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Abstract. We consider r-variation operators for the family of spherical
means, with special emphasis on Lp → Lq estimates.

1. Introduction

Given a subset E ⊂ R and a family of complex valued functions t 7→ at
defined on E, the r-variation of a = {at}t∈E is defined by

|a|Vr(E) := sup
N∈N

sup
t1<···<tN
tj∈E

(N−1∑
j=1

|atj+1 − atj |r
)1/r

for all 1 ≤ r < ∞, and replacing the `r-sum by a sup in the case r = ∞.
When E = R we simply use the notation Vr for Vr(R). A norm on the
space Vr(E) is given by ‖a‖Vr(E) := ‖a‖∞ + |a|Vr(E). Variation norms have
received considerable attention in analysis as they are used to strengthen
pointwise convergence results for families of operators {At}. Of particular
interest is Lépingle’s inequality on the r-variation of martingales for r > 2
[?] (see also [?], [?], [?], [?]) and its consequences on families of operators in
ergodic theory and harmonic analysis; see e.g. the papers [?], [?], [?], [?],
[?] which contain many other references.

In this paper we focus on local and global r-variation estimates for the
family of spherical averages A = {At}t>0, given by

Atf(x) =

∫
Sd−1

f(x− ty) dσ(y)

where dσ denotes the normalized surface measure on the unit sphere Sd−1.
By a classical result of Stein [?] (d ≥ 3) and Bourgain [?] (d = 2) the
spherical maximal function Sf(x) := supt>0 |Atf(x)| defines a bounded op-

erator on Lp(Rd) if and only if p > d
d−1 . Thus, for p in this range, we have

limt→0Atf(x) = f(x) a.e. for all f ∈ Lp(Rd). A strengthening of this result
can be obtained by considering the variation norm operator VrA given by

VrAf(x) ≡ Vr[Af ](x) := |Af(x)|Vr((0,∞));
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note that Vr[Af ](x) ≥ supt |Atf(x)−At0f(x)| for all x ∈ Rd, t0 ∈ R. In this
context, Jones, Wright and one of the authors [?] obtained an almost optimal
result, namely VrA is bounded on Lp(Rd) for all r > 2 if d

d−1 < p ≤ 2d, and
both the condition r > 2 and the p-range are sharp. In the range p > 2d, it
was shown in [?] that VrA is Lp bounded if r > p/d, and fails to be bounded
if r < p/d, but no information was known for the critical case r = p/d,
p > 2d. Here we show an endpoint result for Vp/dA in three and higher
dimensions.

Theorem 1.1. Let d ≥ 3, p > 2d. Then the operator Vp/dA is of restricted

weak type (p, p), i.e. maps Lp,1(Rd) to Lp,∞(Rd).

We conjecture that a similar endpoint result holds true in two dimensions,
but this remains open.

Our main focus will be on Lp → Lq results when p < q for local r-variation
operators, that is, when the variation is taken over a compact subinterval I of
(0,∞); without loss of generality we take I = [1, 2]. Scaling reasons quickly
reveal that one needs to consider compact intervals for Lp → Lq bounds
to hold if p < q. While this is an interesting problem in itself, it is also
motivated by a question posed by Lacey [?] concerning sparse domination
for the global VrA operator (see also [?, Problem 3.1]). See Theorem 1.7
below.

Results for the local variation operators are meant to improve on exist-
ing Lp → Lq results for the spherical local maximal function SIf(x) :=
sup1≤t≤2Atf(x), which we will now review. Schlag [?] (see also [?]) showed

that if d ≥ 2 there are Lp(Rd) → Lq(Rd) bounds if (1/p, 1/q) lies in the
interior of Qd, which denotes the quadrangle formed by the vertices

Q1 = (0, 0), Q2 = (d−1
d , d−1

d ),

Q3 = (d−1
d , 1

d), Q4 = (d(d−1)
d2+1

, d−1
d2+1

).
(1.1)

Moreover, SI fails to be bounded from Lp(Rd) to Lq(Rd) outside the
closure of Qd. Note that Q2 coincides with Q3 when d = 2, so the quadrangle
becomes a triangle in two dimensions.

The boundary segment p = q amounts to the classical results of Stein
and Bourgain for S. Lp-boundedness fails at the endpoint Q2 but Bour-
gain showed in dimensions d ≥ 3 that S is of restricted weak type at Q2,

i.e. bounded from L
d
d−1

,1 to L
d
d−1

,∞ in dimensions d ≥ 3 (and any better
Lorentz estimate fails). The restricted weak type estimate at Q2 fails in
two dimensions [?] (even though it is true for radial functions [?]). For the
remaining boundary cases Lee [?] showed that SI is of restricted weak type
at Q4, and also at Q3 in dimensions d ≥ 3. The two-dimensional restricted
weak type endpoint result at Q4 was also shown in [?], and relied on the
deep work by Tao [?] on endpoint bilinear Fourier extension bounds for the
cone. The restricted weak type inequalities imply Lp → Lq boundedness on
[Q1, Q4) and on (Q3, Q4), however on (Q2, Q3) the operator is of restricted
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strong type and no better (the necessity follows from the standard coun-
terexample; for the positive result one uses real interpolation on a vertical
line, with a constant target exponent). Incidentally, for the local operator
SI this also implies restricted strong type at Q2, which improves over the
restricted weak type of S at Q2.

Here we explore the existence of Lp(Rd)→ Lq(Rd) inequalities for

V I
r Af(x) := |Af(x)|Vr([1,2]).

In two dimensions the values of r are restricted to r > 2 (see §3) but in higher
dimensions all r ∈ [1,∞] may occur. For our sparse domination inequality
for the global Vr, the version for r > 2 is most relevant because Lépingle’s
result requires the restriction r > 2 (see [?]); indeed this necessary condition
can be shown to carry over to other results for the global Vr.

We start stating our results for d ≥ 3. We first focus on the range r >
d2+1
d(d−1) which is the reciprocal of the 1/p coordinate of the point Q4 in (1.1).

Note that this large range includes r > 2, so the following sharp Lp → Lq

results for V I
r A will yield, in particular, satisfactory results for the sparse

domination problem in dimension d ≥ 3.

Theorem 1.2. Suppose d ≥ 3 and r > d2+1
d(d−1) . Let Pd(r) be the pentagon

(Figure 1) with vertices

P (r) = (1
r ,

1
rd), Q1(r) = ( 1

rd ,
1
rd), Q2 = (d−1

d , d−1
d )

Q3 = (d−1
d , 1

d), Q4 = (d(d−1)
d2+1

, d−1
d2+1

).

Then
(i) V I

r A : Lp → Lq is bounded for all (1
p ,

1
q ) in the interior of Pd(r) and

unbounded for all (1
p ,

1
q ) /∈ Pd(r).

(ii) V I
r A : Lp → Lq is bounded for all (1

p ,
1
q ) on the half open line segment

[Q1(r), Q2), on the closed line segment [P (r), Q1(r)], on the half open line
segment [P (r), Q4), and on the open line segment (Q4, Q3).

(iii) V I
r A : Lp,1 → Lq is bounded (i.e. of restricted strong type (p, q))

if (1
p ,

1
q ) belongs to the half open line segment [Q2, Q3). V I

r A fails to be of

strong type on [Q2, Q3].
(iv) V I

r A : Lp,1 → Lq,∞ is bounded (i.e. of restricted weak type (p, q)) if
(1
p ,

1
q ) ∈ {Q3, Q4}.

For an explicit description of the various conditions at the boundary see
§3.1.

We leave open what exactly happens at the points Q3 and Q4; it is not
even known whether the local maximal function is of restricted strong type
at Q3 and whether it is any better than restricted weak type at Q4. If we
take r = ∞ we recover the known theorem for the local spherical maximal
operator. Note that both P (r) and Q1(r) tend to Q1 = (0, 0) as r →∞.
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1
p

1
q

1

1
2

P (r)

1
r

Q1(r)
1
rd

d−1
2d

Q4

d−1
d

Q2

Q3

d−1
d

1
d

Figure 1. The pentagon Pd(r) for r > d2+1
d2−d and d ≥ 3

(Theorem 1.2). The outer (dashed) quadrangle shows the re-
gion of boundedness as r →∞, i.e. for the maximal operator.
Shown with d = 4 and r = 3.

Theorem 1.2 covers an interesting consequence for a sharp strong type
estimate at the lower edge q−1 = p−1/d of the type set for the maximal
function.

Corollary 1.3. Let d ≥ 3 and let d2+1
d(d−1) < p < ∞. Then V I

r A : Lp → Lpd

is bounded if and only if r ≥ p.

When the value of r is between the reciprocal of the 1/p coordinate of Q4

and Q3, that is, d
d−1 < r ≤ d2+1

d(d−1) , we obtain the following.

Theorem 1.4. Suppose d ≥ 3 and d
d−1 < r ≤ d2+1

d(d−1) . Let Pd(r) be the

pentagon (Figure 2) with vertices

Q1(r) =
(

1
rd ,

1
rd

)
, Q2 =

(
d−1
d , d−1

d

)
, Q3 =

(
d−1
d , 1

d

)
P (r) =

(
1
r ,

d+1−r(d−1)
r(d−1)

)
, Q4(r) = (1− d+1

rd(d−1) ,
1
rd).

Then
(i) V I

r A : Lp → Lq is bounded for (1
p ,

1
q ) in the interior of Pd(r) and

unbounded for (1
p ,

1
q ) /∈ Pd(r).

(ii) V I
r A : Lp → Lq is bounded for (1

p ,
1
q ) on the half open line segment

(Q4(r), Q1(r)] and on the half open line segment [Q1(r), Q2).
(iii) V I

r A is of restricted strong type (p, q) if (1
p ,

1
q ) belongs to the half open

line segment [Q2, Q3). V I
r A fails to be of strong type on [Q2, Q3].

(iv) V I
r A is of restricted weak type (p, q) if (1

p ,
1
q ) = Q3.
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Note that for r = d2+1
d(d−1) the pentagon Pd(r) in Figure 2 degenerates to

a quadrangle, as P (r) = Q4(r) = Q4. We leave open what happens at the
closed boundary segment [Q4(r), P (r)] and the half-open boundary segment
[P (r), Q3).

1
p

1
q

1

1
2

1
2

P (r)Q1(r)

d−1
2d

Q4(r)

d−1
d

Q2

Q3

d−1
d

1
d

1
rd

Figure 2. The pentagon Pd(r) for d
d−1 < r ≤ d2+1

d2−d and

d ≥ 3 (Theorem 1.4). The outer (dashed) quadrangle is the
region of boundedness for the maximal operator. Shown with
d = 4 and r = 11

8 .

Finally, we address small values of r.

Theorem 1.5. Suppose that either d ≥ 4 and 1 ≤ r ≤ d
d−1 or d = 3 and

4
3 < r ≤ 3

2 . Let Qd(r) be the quadrangle (Figure 3) with vertices

Q1(r) =
(

1
rd ,

1
rd

)
, Q2(r) =

( r(d−1)−1
r(d−1) , r(d−1)−1

r(d−1) ),

Q3(r) = ( r(d−1)−1
r(d−1) , 1

r(d−1)), Q4(r) = (1− d+1
rd(d−1) ,

1
rd).

Then
(i) V I

r A : Lp → Lq is bounded for (1
p ,

1
q ) in the interior of Qd(r) and

unbounded for (1
p ,

1
q ) /∈ Qd(r).

(ii) V I
r A : Lp → Lq is bounded if (1

p ,
1
q ) is in the half open line segment

(Q4(r), Q1(r)] and [Q1(r), Q2(r)).
(iii) For the case r = 1, d ≥ 4, the operator V I

1 A is of restricted weak

type (d−1
d−2 , d − 1) (that is, at Q3(1)) and of restricted strong type (d−1

d−2 , q)

for d−1
d−2 ≤ q < d − 1 (that is, on [Q2(1), Q3(1))). In three dimensions,

V I
1 A : L2(R3)→ L2(R3) is bounded.

We leave open what happens at the closed boundary segments [Q2(r), Q3(r)]
for 1 < r ≤ d

d−1 and [Q3(r), Q4(r)] for 1 ≤ r ≤ d
d−1 .
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1
p

1
q

1

1
2

Q3(r)

Q2(r)

Q1(r)

d−1
2d

Q4(r)

d−1
d

d−1
d

1
d
1
rd

Figure 3. The quadrangle Qd(r) for 1 ≤ r ≤ d
d−1 and d ≥ 4

(Theorem 1.5). The outer (dashed) quadrangle is the bound-
edness region for the maximal function. Shown with d = 4
and r = 5

4 .

Figure 4. A diagram of the typeset of V I
r A in (1

p ,
1
q ,

1
r )-

space for large values of d. The green region corresponds
to Theorem 1.2 (Figure 1), the red region corresponds to
Theorem 1.4 (Figure 2), and the blue region corresponds to
Theorem 1.5 (Figure 3). The yellow region is conjectural.
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Figure 5. A diagram of the typeset of V I
r A in (1

p ,
1
q ,

1
r )-

space for d = 3. The green region corresponds to Theorem
1.2 (Figure 1), the red region corresponds to Theorem 1.4
(Figure 2), and the blue region corresponds to Theorem 1.5
(Figure 3). The yellow region is conjectural.

Note that there is a discrepancy in our results between d = 3, for which
we only obtain sharp results in the partial range 4

3 < r ≤ d
d−1 and the case

d ≥ 4, where results are obtained for all 1 ≤ r ≤ d
d−1 . The reason is because

we restrict ourselves to the traditional range 1 ≤ r ≤ ∞ for the variation
norm. The definition of Vr can be extended, with modifications, to the
range 0 < r < 1 (see for example [?]). In that context, one can formulate
conjectural results for V I

r A for 2
d−1 < r < 1 (see Figure 4) for d ≥ 4. We

remark that a positive solution to Sogge’s local smoothing conjecture [?] in
d + 1 dimensions would imply a complete result up to endpoints. Partial

results in the range r > 2(d+1)
d(d−1) can be proved using the techniques of this

paper. We shall address issues for r < 1 in a follow up paper.
Similarly, in three dimensions, the range 1 ≤ r ≤ 4/3 remains open as a

conjecture (see Figure 5). Note that here we are in the traditional range for
the Vr spaces.

In dimension 2, due to the recent full resolution of Sogge’s problem in
2 + 1 dimensions by Guth, Wang and Zhang [?], that is,

∂
1/2−ε
t A : L4 → L4(L4),

it is possible to get an almost optimal result (up to endpoints) for the vari-
ation norm estimates.
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Theorem 1.6. Let d = 2.
(i) If r > 5/2 then V I

r A : Lp → Lq is bounded if (1
p ,

1
q ) is either in the

interior of the quadrangle Q2(r) (Figure 6) formed by the vertices

P (r) = (1
r ,

1
2r ), Q1(r) = ( 1

2r ,
1
2r ),

Q2 = Q3 = (1
2 ,

1
2), Q4 = (2

5 ,
1
5)

or in the open line segment between Q2 = Q3 and Q1(r).
(ii) If 2 < r ≤ 5/2 then V I

r A : Lp → Lq is bounded if (1
p ,

1
q ) is either in

the interior of the quadrangle Q2(r) (Figure 7) formed by the vertices

Q1(r) =
(

1
2r ,

1
2r

)
, Q2 = Q3 =

(
1
2 ,

1
2),

P (r) = (1
r ,

3−r
r ), Q4(r) = (1− 3

2r ,
1
2r )

or in the open line segment between Q2 = Q3 and Q1(r).
(iii) If r < 2 then V I

r A does not map any Lp(R2) to any Lq(R2).

1
p

1
q

1
2

1
2

1
4

1

Q4

Q2 = Q3

2
5

1
5

1
2r

Q1(r)
P (r)

1
r

Figure 6. The region Q2(r) if r > 5/2 (Theorem 1.6 i). The
outer (dashed) triangle is the region of boundedness for the
maximal operator. Shown with r = 5.

Note that, as for the circular maximal function theorem, the pointsQ2 and
Q3 coincide if d = 2; therefore the pentagon (Figures 1 and 2) in Theorems
1.2 and 1.4 becomes a quadrangle for r > 2. Moreover, P (5/2) = Q4(5/2) =
Q4, so the quadrangle becomes a triangle for r = 5/2. The bounds are
subsumed in Figure 8; note that in contrast with d ≥ 3, the blue/yellow
region disappears, as d

d−1 = 2
d−1 coincide for d = 2.

It is also possible to show unboundedness for r = 2 via an argument in-
volving the Besicovitch set, which will be addressed in a forthcoming paper.

We note that an affirmative answer to endpoint versions of Sogge’s prob-
lem as formulated and conjectured in [?] would also settle strong type bounds
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on the half-open boundary segment (Q4, Q1(r)]. Unfortunately such end-
point bounds in Sogge’s problem are currently only available in dimensions
four and higher.

1
p

1
q

1
2

1
2

1
r

1
2r

2r−3
2r

3−r
r

1
4

1

Q2 = Q3

2
5

1
5

Q1(r) Q4(r)

P (r)

Figure 7. The region Q2(r) if d = 2 and 2 < r ≤ 5/2
(Theorem 1.6 ii). The outer (dashed) triangle is the region
of boundedness for the maximal operator. Shown with r =
2.2.

Figure 8. A diagram of the typeset of V I
r A in (1

p ,
1
q ,

1
r )-

space for d = 2. The green region corresponds to Figure 6
and the red region corresponds to Figure 7.
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Sparse domination. We now formulate a sparse domination result for the
global operator VrA, r > 2. Recall that a family of cubes S in Rd is called
sparse if for every Q ∈ S there is a measurable subset EQ ⊂ Q such that
|EQ| ≥ |Q|/2 and such that the sets on the family {EQ : Q ∈ S} are pairwise

disjoint. In what follows we abbreviate 〈f〉Q,s = (|Q|−1
∫
Q |f |

s)1/s.

Theorem 1.7. Assume one of the following holds:

(i) d ≥ 3, r > 2, and (1
p ,

1
q ) in the interior of Pd(r).

(ii) d = 2, r > 2 and (1
p ,

1
q ) in the interior of Q2(r).

Then there is a constant C = C(p, q) such that for each pair of compactly
supported bounded functions f1, f2 there is a sparse family of cubes S such
that ∫

Rd
VrAf1(x)f2(x) dx ≤ C

∑
Q∈S
|Q|〈f1〉Q,p〈f2〉Q,q′ , (1.2)

where 1
q + 1

q′ = 1. Furthermore, the (1/p, 1/q) range is sharp up to endpoints

in the sense that no such result can hold if (1/p, 1/q) does not lie in the
closure of Pd(r), or Q2(r), respectively.

Theorem 1.7 can be obtained as an immediate consequence of a (more
general) sparse domination result in [?], together with the Lp results in [?]
and Theorems 1.2 and 1.6; see §3.9 and §8. Sparse domination is known
to imply as a corollary a number of weighted inequalities in the context of
Muckenhoupt and reverse Hölder classes. We refer the interested reader to
[?] for the weighted consequences for VrA of Theorem 1.7.

Structure of the paper. We start gathering some well known facts about
spherical averages and function spaces in §2. In §3 we provide the examples
showing the necessary conditions for our theorems. In §4 we exploit a sin-
gle frequency analysis to deduce the claimed bounds in the interior of the
regions, as well as some restricted weak and strong type endpoints, in The-
orems 1.2, 1.4, 1.5 and 1.6. The proof of the harder off-diagonal strong type
boundary results in those theorems, and therefore Corollary 1.3, is provided
in §§5-6. In §7 we prove the restricted weak type inequality for the global
operator in Theorem 1.1. Finally, the sparse domination result is discussed
in §8.
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2. Preliminaries

It will be convenient to consider the t-parameter as a variable. To this
end, let χ ∈ C∞c (R) so that χ(t) = 1 for t in a neighborhood of [1, 2] and
supported in [1/2, 4], and define

Af(x, t) := χ(t)Atf(x). (2.1)

In view of future frequency decompositions, let β0 ∈ C∞c (R) so that β0(s) =
1 for |s| < 1/2 and β0(s) = 0 for |s| > 1. For every integer j ≥ 1, set

βj(s) = β0(2−js)− β0(21−js).

For functions g on R, and l ∈ N0, define the operators Λl by

Λ̂lg(τ) = βl(τ)ĝ(τ). (2.2)

For functions f on Rd, and j ∈ N0, define the operators Lj by

L̂jf(ξ) = βj(|ξ|)f̂(ξ), (2.3)

and let L̃j be a modification of Lj satisfying L̃jLj = Lj .

2.1. Vr and related function spaces. It will be convenient to work with the

Besov space B
1/r
r,1 . The Besov spaces Bs

p,q(R) can be defined using the dyadic

frequency decompositions {Λl}∞l=0 on the real line and we have ‖u‖Bsp,q =

(
∑∞

l=0[2ls‖Λlu‖p]q)1/q. From the Plancherel–Polya inequality we know the
embedding

B
1/r
r,1 ↪→ Vr ↪→ B1/r

r,∞, (2.4)

see [?, Ch.1]. One can also consult the paper by Bergh and Peetre [?] (who
however work with a different type of variation space when r = 1) or refer
to [?, Proposition 2.2]. Thus an inequality for the variation operator V I

r A
follows if we can control the B

1/r
r,1 norm of t 7→ Af(x, t).

Note that, by our definition, V1(R) coincides with the space of bounded
functions of bounded variations. The fundamental theorem of calculus im-
plies

‖V E
1 A‖Lp→Lq ≤ ‖∂tA‖Lp→Lq(L1(E)), (2.5)

so we shall focus on obtaining bounds for the right-hand side when studying
V E

1 A.
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2.2. Frequency decomposition in space. Given j ≥ 0, write

AtLjf = Kj,t ∗ f, (2.6)

where Lj is as in (2.3), so that K̂j,t(ξ) = σ̂(tξ)βj(|ξ|). Note that Kj,t is a
Schwartz convolution kernel and therefore we restrict our attention to the
case j ≥ 1.

An immediate computation yields the following pointwise estimates for
the convolution kernel.

Lemma 2.1. For all N ∈ N0, there exists a constant CN > 0 such that

|∂ςtKj,t(x)| .ς CN2jς
2j

(1 + 2j
∣∣|x| − t∣∣)N (2.7)

holds for all x ∈ Rd, all t > 0 and all ς ∈ N0. Consequently,

|Kj,t(x)| .N (2j |x|)−N if |x| ≥ 10, t ∈ [1/2, 4]. (2.8)

In analogy to the definition of A in (2.1), define

Ajf(x, t) := χ(t)AtLjf(x) = χ(t)Kj,t ∗ f(x).

We gather some estimates for Aj when the inequalities involve L1 or L∞

spaces.
First, from the trivial fact that ‖Atf‖∞ . ‖f‖∞ uniformly in t ∈ R, one

immediately has

‖Ajf‖L∞(L∞) . ‖f‖∞. (2.9)

Moreover, one has the following estimates for L1 functions.

Lemma 2.2. For 1 ≤ q ≤ ∞,

‖Ajf‖Lq(L1) + 2−j‖∂tAjf‖Lq(L1) . ‖f‖1.

Proof. By (2.7) one has∣∣Ajf(x, t)
∣∣+ 2−j

∣∣∂tAjf(x, t)
∣∣ . ∫

Rd
|f(y)| 2j

(1 + 2j ||x− y| − t|)N
dy (2.10)

for all N ∈ N0. Integrating in t over the support of χ one sees that, for fixed
x, ∫ 4

1/2

∣∣Ajf(x, t)
∣∣dt+ 2−j

∫ 4

1/2

∣∣∂tAjf(x, t)
∣∣dt

.
∫
Rd
|f(y)|

∫ 4

1/2

2j

(1 + 2j ||x− y| − t|)N
dt dy . ‖f‖1.

This gives the assertion for q =∞.
For q = 1, the result follows from integrating in x instead, using the decay

in (2.10) and taking into account that the integration in t is over [1/2, 4].
The remaining cases 1 < q <∞ follow from combining the above through

Young’s convolution inequality. �
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Corollary 2.3. For 1 ≤ r ≤ ∞,

‖Ajf‖L∞(Lr) . 2j(1−
1
r

)‖f‖1.

Proof. Interpolate between

‖Aj‖L∞(L∞) . 2j‖f‖1,

which follows from (2.7), and Lemma 2.2 with q =∞. �

2.3. Oscillatory integral representation. Given m ∈ R, let Sm(Rd) denote

the class of all functions a ∈ C∞(Rd) satisfying

|∂αa(ξ)| .α (1 + |ξ|)m−|α|

for all multiindex α ∈ Nd0 and all ξ ∈ Rd. Given a ∈ Sm(R), define

T±j [a, f ](x, t) =

∫
Rd
βj(|ξ|)a(t|ξ|)ei〈x,ξ〉±it|ξ|f̂(ξ) dξ. (2.11)

It is well known that the Fourier transform of the spherical measure is

σ̂(ξ) = (2π)d/2|ξ|−(d−2)/2J d−2
2

(|ξ|) = b0(|ξ|) +
∑
±
b±(|ξ|)e±i|ξ|,

where b0 ∈ C∞c (R) is supported in {|ξ| ≤ 1} and b± ∈ S−(d−1)/2(R) are
supported in {|ξ| ≥ 1/2} (c.f. [?, Chapter VIII]). Thus one can write

Ajf(x, t) = 2−j(d−1)/2(2π)−d
∑
±
T±j [a±, f ](x, t)χ(t) (2.12)

where a± ∈ S0(R). We note that the kernel estimate (2.7) could also be ob-
tained through integration by parts in (2.11) using the above representation.
It is clear from the expression of T±j that

∂t
(
T±j [a, f ](x, t)χ(t)

)
= T±j [a, f ](x, t)χ′(t) + T±j [ã, f ](x, t)χ(t)

where ã(ξ) = a′(t|ξ|)|ξ| ± i|ξ|a(ξ). This and Plancherel’s theorem yield

‖Ajf‖L2(L2) . 2−j(d−1)/2‖f‖2, ‖∂tAjf‖L2(L2) . 2−j(d−3)/2‖f‖2.
(2.13)

2.4. A Stein–Tomas estimate. In [?], in order to obtain Lp bounds for the
global VrA, the estimate∥∥∥(∫ 2

1
|eit
√
−∆Ljf |2 dt

)1/2∥∥∥
p
. 2

j(d( 1
2
− 1
p

)− 1
2

+ε)‖f‖p (2.14)

with ε > 0 is used for 2(d+1)
d−1 ≤ p < ∞ if d ≥ 3; it holds for 4 < p < ∞

if d = 2. This statement is closely related to estimates for Stein’s square-
function generated by Bochner–Riesz multipliers in [?], [?] and [?], and the
connection is given by the theorem of Kaneko and Sunouchi [?]. See also
[?] for endpoint bounds and historical remarks, and [?], [?] for recent work
on Stein’s square function. The Stein–Tomas L2 Fourier restriction theorem
together with a localization result (cf. Lemma 4.1 below) yields an analogue



14 D. BELTRAN, R. OBERLIN, L. RONCAL, A. SEEGER, B. STOVALL

of (2.14) with ε = 0 for p ≥ 2(d+1)
d−1 . The method is well known [?] but we

include the statement with a proof for completeness.

Lemma 2.4. Let 2(d+1)
d−1 ≤ q ≤ ∞. Then for all j ≥ 0,

‖Ajf‖Lq(L2) . 2−jd/q‖f‖L2 .

Proof. We use the oscillatory integral representation in (2.12) and (2.11).
We only discuss the estimate for T+

j [a, f ](x, t)χ(t) and abbreviate it with

Tjf(x, t) (the corresponding estimate for T−j is analogous). It then suffices
to show

2−j(d−1)/2‖Tjf‖Lq(L2) . 2−jd/q‖f‖2, 2(d+1)
d−1 ≤ q ≤ ∞.

Let

T̃jg(x, t) = χ(t)

∫
Rd
βj(|ξ|)a(t|ξ|)e−it|ξ|ĝ(ξ, t)ei〈x,ξ〉 dξ

and observe that in view of the support of χ we have T̃jg(·, t) = 0 for
t /∈ [1/2, 4]. By a duality argument, it suffices to show that for g ∈ Lp(L2)
the inequality∥∥∥∫ T̃jg(·, t) dt

∥∥∥
2
. 2

j( d
p
− d

2
− 1

2
)‖g‖Lp(L2), 1 ≤ p ≤ 2(d+1)

d+3 (2.15)

holds. By Plancherel’s theorem the square of the left-hand side is equal to∫
Rd

∣∣∣ ∫ χ(t)βj(|ξ|)a(t|ξ|)e−it|ξ|ĝ(ξ, t) dt
∣∣∣2 dξ

=

∫ ∞
0

∫
Sd−1

∣∣∣ ∫ χ(t)βj(r)a(tr)e−itrĝ(rθ, t) dt
∣∣∣2 dθ rd−1 dr.

We now apply the Stein–Tomas inequality for the Fourier restriction opera-
tor for the sphere (valid for 1 ≤ p ≤ 2(d+ 1)/(d+ 3)), and see that the last
expression is dominated by a constant times∫ ∞

0

∥∥∥∫ χ(t)βj(r)a(tr)e−itrr−dg(r−1·, t) dt
∥∥∥2

p
rd−1 dr

.
∫ ∞

0

∥∥∥∫ χ(t)βj(r)a(tr)e−itrg(·, t) dt
∥∥∥2

p
r

2d
p
−d−1

dr

. 2
2j( d

p
− d

2
− 1

2
)
∥∥∥(∫ ∞

0

∣∣∣ ∫ χ(t)βj(r)a(tr)e−itrg(·, t) dt
∣∣∣2 dr

)1/2∥∥∥2

p
(2.16)

where in the last inequality we have used Minkowski’s integral inequality.
Next, observe that∫ ∞

0

∣∣∣ ∫ χ(t)βj(r)a(tr)e−itrg(x, t) dt
∣∣∣2 dr

=

∫∫ ∫ ∞
0

χ(t)χ(t′)|βj(r)|2a(tr)a(t′r)ei(t
′−t)r dr g(x, t)g(x, t′) dtdt′.
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We integrate by parts in r and then estimate the absolute value of the
displayed expression by a constant times∫∫

2j

(1 + 2j |t− t′|)2
|g(x, t)g(x, t′)|dt dt′

=

∫ ∞
−∞

2j

(1 + 2j |h|)2

∫
|g(x, t)g(x, t+ h)|dtdh .

∫
|g(x, t)|2 dt.

Using this in (2.16) yields (2.15) and hence the assertion. �

2.5. Frequency decompositions in time. In order to deduce Besov space es-
timates for t 7→ Ajf(x, t), we also work with a frequency decomposition in
the t-variable. We extend the definition of Λl in (2.2) to functions of x and
t and apply that decomposition to the operators Aj in the t-variable.

It is useful to observe that dyadic frequency decompositions in the vari-
able dual to t essentially correspond in our situation to dyadic frequency
decompositions in the variables dual to x. To see this, we show that the
terms ΛlAj are mostly negligible when |j − l| ≥ 10. We write

ΛlAjf(x, t) = 2−j(d−1)/2(2π)−(d+1)
∑
±

∫
Rd
κ±j,l(y, t)f(x− y) dy

where, in view of (2.11), one has

κ±j,l(y, t) =

∫
R

∫
Rd
ei〈y,ξ〉+itτβl(τ)βj(|ξ|)

∫
χ(s) a±(sξ)eis(±|ξ|−τ) ds dξ dτ.

(2.17)

Lemma 2.5. (i) For every N ∈ N0, there exists a finite CN > 0 such that

|κ±j,l(y, t)| ≤ CN (1 + |y|+ |t|)−N min{2−jN , 2−lN}, |j − l| ≥ 10. (2.18)

(ii) Suppose 1 ≤ p, r ≤ q ≤ ∞. Then, there exists a finite CN (p, q, r) > 0
such that

‖ΛlAjf‖Lq(Lr) ≤ CN (p, q, r) min{2−jN , 2−lN}‖f‖p, |j − l| ≥ 10.

Proof. Part (i) follows from (2.17) after multiple integration by parts in
s and subsequent integration by parts in ξ, τ . Part (ii) is an immediate
consequence of (i) using Minkowski’s and Young’s convolution inequality.

�

The above lemma allows one to only focus on the spatial frequency de-

composition when looking for estimates of the type Lp → Lq(B
1/r
r,1 ) for the

operator A in most cases of interest. In particular, we get the following.

Corollary 2.6. Let s ∈ R, 1 ≤ p, q, r ≤ ∞. Then for all j ∈ N0,

‖Aj‖Lp→Lq(Bsr,1) . 2js‖Aj‖Lp→Lq(Lr) + CN2−jN
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Proof. We write ‖Ajf
∥∥
Lq(Bsr,1)

≤ I + II where

I =
∥∥∥ ∑

l≥0
|j−l|≤10

2ls
∥∥∥ΛlAjf

∥∥∥
Lr(R)

∥∥∥
Lq(Rd)

,

II =
∥∥∥ ∑

l≥0
|j−l|>10

2ls
∥∥∥ΛlAjf

∥∥∥
Lr(R)

∥∥∥
Lq(Rd)

.

Clearly
I . 2js‖Ajf‖Lq(Lr) . 2js‖Aj‖Lp→Lq(Lr)‖f‖p

and by (ii) in Lemma 2.5

II .
∑
l≥0

min{2−jN , 2−lN}‖f‖p . 2−jN‖f‖p.

Combining both estimates, the assertion follows. �

In certain endpoint estimates in §6, we use an upgraded version of Corol-
lary 2.6 in conjunction with Littlewood–Paley theory, as presented in the
next lemma.

Lemma 2.7. Let 1 ≤ r < ∞, 2 ≤ q < ∞, 1 < p < ∞ such that r, p ≤ q.
Let s ∈ R. Assume that for all {fj}j≥0 with fj ∈ Lp,∥∥∥∑

j≥0

‖Ajfj‖Lr(R)

∥∥∥
Lq(Rd)

.
(∑
j≥0

2−jsq‖fj‖qp
)1/q

(2.19)

holds. Then ∥∥Af∥∥
Lq(Bsr,1)

. ‖f‖Lp . (2.20)

Proof. Write ‖Af‖Lq(Bsr,1) ≤ I + II, where I and II are as in the proof of

Corollary 2.6 but with an additional sum in the j-parameter. Recall that

Ajf = Aj(L̃jf). Applying the assumption (2.19) in I, one obtains

I .
∥∥∥ ∞∑
j=0

2js‖Aj(L̃jf)‖Lr(R)

∥∥∥
Lq(Rd)

.
( ∞∑
j=0

‖L̃jf‖qp
) 1
q

.
∥∥∥( ∞∑

j=0

|L̃jf |q
) 1
q
∥∥∥
p
.
∥∥∥( ∞∑

j=0

|L̃jf |2
) 1

2
∥∥∥
p
. ‖f‖p

since q ≥ 2 and 1 < p ≤ q < ∞; note that the second line follows from
Minkowski’s inequality, the embedding `2 ↪→ `q and the Littlewood–Paley
inequality. For the error term II, one applies (ii) in Lemma 2.5 to obtain

II .N
∑
l≥0

∑
j≥0

2ls min{2−lN , 2−jN}‖f‖p . ‖f‖p

for N > s. Combining both estimates, (2.20) follows. �

Remark. The previous lemma also extends to q = ∞ with the obvious no-
tational modifications.
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2.6. Bourgain’s interpolation lemma. For the proof of restricted weak type
inequalities we will repeatedly apply a result of Bourgain [?] that leads to
restricted weak type inequalities in certain endpoint situations. We cite the
abstract version of this lemma given in [?, §6.2] for the Lions–Peetre real
interpolation spaces (see [?]).

Let A = (A0, A1), B = (B0, B1) be compatible Banach spaces in the sense
of interpolation theory. Let Tj : A → B be sublinear operators satisfying
for all j ∈ Z

‖Tj‖A0→B0 ≤ C02jγ0 , ‖Tj‖A1→B1 ≤ C12−jγ1 , γ0, γ1 > 0. (2.21)

This assumption and real interpolation immediately gives ‖Tj‖Aθ,ρ→Bθ,ρ =

O(1) for all 0 < ρ ≤ ∞ and all θ = γ0/(γ0 + γ1), but one also gets a weaker
conclusion for the sum of the operators.

Lemma 2.8. Suppose (2.21) holds for all j ∈ Z. Then∥∥∥∑
j

Tj

∥∥∥
Aθ,1→Bθ,∞

≤ C(γ0, γ1)C
γ1

γ0+γ1
0 C

γ0
γ0+γ1
1 .

3. Necessary conditions

In this section we modify known examples for the spherical maximal op-
erators to give some necessary conditions for Lp → Lq boundedness of the
local variation operator V I

r A. For r > d
d−1 these conditions show that

Lp → Lq boundedness does not hold in the complement of the region Pd(r)
in Theorems 1.2 and 1.4 and the complement of Q2(r) in Theorem 1.6. For
1 ≤ r ≤ d

d−1 they show that Lp → Lq boundedness does not hold in the

complement of Qd(r) defined in Theorem 1.5. They also show that V I
r is

unbounded from any Lp(R2) to any Lq(R2) if r < 2, that is, part (iii) in The-
orem 1.6. Finally, we also prove sharpness of the sparse bounds in Theorem
1.7 up to the endpoints.

3.1. Description of the edges. It will be helpful to make explicit the equa-
tions for the edges of the boundedness regions in the above theorems.

(i) Consider the case r > d2+1
d(d−1) and the region Pd(r) in Theorem 1.2. In

this case the point P (r) is on the line through (0, 0) and Q4, which is given
by
{

1
q = 1

dp

}
. The boundary lines describing Pd(r) are

P (r)Q1(r) =
{

1
q = 1

dr

}
, Q1(r)Q2 =

{
1
q = 1

p

}
, Q2Q3 =

{
1
p = d−1

d

}
,

Q3Q4 =
{

1
q = d+1

d−1
1
p − 1

}
, Q4P (r) =

{
1
q = 1

dp

}
.

If d = 2, the points Q2 and Q3 coincide, and the lines Q1(r)Q2, Q3Q4,

Q4P (r) and P (r)Q1(r) describe the quadrangle Q2(r) in Theorem 1.6, (i).

(ii) For the case d
d−1 < r ≤ d2+1

d(d−1) the point P (r) moves to the line

connecting Q3 and Q4 and only the part between P (r) and Q3 will be part

of the boundary. Note that for r = d2+1
d(d−1) the points P (r) and Q4 coincide
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so that the pentagon degenerates to a quadrangle. As r → d
d−1 the point

P (r) moves to Q3. The boundary lines of Pd(r) in Theorem 1.4 are given
in this case by

Q1(r)Q2 =
{

1
q = 1

p

}
, Q2Q3 =

{
1
p = d−1

d

}
,

Q3P (r) =
{

1
q = d+1

d−1 ·
1
p − 1

}
, P (r)Q4(r) =

{
1
q = 1

p + 2
r(d−1) − 1

}
,

Q4(r)Q1(r) =
{

1
q = 1

dr

}
.

It is convenient to note, in view of §4, that the equation 1
q = 1

p + 2
r(d−1) − 1

is equivalent to 1
r = d−1

2

(
1
q + 1

p′

)
.

Again, if d = 2, the points Q2 and Q3 coincide, and the lines Q1(r)Q2,

Q3P (r), P (r)Q4(r) and Q4(r)(r)Q1(r) describe the quadrangle Q2(r) in
Theorem 1.6, (ii).

(iii) In the case 1 ≤ r < d
d−1 we now have a quadrangle Qd(r) in Theorem

1.5, whose boundary lines are

Q1(r)Q2(r) =
{

1
p = 1

q

}
, Q2(r)Q3(r) =

{
1
p = 1− 1

r(d−1)

}
,

Q3(r)Q4(r) =
{

1
q = 1

p + 2
r(d−1) − 1

}
, Q4(r)Q1(r) =

{
1
q = 1

dr

}
.

We next list our necessary conditions for bounds on V I
r A. We remark

that the sharpness in the conditions §§3.2 – 3.5 corresponds to the necessary
conditions for the spherical maximal function SI .

3.2. The condition p ≤ q. This is the standard necessary condition for trans-

lation operators mapping Lp(Rd) to Lq(Rd), see [?].

3.3. The condition p > d
d−1 . This is (a variant of) Stein’s example for spher-

ical maximal functions [?]. Let B be the ball of radius 1/10 centered at the

origin and let f(y) = 1B(y)|y|1−d(log |y|)−1(log log |y|)−1. Then f ∈ L
d
d−1

,q

for all q > 1, but for 1 < |x| < 2 and t(x) = |x| we have At(x)f(x) =∞.

3.4. The condition d/q ≥ 1/p. For the condition d/q ≥ 1/p we just take the
standard example for the spherical averages [?], namely consider a fixed shell

Sj,0 (as in (3.3) below) and gj = 1Sj,0 so that ‖gj‖p ≤ 2−j/p. For |x| ≤ 2−j−2

we have A1gj(x) ≥ c > 0 and evaluating the Lq norm over {x : |x| ≤ 2−j−2}
we get ‖V I

r Agj‖q ≥ 2−jd/q and obtain the necessity of d/q ≥ 1/p.

3.5. The condition 1
q ≥

d+1
(d−1)p − 1. This is the standard Knapp example

in [?]. Given 0 < δ � 1, one tests the maximal operator on fδ being the
characteristic function of {y : |y′| ≤ δ, |yd| ≤ δ2} and evaluates Axdfδ(x) for
|x′| ≤ δ and 1 < xd < 2.

3.6. The condition 1
p ≤ 1 − 1

r(d−1) . In view of §3.3 this example is only

relevant for r < d
d−1 . For large j define

cj,n = −n2−j , n = 1, . . . , N (3.1)
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where N = 2j−2. Let Bj,n be the ball of radius 2−j−4 centered at cj,ned.

Let fj(x) =
∑N

n=1(−1)n1Bj,n(x), so that

‖fj‖p . N1/p2−jd/p.

Consider

R = {(x′, xd) : |x′| ≤ (4d)−1, 1 ≤ xd ≤ 3/2}. (3.2)

Note that for x ∈ R we have |x − cj,ned| ∈ [1, 2]; indeed, |x − cj,ned| ≥
|xd − cj,n| ≥ 1 and |x− cj,ned| ≤ (|xd − cj,n|2 + (4d)−2)1/2 ≤ 2.

For x ∈ R pick tn(x) = |x − cj,ned| and observe that there is a constant

a > 0 such that At2ν(x)fj(x) ≥ a2−j(d−1) and At2ν−1(x)fj(x) ≤ −a2−j(d−1) ,
and thus

|At2ν(x)fj(x)−At2ν−1(x)fj(x)| ≥ 2a2−j(d−1).

Hence, for any r we get V I
r Af(x) & N1/r2−j(d−1) for x ∈ R and thus for

any q > 0

‖V I
r Afj‖q
‖fj‖p

& N
1
r
− 1
p 2
−j(d−1− d

p
)

Since N = 2j−2 the assumption of Lp → Lq boundedness of V I
r A implies

1
r ≤

d−1
p′ or equivalently 1

p ≤ 1− 1
r(d−1) .

3.7. The condition 1
q ≥

1
p + 2

(d−1)r−1, i.e. d−1
2 (1

q + 1
p′ ) ≥

1
r . This is a variant

of the example in §3.5. We let cj,n be as in (3.1) and Pj,n = {y : |y′| ≤
2−j/2−2, |yd − cj,n| ≤ 2−j−4}. Let N ≤ 2j−2. Let fj =

∑N
n=1(−1)n1Pj,n(x).

Then ‖fj‖p . N1/p2
−j d+1

2p . Let Ω = {x : |x′| ≤ 2−j/2−2, 1 ≤ xd ≤ 3/2}
so that |Ω| ≈ 2−j(d−1)/2. Let tn(x) = |xd − cj,n| ∈ [1, 2]. Then for x ∈
Ω, At2ν(x)fj(x) ≥ a2−j(d−1)/2 and At2ν−1(x)fj(x) ≤ −a2−j(d−1)/2 for some

constant a > 0. Hence V I
r Afj(x) & N1/r2−j

d−1
2 and thus ‖V I

r Afj‖q &
N1/r2

−j d−1
2

(1+ 1
q

)
. Consequently with N = 2j−2

‖V I
r Afj‖q
‖fj‖p

& N
1
r
− 1
p 2
−j d−1

2
(1+ 1

q
)+j d+1

2p & 2
j( 1
r
− d−1

2
( 1
q

+ 1
p′ )).

Hence the condition d−1
2 (1

q + 1
p′ ) ≥

1
r is necessary for V I

r A : Lp → Lq

to be bounded. Moreover, as p ≤ q by §3.2, this also implies that no
Lp(R2)→ Lq(R2) bounds hold for r < 2.

3.8. The condition d/q ≥ 1/r. Consider the shells

Sj,n =
{
y :
∣∣|y| − 1− n2j

∣∣ ≤ 2−j−2
}
. (3.3)

We set fj =
∑N

n=1(−1)n1Sj,n , with N = 2j−2. Then clearly ‖fj‖p . 1
uniformly in j.

For |x| ≤ 2−j−5 let tn(x) = 1 + n2−j ∈ [1, 2]. Then At2ν(x)fj(x) ≥ a and

At2ν−1(x)fj(x) ≤ −a for some a independent of j. Hence V I
r f(x) & N1/r ≈



20 D. BELTRAN, R. OBERLIN, L. RONCAL, A. SEEGER, B. STOVALL

2j/r for |x| ≤ 2−j and thus ‖V I
r fj‖q & 2

j( 1
r
− d
q

)
. This implies the necessity

of the condition 1/r ≤ d/q.

Remark. An alternative (more complicated) example for the condition d/q ≥
1/r is in [?, §8].

3.9. Sharpness of the sparse bounds. The sparse domination result in The-
orem 1.7 is sharp, and this is immediate from the examples just described
in this section. The argument, shown by Lacey in [?, Section 5] for the
spherical maximal function, can be extended in our context and even more
general ones [?, Proposition 7.2].

We exemplify this considering the example in §3.6, with the choice N =
2j−2. With fj as in this example we have |fj | = 1U where U is the union of
the balls Bj,n which is essentially a 2−j-neighborhood of the xd-axis segment
[−1/4, 0]. VrAfj is evaluated at R as in (3.2). Then for large j we have

〈VrAfj ,1R〉 =

∫
Rd
VrAf(x)1R(x) dx & 2j(

1
r
−d+1).

On the other hand, suppose that p < q and the sparse bound∫
Rd
VrAfj(x)1R(x) dx ≤ C0 sup

S:sparse
ΛS
p,q′(f,1R)

holds for some positive C0, with ΛS
p,q′(f, g) =

∑
Q∈S |Q|〈fj〉Q,p〈1R〉Q,q′ . By

the definition of supremum there is a sparse collection S0 such that∫
Rd
VrAfj(x)1R(x) dx ≤ 2C0

∑
Q∈S0

|Q|〈fj〉Q,p〈1R〉Q,q′ .

It is crucial in the example that

dist(supp(fj), R) ≥ 1 (3.4)

which implies that all cubes contributing to the sum have side length at
least 1. Moreover, for each l ≥ 0 there are only O(1) cubes of sidelength 2l

contributing. For each such term we can estimate

|Q|〈fj〉Q,p〈1R〉Q,q′ . |Q|
1
q
− 1
p 2
−j d−1

p

and by summing over all terms (taking advantage of p < q) we obtain

2j(
1
r
−d+1) . 〈VrAfj ,1R〉 =

∫
Rd
VrAfj(x)1R(x) dx . C02

−j d−1
p

and letting j → ∞ we obtain the same necessary condition as in §3.6, i.e.
1
p ≤ 1− 1

r(d−1) .

The remaining examples in §§3.3–3.8 yield similar necessary conditions
for sparse bounds, and this is proved by essentially the same idea, always
taking advantage of a support-separation property analogous to (3.4). We
leave the details to the reader.
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4. Lp → Lq(Lr) estimates for Aj
In this section we prove Lp → Lq(Lr) bounds for the dyadic frequency

localized operators Aj in the closure of the regions Pd(r) and Qd(r) fea-
turing in Theorems 1.2, 1.4, 1.5 and 1.6. This will lead to the proofs for
Lp → Lq bounds for V I

r A if (1
p ,

1
q ) belongs to the interior of Pd(r) and

Qd(r) respectively, as well as several restricted weak-type results through
Bourgain’s interpolation trick.

4.1. Localization. The following observation relies on the localization prop-
erty (2.6) of the kernel Kj,t.

Lemma 4.1. (i) For p0 ≤ p1 ≤ q1 ≤ q0, 1 ≤ r ≤ ∞, and every N ∈ N,

‖Aj‖Lp1→Lq1 (Lr) . ‖Aj‖Lp0→Lq0 (Lr) + CN2−jN .

(ii) For r0 ≤ r1, 1 ≤ p ≤ q ≤ ∞,

‖Aj‖Lp→Lq(Lr0 ) . ‖Aj‖Lp→Lq(Lr1 ).

Proof. Assume that ‖Aj‖Lp0→Lq0 (Lr) < ∞. Let f ∈ Lp1 . For z ∈ Zd let

Qz =
∏d
i=1[zi, zi + 1). Let Q∗z be a cube centered at z with side-length 20d.

Write f =
∑

z fz with fz = f1Qz and estimate

‖Ajf‖Lq1 (Lr) ≤
∥∥∥∑

z

1Q∗zAjfz
∥∥∥
Lq1 (Lr)

+
∥∥∥∑

z

1Rd\Q∗zAjfz
∥∥∥
Lq1 (Lr)

= I + II.

Since the Q∗z have bounded overlap, by Hölder’s inequality for q1 ≤ q0,

I .
(∑

z

‖1Q∗zAjfz‖
q1
Lq1 (Lr)

)1/q1
.
(∑

z

‖Ajfz‖q1Lq0 (Lr)

)1/q1
.

Applying the bound for the operator Aj ,(∑
z

‖Ajfz‖q1Lq0 (Lr)

)1/q1
. ‖Aj‖Lp0→Lq0 (Lr)

(∑
z

‖fz‖q1Lp0
)1/q1

and, since p0 ≤ p1 ≤ q1, we also have(∑
z

‖fz‖q1Lp0
)1/q1

.
(∑

z

‖fz‖q1Lp1
)1/q1

.
(∑

z

‖fz‖p1Lp1
)1/p1

. ‖f‖p1 .

Moreover, by (2.8) with N > d,

II ≤
(∫ [ ∫

|y−x|≥1
(2j |x− y|)−N |f(y)|dy

]q1
dx
)1/q1

.N 2−jN‖f‖p1 .

Combining the two estimates we obtain

‖Ajf‖Lq1 (Lr) .
(
‖Aj‖Lp0→Lq0 (Lr) + CN2−jN

)
‖f‖p1 ,

which is the assertion in part (i).
Part (ii) is immediate and simply follows from Hölder’s inequality in the

t-variable. �
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1
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1
q

q = p

11
p0

1
q0

1/ρmin(q)1/ρmax(q)

1
q

Figure 9. Interpolation and localization lemmas. If
‖Aj‖Lp0→Lq0 (Lp0 ) . 2−jd/q0 , then ‖Aj‖Lp→Lq(Lp) . 2−jd/q

in the blue triangle and ‖Aj‖Lp→Lq(Lρmax(q)) . 2−jd/q in the

red triangle.

4.2. Interpolation. Lemma 2.4 can be extended to a larger range of expo-
nents by interpolation with (2.9) and Lemma 2.2 and by the localization
property in Lemma 4.1. We state this in more generality; see Figure 9.

Lemma 4.2. Let p0 and q0 such that 1 ≤ p0 ≤ q0 ≤ ∞. Assume that

sup
j≥0

2jd/q0‖Aj‖Lp0→Lq0 (Lp0 ) ≤ C <∞. (4.1)

Let q0 ≤ q ≤ ∞ and define ρmin(q) and ρmax(q) by

1− 1

ρmin(q)
=
q0

q

(
1− 1

p0

)
,

1

ρmax(q)
=
q0

q

1

p0
. (4.2)

Assume that ρmin(q) ≤ p ≤ q and 0 < r ≤ min{p, ρmax(q)}. Then

sup
j≥0

2jd/q‖Aj‖Lp→Lq(Lr) <∞.

Proof. Note that ρmin(q) ≤ ρmax(q) when q ≥ q0, with strict inequality when
q > q0, and ρmin(q0) = ρmax(q0) = p0. Assume q > q0 and let ϑ = 1− q0/q.
Note that (1 − ϑ)/p0 = 1/ρmax(q) and (1 − ϑ)/p0 + ϑ = 1/ρmin(q). We
interpolate (4.1) with the inequality

sup
j≥0
‖Aj‖Lp1→L∞(Lp1 ) <∞, 1 ≤ p1 ≤ ∞

for the choices p1 = 1 and p1 = ∞ (by Lemma 2.2 and (2.9)) and obtain
the Lp → Lq(Lp) inequality for p = ρmin(q) and p = ρmax(q). A further
interpolation gives

sup
j≥0
‖Aj‖Lp→Lq(Lp) .

(
1 + sup

j≥0
‖Aj‖Lp0→Lq0 (Lp0 )

)
, ρmin(q) ≤ p ≤ ρmax(q).
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1
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d−1
2(d+1)
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d−1
2d

Figure 10. Regions for Lp → Lq(Lr) bounds for the single
scale Aj for 0 < r ≤ 1. As r increases the regions shrink due

to the constraints r ≤ p or r ≤ q(d−1)
d+1 .

We now combine this with Lemma 4.1 and see that the Lp → Lq(Lr) es-
timates hold when ρmin(q) ≤ p ≤ ρmax(q) and r ≤ p and moreover when
ρmin(q) ≤ r ≤ ρmax(q) and r ≤ p ≤ q. �

4.3. Bounds for Aj. The previous lemma and the estimates in §2 yield the
following bounds; see Figure 10 for the regions.

Proposition 4.3. Let d ≥ 2.

(A) Let 1 ≤ p ≤ 2, p ≤ q ≤ p′ and 0 < r ≤ p. Then

‖Ajf‖Lq(Lr) . 2−j(d−1)/p′‖f‖Lp .

(B) Let 2 ≤ p ≤ q ≤ 2(d+1)
d−1 . Let 0 < r ≤ 2. Then

‖Ajf‖Lq(Lr) . 2
−j d−1

2
( 1
q

+ 1
2

)‖f‖Lp .

(C) Let 1 ≤ p ≤ 2, d−1
d+1

1
p′ ≤

1
q ≤

1
p′ and 0 < r ≤ p. Then

‖Ajf‖Lq(Lr) . 2
−j d−1

2
( 1
q

+ 1
p′ )‖f‖Lp .

(D) Let 2(d+1)
d−1 ≤ q ≤ ∞, d−1

d+1
1
p ≤

1
q ≤

1
p and 0 < r ≤ q(d−1)

d+1 . Then

‖Ajf‖Lq(Lr) . 2−jd/q‖f‖Lp .
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(E) Let 2(d+1)
d−1 ≤ q ≤ ∞, 1

q ≤
d−1
d+1

1
p , 1

q ≤
1
p ≤ 1 − d+1

d−1
1
q , and 0 < r ≤ p.

Then
‖Ajf‖Lq(Lr) . 2−jd/q‖f‖Lp .

Proof. The bounds in (A) for r = p follow from interpolation of Lemma 2.2
and the L2-estimate (2.13), whilst the remaining values of 0 < r < p follow
from (ii) in Lemma 4.1.

The bounds in (D) and (E) are an application of Lemma 4.2 with p0 = 2,

q0 = 2(d+1)
d−1 , which is the estimate in Lemma 2.4.

The bounds in (C) follow from interpolation of those in (A) if q = p′ and
those in (E) if 1

q = 1
p′
d−1
d+1 , 1 ≤ p ≤ 2.

Finally, the bounds in (B) follow from interpolation of the L2 estimate

(2.13) with the Lp → Lp(L2) estimate in (D) for p = 2(d+1)
d−1 , and a further

interpolation of those with the estimates in (C) for p = 2. �

The above bounds on (A), (C) and (E) are sharp. However, the bounds
in (B) and the r-range in (D) can be improved; for example, if information
on the local smoothing phenomenon for the wave equation is known. Recall
that these estimates, first noted by Sogge in [?], are of the type∥∥∥(∫ 2

1
|eit
√
−∆Ljf |p dt

)1/p∥∥∥
Lp
. 2j(s̄p−σ)‖f‖Lp (4.3)

for some σ > 0 if 2 < p <∞, where s̄p := (d− 1)
(

1
2 −

1
p

)
. It is conjectured

that (4.3) holds for all σ < σp, where

σp :=

{
1/p if 2d

d−1 ≤ p <∞,
s̄p if 2 ≤ p ≤ 2d

d−1 .

This conjecture is strongest at p = 2d
d−1 . After contributions by many, it

has recently been solved by Guth, Wang and Zhang [?] for d = 2, and is

known to hold for all p ≥ 2(d+1)
d−1 if d ≥ 3 by the sharp decoupling inequalities

of Bourgain and Demeter [?]. It is also expected that endpoint regularity
results with σ = 1/p should hold if p > 2d/(d − 1); see [?] for results in
this direction if d ≥ 4. The validity of the local smoothing conjecture would
imply the following bounds on spherical averages on the region (B). We
remark that these improved bounds are only relevant for our variational
bounds if d = 2, 3; for d ≥ 4 the bounds in Proposition 4.3 will suffice (see
the discussion after Theorem 1.5 in the Introduction).

Proposition 4.4. Let d ≥ 2. Assume that the local smoothing conjecture
holds, that is, (4.3) holds at p = 2d

d−1 for all σ < 1/p.

(B1) If d−1
d+1

1
p′ ≤

1
q ≤

1
p and 2 < q ≤ 2d

d−1 , 2 < p ≤ 2d
d−1 and 0 < r ≤ p,

then

‖Ajf‖Lq(Lr) . 2
−j d−1

2
( 1
q

+ 1
p′ )+jε‖f‖Lp

for all ε > 0.
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(B2) If 1
q ≤ min{d−1

d+1
1
p′ ,

1
p} and 2d

d−1 ≤ q ≤
2(d+1)
d−1 and 0 < r ≤ p, then

‖Ajf‖Lq(Lr) . 2−jd/q+jε‖f‖Lp

for all ε > 0.

In particular, the above estimates hold for d = 2.

Proof. By the oscillatory integral representation in (2.12) and (2.11), the
estimate (4.3) implies

‖Ajf‖Lp(Lp) . 2−j
d−1
2

+jε‖f‖Lp (4.4)

for p = 2d
d−1 . Interpolation of (4.4) and Lemma 2.4 yields

‖Ajf‖Lq(Lp) . 2−jd/q+jε‖f‖Lp (4.5)

for 1
q = d−1

d+1
1
p′ and 2 < p ≤ 2d

d−1 ≤ q < 2(d+1)
d−1 . Moreover, interpolation of

(4.4) and the L2-estimate (2.13) yields

‖Aj‖Lp(Lp) . 2−j
d−1
2

+jε‖f‖Lp (4.6)

for 2 < p ≤ 2d
d−1 . The region (B1) then follows from interpolating (4.5) and

(4.6).
For the region (B2), interpolate (4.4) and (2.9) to obtain

‖Ajf‖Lq(Lq) . 2−jd/q+jε‖f‖Lq (4.7)

for all 2d
d−1 ≤ q ≤ ∞. A further interpolation of (4.7) with (4.5) for 2d

d−1 ≤
q ≤ 2(d+1)

d−1 yields the estimates in (B2).
The assertion for d = 2 follows since the local smoothing assumption was

established in [?]. �

The range of r in the estimates in (D) can also be improved to 0 < r ≤ p
using the known local smoothing estimates at p = 2(d+1)

d−1 for all σ < 1/p. For
our variational problem, this only becomes relevant if d = 2, as otherwise
the results in Proposition 4.3 will suffice. We note that the use of such local
smoothing estimates induces an ε-loss with respect to (D) in Proposition
4.3, although this will have no consequences on our proof in d = 2. The

ε-loss in the forthcoming proposition can be removed if p > 2(d−1)
d−3 when

d ≥ 4 by the currently known sharp regularity estimates in [?].

Proposition 4.5 (Improved bounds in (D)). Let d ≥ 2. Let 2(d+1)
d−1 ≤ q ≤

∞, d−1
d+1

1
p ≤

1
q ≤

1
p and r ≤ p. Then

‖Ajf‖Lq(Lr) . 2−j(d/q−ε)‖f‖p

for all ε > 0.
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Proof. By (2.12), the estimates (4.3) for p ≥ 2(d+1)
d−1 imply that, given any

ε > 0,

‖Ajf‖Lp(Lp) . 2−j(d/q−ε)‖f‖Lq

holds for all 2(d+1)
d−1 ≤ q ≤ ∞. It then suffices to interpolate this with the

estimates in Proposition 4.3, (D), when q = p(d+1)
d−1 and r = p. �

4.4. Bounds for V I
r Aj. Let 1 ≤ r ≤ ∞. By the embedding (2.4) and Corol-

lary 2.6, VrA maps Lp(Rd) to Lq(Rd) if there exists an ε > 0 such that

‖Ajf‖Lq(Lr) . 2−j(
1
r

+ε)‖f‖Lp , (4.8)

for all f ∈ Lp. This will suffice to show all the bounds in the interiors of
Pd(r),Qd(r) claimed in Theorems 1.2, 1.4, 1.5 and 1.6.

We start with the case d ≥ 3. We will only have to identify in each region
A−E of Proposition 4.3 the conditions under which (4.8) holds and to relate
this to the corresponding statements in the theorems in the introduction.

Proposition 4.6. Let d ≥ 3. The inequality (4.8) holds for some ε > 0
under the following conditions on 1 ≤ p, q ≤ ∞, 0 < r ≤ ∞:

(A’) 1 ≤ p ≤ 2, p ≤ q ≤ p′, and
◦ d

d−1 < r ≤ p; or

◦ 2
d−1 < r ≤ d

d−1 and 1
p < 1− 1

(d−1)r .

(B’) 2 ≤ p ≤ q ≤ 2(d+1)
d−1 and

◦ 2(d+1)
d(d−1) < r ≤ 2; or

◦ 2
d−1 < r ≤ 2(d+1)

d(d−1) and 1
q >

2
(d−1)r −

1
2 .

(C’) 1 ≤ p ≤ 2, d−1
d+1

1
p′ ≤

1
q ≤

1
p′ , and

◦ d2+1
d(d−1) < r ≤ p and 1

q >
d+1
d−1

1
p − 1, 1

p <
d−1
d ; or

◦ d
d−1 < r ≤ min{ d2+1

d(d−1) , p} and 1
q >

d+1
d−1

1
p−1, 1

q >
1
p + 2

r(d−1)−1;
or
◦ 2

d−1 < r ≤ d
d−1 and 1

q >
1
p + 2

r(d−1) − 1.

(D’) 2(d+1)
d−1 ≤ q ≤ ∞, d−1

d+1
1
p ≤

1
q ≤

1
p and 1

q >
1
dr for 2(d+1)

d(d−1) < r ≤ q(d−1)
d+1 .

(E’) 2(d+1)
d−1 ≤ q ≤ ∞, 1

q ≤
d−1
d+1

1
p , 1

q ≤
1
p ≤ 1 − d+1

d−1
1
q and 1

q >
1
dr for

2(d+1)
d(d−1) < r ≤ p.

Proof. It suffices to check that the exponents appearing in the inequalities
A − E in Proposition 4.3 are strictly greater than 1/r under the claimed
conditions.

(A’) The exponent in (A), Proposition 4.3, is d−1
p′ . Note that d−1

p′ > 1
r is

satisfied if d
d−1 < r ≤ p. Moreover, it also holds if 1

p <
(d−1)r−1

(d−1)r and

r ≤ d
d−1 . The additional constraint r > 2

d−1 follows since p ≥ 2 in (A).
Note this requires d ≥ 3.



VARIATION BOUNDS FOR SPHERICAL AVERAGES 27

(B’) The exponent in (B), Proposition 4.3, is d−1
2 (1

q + 1
2). Note that d−1

2 (1
q +

1
2) > 1

r is satisfied if 2(d+1)
d(d−1) < r ≤ 2, as q ≤ 2(d+1)

d−1 . Moreover, it also

holds if 1
q > 2

(d−1)r −
1
2 and r ≤ 2(d+1)

d(d−1) . The additional constraint

r > 2
d−1 follows since q ≥ 2 in (B). Note this requires d ≥ 3.

(C’) The exponent in (C), Proposition 4.3, is d−1
2 (1

q+ 1
p′ ). Note that d−1

2 (1
q+

1
p′ ) >

1
r is satisfied if d2+1

d(d−1) < r ≤ p, as 1
q ≥

d−1
d+1

1
p′ . The additional

constraint 1
q >

d+1
d−1

1
p − 1 follows from r ≤ p. Note that this and q ≥ p′,

also yield the additional constraint 1
p <

d−1
d .

For the remaining values r ≤ d2+1
d(d−1) , it simply holds by the assump-

tion 1
q >

1
p + 2

r(d−1) − 1. Note that r ≤ p is automatically satisfied

if r ≤ d
d−1 . The lower bound r > 2

d−1 follows from the assumption
1
q >

1
p + 2

r(d−1) − 1 with q ≥ p′ and p ≤ 2. This yields 2
d−1 < r ≤ p ≤ 2,

which requires d ≥ 3.
(D’) The exponent in (D), Proposition 4.3, is d

q . Note that d
q >

1
r is trivially

satisfied if 1
q > 1

dr . The lower bound r > 2(d+1)
d(d−1) , follows from q ≤

2(d+1)
d−1 . Note that when combined with r ≤ q(d−1)

d+1 requires d ≥ 3.

(E’) The exponent in (E), Proposition 4.3, is d
q . Note that d

q >
1
r is trivially

satisfied if 1
q >

1
dr . The constraint r > 2(d+1)

d(d−1) follows from q ≥ 2(d+1)
d−1 .

Note the above constraints combined yield the additional condition
1
d ≤

r
q ≤

d−1
d+1 , which requires d ≥ 3. �

We next turn to the case d = 2. As observed in the proof of the previous
proposition, the bounds in Proposition 4.3 do not yield any bound of the
type (4.8) for d = 2. We use instead the upgraded bounds from Propositions
4.4 and 4.5.

Proposition 4.7. Let d = 2. The inequality (4.8) holds for some ε > 0
under the following conditions on 1 ≤ p, q ≤ ∞, 0 < r ≤ ∞:

(B1’) 1
3p′ ≤

1
q ≤

1
p and 2 < q ≤ 4, 2 < p ≤ 4, and

◦ 5/2 < r ≤ p; or
◦ 2 < r ≤ min{5/2, p} and 1

q >
1
p + 2

r − 1.

(B2’) 1
q ≤ min{ 1

3p′ ,
1
p}, 4 ≤ q ≤ 6 and 1

q >
1
2r for 2 < r ≤ p.

(D’) 6 ≤ q ≤ ∞, 1
3p ≤

1
q ≤

1
p and 1

q >
1
2r for 3 < r ≤ p.

Proof. As in Proposition 4.6, it suffices to check that the exponents appear-
ing in the inequalities B1, B2 in Proposition 4.4 and in Proposition 4.5 are
strictly greater than 1/r under the claimed conditions.

(B1’) The exponent in (B1’), Proposition 4.4 is 1
2(1
q + 1

p′ ) − ε. Choosing

ε > 0 small enough, 1
2(1
q + 1

p′ ) − ε > 1
r is satisfied using q ≤ 3p′

and 5/2 < r ≤ p. If r ≤ min{5/2, p}, the required condition follows
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simply by assumption choosing ε > 0 to be small enough. Note that
r > 2 follows from the assumptions 1

2(1
q + 1

p′ ) >
1
r and p ≤ q.

(B2’) The exponent in (B2’), Proposition 4.4 is 2/q − ε. Choosing ε > 0
small enough, 2/q − ε > 1

r is trivially satisfied by the assumption
1
q >

1
2r . The lower bound r > 2 follows from the assumptions 1

q >
1
2r

and q ≥ 4.
(D’) The exponent in (D’), Proposition 4.5 is 2/q − ε. Choosing ε > 0

small enough, 2/q − ε > 1
r is trivially satisfied by the assumption

1
q >

1
2r . Note that the lower bound r > 3 follows combining the

assumptions 1
q >

1
2r and q ≥ 6. �

Combining Propositions 4.6 and 4.7 with the observations in §3.1 we get
the following estimates for V I

r A for all r ≥ 1. We use the trivial fact that
Lq(Vr0) is embedded in Lq(Vr1) for r0 < r1, which allows to overcome the

r ≤ p or r ≤ q(d−1)
d+1 constraints in the above Propositions.

Corollary 4.8. Let d ≥ 3. V I
r A : Lp → Lq is bounded if one of the following

conditions is satisfied:
(i) (1

p ,
1
q ) belongs to the open line segment (Q1(r), Q2) or the interior of

the domain Pd(r) in Theorem 1.2 (r > d2+1
d(d−1)).

(ii) (1
p ,

1
q ) belongs to the open line segment (Q1(r), Q2) or the interior of

the domain Pd(r) in Theorem 1.4 ( d
d−1 < r ≤ d2+1

d(d−1)).

(iii) (1
p ,

1
q ) belongs to the open line segment (Q1(r), Q2(r)) or the interior

of the domain Qd(r) in Theorem 1.5 (1 ≤ r ≤ d
d−1 for d ≥ 4 or 4

3 < r ≤ 3
2

for d = 3).

Corollary 4.9. Let d = 2. V I
r A : Lp → Lq is bounded if one of the following

conditions is satisfied:
(i) (1

p ,
1
q ) belongs to the open line segment (Q1(r), Q2) or the interior of

the domain Q2(r) in Theorem 1.6, (i) (r > 5
2).

(ii) (1
p ,

1
q ) belongs to the open line segment (Q1(r), Q2) or the interior of

the domain Q2(r) in Theorem 1.6, (ii) (2 < r ≤ 5
2).

4.5. Various endpoint bounds. We shall discuss various endpoint bounds
that can be obtained by interpolation (in particular Bourgain’s interpolation
lemma as formulated in §2.6). This will settle all endpoint results claimed
in our theorems except for a more sophisticated strong type bound at the
lower edges which will be discussed in the two subsequent sections.

We start by looking at the point Q3.

Lemma 4.10. Let d ≥ 3, r > d
d−1 . Let p3 = d

d−1 , q3 = d.

Then A : Lp3,1 → Lq3,∞(B
1/r
r,1 ) is bounded. Consequently, V I

r A is of
restricted weak type at Q3 in Theorems 1.2 and 1.4.
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Proof. By standard embedding theorems, we can assume r ≤ 2. For r > d
d−1

we have d−1
r′ −

1
r > 0. We have from Corollary 2.3 and Proposition 4.3, (A),

‖Ajf‖L∞(Lr) . 2j(1−1/r)‖f‖1,

‖Ajf‖Lr′ (Lr) . 2−j
d−1
r′ ‖f‖r,

and by Corollary 2.6

‖Ajf‖L∞(B
1/r
r,1 )
. 2j‖f‖1,

‖Ajf‖Lr′ (B1/r
r,1 )
. 2−j(

d−1
r′ −

1
r

)‖f‖r.

The lemma then follows by applying §2.6 to the last two inequalities. The
bound for VrA is a simple corollary in view of (2.4). �

A similar argument yields a restricted weak type bound at Q4.

Lemma 4.11. Let d ≥ 3, r > d2+1
d(d−1) and p4 = d2+1

d(d−1) , q4 = d2+1
d−1 .

Then A : Lp4,1 → Lq4,∞(B
1/r
r,1 ) is bounded. Consequently, V I

r A is of
restricted weak type at Q4 in Theorem 1.2.

Proof. By standard embedding theorems, we can assume r ≤ 2. By assump-

tion on r we have d(d−1)
(d+1)r′ −

1
r > 0. It then suffices to interpolate using §2.6

the inequalities

‖Ajf‖L∞(B
1/r
r,1 )
. 2j‖f‖L1

‖Ajf‖Lq◦ (B
1/r
r,1 )
. 2

−j( d
q◦
− 1
r

) . ‖f‖Lp◦ with p◦ = r, q◦ = d+1
d−1r

′;

the last inequality follows from Proposition 4.3, (E). �

Corollary 4.12. Let d ≥ 3. Then the following hold:
(i) V I

r A : Lp → Lq is bounded if (1/p, 1/q) belongs to the open segment

(Q3, Q4) in Theorem 1.2 (r > d2+1
d(d−1)).

(ii) V I
r A : Lp,1 → Lq is bounded if (1/p, 1/q) belongs to the half-open

segment [Q2, Q3) in Theorems 1.2 and 1.4 (r > d
d−1).

Proof. Part (i) just follows from interpolation between Lemma 4.10 and 4.11.
For part (ii), let p = d

d−1 and fix q2 = d
d−1 and q3 = d. For z ∈ Zd, let

Qz =
∏d
i=1[zi, zi+ 1) and let Q∗z be a cube centered at z with sidelength 20d.

Write f =
∑

z fz with fz = f1Qz . As V I
r A is local and the Q∗z have bounded

overlap, by Hölder’s inequality

‖V I
r Af‖Lq2,∞ ≤

(∑
z

‖1Q∗z V
I
r Afz‖

q2
Lq2,∞

)1/q2
≤
(∑

z

‖1Q∗z V
I
r Afz‖

q2
Lq3,∞

)1/q2
.

By Lemma 4.10, the right-hand side is further bounded by(∑
z

‖fz‖q2Lp,1
)1/q2

. ‖f‖p,1,
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as p = q2 = p3 = d
d−1 . This implies that V I

r A is of restricted weak type

at Q2 if r > d
d−1 . By interpolation between Q2 and Q3, one has that V I

r A

is of restricted strong type on the open line segment (Q2, Q3). Finally, the
restricted strong type at Q2 follows from the above localization argument,
but using any of the just obtained Lp,1 → Lq inequalities for q2 < q < q3

instead of the Lp,1 → Lq3,∞. �

Remark. One can obtain that V I
r A is of restricted weak type at Q2 in Theo-

rems 1.2 and 1.4 (r > d/(d−1)) by an application of §2.6 with the inequalities

‖Ajf‖L1(B
1/r
r,1 )
. 2j‖f‖1

‖Ajf‖L2(B
1/r
r,1 )
. 2−j(d−2)/2+j/r‖f‖2.

Interpolation with the restricted weak type bound at Q3 yields the restricted
strong type bounds on the open line segment (Q2, Q3). However, in order
to deduce the restricted strong type at Q2 we need to argue with the local-
ization argument presented in the proof of Corollary 4.12 above.

We next address the claimed bounds for V I
1 A in Theorem 1.5.

Lemma 4.13. Let d ≥ 4. The operator ∂tA maps L
d−1
d−2

,1 boundedly to
Ld−1,∞(L1). Consequently, V I

r A is of restricted weak type at Q3(1) in The-
orem 1.5.

Proof. We have ‖∂tAjf‖L2(L1) . ‖∂tAjf‖L2(L2) . 2−j
d−3
2 ‖f‖2. We interpo-

late the estimates (obtained from Corollary 2.3 and Proposition 4.3 together
with Corollary 2.6)

‖∂tAjf‖L∞(L1) . 2j‖f‖1

‖∂tAjf‖L2(L1) . 2−j
d−3
2 ‖f‖2

and obtain the conclusion by application of §2.6. �

Corollary 4.14. Let d ≥ 4. The operator V I
r A : Lp,1 → Lq is bounded if

(1/p, 1/q) belongs to the half-open line segment [Q2(1), Q3(1)) in Theorem
1.5.

Proof. The restricted strong type bounds on [Q2(1), Q3(1)) can be obtained
as in Corollary 4.12. �

Lemma 4.15. Let d = 3. The operator V I
1 A is bounded on L2(R3).

Proof. By (2.5) we have

‖V I
1 A‖2 ≤

∥∥∥∫
I
|∂tAf(·, t)| dt

∥∥∥
2
.
(∫∫

|∂tAtf |2 dx dt
)1/2

. ‖f‖2,

by (2.13) and orthogonality. �
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5. A maximal operator

We first introduce an auxiliary maximal function which will be crucial in
the proof of the endpoint bounds in §6.

For L ∈ Z let QL be the family of all cubes in Rd with side length in
(2L−1, 2L]. Given Q we write

L(Q) = L if Q ∈ QL. (5.1)

We use the slashed integral to denote an average, i.e.

\
∫
Q
g(y) dy =

1

|Q|

∫
Q
g(y) dy.

For x ∈ Rd we let QL(x) be the collection of all Q ∈ QL containing x. Given
n = 0, 1, 2, . . . and a sequence of functions F = {fj}j≥0, define the maximal
function

Mr,nF (x) = sup
j≥n

sup
Q∈Qn−j(x)

\
∫
Q

(∫
|Ajfj(y, t)|r dt

)1/r
dy. (5.2)

The following result should be compared with Lemma 4.2. Away from
the right boundary of the region in that lemma, we gain a crucial factor
of 2−nε. Related statements can be found in [?], [?] (see also [?] for dual
versions).

Proposition 5.1. Let p0 and q0 such that 1 < p0 ≤ q0 <∞. Assume that

sup
j≥0

2jd/q0‖Aj‖Lp0→Lq0 (Lp0 ) <∞. (5.3)

Let q0 < q ≤ ∞ and 1
ρmax(q) = q0

q
1
p0

and 1
ρmin(q) = 1 − q0

q (1 − 1
p0

). Assume

that

ρmin(q) < p ≤ q and

{
r ≤ p if ρmin(q) < p < ρmax(q),

r < ρmax(q) if ρmax(q) ≤ p ≤ q.
(5.4)

Then there exists ε(p, q, r) > 0 such that

‖Mr,nF‖q ≤ Cp,q,r2−nε(p,q,r)
(∑
j≥n

2−jd‖fj‖qp
)1/q

. (5.5)

For the proof we first observe a uniform estimate in n.

Lemma 5.2. Let p0 ≤ q0 and assume (5.3) holds. Let q > 1 and q0 ≤
q ≤ ∞. Let ρmin(q), ρmax(q) be as in (4.2), and let ρmin(q) ≤ p ≤ q and
0 < r ≤ min{p, ρmax(q)}. Then

‖Mr,nF‖q .
(∑
j≥n

2−jd‖fj‖qp
)1/q

. (5.6)
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Proof. Let MHL denote the Hardy–Littlewood maximal function. Then

|Mr,nF (x)| . sup
x∈Q

\
∫
Q

sup
j≥n

(∫
|Ajfj(y, t)|r dt

)1/r
dy

≤MHL

[
sup
j≥n
‖Ajfj‖Lr(R)

]
(x)

and therefore, since r ≤ q and q > 1

‖Mr,nF‖q .
∥∥ sup
j≥n
‖Ajfj‖Lr(R)

∥∥
q
.
∥∥∥(∑

j≥n
‖Ajfj‖qLr(R)

)1/q∥∥∥
q

=
(∑
j≥n
‖Ajfj‖qLq(Lr)

)1/q
.
(∑
j≥n

2−jd‖fj‖qp
)1/q

;

here in the last step we have used Lemma 4.2. �

We now show how to gain over this inequality in the special case r = p0.

Lemma 5.3. Let p0 ≤ q0 and assume (5.3) holds. Then for q0 ≤ q ≤ ∞,
p0 ≤ p ≤ q

‖Mp0,nF‖q . 2
−nd( 1

q0
− 1
q

)
(∑
j≥n

2−jd‖fj‖qp
)1/q

. (5.7)

Proof. We use real interpolation for the sublinear operator Mp0,n. Then
(5.7) follows from

‖Mp0,nF‖q0 .
(∑
j≥n

2−jd‖fj‖q0p
)1/q0

, p0 ≤ p ≤ q0, (5.8a)

and

‖Mp0,nF‖∞ . 2−nd/q0 sup
j≥n
‖fj‖p, p0 ≤ p ≤ ∞. (5.8b)

Note that (5.8a) immediately follows by Lemma 5.2.
We now show (5.8b). Fix x ∈ Rd, j ≥ n and Q ∈ Qn−j(x). Let Rx be a

cube of diameter 20d centered at x. Then split

\
∫
Q

(∫
|Ajfj(y, t)|p0 dt

)1/p0
dy ≤ I(x) + II(x)

where

I(x) = \
∫
Q

(∫
|Aj [1Rxfj ](y, t)|p0 dt

)1/p0
dy,

II(x) = \
∫
Q

(∫
|Aj [1R{

x
fj ](y, t)|p0 dt

)1/p0
dy.
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1
p

1
q

q = p

11
p0

1
q0

1/ρmin(q)1/ρmax(q)

1
q

Figure 11. Bounds for Mr,n. At r = p = p0, q0 < q ≤ ∞,
we have a gain in n given by Lemma 5.3. Interpolation with
the uniform estimates from Lemma 5.2 for r = p = ρmin(p)
and r = p = ρmax(q) yields the estimates in the interior of
the blue triangle. The bounds in the red triangle follow by
the localization argument.

Using Hölder’s inequality, then the assumption (5.3) and then again Hölder’s
inequality we get

I(x) ≤
( 1

|Q|

∫
‖Aj [1Rxfj ](y, ·)‖q0p0 dy

)1/q0

. |Q|−1/q02−jd/q0‖1Rxfj‖p0 . 2−nd/q0‖1Rxfj‖p0 . 2−nd/q0‖fj‖p,

since Q ∈ Qn−j and p ≥ p0.
Next we use estimate (2.8) (with M > d)

II(x) . \
∫
Q

∫
|y−w|≥1

CM (2j |y − w|)−M |fj(w)| dw dy

. 2−jM‖fj‖p . 2−nM‖fj‖p.

We combine the estimates for I(x), II(x) and then, after taking suprema in
x, in Q ∈ Qn−j(x) and in j, (5.8b) follows. �

The proof of Proposition 5.1 follows from (carefully) interpolating the two
previous lemmas and a localization argument, as indicated in Figure 11.

Conclusion of the proof of Proposition 5.1. We fix q > q0. Observe that
1

ρmin(q) −
1
p0

= (1− q0
q )(1− 1

p0
) > 0 and 1

p0
− 1

ρmax(q) = (1− q0
q ) 1

p0
> 0 so that

ρmin(q) < p0 < ρmax(q). We first focus on the case ρmin(q) < p < ρmax(q),
for which it suffices to consider r = p; the corresponding inequality for
smaller r follows by Hölder’s inequality on [1/2, 4]. The remaining case
ρmax(q) ≤ p ≤ q will follow as a consequence of the previous range via a
localization argument.
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Let p be as in (5.4). In what follows set w(j) = 2−jd and let `qw(Lp) be
the space of Lp-valued sequences with

‖F‖`qw(Lp) =
(∑

j

2−jd‖fj‖qp
)1/q

.

By linearization it suffices to consider, for any measurable choices of pos-
itive integers x 7→ j(x) ∈ N, with j(x) ≥ n, cubes Q(x) ∈ Qn−j(x), and

measurable Lr
′
(R) valued functions (x, y) 7→ v(x, y, ·) in L∞(R2d), the bi-

linear operator

Mn[F, v](x) = \
∫
Q(x)

∫
v(x, y, s)Aj(x)fj(x)(y, s) ds dy

and show that

‖Mn[F, v]‖Lq . 2−nε(p,q,r)‖F‖`qw(Lp)‖v‖L∞(Lr′ ), (5.9)

The conclusion for r ≤ p = p0 is immediate from Lemma 5.3, and in
the study of the range ρmin(q) < p < ρmax(q) we shall distinguish in what
follows between the ρmin(q) < p < p0 and p0 < p < ρmax(q).

The case ρmin(q) < p ≤ p0. It suffices to prove (5.9) for r = p. We have
from (5.6)

‖Mn[F, v]‖Lq . ‖F‖`qw(Lp)‖v‖L∞(Lp′ ) for p = ρmin(q) (5.10)

and from (5.7)

‖Mn[F, v]‖Lq . 2
−nd( 1

q0
− 1
q

)‖F‖`qw(Lp0 )‖v‖L∞(Lp
′
0 )
. (5.11)

One can interpolate (5.10) and (5.11), noting that for 0 < θ < 1 and 1
ρmin(q) =

1− q0
q

1
p′0

,

ρmin(q) < p < p0

1−θ
p0

+ θ
ρmin(q) = 1

p

 =⇒ (1− θ)d( 1
q0
− 1

q ) =
dp′0
q0

(
1

ρmin(q) −
1
p

)
,

and deduce

‖Mn[F, v]‖Lq . 2−nε(p,q,r)‖F‖`qw(Lp)‖v‖L∞(Lp′ ),

for ρmin(q) ≤ p ≤ p0, ε(p, q, p) =
dp′0
q0

(
1

ρmin(q) −
1
p

)
> 0 (5.12)

with the implicit constants independent of the choices j(x), Q(x). Thus we
also get (5.5) for r ≤ p, ρmin < p ≤ p0 and ε(p, q, r) = ε(p, q, p) as in (5.12).

In order to carry out the interpolation argument one uses Stein’s inter-
polation theorem on analytic families of operators, with an obvious analytic
family suggested by the proof of the Riesz–Thorin theorem; we omit the
details. Alternatively one can use Calderón’s second method [·, ·]θ, combin-
ing a result on multilinear maps with a result on Banach lattices such as
L∞(X), see [?, §11.1], [?, §13.6].
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The case p0 < p < ρmax(q). Again, it suffices to consider the case r = p.
Note that for 0 < θ < 1 and 1

ρmax(q) = q0
q

1
p0

p0 < p < ρmax(q)

1−ϑ
p0

+ ϑ
ρmax(q) = 1

p

 =⇒ (1−ϑ)d( 1
q0
− 1
q ) = dp0

q0

(
1
p−

1
ρmax(q)

)
(5.13)

We claim

‖Mn[F, v]‖Lq . 2−nε(p,q,p)‖F‖`qw(Lp)‖v‖L∞(Lp′ ),

for p0 ≤ p ≤ ρmax(q), ε(p, q) = dp0
q0

(
1
p −

1
ρmax(q)

)
> 0, (5.14)

Given (5.13), the inequalities (5.14) can then be deduced by the above in-
dicated interpolation arguments from

‖Mn[F, v]‖Lq . ‖F‖`qw(Lp)‖v‖L∞(Lp′ ) for p = ρmax(q) (5.15)

and

‖Mn[F, v]‖Lq . 2
−nd( 1

q0
− 1
q

)‖F‖`qw(Lp0 )‖v‖L∞(Lp
′
0 )
. (5.16)

Note that (5.15), (5.16) are immediate consequences of (5.6) and (5.7), re-
spectively.

The case ρmax(q) ≤ p ≤ q, 0 < r < ρmax(q). This case just follows by
the localization argument used in the proof of Lemma 4.1 via the kernel
estimates (2.8), which allows to show that if

‖Mr,nF‖q . 2−nε
(∑
j≥n

2−jd‖fj‖qp∗
)1/q

holds for all 0 < r ≤ r∗ and some 1 ≤ p∗ ≤ q, then

‖Mr,nF‖q . 2−nε
(∑
j≥n

2−jd‖fj‖qp
)1/q

also holds for all p∗ ≤ p ≤ q and all 0 < r ≤ r∗. For fixed q ∈ (q0,∞],
the desired estimates for ρmax(q) ≤ p ≤ q then follow from the above with
input inequalities r∗ = p∗ = ρmax(q) − ε for ε arbitrarily small. Note that
this argument has already been used in the context of Mr,n in the proof of
(5.8b) in Lemma 5.3. We omit the details. �

6. The sharp Lp → Lpd(Lp) bound

In this section we will give bounds for the sums of the operators Aj which,
in particular, will cover the crucial endpoint bound at P (r) = (1

r ,
1
rd) in

Theorem 1.2, as well as the remaining endpoints bounds stated in Theorems
1.2, 1.4 and 1.5.

Proposition 6.1. Let 1 < p0 ≤ q0 <∞. Assume that

sup
j≥0

2jd/q0‖Aj‖Lp0→Lq0 (Lp0 ) ≤ C0 ≤ ∞. (6.1)
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Let q0 < q < ∞ and define 1
ρmax(q) = q0

q
1
p0

and 1
ρmin(q) = 1 − q0

q (1 − 1
p0

).

Assume that p, r are as in (5.4), i.e.

ρmin(q) < p ≤ q and

{
r ≤ p if ρmin(q) < p < ρmax(q),

r < ρmax(q) if ρmax(q) ≤ p ≤ q.

Then for all {fj}j≥0,∥∥∥∑
j≥0

‖Ajfj‖Lr(R)

∥∥∥
Lq(Rd)

≤ C(p, q)(1 + C0)
(∑
j≥0

2−jd‖fj‖qp
)1/q

. (6.2)

Proof. We first observe that by the monotone convergence theorem it suffices
to show (6.2) for any finite collection of functions {fj}n−1

j=0, with uniform
bounds in n ∈ N; moreover, all fj can be assumed to be in the Schwartz
class. From Lemma 4.2 we get∥∥∥ n−1∑

j=0

‖Ajfj‖Lr(R)

∥∥∥
Lq(Rd)

. n1−1/q
(∑

j

2−jd‖fj‖qp
)1/q

, q0 ≤ q ≤ ∞ (6.3)

and it is our task to remove the n-dependence in this estimate for p, q, r as
in the statement of the Proposition.

For a function G ∈ Lq0(Rd) we recall the definition of the Fefferman–Stein
sharp maximal function

G#(x) := sup
x∈Q

\
∫
Q

∣∣∣G(y)− \
∫
Q
G(w) dw

∣∣∣dy
which satisfies the bound ‖G‖q ≤ c(q)‖G#‖q for every q with q0 < q < ∞,
and the implicit constant in this inequality is independent of the Lq0-norm
of G. This was proved in [?]. We may apply this inequality to

G(x) =
∑
j≥0

(∫
|Ajfj(x, t)|r dt

)1/r
,

as its Lq0-norm is finite by (6.3); recall the sum is assumed to be finite. Let
Q(x) = ∪L∈ZQL(x), i.e. the family of cubes containing x. We estimate

G](x) . GI(x) + GII(x) + GIII(x)

where, with L(Q) as in (5.1),

GI(x) := sup
Q∈Q(x)
L(Q)≤0

\
∫
Q

∣∣∣ ∑
0≤j≤−L(Q)

(
‖Ajfj(y, ·)‖Lr− \

∫
Q
‖Ajfj(w, ·)‖Lr dw

)∣∣∣ dy,
GII(x) := sup

Q∈Q(x)
L(Q)≤0

\
∫
Q

∑
j≥−L(Q)

‖Ajfj(y, ·)‖Lr dy,

GIII(x) := sup
Q∈Q(x)
L(Q)>0

\
∫
Q

∑
j≥0

‖Ajfj(y, ·)‖Lr dy.
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The estimate for GIII follows from the estimate for GII . To see this let

U(y) =
∑
j≥0

‖Ajfj(y, ·)‖Lr , U∗(w) = sup
Q∈Q(w)
L(Q)=0

\
∫
Q
U(y) dy.

Given a cube Q̃ ∈ Q(x) with L(Q̃) > 0 we may tile Q̃ into cubes of side
length 1 and get

\
∫
Q̃

U(y) dy ≤ \
∫
Q̃

U∗(w) dw ≤MHL[U∗](x)

where MHL denotes the Hardy–Littlewood maximal operator. By a very
crude estimate we can replace U∗ by GII and get

GIII(x) ≤MHL[GII ](x). (6.4)

The term GII is the most interesting but it has been already taken care
of in §5. We can write, with Uj(y) := ‖Ajfj(y, ·)‖Lr

GII(x) = sup
Q∈Q(x)
L(Q)≤0

\
∫
Q

∞∑
n=0

U−L(Q)+n(y) dy

≤
∞∑
n=0

sup
Q∈Q(x)
L(Q)≤0

\
∫
Q
U−L(Q)+n(y) dy =

∞∑
n=0

sup
j≥n

sup
Q∈Qn−j(x)

\
∫
Q
Uj(y) dy.

Hence, with Mr,n defined in (5.2) and F = {fj}j≥0, we get

GII(x) ≤
∑
n≥0

Mr,nF (x).

From Proposition 5.1, (6.4) and the Lq-boundedness of the Hardy-Littlewood
maximal operator we obtain

‖GII‖q + ‖GIII‖q .
(∑
j≥0

2−jd‖fj‖qp
)1/q

(6.5)

for the range of (p, q, r) assumed in the proposition.
It remains to consider the term GI , where we can use the cancellative

properties of the #-function. We will show that

‖GI‖q .
(∑
j≥0

2−jd‖fj‖qp
)1/q

for ρmin(q) ≤ p ≤ q. (6.6)

For n ≥ 0 define

GI,n(x) := sup
j≥0

sup
Q∈Q−n−j(x)

\
∫
Q

∣∣∣‖Ajfj(y, ·)‖Lr − \∫
Q
‖Ajfj(w, ·)‖Lr dw

∣∣∣dy
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and, arguing as for GII , we observe that GI(x) ≤
∑

n≥0 GI,n(x). Our claim

(6.6) will follow from the estimate

‖GI,n‖q . 2−n
(∑
j≥0

2−jd‖fj‖qp
)1/q

for ρmin(q) ≤ p ≤ q (6.7)

uniformly in n. In order to show this, note that by the triangle inequality

GI,n(x) ≤ sup
j≥0

sup
Q∈Q−n−j(x)

\
∫
Q
\
∫
Q

∥∥Ajfj(y, ·)−Ajfj(w, ·)∥∥Lr dw dy.

Write Ajfj = L̃jAjfj and let θj be the convolution kernel of L̃j . Then for
j ≤ n, x, y, w ∈ Q, Q ∈ Q−n−j(∫ ∣∣∣Ajfj(y, t)−Ajfj(w, t)∣∣∣r dt

)1/r

≤
(∫ ∣∣∣ ∫ (θj(y − z)− θj(w − z))Ajfj(z, t) dz

∣∣∣r dt
)1/r

≤
∫ ∫ 1

0
|〈y − w,∇θj(w + τ(y − w)− z)〉|dτ

(∫ ∣∣Ajfj(z, t)∣∣r dt
)1/r

dz.

Since 1 + 2j |w+ τ(y−w)− z| ≈ 1 + 2j |x− z| for x, y, w ∈ Q, Q ∈ Q−n−j(x),
τ ∈ [0, 1], we can estimate the last expression by

CN2−n−j
∫

2j(d+1)

(1 + 2j |x− z|)N
(∫
|Ajfj(z, t)|r dt

)1/r
dz

and hence we get for n ≥ 0 and N > d

|GI,n(x)| . 2−nMHL

[
sup
j≥0
‖Ajfj‖Lr(R)

]
(x).

This implies, using the Lq boundedness of the Hardy–Littlewood maximal
operator MHL and Lemma 4.2,

‖GI,n‖Lq . 2−n
∥∥ sup
j≥0
‖Ajfj‖Lr(R)

∥∥
Lq
. 2−n

∥∥∥(∑
j≥0

‖Ajfj‖qLr(R)

)1/q∥∥∥
Lq

= 2−n
(∑
j≥0

‖Ajfj‖qLq(Lr)
)1/q

. 2−n
(∑
j≥0

2−jd‖fj‖qp
)1/q

,

which is (6.7) and thus (6.6) is proved. The proof is complete after combining
(6.6) and (6.5). �

As (6.1) holds with p0 = 2, q0 = 2(d+1)
d−1 by Lemma 2.4, Proposition 6.1

yields the following.

Corollary 6.2. Assume that

2(d+1)
d−1 < q <∞, d+1

d−1
1
q <

1
p < 1− d+1

d−1
1
q , r ≤ p (6.8)

or
2(d+1)
d−1 < q <∞, 1

q ≤
1
p ≤

d+1
d−1

1
q , r < q(d−1)

d+1 . (6.9)
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Then for all {fj}j≥0,∥∥∥∑
j≥0

‖Ajfj‖Lr(R)

∥∥∥
Lq(Rd)

.
(∑
j≥0

2−jd‖fj‖qp
)1/q

.

Combining this with Lemma 2.7 one obtains the strong type bound at
P (r) in Theorem 1.2 (that is, Corollary 1.3).

Proposition 6.3. Let d ≥ 3, d2+1
d(d−1) < p <∞. Then

‖Af‖
Lpd(B

1/p
p,1 )
≤ ‖f‖Lp . (6.10)

Moreover,

‖V I
p Af‖Lpd ≤ ‖f‖Lp . (6.11)

Proof. The bound (6.11) follows from (6.10) via (2.4).
To prove (6.10) we apply Corollary 6.2 and Lemma 2.7 with s = d/q =

1/p. We verify the assumption (6.8) for q = pd, r = p. The condition
d+1
d−1

1
q <

1
p is satisfied (for q = pd) when d2 − 2d− 1 > 0, which holds when

d ≥ 3. The condition 1
p < 1 − d+1

d−1
1
q is satisfied (for q = pd) if p > d2+1

d(d−1) .

The condition q > 2(d+1)
d−1 is also satisfied if q = pd, p > d2+1

d(d−1) . In particular,

the latter implies that q = pd > 2 in this range, so the hypothesis of Lemma
2.7 are also satisfied and thus (6.10) follows. �

Arguing in a similar way, we obtain the remaining claimed endpoint
bounds in Theorems 1.2, 1.4 and 1.5.

Proposition 6.4. Let d ≥ 3 and r > d2+1
d(d−1) .

(i) Let r ≤ p ≤ rd. Then the operators A : Lp → Lrd(B
1/r
r,1 ) and V I

r A :

Lp → Lrd are bounded. That is, V I
r : Lp → Lq is bounded if (1/p, 1/q)

belongs to the closed segment [Q1(r), P (r)] in Theorem 1.2.

(ii) Let d2+1
d(d−1) < p ≤ r. Then the operators A : Lp → Lpd(B

1/r
r,1 ) and

V I
r A : Lp → Lpd are bounded. That is, V I

r : Lp → Lq is bounded if (1/p, 1/q)
belongs to the half-open segment [P (r), Q4) in Theorem 1.2.

Proof. For part (i) we use again Corollary 6.2 and Lemma 2.7 with s = d/q =

1/r. The condition (6.8) yields the ranges rd(d−1)
rd(d−1)−(d+1) < p < rd(d−1)

d+1 and

r ≤ p. Note that r > rd(d−1)
rd(d−1)−(d+1) if and only if r > d2+1

d(d−1) ; moreover,

the condition q > 2(d+1)
d−1 (for q = rd) is satisfied in the range r > d2+1

d(d−1)

whenever d2 − 2d − 1 > 0, which holds for d ≥ 3. This settles the range

r ≤ p < rd(d−1)
d+1 . The range rd(d−1)

d+1 ≤ p ≤ rd corresponds to (6.9). Note

that the condition r < q(d−1)
d+1 requires (for q = rd) d2 − 2d − 1 > 0, which

holds when d ≥ 3. The condition q > 2(d+1)
d−1 was already verified for (6.8).

This concludes the bounds in (i).
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Part (ii) follows from standard embedding theorems from Proposition
6.3. �

Proposition 6.5. Let d ≥ 4 and 1 ≤ r ≤ d2+1
d(d−1) or d = 3 and 4/3 < r ≤

5/3. Let rd(d−1)
rd(d−1)−d−1 < p ≤ rd. Then the operators A : Lp → Lrd(B

1/r
r,1 ) and

V I
r A : Lp → Lrd are bounded. That is, V I

r : Lp → Lq is bounded if (1/p, 1/q)
belongs to the half-open segment [Q1(r), Q4(r)) in Theorems 1.4 and 1.5.

Proof. This follows arguing as in the proof of Proposition 6.4. The only

difference is that in (6.8) the relevant range for p (for q = rd) if r ≤ d2+1
d(d−1) is

rd(d−1)
rd(d−1)−d−1 < p < rd(d−1)

d+1 . Moreover, the condition q > 2(d+1)
d−1 requires (for

q = rd) that r > 2(d+1)
d(d−1) . As r ≥ 1, this condition is satisfied if d2−3d−2 > 0,

which holds for d ≥ 4. If d = 3, we require the restriction r > 4/3. �

7. An endpoint bound for the global variation

The purpose of this section is to prove Theorem 1.1.
It will be useful to work with the standard homogeneous Littlewood–Paley

decomposition. We define Pjf , j ∈ Z by

P̂jf(ξ) =
(
β0(2−j |ξ|)− β0(21−j |ξ|)

)
f̂(ξ)

so that Pj localizes to frequencies of size ≈ 2j . We have Pj = Lj for j ≥ 1
and L0f =

∑
j≤0 Pjf for f ∈ Lp, p ∈ (1,∞) with convergence in Lp. It

will also be convenient to use reproducing operators P̃j localizing to slightly

larger frequency annuli, with P̃jPj = Pj for j ∈ Z.
Let j ≥ 0. We recall the definition

Ajf(x, t) = χ(t)AtLjf(x) = χ(t)Kj,t ∗ f(x) where K̂j,t(ξ) = σ̂(tξ)βj(|ξ|).
We combine this with dyadic dilations, and define for k ∈ Z, t ∈ [1/2, 4],

Akj f(x, t) = χ(t)A2ktPj−kf(x) = χ(t)Kk
j,t ∗ f(x) (7.1)

where Kk
j,t = 2−kdKj,t(2

−k·). Below we shall often use a scaled version of

(2.8), namely

|Kk
j,t(x)| .N 2−kd(2j−k|x|)−N , |x| ≥ 10 · 2k, t ∈ [1/2, 4]. (7.2)

We start recording the following special case of Proposition 4.3, which
will be relevant for the proof of Theorem 1.1 (when p = q).

Corollary 7.1. For 2 ≤ r ≤ ∞, r(d+1)
d−1 ≤ q ≤ ∞, r ≤ p ≤ q we have

‖Ajf‖Lq(Lr) . 2−jd/q‖f‖p.
By Corollary 7.1 and rescaling we have

‖Akj ‖Lp→Lp(Lr) . 2−jd/p, r(d+1)
d−1 ≤ p ≤ ∞. (7.3)

One can improve over this result and extend it to sums in k whenever
r(d+1)
d−1 < p <∞.
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Proposition 7.2. For 2 ≤ r <∞, r(d+1)
d−1 < p <∞ we have, for all j ≥ 1,∥∥∥(∑

k∈Z
‖Akj f‖rLr(R)

)1/r∥∥∥
Lp(Rd)

. 2−jd/p‖f‖p. (7.4)

Proof. As in the proof of Proposition 6.1, by the monotone convergence
theorem, it suffices to show (7.4) for any finite collection {Akj }k∈K , with
uniform bounds on the cardinality of the finite set K ⊂ Z.

We use again the sharp maximal function of Fefferman–Stein. Let

G(x) =
(∑
k∈K
‖Akj f(x, ·)‖rLr

)1/r
,

which has finite Lp0 norm whenever p0 = r(d+1)
d−1 ; note that (7.3) and Minkowski’s

inequality imply that

‖G‖p0 . |K|1/r2−jd/p‖f‖p0 .

By the bound ‖G‖p .p ‖G#‖p, it suffices to show ‖G#‖p . 2−jd/p‖f‖p,
uniformly on the finite set K for p0 < p < ∞. By the triangle inequality,
we dominate

G#(x) ≤ sup
Q∈Q(x)

\
∫
Q
\
∫
Q

(∑
k∈Z
‖Akj f(y, ·)−Akj f(w, ·)‖rLr

)1/r
dw dy

≤ 2Gf(x) +
∞∑
n=1

Unf(x)

where

Gf(x) := sup
L∈Z

sup
Q∈QL(x)

\
∫
Q

(∑
k≤L
‖Akj f(y, ·)‖rLr

)1/r
dy

and

Unf(x) := sup
L∈Z

sup
Q∈QL(x)

\
∫
Q
\
∫
Q

∥∥AL+n
j f(y, ·)−AL+n

j f(w, ·)
∥∥
Lr

dw dy.

We claim that for r(d+1)
d−1 ≤ p ≤ ∞, 2 ≤ r <∞ we have

‖Gf‖p . 2−jα(r)‖f‖p, for some α(r) > d/p (7.5)

and

‖Unf‖p .

{
2

(n−j)d( d−1
r(d+1)

− 1
p

)
2−jd/p‖f‖p, if 1 ≤ n ≤ j,

2j−n2−jd/p‖f‖p, if n > j.
(7.6)

The desired bound ‖G#‖p . 2−jd/p‖f‖p follows summing in n if p > r(d+1)
d−1 .
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Proof of (7.5). We prove inequalities for G on Lr and L∞ which will yield
(7.5) by interpolation.

Let p0 = r(d+1)
d−1 . We first observe the inequalities

‖Akj f‖L2(Lr) . 2−j(
d−2
2

+ 1
r

)‖f‖L2 (7.7)

‖Akj f‖Lp0 (Lr) . 2−jd/p0‖f‖Lp0 (7.8)

uniformly in k. The estimate (7.7) holds from the bounds ‖Akj ‖L2→L2(L2) .

2−j(d−1)/2 and ‖∂tAkj ‖L2→L2(L2) . 2−j(d−3)/2 (which follow from (2.13)) and

the Sobolev embedding theorem, and (7.8) is (7.3) with p = p0. Since
2 ≤ r < p0 and d−2

2 + 1
r >

d
p0

one has by interpolation that

‖Akj f‖Lr(Lr) . 2−jα(r)‖f‖Lr , for some α(r) > d/p0. (7.9)

This implies

‖Gf‖Lr .
∥∥∥MHL

[
(
∑
k∈Z
‖Akj P̃j−kf‖rLr(R))

1/r
]∥∥∥
r

.
(∑
k∈Z
‖Akj P̃j−kf‖rLr(Lr)

)1/r

. 2−jα(r)
(∑
k∈Z
‖P̃j−kf‖rr

)1/r
. 2−jα(r)‖f‖r (7.10)

by Littlewood–Paley theory, since r ≥ 2.
We now prove an L∞ bound. Fix x, L, Q ∈ QL(x) and let BL

x be the
ball centered at x with radius d2L+10. Using Hölder’s inequality and the
embedding `1 ⊆ `r for r ≥ 1 we estimate

\
∫
Q

(∑
k≤L

∥∥Akj f(y, ·)
∥∥r
Lr

)1/r
dy ≤ I(x) + II(x)

where

I(x) =
(
\
∫
Q

∑
k≤L

∥∥Akj [1BLx f ](y, ·)
∥∥r
Lr

dy
)1/r

II(x) = \
∫
Q

∑
k≤L

∥∥Akj [1Rd\BLx f ](y, ·)
∥∥
Lr

dy.

We have, in view of Akj = Akj P̃j−k and using (7.9),

I(x) . 2−Ld/r
(∑
k≤L

∥∥Akj P̃j−k[1BLx f ]
∥∥r
Lr(Lr)

)1/r

. 2−jα(r)2−Ld/r
(∑
k≤L

∥∥P̃j−k[1BLx f ]
∥∥r
Lr

)1/r

. 2−jα(r)2−Ld/r‖1BLx f‖Lr . 2−jα(r)‖f‖L∞ ,
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using r ≥ 2 and Littlewood–Paley theory in the third inequality. For the
term II(x) we use (7.2) and estimate

II(x) .N
∑
k≤L

\
∫
Q

∫
Rd\BLx

2−kd

(2j−k|y − w|)N
|f(w)|dw dy

. 2−jN
∑
k≤L

2(L−k)(d−N)‖f‖∞ . 2−jN‖f‖∞,

where N > d. We combine the estimates for I(x) and II(x) to obtain

‖Gf‖∞ . 2−jα(r)‖f‖∞. (7.11)

Interpolating (7.10) and (7.11) and noting that that α(r) > d/p0 ≥ d/p for
p ≥ p0 we obtain (7.5).

Proof of (7.6) for 1 ≤ n ≤ j. This case is similar to that of G. Let

p0 = r(d+1)
d−1 . We get the asserted estimate by interpolating between the

inequalities

‖Unf‖p0 . 2−jd/p0‖f‖p0 (7.12)

‖Unf‖∞ . 2(n−j)d/p0‖f‖∞. (7.13)

To see (7.12), we use Akj = Akj P̃j−k and (7.8) to estimate

‖Unf‖p0 .
∥∥∥MHL

[(∑
k∈Z
‖Akj P̃j−kf‖

p0
Lr(R))

1/p0
]∥∥∥
p0

.
(∑
k∈Z
‖Akj P̃j−kf‖

p0
Lp0 (Lr))

1/p0

. 2−jd/p0
(∑
k∈Z
‖P̃j−kf‖p0p0)1/p0 . 2−jd/p0‖f‖p0 ,

using that p0 ≥ 2 and Littlewood–Paley theory in the last inequality.
To see (7.13) we fix x, L, Q ∈ QL(x), let BL+n

x be the ball centered at x
with radius d2L+n+10 and estimate

\
∫
Q
\
∫
Q

∥∥AL+n
j f(y, ·)−AL+n

j f(w, ·)
∥∥
Lr

dw dy

. \
∫
Q

∥∥AL+n
j P̃j−L−nf(y, ·)

∥∥
Lr

dy ≤ III(x) + IV (x)

where

III(x) =
(
\
∫
Q

∥∥AL+n
j [1BL+n

x
f ](y, ·)

∥∥p0
Lr

dy
)1/p0

,

IV (x) = \
∫
Q

∥∥AL+n
j [1Rd\BL+n

x
f ](y, ·)

∥∥
Lr

dy.

We get by (7.3)

III(x) . 2−Ld/p02−jd/p0‖1BL+n
x

f‖p0 . 2(n−j)d/p0‖f‖∞.
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Moreover, by (7.2),

IV (x) . \
∫
Q

∫
Rd\BL+n

x

2−(L+n)d

(2j−L−n|y − w|)N
|f(w)|dw dy . 2−jN‖f‖∞

for any N > d. The estimates for III(x) and IV (x) yield (7.13) for 1 ≤ n ≤
j.

Proof of (7.6) for n > j. Here we use cancellation and note that for x ∈ Q

\
∫
Q
\
∫
Q

∥∥P̃j−L(Q)−ng(y, ·)− P̃j−L(Q)−ng(w, ·)
∥∥
Lr

dw dy

. 2j−nMHL[‖g‖Lr(R)](x).

Using this with g = AL+n
j f = P̃j−L−nAL+n

j and the Fefferman–Stein in-
equality for sequences of Hardy–Littlewood maximal functions, we may then
estimate∥∥∥ sup

L∈Z
sup

Q∈QL(x)
\
∫
Q
\
∫
Q

∥∥AL+n
j f(y, ·)−AL+n

j f(w, ·)
∥∥
Lr

dw dy
∥∥∥
Lp(dx)

. 2j−n
∥∥∥ sup
k∈Z

MHL

[
‖Akj f‖Lr(R)

]∥∥∥
p
. 2j−n

(∑
k∈Z

∥∥Akj P̃j−kf‖pLp(Lr)

)1/p

. 2j−n2−jd/p
(∑
k∈Z
‖P̃j−kf‖pp

)1/p
. 2j−n2−jd/p‖f‖p

for r(d+1)
d−1 ≤ p ≤ ∞, using (7.3) in the third inequality and p ≥ 2 and

Littlewood–Paley theory in the last inequality. Thus (7.6) is established for
n > j.

This finishes the proof of the proposition. �

Remark. The difficulty for putting the pieces together comes because it is

assumed r(d+1)
d−1 < p. If one had r ≥ p, one can simply put pieces together

by standard Littlewood–Paley theory as, for instance, in (7.10).

A consequence of Proposition 7.2 is the following restricted weak type
bound.

Proposition 7.3. For d ≥ 3, r ≥ 2,∥∥∥(∑
k∈Z

∥∥∥∑
j≥1

Akj f
∥∥∥r
B

1/r
r,1 (R)

)1/r∥∥∥
Lrd,∞(Rd)

. ‖f‖Lrd,1(Rd). (7.14)

Proof. Write

ΛlAkj f(x, t) = 2−j(d−1)/2(2π)−(d+1)
∑
±

∫
2−kdκ±j,l(2

−ky, t)f(x− y)dy

where κ±j,l is as in (2.17).
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We first show that for all j ≥ 1, 2 ≤ r <∞, r(d+1)
d−1 < p <∞,∥∥∥(∑

k∈Z
‖Akj f‖rB1/r

r,1 (R)

)1/r∥∥∥
Lp(Rd)

. 2−j(d/p−1/r)‖f‖p. (7.15)

Indeed, by Proposition 7.2, for |j − l| ≤ 10∥∥∥(∑
k∈Z

2l/r‖ΛlAkj f‖rLr(R)

)1/r∥∥∥
Lp(Rd)

. 2−j(d/p−1/r)‖f‖p. (7.16)

Moreover for |j − l| ≥ 10, we get from (2.18)∥∥∥(∑
k∈Z

2l/r‖ΛlAkj f‖rLr(R)

)1/r∥∥∥
Lp(Rd)

.N min{2−j(N−
1
r

), 2−l(N−
1
r

)}
∥∥∥(∑

k∈Z

∣∣MHL[P̃j−kf ]|r
)1/r∥∥∥

p

.N min{2−j(N−
1
r

), 2−l(N−
1
r

)}‖f‖p, (7.17)

using that the Fefferman–Stein and Littlewood–Paley inequalities together
imply ∥∥∥(∑

k∈Z

∣∣MHL[P̃j−kf ]|r
)1/r∥∥∥

p
.p ‖f‖p, 1 < p <∞, r ≥ 2.

Then (7.15) follows summing over ` ≥ 0 in (7.16) and (7.17).
We finish the proof using Bourgain’s interpolation trick (see §2.6). Con-

sider

Ajf(x) :=
(∑
k∈Z
‖Akj f(x, ·)‖r

B
1/r
r,1 (R)

)1/r
.

Note that r(d+1)
d−1 < rd when d2 − 2d − 1 > 0, that is, d ≥ 3. Let p0,

p1 be such that r(d+1)
d−1 < p0 < rd < p1. By (7.15) we have that ‖Ajf‖pi .

2−j(d/pi−1/r)‖f‖pi , i = 0, 1 and then a restricted weak type (rd, rd) inequality
for
∑

j≥0 Aj follows from Lemma 2.8. This implies the assertion. �

Conclusion of the proof of Theorem 1.1. Following [?], we write

VrAf(x) ≤ V dyad
r Af(x) + V sh

r Af(x)

where

V dyad
r Af(x) := sup

N∈N
sup

k1<···<kN

(N−1∑
i=1

|A2ki+1f(x)−A2kif(x)|r
)1/r

is the dyadic or long variation operator and

V sh
r Af(x) :=

(∑
k∈Z
|V Ik
r Af(x)|r

)1/r

is the short variation operator, using only variation within the dyadic in-
tervals Ik = [2k, 2k+1]; recall that V Ik

r Af(x) denotes the r-variation of
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t 7→ Atf(x) over the interval Ik. It then suffices to establish the claimed

bound in Theorem 1.1 for the operators V dyad
r and V sh

r .

Regarding V dyad
r A, the inequality

‖V dyad
r Af‖p .p,r ‖f‖p, r > 2, 1 < p <∞

was proved in [?]. This of course implies a Lp bound for Vp/d if p > 2d
and, in particular, the claimed restricted weak type bound follows by the
embedding Lp,1 ↪→ Lp ↪→ Lp,∞.

We next proceed with V sh
r A. Since χ(t) = 1 on I = [1, 2] we get

V Ik
r Af(x) ≤

∣∣∣ ∞∑
j=0

Akj f(x, ·)
∣∣∣
Vr(I)

by the definition of Akj in (7.1). The term corresponding to j = 0 is easily
estimated by a square function(∑

k∈Z
|Ak0f(x, ·)|rVr(I)

)1/r
.
(∑
k∈Z

∫ 2

1

∣∣ d
dtA

k
0f(x, t)

∣∣2 dt
)1/2

.

We claim for 1 < p <∞∥∥∥(∑
k∈Z

∫ 2

1

∣∣ d
dtA

k
0f(x, t)

∣∣2 dt
)1/2∥∥∥

p
≤ Cp‖f‖p. (7.18)

Since χ′(t) = 0 for 1 ≤ t ≤ 2 we have

d
dtÂ

k
0f(ξ, t) = χ(t)〈2kξ,∇σ̂(2ktξ)〉β0(2k|ξ|)f̂(ξ)

Using Plancherel’s theorem and interchanging sums and integrals one gets
(7.18) for p = 2. We then invoke standard Calderón–Zygmund theory in the
Hilbert-space setting (see [?, ch. II.5]) to see that (7.18) holds in the full
range 1 < p <∞. It follows that for r ≥ 2∥∥∥(∑

k∈Z
|Ak0f(x, ·)|rVr(I)

)1/r∥∥∥
p
.p ‖f‖p

which is stronger than the required Lp,1 → Lp,∞ bound.
It remains to consider the cases j ≥ 1. By the embedding (2.4) we have(∑

k∈Z

∣∣∣∑
j≥1

Akj f(x, ·)
∣∣∣r
Vr

)1/r
.
(∑
k∈Z

∥∥∥∑
j≥1

Akj f(x, ·)
∥∥∥r
B

1/r
r,1

)1/r
.

We apply the restricted weak type inequality of Proposition 7.3 to the ex-
pression on the right-hand side to conclude the desired bound for V sh

r . This
finishes the proof. �

Remark. If in two dimensions one has the conjectured local smoothing end-
point results for p > 4 then one can also show the restricted weak type
(2r, 2r) estimate (7.14) for r > 2. The conjectured endpoint estimate in the
assumptions seems currently out of reach.
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8. A sparse domination result

We conclude the paper with a discussion of the sparse domination result
for the global VrA in Theorem 1.7. It is indeed an immediate consequence of
a special case of a result on convolution operators with compactly supported
distributions which can be found in [?, Prop.7.2].

We let u be a compactly supported distribution, define the dilate in the
sense of distributions by 〈ut, f〉 = 〈u, f(t·)〉 and let Tf(x, t) = f ∗ ut. For
fixed x let VrTf denote the r-variation norm of t 7→ Tf(x, t). As before let
I = [1, 2] and V I

r f(x) the corresponding variation norm over I.

Theorem 8.1. [?]. Let 1 < p ≤ q < ∞, and u ∈ S ′(Rd) with compact
support in Rd \ {0}.

(i) Suppose that

‖VrT‖Lp→Lp,∞ + ‖VrT‖Lq,1→Lq <∞, (8.1)

‖V I
r T‖Lp→Lq <∞, (8.2)

and that there is an ε > 0 so that for all λ ≥ 2, and all Schwartz function f

with supp f̂ ⊂ {ξ : λ/2 < |ξ| < 2λ},
‖V I

r Tf‖q ≤ Cλ−ε‖f‖p. (8.3)

Then there is a constant C = C(p, q) such that for each pair of compactly
supported bounded functions f1, f2 there is a sparse family of cubes S(f1, f2)
such that ∫

VrTf1(x) f2(x)dx ≤ C
∑

Q∈S(f1,f2)

|Q|〈f1〉Q,p〈f2〉Q,q′ . (8.4)

(ii) Suppose that in addition p < q, and suppose that (8.4) holds with a
constant independently of f1, f2. Then conditions (8.1), (8.2) hold.

Proof of Theorem 1.7. We let u be surface measure on the unit sphere. As
discussed in the introduction the inequalities in (8.1) were already proved
in the relevant ranges of Theorem 1.7 in [?]. The inequalities (8.2) and
(8.3) in the asserted ranges follow from the single-scale frequency bounds
in Propositions 4.6 and 4.7. Thus the sparse bounds in Theorem 1.7 are a
consequence of part (i) of Theorem 8.1. The sharpness of the sparse bounds
follows from part (ii); see also §3.9 for a direct argument. �
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