slicing. Here we will show that the restriction of a function elliptic over a rec-
tangle to some lower-dimensional slice of the rectangle is also elliptic, with compa-
rable parameters. This result is essential in the (conditional) proof of Theorem 1.5.

Lemma 2.3. Let ` ∈ (0,∞]d and let g be elliptic over Q` with parameters N, ε0.
Let P ⊆ Rd be an affine k-plane, and assume that P ∩Q` has nonempty interior in
P . Let ξ0 ∈ P ∩Q`, and let {u1, · · · , uk} be an orthonormal basis for P − ξ0. Then

g[(η1, . . . , ηk) := g(ξ0 +

k∑
j=1

ηjuj)

is elliptic over K := {(η1, . . . , ηk) : ξ0 +
∑k
j=1 ηjuj ∈ P ∩Q`}.

Proof. By taking limits, we may assume that K is compact. By the John ellipsoid
theorem, there exists ˜̀∈ (0,∞)k and V ∈ O(k) such that

cdV Q
˜̀⊆ 1√

2
D2g[(0)

1
2K ⊆ V Q˜̀

.

Set K̃ := 1√
2
V TD2g[(0)

1
2K,

g̃[(η) := g[(
√

2D2g[(0)−
1
2V η)− g[(0)−

√
2D2g[(0)−

1
2V η · ∇g[(0),

and h̃[(η) := g̃[(η)− |η|2, η ∈ Rk.
Extend the given basis for P − ξ0 to an orthonormal basis {u1, · · · , ud} of Rd

and set U := (u1, . . . , ud) ∈ O(d). Then

cdU [
√

2D2g̃(0)−
1
2V Q

˜̀× {0}] ⊆ (P ∩Q`)− ξ0 ⊆ U [
√

2D2g̃(0)−
1
2V Q

˜̀× {0}].

Let |α| ≥ 1 be a multiindex. By the chain rule,

‖˜̀α∂αD2g̃[‖C0(K̃) ≤ ‖
√

2D2g[(0)−
1
2 ‖2‖(

√
2D2g(0)−

1
2V ˜̀)α∂αD2g[‖C0(K)

≤ ‖
√

2D2g[(0)−
1
2 ‖2‖[U(

√
2D2g̃(0)−

1
2V ˜̀, 0)]α∂αD2g‖C0(Q`).

Finally, since

U(
√

2D2g̃(0)−
1
2V θ̃, 0) ∈ U [

√
2D2g̃(0)−

1
2V Q

˜̀×{0}] ⊆ c−1
d ((P ∩Q`)− ξ0) ⊆ c−1

d Q`,

inequality (2.2) holds for |α| ≥ 1; the case |α| = 0 follows analogously, by consider-

ing h̃[. �

2.3. Morse Lemma. Next, we note that the following version of the Morse lemma
follows readily by adapting standard undergraduate-level proofs of the Morse lemma
to functions elliptic over rectangles. (We omit the details of this elementary adap-
tation.) This result allows us to invoke the classical arguments involving stationary
phase, including the Stein–Tomas and Strichartz theorems and the wave packet
decomposition of [14].

Lemma 2.4. Let g be elliptic over Q`, ` ∈ (0,∞)d, with parameters N ≥ 1 and
0 < ε ≤ εd. Then exist U ⊆ Rd and a CN diffeomorphism F of U onto Q1 such
that

g(l1F1, . . . , ldFd) =
∑
j

(ljuj)
2

and ‖F (η)− η‖CNη (U) < C(ε).
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3. Negative results: The proof of Theorem 1.6

For simplicity, we give a complete proof of Theorem 1.6, recalling that it is
already known in some cases. We will actually prove a slightly stronger result. Let

‖E`g‖RWT
Lp→Lq := sup

E,F

|〈E`gfE ,gF 〉|

|E|
1
p |F |

1
q′
,

where the supremum is taken over measurable sets E,F with positive, finite mea-
sures and measurable functions |fE | ≤ χE , |gF | ≤ χF .

Proposition 3.1. The conclusions of Theorem 1.6 hold with ‖E`g‖RWT
Lp→Lq in place

of ‖E`g‖Lp→Lq .

The rest of this section will be devoted to the proof of Proposition 3.1. We will
use the convention that references to equations in the statement of Theorem 1.6
shall be superscripted with ‘RWT.’

That ‖E`g‖RWT
Lp→Lq is infinite whenever q < d+2

d p′ follows from the classical Knapp

example. The case when q ≤ 2(d+1)
d follows from a slight modification of the

argument from [1], which will be given in Lemma 3.4. The assertion regarding
unboundedness of E`g when some lj are infinite follows from the lower bounds (1.5-

1.7)RWT and the elementary inequality

‖E`g‖RWT
Lq→Lp ≥ ‖E

˜̀
g‖RWT
Lq→Lp , for l̃j ≤ lj , j = 1, . . . , d. (3.1)

It remains to prove the lower bounds in the case that each lj is finite. This will
be carried out in three lemmas, one for each numbered inequality.

Lemma 3.2. The lower bound (1.5)RWT is valid in the range q > p.

Proof. The argument is an elementary generalization of the Knapp example. Let
j ∈ {0, . . . , d− 1}, 0 ≤ θ ≤ 1, and assume that q > p satisfy q = d−j−θ+2

d−j−θ p′.

Let φ be a smooth, nonnegative function with suppφ ⊆ Q1 and
∫
φ = 1. Set

φj,`(ξ) = φ( ξ1l1 , . . . ,
ξj
lj
,
ξj+1

lj+1
, . . . , ξd

lj+1
).

Then |E`gφj,`| & l1 · · · lj l
d−j
j+1 on a rectangle with volume (l1 · · · lj)−1l

−(d−j+2)
j+1 . After

a little arithmetic

‖E`g‖RWT
Lp→Lq &

l1···lj ld−jj+1 [(l1···lj)−1l
−(d−j+2)
j+1 ]

1
q

(l1···lj ld−jj+1 )
1
p

= (l1 · · · lj)
1
p′−

1
q l

(d−j)( 1
p′−

1
q )− 2

q

j+1 . (3.2)

All that remains is the arithmetic verification of (d − j)( 1
p′ −

1
q ) − 2

q = θ( 1
p′ −

1
q )

when q = d−j−θ+2
d−j−θ p′; we leave this to the reader. �

Lemma 3.3. The lower bound (1.7)RWT is valid in the range q ≤ p, q > 4.

Proof. We assume q > 4 and p ≥ q. We use the same φ` from the proof of
Lemma 3.2, and inequality (3.2), which can be rearranged into (1.7), remains valid.

�

Lemma 3.4. The lower bound (1.6)RWT is valid in the range q ≤ p, q ≤ 4.

Moreover, ‖E`g‖RWT
Lp→Lq =∞ whenever q ≤ 2(d+1)

d .
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Proof. We begin with the case q = 2(d−j−θ+1)
d−j−θ and p ≥ q for some 0 ≤ j ≤ d − 2

and 0 < θ ≤ 1. We will argue by adapting the Kakeya-like argument of [1].

Let N � 1. Assume that ld
lj+1

> N3. By parabolic rescaling, we may assume

that lj+1 = 1
N . We cover (at least half of) Q` by pairwise disjoint rectangles R ∈ R

congruent to Q(l1,...,lj ,1/N,...,1/N,1) and further decompose each R into a disjoint
union of rectangles κ ∈ KR, each congruent to Q(l1,...,lj ,1/N,...,1/N). By the usual
Knapp argument,

|E`gχκ(t, x)| & |κ|
on a tube Tκ of volume |Tκ| ∼ |κ|−1l−2

j+1. We will prove that for each R, there exist

{(tκ, xκ)}κ∈KR such that

|
⋃

κ∈KR

Tκ + (tκ, xκ)| < oN (1)#KR|Tκ|, (3.3)

where oN (1)→ 0 as N →∞ and is otherwise independent of `.
Define

F :=
∑
R∈R

e−i(tR,xR)(g(ξ),ξ)
∑
κ∈KR

ωκe
−i(tκ,xκ)(g(ξ),ξ)χκ,

with {(tR, xR)}R∈R ⊆ R1+d and {ωR}κ∈KR ⊆ {±1} to be determined shortly. Of
course, |F | . χQ` . For the (tR, xR) sufficiently widely spaced (depending on the
(tκ, xκ)), the Lq,∞ norms decouple:

‖E`gF‖Lq,∞ &
(∑
R∈R
‖E`gFR‖

q
Lq,∞

) 1
q , FR :=

∑
κ∈KR

ωκe
−i(tκ,xκ)(g(ξ),ξ)χκ.

By Khintchine’s inequality, we may choose the ωκ such that

‖E`gFR‖Lq,∞ & ‖
( ∑
κ∈KR

|E`gFκ|2
) 1

2 ‖Lq,∞ , Fκ := e−i(tκ,xκ)(g(ξ),ξ)χκ.

Applying our pointwise lower bound on E`gχκ, Hölder’s inequality, and (3.3),

‖
( ∑
κ∈KR

|E`gFκ|2
) 1

2 ‖Lq,∞ & |κ|‖
∑
κ∈KR

χTκ+(tκ,xκ)‖
1
2

L
q
2
,∞

& |κ||
⋃

κ∈KR

Tκ + (tκ, xκ)|
1
q−

1
2 ‖
∑
κ

χTκ+(tκ,xκ)‖
1
2

L1 & |κ|oN (1)−1(#KR|Tκ|)
1
q .

It takes a little arithmetic to put the pieces together:

‖E`g‖RWT
Lp→Lq &

‖E`gF‖q,∞
|Q`|

1
p

& |Q`|−
1
p |κ|oN (1)−1(|Q`||κ|−2`−2

j+1)
1
q

∼ oN (1)−1|Q`|
1
q−

1
p (l1 · · · lj lθj+1)1− 2

q .

Thus the lemma is proved, modulo the Kakeya-like inequality (3.3).
For ξ ∈ R, we use Taylor’s theorem to estimate

g(ξ) = g(ξR) + (ξ − ξR) · ∇g(ξR) + 1
2 (ξ − ξR)TD2g(ξR)(ξ − ξR)

+O(
∑
|α|=3

|(ξ − ξR)α|‖∂αg‖C0(Q`)),

where ξR denotes the center of R. We examine the error term. If αd = 0 and
αi 6= 0,

|(ξ − ξR)α|‖∂αg‖C0(Q`) ≤ 1
N2 `i‖∂iD2g‖C0(Q`) <

ε0
N2 ,
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since |(ξ − ξR)k| < min{ 1
N , lk}, 1 ≤ k < d. If αd 6= 0,

|(ξ − ξR)α|‖∂αg‖C0(Q`) ≤ 1
N2 ld‖∂dD2g‖C0(Q`) <

ε0
N2 ,

since |ξ− ξR| ≤ 1 < 1
N2 ld. Take ξ ∈ κ ⊆ R and let ξκ denote the center of κ. From

the preceding and the definition of κ, for ξ ∈ κ,

g(ξ) = (ξ − ξκ) · (∇g(ξR) +D2g(ξR)(ξκ − ξR)) + c(κ) +O( 1
N2 ),

where c(κ) is independent of ξ.
By construction, ξκ− ξR = nκ

N ed, some nκ ∈ {−(N −1), . . . , 0, . . . , N −1}. Thus

for |t| < cN2, c sufficiently small,

(t, x)(g(ξ)− c(κ), ξ − ξκ) = cO(1) + (ξ − ξκ)(t∇g(ξR) + tnκN ∂d∇g(ξR) + x).

We therefore see that

|E`gχκ(t, x)| & |κ|
on

Tκ := {(t, x) : |t| < cN2, |t∂ig(ξR) + tnκN ∂d∂ig(ξR) + xi| < cLi}

where Li = `−1
i , if i ≤ j, and Li = N if i > j.

The linear transformation

AR(t, s, y) := (t,−t∇g(ξR)− s∂d∇g(ξR) + (y, 0)), (t, s, y) ∈ R1+1+(d−1)

has determinant |detAR| = ∂2
dg(ξR) ∼ 1 and maps

T [κ := {(t, s, y) : |t| < cN2, |s− tnκN | < cN, |yi| < cLi}

onto Tκ, recalling that constants are allowed to change from line to line. Using
(e.g.) Fefferman’s construction [7], there exist {(tκ, sκ)}κ∈KR such that

|
⋃

κ∈KR

T [κ + (tκ, sκ, 0)| < oN (1)
∑
κ∈KR

|T [κ|.

Finally, (tκ, xκ) with

xκ := −tκ∇g(ξR)− sκ∂d∇g(ξR)

gives (3.3).

The proof of the necessity of q > 2(d+1)
d is similar. By rescaling and using

monotonicity in ` of the operator norms, we may assume that ` = 1. We cover
Q1 by rectangles congruent to Q(1/N,...,1/N,1) and cover these by smaller cubes κ
congruent to Q(1/N,...,1/N). Following the argument above,

‖E1g ‖RWT
Lp→Lq & oN (1)−1N

2(d+1)
q −d,

which is unbounded as N →∞ for any q ≤ 2(d+1)
d . �

4. Upper bounds above rectangles

In this section, we provide details for the deduction of Theorem 1.3 from known
results and prove Theorem 1.5. By Fatou’s lemma, it suffices to prove these results
when ` ∈ (0,∞)d. By Lemma 2.2, it suffices to prove Theorem 1.3 under the
hypothesis that ε0 is sufficiently small.

We recall the convention that l1 ≤ · · · ≤ ld.
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Lemma 4.1 (Bilinear extension over rectangles). Let g be elliptic over the rectangle
Q` with parameters N sufficiently large, ε0 > 0 sufficiently small, and ld ≥ 1, and
let B1, B2 be two balls of radius 1, separated by a distance 1 and intersecting Q`.

For functions fj ∈ L2(Q`), supp fj ⊆ Bj and q > 2(d+3)
d+1 ,

‖E`gf1 E`gf2‖ q
2
. ‖f1‖2‖f2‖2.

Proof. Since g is also elliptic over any rectangle contained in Q`, by shrinking the
long sidelengths if needed, we may assume that l1 ≤ · · · ≤ ld = 1.

If l1 ∼ 1, then g is elliptic in the sense of Tao–Vargas–Vega, so Lemma 4.1 is
simply the main result of [14]. In the case l1 ∼ · · · ∼ ld−1 � ld, the result follows
from Theorem 1.4 of [3]. (The quantity d0 in the statement of that theorem may
be taken to equal l1, as one can see from the discussion above the statement.)

In the case of general sidelengths, the proof is a relatively simple adaptation of
that in [14], to which we now turn. We will argue by applying the methods and
results of [14], in combination with an induction on K`, which we define to be the
number of dyadic scales at which the sidelengths lie; that is,

K` := 1 + #{1 ≤ j < d : lj <
1
2 lj+1}.

That the lemma holds in the base case, K` = 1, was already established above. We
suppose that 1 < K` ≤ d and that our lemma has been proven up to K`− 1 dyadic
scales of the sidelengths.

By Lemma 2.4, we obtain the decay estimates necessary to carry out the ε-

removal arguments from [15]. More precisely, |E`gψj(t, x)| . 〈(x, t)〉− d2 , whenever

ψj ∈ S(Rd) is a bump adapted to Bj , j = 1, 2. Thus it suffices to prove that for
every ε > 0 and R ≥ 1,

‖E lgf1 E`gf2‖
L
d+3
d+1 (QR)

.ε R
ε‖f1‖2‖f2‖2, fj ∈ L2(Bj), j = 1, 2. (4.1)

Here QR denotes the cube of sidelength R centered at 0. By assumption (and
Hölder’s inequality), (4.1) holds for rectangles whose sidelengths have up to K`− 1
dyadic scales.

In proving (4.1), we consider two cases, R . l−2
1 and R � l−2

1 . Suppose that
R . l−2

1 . Let j0 denote the least index j such that lj <
1
2 lj+1. We split our

coordinates as Rd = Rj0 × Rd−j0 ; ξ =: (ξ′, ξ′′), and define

g̃(ξ) = g(0, ξ′′) + ξ′ · ∇ξ′g(0, ξ′′) + |ξ′|2.

Then g̃ is elliptic over Q
˜̀
, with ˜̀ := (lj0+1, . . . , lj0+1, `

′′). As K ˜̀
= K` − 1, (4.1)

holds for g̃, by assumption. On the other hand,

Σg := {(g(ξ), ξ) : ξ ∈ Q`}
lies within an O(R−1)-neighborhood of

Σg̃ := {(g̃(ξ), ξ) : ξ ∈ Q˜̀},
so we can transfer (4.1) from g̃ to g. Indeed, let φ ∈ S(R) with |φ| & 1 on [−1, 1]

and φ̂ supported in [−1, 1]. Set ψR(t, x) := φ( tR )
∏d
j=1 φ(

xj
R ). Then

‖E`gf1 E`gf2‖
L
d+3
d+1 (QR)

. ‖(ψRE`gf1) (ψRE`gf2)‖
L
d+3
d+1

.
∫∫
‖(E ˜̀

g̃f
τ
1 )(E ˜̀

g̃f
τ ′

2 )ψR‖
L
d+3
d+1

dτ dτ ′ .
∫∫
‖fτ1 ‖2‖fτ

′

2 ‖2 dτ dτ ′,
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where we have used Hölder’s inequality and the induction hypothesis for the final
inequality; here

fτj (ξ) :=

∫
Bj

fj(η)ψ̂R(τ + g̃(ξ)− g(η), ξ − η) dη.

By Young’s inequality and |g̃(ξ)−g(η)| . R−1, ‖fτj ‖2 . Rχ[−CR ,
C
R ]‖fj‖2. Inequality

(4.1) follows.
It remains to prove (4.1) in the case R� l−2

1 , to which we indicate the necessary
(minor) change to the approach of Tao in [14, Section 9]. Namely, we take R = Cl−2

1

as the base case in the induction on scales argument, having already established
(4.1) in this case. For R� l−2

1 , our surface is elliptic over balls of radius R−
1
2 , and

so the wave packets in the decomposition associated to this scale obey the expected
decay estimates. The remainder of the argument proceeds precisely, line-for-line
according to the scheme from [14]. In particular, the condition that the normal
vectors of one surface patch are transverse to the cones defined by the normal
vectors to the second surface patch along the (codimension-two) intersection of the
second surface patch with a translate of the first is a direct consequence of the
smallness of D2h (i.e. the second derivative of the perturbation term) in C0.

This closes the induction on K`, completing the proof of the lemma for all values
of `. �

Theorem 1.3 follows from Lemma 4.1 by the bilinear-to-linear method of Tao–
Vargas–Vega; no change is needed to their arguments in the case of surfaces elliptic
over rectangles. (Later on, we will use a slightly different implementation of the
method of Tao–Vargas–Vega which is adapted to rectangles in two dimensions.)

We now turn to the proof of Theorem 1.5, beginning with bounds corresponding
directly to lower-dimensional restriction theorems.

Lemma 4.2 ([5]). Given d ≥ 2, 1 ≤ k ≤ d, and exponents q = k+2
k p′ > q, validity

of Conjecture 1.2 in dimension k with exponents (p, q) implies that inequality (1.1)
holds for this exponent pair in dimension d, for any `.

Combining Lemmas 4.1 and 4.2, Conjecture 1.4 holds unconditionally for ( 1
p ,

1
q )

lying on any of the half-open line segments [(1, 0), Pd−j), 0 ≤ j < d, with Pk
defined as in (1.4). In particular, inequality (1.1) holds unconditionally on the
segment q = 3p′ > p.

Proof of Lemma 4.2. Because the lemma was not stated as such in [5], we give
the complete proof. When q = ∞, the result is a direct application of Hölder’s
inequality. Now we let 0 ≤ j ≤ d − 1, let q = d−j+2

d−j p′ > p > 1, and assume that

Conjecture 1.2 is valid in dimension d−j for this exponent pair. Given f ∈ C∞0 (Q`),
we take the Fourier transform of E`g in the x′ variables to obtain,

Fx′E`gf(t, x′′)(ξ′) = E`
′′

gξ′
fξ′(t, x

′′),

where we have split the coordinates as x = (x′, x′′) ∈ Rj×Rd−j , and we are writing
hξ′(ξ

′′) = h(ξ), for h a function on Rd. After making a linear transformation, which
amounts to replacing gξ′(ξ

′′) with

gξ′(ξ
′′)− gξ′(0′′)− ξ′′ · ∇′′gξ′(0′′),
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and applying Lemma 2.3 (which implies that the lower-dimensional extension op-
erator is elliptic), we see that the hypothesized Conjecture 1.2 applies uniformly to

E`′′gξ′ , ξ
′ ∈ Q`′ .

Now applying Hausdorff–Young (using q > 2), then Minkowski’s inequality (us-
ing q′ < q), then the hypothesized validity of Conjecture 1.2, and finally Hölder’s
inequality (using p > q′),

‖E`gf‖q ≤ ‖E`
′′

gξ′
fξ′‖Lqt,x(Lq

′
ξ′ )
≤ ‖E`

′′

gξ′
fξ′‖Lq′

ξ′ (L
q

t,x′′ )
. ‖f‖

Lq
′
ξ′ (L

p

ξ′′ )

≤ |Q`
′
|

1
q′−

1
p ‖f‖p = (l1 · · · lj)

1
p′−

1
q ‖f‖p.

This inequality is equivalent to (1.1) in the case θ = 0 (and in the case j − 1, θ =
1). �

Lemma 4.3. Let d ≥ 2 and 1 ≤ j < d. If Conjecture 1.2 is valid in dimensions
d − j − 1 and d − j, with exponents q1 = d−j+1

d−j−1p
′
1 > p1 and q0 = d−j+2

d−j p′0 > p0,

respectively, then (1.1) holds for every exponent pair (p−1, q−1) on the line segment
joining (p−1

0 , q−1
0 ) and (p−1

1 , q−1
1 ).

Combining Lemma 4.3 with Lemma 4.2 (and the remarks after the latter),
we obtain the conditional results in Theorem 1.5 for all exponents p, q satisfying
d+2
d p′ ≥ q ≥ 3p′ and q > p, and the unconditional results for ( 1

p ,
1
q ) lying in any of

the triangles with vertices (1, 0), Pd−j , Pd−j+1, 1 ≤ j < d.

Proof of Lemma 4.3. The argument is by the obvious interpolation. By our hy-
pothesis and Lemma 4.2,

‖E`g‖Lpi→Lqi . (l1 · · · lj lij+1)
1
p′
i
− 1
qi , i = 0, 1.

Setting
1
pθ

:= 1−θ
p0

+ θ
p1
, 1

qθ
:= 1−θ

q0
+ θ

q1
,

as usual, interpolation gives

‖E`g‖Lpθ→Lqθ . (l1 · · · lj)
1
p′
θ
− 1
qθ l

θ
p′1
− θ
q1

j+1 .

Inequality (1.1) in the claimed region thus follows once we prove that the equation

ν( 1
p′θ
− 1

qθ
) = θ( 1

p′1
− 1

q1
) (4.2)

is valid for the quantity ν = νθ defined implicitly by

qθ =: d−j−ν+2
d−j−ν p′θ.

(In other words, ν is the ‘θ’ from (1.1).) Indeed, taking the convex combination of
the scaling equations for (p0, q0) and (p1, q1) yields

d−j
p′θ
− θ

p′1
= d−j+2

qθ
− θ

q1
, (4.3)

while the definition of ν can be rearranged as
d−j
p′θ
− ν

p′θ
= d−j+2

qθ
− ν

qθ
. (4.4)

Subtracting (4.4) from (4.3) and rearranging yields (4.2). �

Lemma 4.4. In the region 2(d+1)
d < q ≤ 4, q ≤ p, validity of Conjecture 1.2 in

dimensions d − j − 1 and d − j implies validity of Conjecture 1.4 on the region
2(d−j+1)
d−j < q ≤ 2(d−j)

d−j−1 , for 0 ≤ j ≤ d− 2.
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This completes the proof of Theorem 1.5 in the range q ≤ 10
3 .

Proof. By Hölder’s inequality, for q > p,

‖E`g‖Lp→Lq ≤ (l1 · · · ld)
1
q−

1
p ‖E`g‖Lq→Lq ,

so it suffices to verify the theorem on the line q = p. By the Drury–Guo dimension
reduction argument used in the proof of Lemma 4.2,

‖E`g‖Lq→Lq ≤ (l1 · · · lj)
1
q′−

1
q sup
ξ′∈Q`′

‖E`
′′

gξ′
‖Lq→Lq .

This reduces matters to the case j = 0. By parabolic rescaling (which we recall
leaves Conjecture 1.4 invariant), it suffices to consider the case when l1 = 1.

Write q = 2(d−θ+1)
d−θ , with 0 < θ ≤ 1. By hypothesis and Lemma 4.3, for all

0 < ν < θ,

‖E`g‖Lpν→Lq . 1, where pν := ( d−ν
d−ν+2q)

′.

Thus by Hölder’s inequality,

‖E`g‖Lq→Lq . (l1 · · · ld)
1
pν
− 1
q . l

(d−1)( 1
pν
− 1
q )

d .

Setting ε := (d− 1)( 1
pν
− 1

q ) and sending ν ↗ θ completes the proof. �

We now turn to the fully unconditional results.

Lemma 4.5. Theorem 1.5 holds in the region q > 4.

Proof. The proof is a direct deduction from Lemma 4.2 (applied in the case q = 3p′)
via Hölder’s inequality:

‖E`gf‖q . (l1 · · · ld−1)
3
q−

1
q ‖f‖( q3 )′ . (l1 · · · ld−1)

3
q−

1
q |Q`|1−

3
q−

1
p ‖f‖p,

and the right hand side equals that of (1.3). �

Lemma 4.6. Theorem 1.5 holds in the region q > 10
3 .

Proof. We begin with a series of reductions. Let q > 10
3 . By Lemma 4.5, we may

assume that q ≤ 4. By Lemma 4.4, we may assume that q > p. By the dimension-
reduction argument from the proof of Lemma 4.2, we may assume that d = 2. By
parabolic rescaling, we may assume that 1 = l1 ≤ l2. In summary, it remains to
prove that when d = 2, 1 = l1 ≤ l2, 10

3 < q ≤ 4, and q > max{2p′, p}, we have

‖E`g‖Lp→Lq . 1.

The above conditions on p, q imply that p > 2. By interpolation with the (known)
inequality ‖E`g‖Lp→Lq . 1 on the line q = 3p′, q > p, we may assume, in addition,

that 8
q + 2

p > 3. Finally, by real interpolation, it suffices to bound ‖E`gfΩ‖q for

|fΩ| ∼ χΩ, Ω a finite measure set.
We adapt the argument of Tao–Vargas–Vega [16]. Making a partial Whitney

decomposition,

Q` ×Q` =

∞⋃
N=0

⋃
τ∼τ ′∈DN

τ × τ ′,

where DN denotes a finitely overlapping collection of width 1, height 2N rectangles
contained in Q` and τ ∼ τ ′ if N = 0 and dist(τ, τ ′) . 1 or N > 0 and dist(τ, τ ′) ∼
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2N . (Thus squares of sidelength 1 are allowed to equal one another.) Making a
partition of unity, we can write

(EfΩ)2 =

∞∑
N=0

∑
τ∼τ ′∈DN

EfΩ∩τEfΩ∩τ ′ ,

where |fΩ∩τ | is bounded by the characteristic function of Ω ∩ τ .
Letting τ̃ := {(g(ξ), ξ) : ξ ∈ τ}, we see that the convex hulls of the τ̃ + τ̃ ′, with

τ ∼ τ ′ ∈ DN , are finitely overlapping as τ, τ ′, N vary. Thus by Lemma 6.1 of [16],

‖EfΩ‖qq .
∞∑
N=0

∑
τ∼τ ′∈DN

‖EfΩ∩τEfΩ∩τ ′‖
q
2
q
2
.

A volume preserving affine transformation maps the {(g(ξ), ξ) : ξ ∈ τ}, τ ∈ D0 to
surfaces elliptic over Q1. Thus in the case N = 0, we may apply Cauchy–Schwarz,
the inequality ‖E1g ‖Lp→Lq . 1 (which follows immediately from Theorem 1.3 via
Hölder’s inequality), and Hölder’s inequality to see that∑

τ∼τ ′∈D0

‖EfΩ∩τEfΩ∩τ ′‖
q
2
q
2
.
∑
τ∈D0

|Ω ∩ τ |
q
p . |Ω|

q
p .

It thus remains to bound the terms with N > 0.
When N > 0 and τ ∼ τ ′, rescaling Lemma 4.1 implies that

‖EfτEfτ ′‖ q
2
. 2N(2− 8

q )‖fτ‖2‖fτ ′‖2.

Thus we obtain by following the argument of [16] that
∞∑
N=1

∑
τ∼τ ′∈DN

‖EfΩ∩τEfΩ∩τ ′‖
q
2
q
2
.
∞∑
N=1

2N(q−4)
∑

τ∼τ ′∈DN

|Ω ∩ τ |
q
4 |Ω ∩ τ ′|

q
4

.
∞∑
N=1

2N(q−4)
∑
τ∈DN

|Ω ∩ τ |
q
2 .

∞∑
N=1

2N(q−4) min{|Ω|, 2N}
q
2−1|Ω|;

(4.5)

here we have used the fact that |Ω ∩ τ | ≤ min{|Ω|, |τ |} = min{|Ω|, 2N}, for each
τ ∈ DN .

Our proof now bifurcates into two cases, |Ω| ≥ 1 and |Ω| ≤ 1. If |Ω| ≤ 1, the
right hand side of (4.5) is bounded by

|Ω|
q
2 ≤ |Ω|

q
p ,

since p ≥ 2. If |Ω| ≥ 1, the right hand side of (4.5) is bounded by

log |Ω|∑
N=1

2N( 3q
2 −5)|Ω|+

∞∑
N=log |Ω|

2N(q−4)|Ω|
q
2 . |Ω|

3q
2 −4 ≤ |Ω|

q
p ,

where we have used 2
p + 8

q ≥ 3 in the last inequality. �

5. The application: The proof of Theorem 1.7

We turn now to the proof of Theorem 1.7, to which we devote the entirety of
this section. By the triangle inequality and the symmetry of changing the sign of
any ξi, it suffices to bound the operator

Eβf(t, x) :=

∫
(0,1]d

ei(t,x)(|ξ1|β1+···+|ξd|βd ,ξ)f(ξ) dξ.
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We begin by making a dyadic decomposition,

(0, 1]d =
⋃
k∈Nd

Rk, Rk := {ξ : ξi ∼ 2−2ki , i = 1, . . . , d},

which induces the decomposition

Eβ =
∑
k∈Nd

Ekβ , Ekβf(t, x) :=

∫
Rk
ei(t,x)(|ξ1|β1+···+|ξd|βd ,ξ)f(ξ) dξ.

For σ a permutation in Sd, we define

Kσβ := {k ∈ Nd : kσ(1)βσ(1) ≥ · · · ≥ kσ(d)βσ(d)}

and Eσβ :=
∑
k∈Kσβ

Ekβ . By the triangle inequality, it suffices to bound each Eσβ . We

will do this by first bounding the partial sums

Eσ,kσ(1)
β :=

∑
k′∈Kσβ(kσ(1))

Ekβ ,

Kσβ(kσ(1)) := {(k′σ(j))
d
j=2 ∈ Nd−1 : kσ(1)βσ(1) ≥ k′σ(2)βσ(2) ≥ · · · ≥ k′σ(d)βσ(d)}.

We restate Conjecture 1.4 and Proposition 1.8, as they apply to the Ekβ .

Lemma 5.1. Let p, q ∈ [1,∞], and assume that the conclusions of Conjecture 1.4

hold for this exponent pair. Let k ∈ Kσβ . If q > p and q = d−j−θ+2
d−j−θ p′, for some

0 ≤ j < d and 0 ≤ θ ≤ 1, then

‖Ekβ‖Lp→Lq . (5.1)( j∏
m=1

2−2kσ(m)
)(

2
kσ(j+1)βσ(j+1)[(1−θ)− 2

βσ(j+1)
])( d∏

m=j+2

2
kσ(m)βσ(m)(1− 2

βσ(m)
)) 1

p′−
1
q

.

Additionally,

‖Ekβ‖Lp→Lq .ε
( j∏
m=1

2
−2kσ(m)(

1
p′−

1
q ))(

2
kσ(j+1)βσ(j+1)[(1−θ)(1− 2

q )− 2
βσ(j+1)

( 1
p′−

1
q )+ε])

×
( d∏
m=j+2

2
kσ(m)βσ(m)[(1− 2

q )− 2
βσ(m)

( 1
p′−

1
q )])

2−kσ(d)βσ(d)ε. (5.2)

for q = 2(d−j−θ+1)
d−j−θ ≤ p, 0 < θ ≤ 1, ε > 0, and j = 0, . . . , d− 1.

The result is true without the loss 2ε(kσ(j+1)βσ(j+1)−kσ(d)βσ(d)) in the range p ≥
q > 4, but, since this loss is harmless for our application, we have left it in to
simplify the statement.

Proof. The lemma is proved by introducing coordinates, ηi = 2(2−βσ(i))kσ(i)ξσ(i),

ξ ∈ Rk, producing the function

gkβ(η) =

d∑
i=1

2kσ(i)(βσ(i)−2)βσ(i) |ηi|βσ(i) ,

which is elliptic (to arbitrary order) over a rectangle {ηi ∼ 2−kσ(i)βσ(i)}. In the
notation of Conjecture 1.4, this rectangle is congruent to Q`, where

` :=
(
2−kσ(1)βσ(1) , . . . , 2−kσ(d)βσ(d)

)
.
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Proof of Theorem 1.7. We will give the details of the proof only in the case βi 6= 2
for all i. In the case that βi = 2 for some i, we may use a Galilean transformation
in those coordinates ξi with βi = 2 to see that

‖Eβ‖Lp→Lq . ‖
∑
k∈Nd

′
Ekβ‖Lp→Lq , (5.3)

where the prime indicates a sum taken over those k ∈ Nd with ki = 1, for all i such
that βi = 2. Since the difficulty in the general case lies in summing over those ki
such that βi 6= 2, we will give the complete details only in the case that βi 6= 2 for
all i. The change needed to handle the general case is just notational.

For most cases, we will use an interpolation lemma whose hypotheses will neces-
sitate boundedness of Ekβ as an operator from Lp̃ to Lq̃ for (p̃, q̃) lying in a neigh-

borhood (in R2) of (p, q). Thus we begin by dispensing with those cases wherein
(p, q) lies on the boundary of the region Td defined in (1.8).

The case q = ∞ is elementary: Eβ : Lp → L∞ for all p ≥ 1, by Hölder’s
inequality. The case p = ∞ > q may arise under condition (ii) or (iv), but the
claimed bounds for such pairs follow from the claimed bounds with finite p by
Hölder’s inequality, except possibly for the point (p, q) = (∞, 1 + 1

Jd
), which can

arise under condition (iv). The case p < q = d+2
d p′ is a little more involved. On

the one hand, in the notation of Lemma 5.1, j + θ = 0, so (5.1) reads

‖Ekβ‖Lp→L d+2
d
p′ .

d∏
j=1

2
−kσ(i)(2−βσ(i))( 1

p′−
1
q )
. (5.4)

On the other hand, from the hypothesis βi 6= 2 and the ordering β1 ≥ · · · ≥ βd, the
difference (Jn + d−n

2 )− (Jn−1 + d−n+1
2 ) = 1

βn
− 1

2 is increasing in n and never zero.

Therefore, the case q
p′ = d+2

d = 1 + 1
J0+ d−0

2

of Condition (i) of the theorem is only

possible when n 7→ Jn + d−n
2 has a strict minimum at 0, i.e. when βi < 2 for all i.

In this case, all of the exponents in (5.4) are negative, and it is elementary to sum.
We will specifically address the case (p, q) = (∞, 1 + 1

Jd
) at the end of the proof,

but for now, we may assume that the bounds in Lemma 5.1 hold for exponent pairs
in a neighborhood (in R2) of (p, q). By the reductions above and real interpolation,
it suffices to prove that the bounds expressed in the theorem hold for all pairs

q > max{d+2
d p′, 2(d+1)

d } obeying, in addition, one of the conditions (i), (ii and
p <∞), or (iv).

We now complete the argument in the case of (i). Let p < q = d−j−θ+2
d−j−θ p′, for

some 0 ≤ j < d and 0 ≤ θ < 1. We start by proving bounds for the Eσ,kσ(1)
β for

exponent pairs (p, q) lying in a neighborhood of some pair obeying (i); thus we do
not yet assume that (i) holds.

Since 1− 2
βi
6= 0 for all i, applying (5.1) and summing a geometric series,

‖Eσ,kσ(1)β ‖Lp→Lq ≤
∑

k′∈Kσβ(kσ(1))

‖Ekβ‖Lp→Lq

.
∑
kσ(2)

′
· · ·

∑
kσ(j+1)

′
[( j∏
m=1

2−2kσ(m)
)
2
kσ(j+1)βσ(j+1)[−θ+

∑d
i=j+1(1− 2

βσ(i)
)+]

] 1
p′−

1
q

,
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where the ′’s indicate sums over 1 ≤ kσ(m+1) ≤
kσ(m)βσ(m)

βσ(m+1)
. For 0 ≤ l < j, if

−θ − l +
∑d
i=j+1−l(1−

2
βσ(i)

)+ > 0,

∑
kσ(j+1−l)

′
[( j−l∏
m=1

2−2kσ(m)
)
2
kσ(j+1−l)βσ(j+1−l)[−θ−l+

∑d
i=j+1−l(1−

2
βσ(i)

)+]

] 1
p′−

1
q

.

[(j−l−1∏
m=1

2−2kσ(m)
)
2
kσ(j−l)βσ(j−l)[−θ−l−1+

∑d
i=j−l(1−

2
βσ(i)

)+]

] 1
p′−

1
q

.

By the preceding and a simple induction argument,

‖Eσ,kσ(1)β ‖Lp→Lq . 2
kσ(1)βσ(1)[−θ−j+

∑d
i=1(1− 2

βi
)+]( 1

p′−
1
q )
, (5.5)

if −θ−l+
∑d
i=j+1−l(1−

2
βσ(i)

)+ > 0, for all 0 ≤ l < j, while if −θ−l+
∑d
i=j+1−l(1−

2
βσ(i)

)+ ≤ 0 for some 0 ≤ l < j, which we assume to be the least such l,

‖Eσ,kσ(1)β ‖Lp→Lq .
∑
kσ(2)

′
· · ·

∑
kσ(j−l)

′
kσ(j−l)

j−l∏
m=1

2
−2kσ(m)(

1
p′−

1
q )
. (5.6)

Suppose now that condition (i) holds. We may sum the right side of (5.5) in

kσ(1) whenever θ+ j >
∑d
i=1(1− 2

βi
)+, and the right side of (5.6) may be summed

in kσ(1) unconditionally. Condition (i) for our p, q is, after a bit of arithmetic,

equivalent to θ + j ≥
∑d
i=1(1− 2

βi
)+. Thus it remains to consider the case

θ + l <

d∑
i=j+1−l

(1− 2
βσ(i)

)+, 0 ≤ l < j, and θ + j =

d∑
i=1

(1− 2
βi

)+. (5.7)

Let j0 ≤ j = j1 and 0 < θ0, θ1 < 1 with j0 + θ0 < j + θ < j1 + θ1 and
|j + θ − (ji + θi)| sufficiently small, i = 0, 1. Then with p′i := d−ji−θi

d−ji−θi+2q, q > pi,

and inequality (5.1) holds at (pi, q). Furthermore, since j1 = j, (5.7) implies

θ1 + l <

d∑
i=j1+1−l

(1− 2
βσ(i)

)+, 0 ≤ l < j1,

provided |θ−θ1| is sufficiently small, and we may argue similarly for θ0 when j0 = j.
If j0 < j, we may assume that j0 = j − 1, so

θ0+l < θ+l+1 <

d∑
i=j+1−(l+1)

(1− 2
βσ(i)

)+ =

d∑
i=j0+1−l

(1− 2
βσ(i)

)+, 0 ≤ l+1 < j = j0+1.

Therefore by (5.5),

‖Eσ,kσ(1)β ‖Lpi→Lq . 2αikσ(1) ,

where

αi := βσ(1)(−θi − ji +

d∑
i=1

(1− 2
βi

)+)( 1
p′i
− 1

q ), i = 0, 1.
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We observe that α0 > 0 > α1. Thus for fΩ comparable to the characteristic function
of a measurable set Ω,

‖
∑
kσ(1)

Eσ,kσ(1)β fΩ‖Lq .
∑
kσ(1)

min{2α0kσ(1) |Ω|
1
p0 , 2α1kσ(1) |Ω|

1
p1 }

. |Ω|
α0
p1
−α1
p0

α0−α1 = |Ω|
1
p

(some arithmetic is needed for the last equality). This implies the restricted weak
type inequality, and so completes the proof of the restricted-weak type inequality
in the case q > p. Since the Riesz diagram lacks any vertex in the region q > p, by
real interpolation, the proof is complete for q > p.

We now turn to the case q = 2(d−j−θ+1)
d−j−θ ≤ p. For any integer N ,

max
0≤n≤N

n(1− 2
q )− 2Jn( 1

p′ −
1
q ) =

N∑
i=1

[(1− 2
q )− 2

βi
( 1
p′ −

1
q )]+.

Thus (iv) can be rewritten as

q ≤ p ≤ ∞, and

d−1∑
i=1

[(1− 2
q )− 2

βi
( 1
p′ −

1
q )]+ < d(1− 2

q )− 2
q ,

and

d∑
i=1

[(1− 2
q )− 2

βi
( 1
p′ −

1
q )] = d(1− 2

q )− 2
q .

This implies that (1− 2
q )− 2

βd
( 1
p′ −

1
q ) > 0, which, by our assumption that − 1

β1
≥

· · · ≥ − 1
βd

, further implies (since p′ < q) that (1 − 2
q ) − 2

βi
( 1
p′ −

1
q ) > 0, for all i.

Collecting these observations, and making similar (but simpler) manipulations in
the case of (ii), we may rewrite conditions (ii and p <∞) and (iv) as{

(ii’) q ≤ p <∞, and
∑d
i=1[(1− 2

q )− 2
βi

( 1
p′ −

1
q )]+ < d(1− 2

q )− 2
q ,

(iv’) q ≤ p ≤ ∞, and (1− 2
q )− 2

βi
( 1
p′ −

1
q ) > 0, for all i, and 1+Jd

q = Jd
p′ .

Let us now assume that we are in case (ii’). Then by (5.2),

‖Eσ,kσ(1)β ‖Lp→Lq .ε 2εkσ(1)βσ(1)
∑
kσ(2)

′
· · ·

∑
kσ(j+1)

′[( j∏
m=1

2
−2kσ(m)(

1
p′−

1
q ))

× 2
kσ(j+1)βσ(j+1)(−θ(1− 2

q )+
∑d
m=j+1[(1− 2

q )− 2
βσ(m)

( 1
p′−

1
q )]+)]

,

(5.8)

where the extra factor in front accounts for the loss in 2kσ(j+1)βσ(j+1) coming from
(5.2). Mimicking the inductive argument from before, if

−(θ + l)(1− 2
q ) +

d∑
m=j+1−l

[(1− 2
q )− 2

βσ(m)
( 1
p′ −

1
q )]+ ≤ 0,

for any 0 ≤ l < j, the right hand side of (5.8) is summable in kσ(1). Also as before,
if

−(θ + l)(1− 2
q ) +

d∑
m=j+1−l

[(1− 2
q )− 2

βσ(m)
( 1
p′ −

1
q )]+ > 0, 0 ≤ l < j,
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then we have

‖Eσ,kσ(1)β ‖Lp→Lq .ε 2
kσ(1)βσ(1)(−(θ+j)(1− 2

q )+
∑d
m=1[(1− 2

q )− 2
βm

( 1
p′−

1
q )]++ε)

. (5.9)

By inserting the definition of q into (ii’) and taking ε sufficiently small, the exponent
on the right hand side of (5.9) is negative, and so we may again sum in kσ(1).

We will turn in a moment to (iv’), but for now we assume only that q =
2(d−j−θ+1)
d−j−θ ≤ p and

(1− 2
q )− 2

βi
( 1
p′ −

1
q ) > 0, for all i.

Taking ε < (1− 2
q )− 2

βi
( 1
p′ −

1
q ), i = 1, . . . , d, (5.2) implies

‖Eσ,kσ(1)β ‖Lp→Lq .
∑
kσ(2)

′
· · ·

∑
kσ(j+1)

′( j∏
m=1

2
−2kσ(m)(

1
p′−

1
q ))

× 2
kσ(j+1)βσ(j+1)(−θ(1− 2

q )+
∑d
m=j+1[(1− 2

q )− 2
βσ(m)

( 1
p′−

1
q )])

.

(5.10)

Again arguing as before, if

−(θ + l)(1− 2
q ) +

d∑
m=j+1−l

[(1− 2
q )− 2

βσ(m)
( 1
p′ −

1
q )] > 0, 0 ≤ l < j, (5.11)

then (5.10) implies

‖Eσ,kσ(1)β ‖Lp→Lq . 2
kσ(1)βσ(1)(−(θ+j)(1− 2

q )+
∑d
m=1[(1− 2

q )− 2
βm

( 1
p′−

1
q )])

, (5.12)

while if (5.11) fails for some 0 ≤ l < j, the right hand side of (5.10) may be summed
in kσ(1).

Now we assume that (iv’) holds. The equation 1+Jd
q = Jd

p′ can be rewritten, after

a little algebra, as

−(θ + j)(1− 2
q ) +

d∑
m=1

[(1− 2
q )− 2

βm
( 1
p′ −

1
q )] = 0.

Our analysis now breaks into three cases. If q < p <∞, we choose q < p0 < p < p1

with |p − pi| sufficiently small that (5.11) holds with (pi, q) in place of (p, q). For
fΩ comparable to a characteristic function,

‖Eσβ fΩ‖Lq .
∞∑
k=1

min
i=0,1

{
2
kβσ(1)(−(θ+j)(1− 2

q )+
∑d
m=1[(1− 2

q )− 2
βm

( 1
p′
i
− 1
q )])
|Ω|

1
pi

}
. |Ω|

1
p ,

which implies the restricted weak type inequality that we want.
If q = p, Condition (iii) holds, so we must prove a strong type inequality. On

the line 1+Jd
q = Jd

p′ , equation (5.11) continues to hold for some q < p, and condition

(i) holds for q > p. The strong type inequality follows by real interpolation and
estimates already proved.

Finally, if (p, q) = (∞, 1
Jd

+ 1), we select j0 + θ0 < j + θ < j1 + θ1 and set

qi := 2(d−ji−θi+1)
d−ji−θi . We may choose ji, θi so that |ji + θi − (j + θ)| is sufficiently

small for i = 0, 1; thus inequality (5.11) holds with θi, qi, ji,∞ in place of θ, q, j, p,
for each i = 0, 1. Therefore (5.12) holds with these same substitutions, and we may
rewrite this inequality as

‖Eσ,kσ(1)β ‖L∞→Lqi . 2
kσ(1)βσ(1)[(d−θi−ji−2Jd)(1− 2

qi
)− 2Jd

qi
]
.
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As the exponent on the right is positive for i = 0 and negative for i = 1, we see
(after some arithmetic) that for fΩ1 , fΩ2 comparable to characteristic functions,

〈Eσβ fΩ1
, fΩ2
〉 .

∑
k

min
i=0,1
{2kβσ(1)[(d−θi−ji−2Jd)(1− 2

qi
)− 2Jd

qi
]|Ω2|

1
q′
i } . |Ω2|

1
q′ ,

which implies the claimed restricted weak type inequality in the remaining case. �

6. The negative result: Proof of Proposition 1.8

We use the notation established at the beginning of the previous section. Rescal-
ing the lower bounds in Theorem 1.6 (analogously to the proof of Lemma 5.1) yields
the following lower bounds on the Ekβ .

Lemma 6.1. Assume that k1β1 ≥ k2β2 ≥ · · · ≥ kdβd. If q = d−j−θ+2
d−j−θ p′ > p, for

some 0 ≤ j < d and 0 ≤ θ ≤ 1, then

‖Ekβ‖RWT
Lp→Lq &

( j∏
i=1

2−2ki
)(

2
kj+1βj+1[(1−θ)− 2

βj+1
])( d∏

i=j+2

2
kiβi(1− 2

βi
)) 1

p′−
1
q

. (6.1)

Additionally, if q = 2(d−j−θ+1)
d−j−θ ≤ p, for some 0 < θ ≤ 1 and j = 0, . . . , d− 1,

‖Ekβ‖RWT
Lp→Lq &

( j∏
i=1

2
−2ki(

1
p′−

1
q ))(

2
kj+1βj+1[(1−θ)(1− 2

q )− 2
βj+1

( 1
p′−

1
q )])

×
( d∏
i=j+2

2
kiβi[(1− 2

q )− 2
βi

( 1
p′−

1
q )])

α̃
(
kj+1βj+1 − kdβd

)
, (6.2)

for some increasing α̃ depending on p, q, d, satisfying α̃(0) = 1 and α(r) → ∞ as
r →∞.

Proof of Proposition 1.8. Let (p, q) ∈ [1,∞]2, and assume that none of the condi-
tions (i-iv) hold. We may assume that (p, q) ∈ Td and p 6= 1, q 6= ∞. We may
define j, θ, depending on (p, q), such that q can be written in one of the forms given
in Lemma 6.1.

Failure of conditions (i-iv) for (p, q) ∈ Td leads to a choice of an integer n ≥ 1.
Namely, if q > p, we choose 1 ≤ n ≤ d such that q

p′ < 1 + 1
Jn+ d−n

2

. If q ≤ p, we

choose n = d if 1+Jd
q > Jd

p′ , and otherwise choose n < d such that 1+Jn+d−n
q ≥

Jn
p′ + d−n

2 . A bit of arithmetic shows that in any of these cases, n ≥ j + θ.

Let N > β1 sufficiently large and define k̃ = (bNβ1
c, . . . , b Nβn c, 1 . . . , 1).

We consider first the case q > p. By (6.1)

‖E k̃β‖RWT
Lp→Lq &

[( j∏
i=1

2
−kiβi[ 2

βi
])

2
kj+1βj+1[(1−θ)− 2

βj+1
]( d∏
m=j+2

2
kiβi[1− 2

βi
])] 1

p′−
1
q

≈ 2
−N [ 2

β1
+···+ 2

βn
−(n−j−θ)]( 1

p′−
1
q )
.

Thus, by choosing N large, we can make this term arbitrarily large if

2Jn − (n− j − θ) < 0,
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which, after a little algebra, is equivalent to

q

p′
< 1 +

1

Jn + d−n
2

.

Next, we suppose q ≤ p. By (6.2)

‖E k̃β‖RWT
Lp→Lq &

( j∏
i=1

2
−2ki(

1
p′−

1
q )

)
2
−2kj+1( 1

p′−
1
q )+kj+1βj+1(1+θ)(1− 2

q )

×
( d∏
i=j+2

2
kiβi[(1− 2

q )− 2
βi

( 1
p′−

1
q )]

)
α̃(

kj+1βj+1

kdβd
).

(6.3)

Thus, for all n such that j + θ ≤ n < d,

‖E k̃β‖RWT
Lp→Lq & 2

−N [2( 1
β1

+···+ 1
βn

)( 1
p′−

1
q )−(n−j−θ)(1− 2

q )]
α̃(N),

which we can make arbitrarily large, for large N , if

2Jn( 1
p′ −

1
q )− (n− j − θ)(1− 2

q ) ≤ 0,

which, after a little algebra, is equivalent to

1+Jn+d−n
q ≥ Jn

p′ + d−n
2 .

In the case where n = d, (6.3) becomes

‖E k̃β‖RWT
Lp→Lq & 2

−N [2( 1
β1

+···+ 1
βd

)( 1
p′−

1
q )−(d−j−θ)(1− 2

q )]
,

which we can make arbitrarily large, for large N , if

1+Jd
q > Jd

p′ .

Lastly, we consider the case where conditions (i-iii) fail, but condition (iv) holds,
implying that q < p, 1+Jd

q = Jd
p′ , and βi > 2 for all i.

Let ~km = (Mm
β1

, ..., Mm
βd

), where M > 100 max(β1, ..., βd), and let ϕR~km be a

Schwartz function supported on R
~km and satisfying 0 ≤ ϕR~km ≤ 1 and

∫
ϕR~km ≈

|R~km | ≈ 2−2MmJd . Then |EβϕR~km | & |R
~km | on some dual rectangle R∗~km

, of dimen-

sions 2
2Mm
β1 × · · · × 2

2Mm
β1 × 22Mm, and decays rapidly away from R∗~km

.

Define f(ξ) =
∑N
m=1 e

i~xm·ξ2−
2MmJd

p ϕR~km , with ~xm chosen so that the dual rect-
angles R∗~km

are widely separated. Then

||f ||Lp ≈
( N∑
m=1

2−2MmJd |R~km |
) 1
p

= N
1
p ,

and

||Eβf ||Lq &
( N∑
m=1

2
2MmJdq

p |R~km |q|R∗~km |
) 1
q

=

( N∑
m=1

2−2MmJdq(1− 1
p )22Mm(Jd+1)

) 1
q

=

( N∑
m=1

2
− 2MmJdq

p′ 2
2MmJdq

p′

) 1
q

= N
1
q ,

where in the last line, we used 1+Jd
q = Jd

p′ . Therefore, ||Eβ ||Lp→Lq & N
1
q−

1
p , which

goes to infinity as N →∞, since q < p. Thus, Eβ fails to have a strong type bound.
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