FOURIER RESTRICTION ABOVE RECTANGLES

JEREMY SCHWEND AND BETSY STOVALL

ABSTRACT. In this article, we study the problem of obtaining Lebesgue space
inequalities for the Fourier restriction operator associated to rectangular pieces
of the paraboloid and perturbations thereof. We state a conjecture for the
dependence of the operator norms in these inequalities on the sidelengths of
the rectangles, prove that this conjecture follows from (a slight reformulation
of the) restriction conjecture for elliptic hypersurfaces, and prove that, if valid,
the conjecture is essentially sharp. Such questions arise naturally in the study
of restriction inequalities for degenerate hypersurfaces; we demonstrate this
connection by using our positive results to prove new restriction inequalities
for a class of hypersurfaces having some additive structure.

1. INTRODUCTION

Recent work [2] establishing bounds for restriction operators associated to higher
order surfaces on which the curvature may vanish at some points naturally gives
rise to the study of the restriction operator Rg associated to the rectangular piece
of the paraboloid,

{(|£|2,§) RS Qe}7 Qe = H(_lj’lj)’ = (llw .- >ld) € (O’Oo]da

and perturbations thereof.

In this article, we consider the problems of establishing finiteness and under-
standing the dependence on ¢ of the LP — L% operator norms of Rg. We then
apply such results to obtain new, sharp restriction inequalities for a collection of
“degenerate” hypersurfaces (i.e. hypersurfaces whose curvature vanishes on some
nonempty set). We are motivated by the recent success of the first author [13] (cf.
[4]) in directly deducing sharp estimates for model convolution operators by using
a generalization of this approach.

The natural interpretation of ellipticity in this context leads to a slight general-
ization of the traditional notion of ellipticity formulated by Tao—Vargas—Vega [16].
We introduce some additional notation, letting

Aé(fla' .. afd) = (l1§17 . 'aldgd)a le (Oa oo)d7
and
1:=(1,...,1).

Definition 1.1. Let ¢ € (0,00)? and let g be a C\YF? function on Q* for some
¢ € (0,00]¢, with N > 0 sufficiently large, possibly infinite. Assume that D2g is
positive definite throughout Q°, and let 0 < gy < % We say that g is elliptic over
Q' (with parameters N, o) if g(€) = |£]? + h(€), where the perturbation h satisfies
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h(0) = 0, VA(0) = 0, D>h(0) = 0, and
||(D2h) o AZHCN(Q]I) < &g,

for every bounded Qé contained in Q¢. If ¢ is elliptic over Q¢ with parameters
N, &g, we will also say that the surface

By = {(9(6),6) : £ € Q}
is elliptic over Q° (with parameters N, o).

This definition of ellipticity is invariant under parabolic rescalings in the sense
that g is elliptic over Q* if and only if A2g(A~!-) is elliptic over Q*. In the special
cases that d = 1 or £ = 1 = (1,...,1), our definition of ellipticity coincides with
that in [16], but ours is strictly more general in the sense that a surface elliptic over
some @’ may not be coverable by a bounded (independent of £) number of surfaces
elliptic in the sense of [16]. We will see the utility of this generalization once we
turn to applications.

Associated to a function ¢ elliptic over some Q¢ are the familiar restriction and
extension operators,

REF(E) = fl9(6),6),  €€q’
ELf(t ) = /Qe GEDGOO f(e)de,  (tx) € RV

Since these operators are dual to one another, it suffices to state our results for the
extension operator.

Ellipticity over some Q¢ is a more general concept than ellipticity in the sense
of Tao—Vargas—Vega, and the following conjecture seems to be a reasonable gener-
alization of the corresponding conjecture for elliptic hypersurfaces.

Conjecture 1.2. For N sufficiently large, 0 < g9 < %, and 1 < p,qg < 00 in
the range ¢ = “2p’ > p, there exists a constant Cpqq < 00 such that for any

¢ € (0,004, H5§||Lp_>Lq < Cpq.d, for any g elliptic over Q° with parameters N, e.

This conjecture is already verified in the case d = 1 by Fefferman—Stein [6] and
Zygmund [19], and its deduction in the bilinear range in higher dimensions is rela-
tively straightforward (Theorem 1.3). The authors have not investigated whether
the results of [10, 11, 12, 18] extend to imply progress toward Conjecture 1.2, though
the possibility of such an extension seems likely.

Theorem 1.3. Conjecture 1.2 holds for alld > 1 and q > 2(;{:13)'

In certain cases, this theorem is already known [3, 6, 14, 16, 19]; we will give the
short deduction of the remaining cases in Section 4.

As promised, we turn now to the dependence of operator norms on the side-
lengths.

Conjecture 1.4. Let £ € (0,00]? satisfy Iy < --- < lq. For g elliptic over Q° with
parameters N sufficiently large and 0 < g¢ < %, depending on d,p,q, we have the
following operator norm bounds for 5}], with implicit constants independent of g and

L. If g > p satisfy q = %p’, for some 0 < j<dand0<6<1, then

_1
||g§||LP—>Lq S "ljl§+1)” ‘4 (1.1)
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in particular, this quantity is finite whenever l;11 < oo. If ly < oo, we have, in
addition:

1_1 1—2
€l r—spa Se (ta--la) s ™7 () (I - Ll 4y) '3, (1.2)
fOT’QZWSp, 0<0<1,e>0,andj=0,...,d—2; and
1_11-3_1
€N Lrsra S (- -lat)? " aly " 7, (1.3)

forq>4andp> (1)

Modulo the precise definition of ellipticity, the two-dimensional version of this
conjecture was essentially formulated by Buschenhenke-Miiller—Vargas in [2] (one
must rescale).

We have the following positive result.

Theorem 1.5. Conjecture 1.2 implies Conjecture 1.4. In particular, Conjec-
ture 1.4 holds unconditionally for q¢ > 22 for all d > 2, and, when d > 3 and

— k42 | k41 k41
Byi= (1~ % ' 2(1;;3)’ Q(k-:--?)))’ (1.4)

for (%}, %) in the convex hull of [(1,0), Py—;)U[(1,0), P4—j11), for each 1 < j < d—1.

More precise statements of the conditional part of Theorem 1.5 may be found in
the lemmas leading to the proof of Theorem 1.5.

In addition, we prove that Conjecture 1.4, if true is essentially optimal, excepting
the precise asymptotics as 1 q < 4.

Theorem 1.6. Let £ € (0700] satisfy 1 < --- <lq. Let g be elliptic over Q° with
parameters N > 2 and 0 < gg < % Then 5; does not extend as a bounded linear

operator for (p,q) lying outside of the region q > M10’ q > Q(dTH). If l, = 0

somel <k <d, then 5l does not extend as a bounded operator from LP to L9 for

any p > q nor q < = Zﬁ’p More precisely, if ¢ > p satisfy q = ddjjg'ng’ for

some 0 < j<dand0<0<1, then

1 _ 1
€N Lo ra 2 (I -+ llG 1) "9, (1.5)
Ifq_% <p,0<0<1,andje{0,...,d—2}, then
1_1 _2
€8 Lo—sra 2 (- la)7 pa(ljil)(zl-..zjzg?ﬂ)l Q. (1.6)

Here « depends on d, p, and q; « 2 1; and a(r) — oo as r — oo. Finally, for ¢ > 4
and p> (1),

P (1.7)

A
o7

Qlw
D=

||5§||LPHL‘1 Z (l1 g 1)

Attribution for the statement of Conjecture 1.4 and prior progress toward The-
orems 1.5 and 1.6 is somewhat ambiguous, particularly as some prior progress on
these questions was not formalized into precisely stated theorems, the hypotheses
and generality elsewhere differ, and the implications of earlier methods and results
seem not to have been fully exploited. We give a recounting of the progress of which
we are aware. For the fully conditional part of Theorem 1.5, we use an elementary
deduction, which was used to obtain an alternate proof of the restriction inequality
for the cone in [5]. In two dimensions, under a more restrictive hypothesis, lower
bounds matching those from Theorem 1.6 in the region 2p’ < ¢ < 3p’, p < ¢q were
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obtained, as were the lower bounds in the region 3 < ¢ < 4, modulo the additional
gain in ljlj_ it was also remarked that the methods in [9] (which, in turn, attributes
the method to [5]) lead to the conditional result in this region. Nevertheless, the
question seems not to have been formulated in this level of generality (particularly
with regard to dimension), some of our lower bounds seem to be new in all dimen-
sions, and some of our positive results (in the bilinear range) are obtained by means
that also seem to be new in this context.

Two natural open questions are whether, for particular values of ¢, there is
a larger range of exponents for which unconditional progress toward Theorem 1.5
can be made, and whether unconditional results could be extended along horizontal
lines in greater generality than just the bilinear range in two dimensions.

Our main application is to determine new inequalities and give a simpler proof
of known inequalities for a class of degenerate hypersurfaces. Given 5 € (1,00)¢,
we define an extension operator

d
Esf(t,x) = /Il ez(t,w)(gza(ﬁ),ﬁ)f(g) de, gs(&) == Z ‘€j|ﬂj'
j=1
In the case d = 2, this extension operator was considered in [9] in the Stein-Tomas
range and in [2] in the bilinear range.
Varchenko’s height [17] associated to these surfaces is the quantity h defined by

1. 141
Pt

B1
In determining bounds for £, intermediate dimensional versions of the height be-
come relevant. Thus, taking the convention that 81 > [ > .-+ > (4, we also
define
— 1 R
Jn =g+ 50 0<n<d

We obtain an essentially optimal conditional result for the operators £3. To
facilitate its statement, we let T,; denote the set of all (p,q) € [1, 00]? for which the
local elliptic extension operator is conjectured to be bounded, that is,

Ty :={(p,q) € [1,00)? : ¢ > 2 g > di2,y (1.8)

Theorem 1.7. Assume that Conjecture 1.4 holds for all (p,q) in a relatively open
subset V' C Ty containing (p,q). Then Eg extends as a bounded operator from LP
to L7 if at least one of the following conditions hold:

()q>pcmdq>1+ dn,fo7*all()<n<d

(11)q§pandw p3L+T,f0rallO<n<d'or
(iii)q:p,%:#,andw ‘;”—f—d o for all0 <m < d.
Furthermore, Eg is of restricted weak type (p,q) if

(iv)qugoo,%:%, and%<é—?+%,forall()§n<d.

Here we use the not-completely-standard definition that a linear operator T,
initially defined on L!(R%), is of restricted weak type (p,q) if

1, L
(T fe,9r) S |E|?[F]7,
for all measurable, finite measure E, F' and measurable functions |fg| < xg and
lgr| < xr. (It will be convenient to note that we may equivalently replace ‘<’
by ‘~’ in the conditions on fg,gr.) For finite p, this is equivalent to the usual
definition of restricted weak type boundedness.
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Conditional on the restriction conjecture above rectangles, both the strong and
restricted weak type estimates arising in Theorem 1.7 are sharp.

Proposition 1.8. If (p,q) € [1,00]? does not satisfy any of Conditions (i-iii) of
Theorem 1.7, then Eg is not of strong type (p,q). If (p,q) € [1,00]* does not satisfy
any of Conditions (i-iv) of Theorem 1.7, then Eg is not of restricted weak type (p, q).

When d = 2, Proposition 1.8 is due to [2], and Theorem 1.7 is due to [2] in
the bilinear range (where it is unconditional) and to [9] in the Stein—Tomas range.
For d > 2, Theorem 1.7 is due to [8] in the Stein-Tomas range. Our main new
contribution is a direct deduction of the result from Conjecture 1.2, which leads to
a simpler approach that avoids the complicated step of obtaining bilinear restriction
estimates between rectangles at different scales. This simplification enables us to
address the higher dimensional case, as well as the case when some exponents (;
are less than 2.

The region ( ) described in Theorem 1.7 and Proposition 1.8 can be somewhat
difficult to v1suahze so we make a few simple observations. We see the familiar
Q(dH) in the n = 0 case of each of the constraints.
The lower bound on % p in (i) of Theorem 1.7 is strongest when J,, + ‘1_7” is minimal,
which occurs when n = ng, the minimal index for which §; < 2 for all i > ng. Thus
the constraint in (i) is strictly stronger than that in the elliptic restriction conjecture
unless ng = 0, i.e. B; < 2 for all 4.

The condition (ii) may introduce some vertices in the Riesz diagram; these all

lie on or above the line é = Il] For each n, the lines % =1+ (seen in (i))

conditions g > <2y’ and q >

In +d n
and W = % + 951 (seen in (ii)) intersect when ¢ = p = 2+ ﬁ, and
these tWO lines are equal when n = d. The slope of the line W = ‘1]7',‘ + d=n
is W’ which equals 0 when n = 0 and decreases as n increases. The
In

intersection point of such a line with ¢ = pisqg=p =2+ which moves

W’
closer to (0,0) as n increases until n reaches ng, at which point it begins to increase.
Thus only those lines with n < ng play a role in determining the boundary of the
region.

Notation. Admissible constants may depend on the dimension d, the exponents
D, q, and the d-tuple § in the definition of £, as well as any operator norms on
whose finiteness results may be conditioned. For nonnegative real numbers A, B,
we will use the notation A < B, B 2 A to mean that A < CB for an admissible
constant C, which is allowed to change from line to line; A ~ B means A < B
and B < A. We will occasionally subscript constants or the < notation to indicate
dependence on an additional parameter. For A € R, A, denotes the positive part,
Ay = max{A\,0}.
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proved the article.
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2. ELLIPTICITY OVER SUBSETS OF RECTANGLES AND OTHER TECHNICAL
LEMMAS

In this section we will prove a handful of technical lemmas extending known
results to surfaces elliptic over rectangles (and slices thereof). Most of these results
use only basic calculus.

The statements of the results will be simpler if we generalize the notion of ellip-
ticity.

Definition 2.1. Let K be a convex subset of R? with nonempty interior, and let
g € CNT2(K), with D2g positive definite throughout K. We say that ¢ is elliptic

loc

over K, with parameters N, &g, if there exist &, € K, U € O(d), and £ € (0, 00]?
such that

K CV2[D?(&)] 2 UQ" + &,
and the functions

3(6) == g(V2Dg(£) "2 UE + &) — g(&) — V2D?g(€0)3UE - V(&) (2.1)
and h(€) := §(&) — |€|? obey

1620 D1l o 2y < 0, (2.2)

where
K .= 1 p2 T (K — 2.3
= L D%g(60) U7 (K — &)). (2.3)

2.1. Dicing. Here we will prove that the restriction of a function elliptic over a
rectangle is elliptic over smaller rectangles, with improved parameters. This result
will allow us to assume that ¢ is sufficiently small in later arguments. More spec-
ulatively, such a result is potentially of use in induction on scales type arguments.

Lemma 2.2. Let { € (0,00]¢ and let g be elliptic over Q° with parameters (N, &),
some N > 1. Let K C Q' be a convex set with nonempty interior, and assume that
eTHK — &) C QF for some & € K and 0 < e < 1. Then g is elliptic over K with
parameters N, Cy qe€p.

Proof of dicing lemma. By taking limits, we may assume that K is compact. By
the John ellipsoid theorem, there exists ¢ € (0,00)% and U € O(d) such that

calUQ" € 5 D%g(€0)* (K — &) C UQ".
Define § as in (2.1) and K as in (2.3). For |a| > 1,
- 1 -
160° D23l ) = 1207 D2g(6y * (VED?g(60) U0 0" D*gDPg(60)Ullen i
< 201D%9(&) " 1P116°9 Dgll oy,

where
0 :=V2D%g(&) iUl e K — & C ¢;'eQ".
As || D2g(&)" 2| < C4, in the case |a| > 1, (2.2) follows from the ellipticity hy-

pothesis. In the case a = 0, (2.2) follows from the |a| = 1 case, D?g(0) = 2I,, and
the fundamental theorem of calculus. O
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2.2. Slicing. Here we will show that the restriction of a function elliptic over a rec-
tangle to some lower-dimensional slice of the rectangle is also elliptic, with compa-
rable parameters. This result is essential in the (conditional) proof of Theorem 1.5.

Lemma 2.3. Let ¢ € (0,00]? and let g be elliptic over Q° with parameters N,eq.
Let P C R? be an affine k-plane, and assume that PN Q¢ has nonempty interior in
P. Let & € PNQ°, and let {uy,--- ,ur} be an orthonormal basis for P —&y. Then

k
G = g€+ > mug)
j=1
is elliptic over K :={(m,...,mk) : & + Z§:1 nju; € PNQ*Y}.
Proof. By taking limits, we may assume that K is compact. By the John ellipsoid
theorem, there exists £ € (0,00)% and V' € O(k) such that
@VQ%;%D%%ma(gVQﬁ
Set K := VT D2 (0)2 K,
7 (n) =g’ (VaD*¢*(0)"2V) — g (0) = V2D*¢*(0) "2V - Vg’ (0),

and 1" (n) := §°(n) — |n|*, n € R¥.
Extend the given basis for P — & to an orthonormal basis {uy,--- ,ugq} of R?
and set U := (uq,...,uq) € O(d). Then

caU[V2D*5(0) "2V Q’ x {0}] C (PN Q") — & C U[V2D*3(0) 2V Q" x {0}].
Let |a| > 1 be a multiindex. By the chain rule,

|60 D@ || co ) < V2D (0)7 2 |PIl(VZD?9(0) 2 V)"0 D¢’ oy

< [IV2D?¢ (0) 2 |P|[U(V2D?3(0) 2 VZ,0)]*0* Dgl| oy

Finally, since
U(VZD*5(0)"V6,0) € UV2D?5(0)3VQ" x {0}] € i (PNQ) ~ &) € '@,
ineq}lbality (2.2) holds for |a| > 1; the case |a| = 0 follows analogously, by consider-
ing h’. t

2.3. Morse Lemma. Next, we note that the following version of the Morse lemma
follows readily by adapting standard undergraduate-level proofs of the Morse lemma
to functions elliptic over rectangles. (We omit the details of this elementary adap-
tation.) This result allows us to invoke the classical arguments involving stationary
phase, including the Stein—Tomas and Strichartz theorems and the wave packet
decomposition of [14].

Lemma 2.4. Let g be elliptic over Q°, £ € (0,00)¢, with parameters N > 1 and
0 < e <eq. Then exist U C R and a CN diffeomorphism F of U onto Q' such
that
g(lth e ldFd) = Z(ZJU’])Z
J
and [ F () ~ ey, < CG),
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3. NEGATIVE RESULTS: THE PROOF OF THEOREM 1.6

For simplicity, we give a complete proof of Theorem 1.6, recalling that it is
already known in some cases. We will actually prove a slightly stronger result. Let

Lr—rLa -— SU

l
(AR p Ealror)]
E,F |E|?|F|d

where the supremum is taken over measurable sets F, F' with positive, finite mea-
sures and measurable functions |fg| < xg, |gr| < XxF.

Proposition 3.1. The conclusions of Theorem 1.6 hold with HEﬁHEN_?Lq in place

Of ||5§||LP_>LQ .

The rest of this section will be devoted to the proof of Proposition 3.1. We will
use the convention that references to equations in the statement of Theorem 1.6
shall be superscripted with ‘RWT.’

That ||8§ [FWT, , is infinite whenever ¢ < “F2p’ follows from the classical Knapp

example. The case when ¢ < @ follows from a slight modification of the
argument from [1], which will be given in Lemma 3.4. The assertion regarding
unboundedness of 6’5 when some [; are infinite follows from the lower bounds (1.5-

1.7)BWT and the elementary inequality

IELRVT,, > |EEWT,,, forl; <1y, j=1,....d. (3.1)

It remains to prove the lower bounds in the case that each [; is finite. This will
be carried out in three lemmas, one for each numbered inequality.

Lemma 3.2. The lower bound (1.5)"W7T is valid in the range ¢ > p.

Proof. The argument is an elementary generalization of the Knapp example. Let

j€{0,...,d—1},0 <0 <1, and assume that g > p satisfy ¢ = d;i'%.ffp’.

Let ¢ be a smooth, nonnegative function with supp ¢ C Q' and J¢=1. Set

GUE) = G5, T L ),

7l L Pl

Then |€§¢>j’f| PAREE ljl;-i_;f on a rectangle with volume (I - - - lj)’ll;_ﬁ'f_jw). After
a little arithmetic

— —1;—(d—7+4+2 1 5 1
R | (R s W) L Iy~ 1) "l (3.2)
_s L J ‘+1 . .
(ol ) P !

€GNS0 2

All that remains is the arithmetic verification of (d — j)(z% — %) — % = 0(% -1
when ¢ = %p’; we leave this to the reader. [

Lemma 3.3. The lower bound (1.7)®W'7T s valid in the range q¢ < p, q > 4.

Proof. We assume q > 4 and p > ¢q. We use the same ¢° from the proof of
Lemma 3.2, and inequality (3.2), which can be rearranged into (1.7), remains valid.
O

Lemma 3.4. The lower bound (1.6)FWT is valid in the range ¢ < p, q < 4.

LIRWT  _ 2(d+1)
Moreover, (&l 51a = 00 whenever ¢ < ===
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Proof. We begin with the case ¢ = % and p > g for some 0 < j < d—2
and 0 < 0 < 1. We will argue by adapting the Kakeya-like argument of [1].

Let N > 1 Assume that 4 > N°. 3. By parabolic rescaling, we may assume

that ;11 = %. We cover (at least half of) Q° by pairwise disjoint rectangles R € R
congruent to Q(ll’ g /N-s /N and further decompose each R into a disjoint
union of rectangles k € Kr, each congruent to QU1li1/Nos1/N) = By the usual
Knapp argument,

[Egxn(t )] 2 |K]

on a tube T}, of volume |T}| ~ |x|~'17%,. We will prove that for each R, there exist

{(tr,xx) trek, such that

U Tn + (tfi?) xm)‘ < ON(l)#ICR‘THL (33)
KEKR

Jj+1°

where on(1) = 0 as N — oo and is otherwise independent of £.

Define
— Z e~ i(tr,zR)(9(6).8) Z wye  Wtnm)(9()8)y
RER wEKR
with {(tg, 7r)}rer € R and {wr}rexy € {&1} to be determined shortly. Of
course, |F| < xg¢. For the (tgr,xr) sufficiently widely spaced (depending on the
(tw,xy)), the L9 norms decouple:

1 .
H5§F||L%°° > (Z HgﬁFRH%q,o@) T Fp:= Z wye 1 teen) (909,
ReR KEKR
By Khintchine’s inequality, we may choose the w, such that
1 .
||5§FR||L%°° > H( Z |5§FH‘2) 2|| e, FE, = e—i(tmmm)(g(ﬁ)é)xﬁ
KEKR
Applying our pointwise lower bound on 54)(,{7 Hélder’s inequality, and (3.3),

1O 1ELF) o 2 Inlll Y xT+tme>H7

KEKR KEKR
1_1 1 _ 1
Z sl U Tet oozl 2 1Y Xtttz |3 2 I6lon (1) (#KRIT]) s
KEKR K

It takes a little arithmetic to put the pieces together:
I1€5 Fllg,

€N e 2

o e| 2 1Q"|™ 7 klon ()M (1Q1 17265,
1_1 _2
~on(1)7HQ T w (g - l]lg+1)1 7.
Thus the lemma is proved, modulo the Kakeya-like inequality (3.3).
For £ € R, we use Taylor’s theorem to estimate

9(&) = g(€r) + (€ — €r) - Vg(€r) + 2(€ — €r)TD?g(ER) (€ — €R)
+O( Z 1§ = €r)*10%glco(qey),
|| =3

where {r denotes the center of R. We examine the error term. If ay = 0 and
; 7& 07
1€ = €r)10%gll ooty < =LillOiD?gllco(qey < 5%,
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since |(£ — &r)k| < min{%,lk}, 1<k<d If ag #0,

1€ = €r)™10%gl oy < mzlall0aD?gllcogey < <5,

since |£ — €| <1< ﬁld. Take £ € k C R and let &, denote the center of k. From
the preceding and the definition of k, for £ € &,

9(&) = (€ — &) - (Vg(€r) + D?9(Er) (& — €r)) + (k) + O(552),

where ¢(k) is independent of f
By construction, &, —&r = Ggeq, some n, € {—(N—1),...,0,...,N —1}. Thus
for |t| < ¢N2, ¢ sufficiently small

(t,x)(g(§) — c(r),§ = &) = cO1) + (£ = &) (tVg(&r) + 15 0aV g(Er) + ).
We therefore see that
[Egxu(t, )] Z |r]
on
T = {(t,z) : [t| < cN?, [tdig(Er) + t% 0adig(Er) + wi| < cLi}
where L; = ¢;', ifi < j, and L; = N if i > j.

The linear transformation

Ag(t,s,y) = (8, ~tVg(Er) — s9aVg(Er) + (4,0)),  (t,s,y) € RIFIFED
has determinant |det Ag| = 93g(£r) ~ 1 and maps

T = {(t,s,) : [t| < cN?, |s —t5&| < cN, |yi| < cLi}

onto T, recalling that constants are allowed to change from line to line. Using
(e.g.) Fefferman’s construction [7], there exist {(t, $x)}reic, such that

U 70+ (ter 50, 0) < on(1) > [T
KEKR KEKR

Finally, (¢, ) with

Ty = ~t,Vg(€r) — 8:0aVg(§r)
gives (3.3).
The proof of the necessity of ¢ > is similar. By rescaling and using
monotonicity in ¢ of the operator norms, we may assume that £ = 1. We cover

Q" by rectangles congruent to Q/N:--1/N:1) and cover these by smaller cubes x
congruent to QU/N»1/N)  Following the argument above,

2(d+1)
d

2(d+1)
IEG I e Z on (1) TIN T 7,
which is unbounded as N — oo for any g < Q(d%jl). ([l

4. UPPER BOUNDS ABOVE RECTANGLES

In this section, we provide details for the deduction of Theorem 1.3 from known
results and prove Theorem 1.5. By Fatou’s lemma, it suffices to prove these results
when ¢ € (0,00)%. By Lemma 2.2, it suffices to prove Theorem 1.3 under the
hypothesis that ¢ is sufficiently small.

We recall the convention that I; < --- <.
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Lemma 4.1 (Bilinear extension over rectangles). Let g be elliptic over the rectangle
Q" with parameters N sufficiently large, eg > 0 sufficiently small, and lg > 1, and
let By, By be two balls of radius 1, separated by a distance 1 and intersecting QF.

For functions f; € L*(Q"), supp f; C B; and q > Z(j_ﬁ),

1€ f1 Efszg S fill2ll f2]l2-

Proof. Since g is also elliptic over any rectangle contained in Q¢, by shrinking the
long sidelengths if needed, we may assume that [; < --- <[z = 1.

If I ~ 1, then g is elliptic in the sense of Tao—Vargas—Vega, so Lemma 4.1 is
simply the main result of [14]. In the case l; ~ -+ ~ lj_1 < lg, the result follows
from Theorem 1.4 of [3]. (The quantity dy in the statement of that theorem may
be taken to equal l1, as one can see from the discussion above the statement.)

In the case of general sidelengths, the proof is a relatively simple adaptation of
that in [14], to which we now turn. We will argue by applying the methods and
results of [14], in combination with an induction on K, which we define to be the
number of dyadic scales at which the sidelengths lie; that is,

Kf=1+#{1<j<d:l; < il

That the lemma holds in the base case, K = 1, was already established above. We
suppose that 1 < Kf < d and that our lemma has been proven up to ¢ — 1 dyadic
scales of the sidelengths.

By Lemma 2.4, we obtain the decay estimates necessary to carry out the e-
removal arguments from [15]. More precisely, |€§¢j(t,z)| < ((z,t))" %, whenever
¥; € S(RY) is a bump adapted to Bj, j = 1,2. Thus it suffices to prove that for
every € >0 and R > 1,

Esn et gy ) S BIALal ol £ € (B G =12 (41)

Here Qg denotes the cube of sidelength R centered at 0. By assumption (and
Holder’s inequality), (4.1) holds for rectangles whose sidelengths have up to K¢ — 1
dyadic scales.

In proving (4.1), we consider two cases, R < lfz and R > lf2. Suppose that
R <172 Let jo denote the least index j such that I; < $li+1. We split our
coordinates as R% = RJ0 x R4=Jo; ¢ =: (¢/ ¢"), and define

3(6) = 9(0,6") +&' - Verg(0,6") + €.
Then g is elliptic over QZ, with £ := Ljo+1s -5 Ljo+1, 7). As Kt = Kt - 1, (4.1)
holds for g, by assumption. On the other hand,
By = {(9(6),6) : £ € Q}

lies within an O(R~!)-neighborhood of

% = {(3(6).6) : €€ Q).
so we can transfer (4.1) from § to g. Indeed, let ¢ € S(R) with |¢| = 1 on [—1,1]
and ¢ supported in [—1,1]. Set Yg(t, z) := ¢(%) H‘;:l ¢(5%). Then

lEs sl 424 o, | S IWRER) (WRELF2)

I axs
( L d+1

s [[uEmes ol g arar < [ 15712065 e dr dr'
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where we have used Holder’s inequality and the induction hypothesis for the final
inequality; here

£ = [ HmTa(+(6) o). =) dn

By Young’s inequality and [3(6)—g(m)| < B, | f7ll2 S Rx(_c. <[l ;2. Inequality
(4.1) follows.

It remains to prove (4.1) in the case R > 172, to which we indicate the necessary
(minor) change to the approach of Tao in [14, Section 9]. Namely, we take R = Cl 2
as the base case in the induction on scales argument, having already established
(4.1) in this case. For R > I 2 our surface is elliptic over balls of radius R_%, and
so the wave packets in the decomposition associated to this scale obey the expected
decay estimates. The remainder of the argument proceeds precisely, line-for-line
according to the scheme from [14]. In particular, the condition that the normal
vectors of one surface patch are transverse to the cones defined by the normal
vectors to the second surface patch along the (codimension-two) intersection of the
second surface patch with a translate of the first is a direct consequence of the
smallness of D?h (i.e. the second derivative of the perturbation term) in C°.

This closes the induction on K*, completing the proof of the lemma for all values
of ¢. O

Theorem 1.3 follows from Lemma 4.1 by the bilinear-to-linear method of Tao—
Vargas—Vega; no change is needed to their arguments in the case of surfaces elliptic
over rectangles. (Later on, we will use a slightly different implementation of the
method of Tao—Vargas—Vega which is adapted to rectangles in two dimensions.)

We now turn to the proof of Theorem 1.5, beginning with bounds corresponding
directly to lower-dimensional restriction theorems.

Lemma 4.2 ([5]). Givend > 2,1 <k <d, and exponents ¢ = %p’ > q, validity
of Conjecture 1.2 in dimension k with exponents (p,q) implies that inequality (1.1)
holds for this exponent pair in dimension d, for any ¢.

Combining Lemmas 4.1 and 4.2, Conjecture 1.4 holds unconditionally for (%, %)
lying on any of the half-open line segments [(1,0), Py—;), 0 < j < d, with Py
defined as in (1.4). In particular, inequality (1.1) holds unconditionally on the

segment ¢ = 3p’ > p.

Proof of Lemma 4.2. Because the lemma was not stated as such in [5], we give
the complete proof. When g = oo, the result is a direct application of Holder’s
inequality. Now we let 0 < j < d—1, let ¢ = %p’ > p > 1, and assume that
Conjecture 1.2 is valid in dimension d—j for this exponent pair. Given f € C5°(Q"),
we take the Fourier transform of 55 in the z’ variables to obtain,

Fulyf(t.a")(&) = &, for(t,2"),

where we have split the coordinates as x = (2',2”) € R/ x R¥~J, and we are writing
her(€") = Rh(€), for h a function on R?. After making a linear transformation, which
amounts to replacing g/ (€”) with

gg/(é”) o ggl(O//) B 5// . V”gg/ (O//)7
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and applying Lemma 2.3 (which implies that the lower-dimensional extension op-
erator is elliptic), we see that the hypothesized Conjecture 1.2 applies uniformly to
07 g o
egg,,g eqQt.
Now applying Hausdorff-Young (using ¢ > 2), then Minkowski’s inequality (us-
ing ¢’ < q), then the hypothesized validity of Conjecture 1.2, and finally Holder’s

inequality (using p > ¢),

Z Z// Z//
1551 < N el iy s < V00 Felian S Wl
o L-1 51
<@ I fllp = (- 5)» || fllp-
This inequality is equivalent to (1.1) in the case § = 0 (and in the case j — 1,0 =
1). O

Lemma 4.3. Let d > 2 and 1 < j < d. If Conjecture 1.2 is valid in dimensions

d—j7—1 and d — j, with exponents ¢ = Z:gﬂpﬁ > p1 and qg = d;z‘fpg > po,

respectively, then (1.1) holds for every exponent pair (p=%,q~1) on the line segment
joining (py*,q0 ") and (p7*, ¢y ).

Combining Lemma 4.3 with Lemma 4.2 (and the remarks after the latter),
we obtain the conditional results in Theorem 1.5 for all exponents p, g satisfying
‘%Qp’ > g > 3p’ and ¢ > p, and the unconditional results for (%, %) lying in any of

the triangles with vertices (1,0), Py—j, Py—j41, 1 < j <d.

Proof of Lemma 4.3. The argument is by the obvious interpolation. By our hy-

pothesis and Lemma 4.2,
1 1

0 i oNpl a4 o
1€l Lrispa S (- Lili )™ 1=0,1.
Setting
1 ._1-6 , 6 1._1-0, 0
Pe Do + p1’ q0 qo0 + q1’

as usual, interpolation gives

1 1 (2] 2]

NE N oo o S (L -+ )7 028 ™.

Inequality (1.1) in the claimed region thus follows once we prove that the equation
v(E-L)=0(L -1 (4.2)

Py qe P @
is valid for the quantity v = vy defined implicitly by
a0 =t “ZET -
(In other words, v is the ‘0’ from (1.1).) Indeed, taking the convex combination of
the scaling equations for (po, go) and (p1,q1) yields

d—j 6 _ d—j+2 _ @ (4.3)

A A q0 q1’

while the definition of v can be rearranged as

doj _ v _dej¥2 v (4.4)
Py Py a6 a0
Subtracting (4.4) from (4.3) and rearranging yields (4.2). O

Lemma 4.4. In the region 2(%5—1) < q <4, q < p, validity of Conjecture 1.2 in
dimensions d — j — 1 and d — j implies validity of Conjecture 1.4 on the region

2(d—j+1 2(d—j .
M) < q< D) for0<j<d-2.
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This completes the proof of Theorem 1.5 in the range ¢ < 2.
Proof. By Hélder’s inequality, for ¢ > p,

1€ Lo ra < (- 1a) 77 || €Ll Lass s

so it suffices to verify the theorem on the line ¢ = p. By the Drury—-Guo dimension
reduction argument used in the proof of Lemma 4.2,

a1
€5l ora < (a--15)7 77 sup |IE] ||Lasra.
g/eQz/
This reduces matters to the case j = 0. By parabolic rescaling (which we recall
leaves Conjecture 1.4 invariant), it suffices to consider the case when Iy = 1.
Write ¢ = %, with 0 < 6 < 1. By hypothesis and Lemma 4.3, for all

O<v<é,

||g§||Lpu4>Lq <1, wherep, := (di_/izq)’.
Thus by Hoélder’s inequality,

11 d—1 1,;
P R L B S

~

Setting ¢ := (d —1)(;- — ;) and sending v /* § completes the proof. O
We now turn to the fully unconditional results.
Lemma 4.5. Theorem 1.5 holds in the region q > 4.

Proof. The proof is a direct deduction from Lemma 4.2 (applied in the case ¢ = 3p’)
via Hélder’s inequality:

IEEFa S (- la) e [ fllggy S (e laa) 7 1Q 472 | £y,
and the right hand side equals that of (1.3). O

Lemma 4.6. Theorem 1.5 holds in the region q > m

Proof. We begin with a series of reductions. Let ¢ > 3. By Lemma 4.5, we may
assume that ¢ < 4. By Lemma 4.4, we may assume that q > p. By the dimension-
reduction argument from the proof of Lemma 4.2, we may assume that d = 2. By
parabolic rescaling, we may assume that 1 = [; < ly. In summary, it remains to
prove that when d =2, 1 =11 <o, % < q <4, and ¢ > max{2p’, p}, we have

||5§||Lp_>Lq <1.

The above conditions on p, ¢ imply that p > 2. By interpolation with the (known)
inequality HEgHLpHLq <1 on the line ¢ = 3p’, ¢ > p, we may assume, in addition,
that % + % > 3. Finally, by real interpolation, it suffices to bound ||5§fQ||q for

|fal ~ xa, © a finite measure set.
We adapt the argument of Tao—Vargas—Vega [16]. Making a partial Whitney

decomposition,
@x=U U rer
N=07~7'€DxN

where Dy denotes a finitely overlapping collection of width 1, height 2V rectangles
contained in Q¢ and 7 ~ 7 if N = 0 and dist(7,7') <1 or N > 0 and dist(7,7) ~
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2NV, (Thus squares of sidelength 1 are allowed to equal one another.) Making a

partition of unity, we can write

(€ fa)? Z > Efan€ fore,

N=071~7'"€DN

where | erw| is bounded by the characteristic function of QN 7.
Lettlng 7:={(g(¢),¢) : £ € 7}, we see that the convex hulls of the 7+ 7/, with
7 ~7 €Dy, are ﬁnltely overlapping as 7,7, N vary. Thus by Lemma 6.1 of [16],

1€ falld < Z > € fanrE fans]

N=07~71'€DN

l\:\-o [N

A volume preserving affine transformation maps the {(g(§),§) : £ € 7}, 7 € Dy to
surfaces elliptic over Q. Thus in the case N = 0, we may apply Cauchy-Schwarz,
the inequality [|€;||zr—r« < 1 (which follows immediately from Theorem 1.3 via
Hélder’s inequality), and Holder’s inequality to see that

S € fanEfarel} £ Y 12071 < j01E
T~T'E€Dg TEDy

It thus remains to bound the terms with N > 0.
When N > 0 and 7 ~ 7/, rescaling Lemma 4.1 implies that

_8
l€ £ frllg < 2V llall £ 2
Thus we obtain by following the argument of [16] that

a
Z > lEfanrEfanel} S szq DN eniend
N=171~71’ EDN T~T' EDN
o0

< Z 2N N janT]s S Z 2N min{|Q],2V}271Q);
T€DN =1
here we have used the fact that |2 N 7| < min{|Q|, |7|} = min{|Q|,2V}, for each
7 € Dy.
Our proof now bifurcates into two cases, [2] > 1 and || < 1. If || < 1, the
right hand side of (4.5) is bounded by

(4.5)

1 <jaf?,
since p > 2. If |Q] > 1, the right hand side of (4.5) is bounded by
10g|Q‘ i o) .
S NGl 3T 2Nejgf gl < o),
N=log |Q]
where we have used 1% + % > 3 in the last inequality. O

5. THE APPLICATION: THE PROOF OF THEOREM 1.7

We turn now to the proof of Theorem 1.7, to which we devote the entirety of
this section. By the triangle inequality and the symmetry of changing the sign of
any &;, it suffices to bound the operator

Eaf(t,x) = / et (o) (&7 teal”.8) £ £) ge

(0,1)4
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We begin by making a dyadic decomposition,
01%= |J B, RF={&:G~27M i=1,....d},
keNd
which induces the decomposition

i(t.x B1g... B
&= & Eh(ta)im [ el pig) g
keNd R
For o a permutation in Sy, we define
Kg:={k e N : ko)Boy > - - 2> ko(ayBo(a) }
and £F = Zkelcg EE. By the triangle inequality, it suffices to bound each £5. We
will do this by first bounding the partial sums
o,ko(1) k
s =Y &

k' €K (ko(1))
K§(ko1)) = {(kp(;)i=2 € N1t ko(1)Bo) 2 ki) Bo(2) 2 - 2 ki) Boa)}-
We restate Conjecture 1.4 and Proposition 1.8, as they apply to the Eg.

Lemma 5.1. Let p,q € [1,00], and assume that the conclusions_of Conjecture 1.4
hold for this exponent pair. Let k € K. If ¢ > p and q = d;i%.ffp’, for some

0<j<dand0<0<1, then
€5 Lo S (5.1)

L
%

1

d k B (1-0)—5—2—] 2 Ko () Bo(m) (1= 52—) ’
(H 2—2kc,<m))(2 ‘o (j+1)Po(i+1) Bo(i+1) )( H 9 o(m)Po(m) Bo(m) )
m=1 m=j+2

Additionally,

J 2

HEEHLPHLG Se( H 9~ 2ham (7 =3 )(21%(”1)[3”(”1)[(1_0)(1_%)_f*ouﬂ) (p%_%)#])

m=1
d
« ( H 2ko(m)5a(m)[(1*%)*ﬁ(ﬁ*%)])27]@(7({1)56((1)5. (5.2)
m=j+2
forq =290 < p 0<f<1,e>0, andj=0,....d~ 1.

The result is true without the loss 2¢(FeG+18oG+1)~ko@Bo@) in the range p >
q > 4, but, since this loss is harmless for our application, we have left it in to
simplify the statement.

Proof. The lemma is proved by introducing coordinates, 7; = 2(2_56“))%(1’){0@),

¢ € R*, producing the function
d

g'é (n) = Z 9k (i) (Bo (1) =2)Bo (i) |ni|Ba(i)’
i=1
which is elliptic (to arbitrary order) over a rectangle {n; ~ 2 F@Bm}. In the
notation of Conjecture 1.4, this rectangle is congruent to Q°, where
(= (Q*ko(l)ﬂo(l), s 27k0(d)ﬁa(d)).
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d

Proof of Theorem 1.7. We will give the details of the proof only in the case §; # 2
for all 7. In the case that §; = 2 for some i, we may use a Galilean transformation
in those coordinates &; with 8; = 2 to see that

/
I€sllLosra S Ehlliosra, (5.3)
keNd

where the prime indicates a sum taken over those k € N¢ with k; = 1, for all 4 such
that 8; = 2. Since the difficulty in the general case lies in summing over those k;
such that §; # 2, we will give the complete details only in the case that 3; # 2 for
all 2. The change needed to handle the general case is just notational.

For most cases, we will use an interpolation lemma whose hypotheses will neces-
sitate boundedness of § as an operator from L? to L9 for (p,q) lying in a neigh-
borhood (in R?) of (p,q). Thus we begin by dispensing with those cases wherein
(p, ) lies on the boundary of the region Ty defined in (1.8).

The case ¢ = oo is elementary: £ : LP — L* for all p > 1, by Hélder’s
inequality. The case p = oo > ¢ may arise under condition (ii) or (iv), but the
claimed bounds for such pairs follow from the claimed bounds with finite p by
Hélder’s inequality, except possibly for the point (p,q) = (00,1 + %d)’ which can

arise under condition (iv). The case p < ¢ = d%fp’ is a little more involved. On
the one hand, in the notation of Lemma 5.1, j + 6 = 0, so (5.1) reads
d
k —ko(iy 2=Boi)(Fr— %
Hg’EHLP—>L%¢2P' ’S H2 ()( ())(p Q)' (54)
j=1

On the other hand, from the hypothesis 5; # 2 and the ordering 5, > - -+ > 34, the

difference (J,, + 952) — (Jp—1 + 2EL) = BL — 1 is increasing in n and never zero.

Therefore, the case % = a2 — 1 4 H% of Condition (i) of the theorem is only
o+

possible when n — J, + dg” has a strict minimum at 0, i.e. when (; < 2 for all i.

In this case, all of the exponents in (5.4) are negative, and it is elementary to sum.

We will specifically address the case (p,q) = (o0, 1+ J%) at the end of the proof,
but for now, we may assume that the bounds in Lemma 5.1 hold for exponent pairs
in a neighborhood (in R?) of (p,q). By the reductions above and real interpolation,
it suffices to prove that the bounds expressed in the theorem hold for all pairs
q > max{d%fp’f(d%ﬁ} obeying, in addition, one of the conditions (i), (ii and
p < 00), or (iv).

We now complete the argument in the case of (i). Let p < ¢ = %p’, for

some 0 < j < dand 0 <6 < 1. We start by proving bounds for the Sg’k”(l) for
exponent pairs (p, ¢q) lying in a neighborhood of some pair obeying (i); thus we do
not yet assume that (i) holds.

Since 1 — % = 0 for all 4, applying (5.1) and summing a geometric series,

ko
1ET" P pmra < D> €L 1
k' €KT (ko1))

=

Q=

< Z’ Z ! (ﬁ 2—2kg<m))2’fa<j+1)5a<j+1)[—9+Zf:j+1(1—ﬁ(i))+] ! ’

Eo(2) ko(j+1y L m=l
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where the ”’s indicate sums over 1 < kom+1) < k"ﬂ(”:)iﬁii;’” For 0 < < j, if
d 2
01+ Zi:j+1—l(1 - m)+ >0,

L
Q=

> ’l(ﬁ oot Ygo 101 [0 R ]]

ko1 L m=1

1
I

Q=

j—l—1

_ ko (j—1)Bo(i—n[—0—1=14+327 (1= 52 =) 4]

< (H22’%<mJ)2 Gl =TT ]
[ m=1

By the preceding and a simple induction argument,

<9 o1y Bo(iy[—0—5+3 % (=% )+](ﬁ—%) (5.5)

)

[r=r4 Sl PRI

if—9—l+2?:j+1il(1 5()) > 0, for all 0 < [ < 7, while if 9—1—1—22 (1=

7 2” )4+ <0 for some 0 <! < j, which we assume to be the least such I,

o,ke 5-1
A PENIE D DRI DI 18 z>H2 PG (56)

ko (2) ko(i—1)

Suppose now that condition (i) holds. We may sum the right side of (5.5) in
kg (1) whenever 6 + j > Z?Zl(l - %)Jr, and the right side of (5.6) may be summed
in k,(1) unconditionally. Condition (i) for our p,q is, after a bit of arithmetic,
equivalent to 6 + j > Z?Zl(l — %)4_ Thus it remains to consider the case

d d
0+1< > (1—%@))%0§l<j,and9+j:Z(l—%)+. (5.7)

i=j+1-1 i=1
Let jo < j = j1 and 0 < 6p,07; < 1 with jo+ 6y < 7+ 60 < j1 + 607 and
|7+ 6 — (j; + 0;)| sufficiently small, i = 0,1. Then with p} := %q, q > pi,

and inequality (5.1) holds at (p;,q). Furthermore, since j; = 7, (5.7) implies
d
2 .
biti< D, (L-g2s)s  0<U<j,
i=j1+1-1

provided |6 —#6,] is sufficiently small, and we may argue similarly for 6, when jo = j.
If jo < j, we may assume that jo =7 — 1, so

d d
2 _ 2 .
o+l < O+1+1 < > (1-525)+ = > (1=525)+ 0<I+1<j=jo+l.
i=j+1—(1+1) i=jo+1—1

Therefore by (5.5),
Hgg,ka(l) ||LPi—>L<1 ,S 2011'1%(1)7

where

d
250(1)(—91‘—,7'1‘-4-2(1—%%)(,% -4 =01
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We observe that ctg > 0 > 1. Thus for fo comparable to the characteristic function
of a measurable set €2,

I3 &5 falle S Y minf2o0kejfs, 22k )7 )
ko (1) ko)
@0 o1

P1__Po 1
< lose= = jo)

(some arithmetic is needed for the last equality). This implies the restricted weak
type inequality, and so completes the proof of the restricted-weak type inequality
in the case ¢ > p. Since the Riesz diagram lacks any vertex in the region ¢ > p, by
real interpolation, the proof is complete for g > p.

We now turn to the case ¢ = % < p. For any integer NN,
N
2 11y 2 201 _ 1
== i=1
Thus (iv) can be rewritten as
d—1
4 <p< oo, and Z;m%%%%ﬁm <d1-2)-2,
and 1—5—53(——%)]:d(1—§)—§.
This implies that (1 — 5) — %(i - 7) > 0, which, by our assumption that _[T >
- > 7%’ further implies (since p’ < ¢) that (1 — 5) - %(I% - 7) > 0, for all i.

Collecting these observations, and making similar (but simpler) mampulatlons in
the case of (ii), we may rewrite conditions (ii and p < co) and (iv) as

{(n’>qu<oo,andz?_1[< ) %(i—w <d1-2)-2,

_2

q
iv) g <p<oo,and (1—2)— 2(L —1)>0, forall i, and 32 = I,
q Bi P

Let us now assume that we are in case (ii’ ) Then by (5.2),

J
54 e e 2o 3 57 [([] 2 )

ko (2) ko(iyry —m=l1 (5.8)
% 2ka(j+1)5o(j+1)( 0(1-2)+30 4 [(1-2)— 52 %—%)]H]

o(m) P ,

where the extra factor in front accounts for the loss in 2F<G+»P+G+1) coming from
(5.2). Mimicking the inductive argument from before, if

d
O+ -2+ > (-2 - 52— Pl <0,

m=j+1-1

for any 0 <[ < j, the right hand side of (5.8) is summable in k,(1). Also as before,
if
d
SE+D0-D+ Y (1= -2 (E bl >0 0<i<
m=j+1-—1
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then we have
”ggvku(l)”Lp_wq <. 2’%(1)50(1)(—(9+j)(1—%)+2fn:1[(1—5) 7 % *)]++€) (5.9)

By inserting the definition of ¢ into (ii’) and taking e sufficiently small, the exponent
on the right hand side of (5.9) is negative, and so we may again sum in k).

We will turn in a moment to (iv’), but for now we assume only that ¢ =
2(d—j—6+1)

8 =P and
(1- %) 53(——7)>0 for all .
Taking e < (1 - 2) — 2(; — ¢), i =1,...,d, (5.2) implies
J
o / /! _ 1 1
e ) DD U | Rl
k‘g(g) ko(j+1) m=1 (5.10)

< 2160(.7'+1)50(.7‘+1)(*9(1*%)+an:j+1[(1*%)* (5 —3))

o(m) P

Again arguing as before, if

d
2 2 2 1 1 -
—(O0+D(1-2)+ ; l[(1 “ g (- Pl>0, 0<i<j, (511)
m=j —
then (5.10) implies
1E7% D o pa < 9k Bo) (—(O+1) 1= +E5 L (=D -7 Gr =D (5.12)

while if (5.11) fails for some 0 <[ < j, the right hand side of (5.10) may be summed
in k‘g(l).

Now we assume that (iv’) holds. The equation 12‘]‘1 = ‘I])',i can be rewritten, after
a little algebra, as

—(0+4)(1 +Z 1-2)-Z(F-H=o

Our analysis now breaks into three cases. If ¢ < p < 0o, we choose ¢ < pg < p < p1
with |p — p;| sufficiently small that (5.11) holds with (p;,¢) in place of (p,q). For
fa comparable to a characteristic function,

kB, 0 -2 d L 1 1
||(€ﬁf{2 ‘Lq < Z mn{2 B (1)( (6+7)(1 )+Em 1[(1 q ﬁm p )])|Q|Pl¢ } 5 ‘Q|P

which implies the restricted weak type inequality that we want.

If ¢ = p, Condition (iii) holds, so we must prove a strong type inequality. On
the line % = #, equation (5.11) continues to hold for some ¢ < p, and condition
(i) holds for ¢ > p. The strong type inequality follows by real interpolation and
estimates already proved.

Finally, if (p,q) = (oo,%d + 1), we select jo + 0y < j+ 6 < j1 + 61 and set

¢ = W. We may choose j;,0; so that [j; + 0; — (j + 0)| is sufficiently

small for ¢ = 0, 1; thus inequality (5.11) holds with 6;, ¢;, j;, 00 in place of 6, g, j, p,
for each 7 = 0,1. Therefore (5.12) holds with these same substitutions, and we may
rewrite this inequality as

. 2J
||5ﬁ 0<1)HL°°—>L‘11' < 2k“<1>ﬁ“<1>[(d_ei—ﬂi—QJd)(l—%)_Tf].
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As the exponent on the right is positive for ¢ = 0 and negative for i = 1, we see
(after some arithmetic) that for fo,, fo, comparable to characteristic functions,

e 1
5} S Q]

- rokBo [(d—0:—ji—2J4)(1— 2)—21d
(€5 for, fau) S Y min (2ol m2ii=0=5 g,
k Y
which implies the claimed restricted weak type inequality in the remaining case. [

6. THE NEGATIVE RESULT: PROOF OF PROPOSITION 1.8

We use the notation established at the beginning of the previous section. Rescal-
ing the lower bounds in Theorem 1.6 (analogously to the proof of Lemma 5.1) yields
the following lower bounds on the £ g

Lemma 6.1. Assume that ki1 > kofSe > -+ > kafq. If ¢ = %p' > p, for
some < j<dand0<0<1, then

1
P

i d
Hgg”%}))v;rm > (ﬁ 2—21%)(2k1+1ﬁj+1[(1—9)—ﬁ])( H 219'1',31'(1—[3%)) . (6.1)
i=1 i=j+2

1
T q

Additionally, if ¢ = w <p, forsome0<0<1andj=0,...,d—1,

LP—La ~

J
JESIRT,, 2 ([[27 2 @b 000D Gy
i=1

d
BT(1—2)— 2 (L _1y\ .
< ([T 270075 =00 a (ki — kaba), (6.2)
i=j+2
for some increasing & depending on p,q,d, satisfying &(0) = 1 and a(r) — oo as
T — 00.

Proof of Proposition 1.8. Let (p,q) € [1,00]?, and assume that none of the condi-
tions (i-iv) hold. We may assume that (p,q) € Ty and p # 1, ¢ # co. We may
define 7, 0, depending on (p, q), such that ¢ can be written in one of the forms given
in Lemma 6.1.

Failure of conditions (i-iv) for (p,q) € T, leads to a choice of an integer n > 1.

Namely, if ¢ > p, we choose 1 < n < d such that 1% <1+ H% If ¢ < p, we
nt 5T

choose n = d if % > ‘;—7, and otherwise choose n < d such that W >
# + d*7”. A bit of arithmetic shows that in any of these cases, n > j + 6.

Let N > f; sufficiently large and define k = (Lﬁﬂlj,, L%J, 1...,1).

We consider first the case ¢ > p. By (6.1)

1
7

J d
k —kiBi[ 2]\ oki+1Bi+11(1-0)— 53] kiBi[l— 2]y | P
BT 2 (T2 sl [T o)
=1 m=j+2

Q=

o 9 NIF 45 —(n=i=0)(5r—3)
Thus, by choosing N large, we can make this term arbitrarily large if

2J, — (n—j—0) <0,
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which, after a little algebra, is equivalent to
]% <1+

Next, we suppose ¢ < p. By (6.2)

L,l _ . 1 1 X . _2
||5ﬂ|%¥VELqN<H2 Gy ")2 2Ky (=) k1811 (140)(1-2)

kiBi[(1-2)— 2 (L —1 ~(kiv1B;
(T D)oo

i=j+2
Thus, for all n such that j+60 <n <d,

”(c:ﬂH%XV_’qu >0 NR2(gr++50)(5r—8)—(n—j— 9)(1—*)]02(]\[),

which we can make arbitrarily large, for large N, if

2Jn( —2)—(n—j—0)(1-2)<0,

q

which, after a little algebra, is equivalent to
1+Jp+d—n In d—n
q Z p’ 5

In the case where n = d, (6.3) becomes

JEREWT, , > o NEG A —h (@003

which we can make arbitrarily large, for large N, if

1+J. J,
> h

Lastly, we consider the case where conditions (i-iii) fail, but condition (iv) holds,
implying that ¢ < p, 1+‘]d = Jd , and 3; > 2 for all 4.

Let ky, = (%777%), Where M > 100max(B1, ..., Ba), and let ¢,z be a

Schwartz function supported on RFn and satisfying 0 < ¢pp,, < 1and [@pr, =
|[RFm| ~ 272MmJa Then [0 5,

> |RFm| on some dual rectangle R, of dimen-

. 2Mm 2Mm oM . %
sions 2 A1 X .- x 2 A1 x 2™ and decays rapidly away from RE .
2MmJg "

Define f(&) = ZN:1 €m0 o, with &, chosen so that the dual rect-

m
angles RE are widely separated. Then

N 1
_oMm Fl )" Art
||f||Lpz<ZQ 2MmJa| Rk > — N7,

m=1

and

15 11ne 2 (Z 2

1

2M7anq 2M7anq q
()

. . 11
where in the last line, we used % = %. Therefore, ||Es||Lr—ra 2 N~ #, which

~

goes to infinity as N — oo, since ¢ < p. Thus, &g fails to have a strong type bound.

Q=

1 N
|Rk |q|R |) ‘_ (Z 2_2Mdeq(1—;)22Mm(Jd+1))

m=1

Q=

N

)
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