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ABSTRACT. We consider r-variation operators for the family of spherical
means, with special emphasis on LP — L? estimates.

1. INTRODUCTION

Given a subset £ C R and a family of complex valued functions ¢ +— ay
defined on E, the r-variation of a = {a;}ep is defined by

N-1
, 1/r
laly,(g) = sup  sup (Z lat,,, — at] )
NEN ti<<ty \ 4

t;€E j=1
for all 1 < r < oo, and replacing the ¢"-sum by a sup in the case r = oo.
When E = R we simply use the notation V, for V;.(R). A norm on the
space V;.(E) is given by ||a|ly,(g) := |lalloc + |alv,(g). Variation norms have
received considerable attention in analysis as they are used to strengthen
pointwise convergence results for families of operators {4;}. Of particular
interest is Lépingle’s inequality on the r-variation of martingales for r > 2
[?] (see also [?], [?], [?], [?]) and its consequences on families of operators in
ergodic theory and harmonic analysis; see e.g. the papers [?], [?], [?], [?],
[?] which contain many other references.

In this paper we focus on local and global r-variation estimates for the
family of spherical averages A = {A;};~0, given by

Af@ = [ ra=w)asty)

where do denotes the normalized surface measure on the unit sphere S%-1.
By a classical result of Stein [?] (d > 3) and Bourgain [?] (d = 2) the
spherical maximal function Sf(x) := sup,~q |A¢f(z)| defines a bounded op-
erator on LP(R?) if and only if p > d%'ll. Thus, for p in this range, we have
lim;_,0 A f(2) = f(x) a.e. for all f € LP(R?). A strengthening of this result
can be obtained by considering the variation norm operator V, A given by

ViAf(z) = Vi [Af](x) == [Af(2)]v, ((0,00));
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note that V,.[Af](x) > sup, |A¢f(x) — Ag, f ()] for all z € RY, tg € R. In this
context, Jones, Wright and one of the authors [?] obtained an almost optimal
result, namely V,.A is bounded on LP(R?) for all » > 2 if d%'ll < p < 2d, and
both the condition r» > 2 and the p-range are sharp. In the range p > 2d, it
was shown in [?] that V,. A is LP bounded if r > p/d, and fails to be bounded
if r < p/d, but no information was known for the critical case r = p/d,
p > 2d. Here we show an endpoint result for V,, ;A in three and higher
dimensions.

Theorem 1.1. Let d > 3, p > 2d. Then the operator V,,/4A is of restricted
weak type (p,p), i.e. maps LP1(R?) to LP>(RY).

We conjecture that a similar endpoint result holds true in two dimensions,
but this remains open.

Our main focus will be on LP — L9 results when p < ¢ for local r-variation
operators, that is, when the variation is taken over a compact subinterval I of
(0, 00); without loss of generality we take I = [1,2]. Scaling reasons quickly
reveal that one needs to consider compact intervals for LP — L9 bounds
to hold if p < ¢. While this is an interesting problem in itself, it is also
motivated by a question posed by Lacey [?] concerning sparse domination
for the global V;. A operator (see also [?, Problem 3.1]). See Theorem
below.

Results for the local variation operators are meant to improve on exist-
ing LP — L9 results for the spherical local maximal function S’ f(z) :=
SUpj<;<g At f(x), which we will now review. Schlag [?] (see also [?]) showed
that if d > 2 there are LP(R%) — L9(RY) bounds if (1/p,1/q) lies in the
interior of 4, which denotes the quadrangle formed by the vertices

QlI(O,O), Q?Z(d%dlad%dl)a
_ d(d—1) d—
Q3 = (%7 é)a Q4= (c(l27+1)’ j2+11)'
Moreover, S! fails to be bounded from LP(R?) to L(R%) outside the
closure of 4. Note that Q2 coincides with Q3 when d = 2, so the quadrangle
becomes a triangle in two dimensions.
The boundary segment p = ¢ amounts to the classical results of Stein

and Bourgain for S. LP-boundedness fails at the endpoint Q2 but Bour-
gain showed in dimensions d > 3 that S is of restricted weak type at o,

i.e. bounded from LT to LT in dimensions d > 3 (and any better
Lorentz estimate fails). The restricted weak type estimate at Q9 fails in
two dimensions [?] (even though it is true for radial functions [?]). For the
remaining boundary cases Lee [?] showed that S7 is of restricted weak type
at @4, and also at (J3 in dimensions d > 3. The two-dimensional restricted
weak type endpoint result at Q4 was also shown in [?], and relied on the
deep work by Tao [?] on endpoint bilinear Fourier extension bounds for the
cone. The restricted weak type inequalities imply LP — L? boundedness on
[Q1,Q4) and on (Q3,Q4), however on (Q2,Q3) the operator is of restricted

(1.1)
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strong type and no better (the necessity follows from the standard coun-
terexample; for the positive result one uses real interpolation on a vertical
line, with a constant target exponent). Incidentally, for the local operator
ST this also implies restricted strong type at @Q, which improves over the
restricted weak type of S at Q3.

Here we explore the existence of LP(R?) — L(R%) inequalities for

VIAf(x) = |Af(@)]v,12)-

In two dimensions the values of r are restricted to r > 2 (see §3)) but in higher
dimensions all r € [1, 00] may occur. For our sparse domination inequality
for the global V., the version for r > 2 is most relevant because Lépingle’s
result requires the restriction r > 2 (see [?]); indeed this necessary condition
can be shown to carry over to other results for the global V.

We start stating our results for d > 3. We first focus on the range r >
d‘(lilﬂ) which is the reciprocal of the 1/p coordinate of the point @4 in .
Note that this large range includes r > 2, so the following sharp LP — L4
results for V! A will yield, in particular, satisfactory results for the sparse
domination problem in dimension d > 3.

Theorem 1.2. Suppose d > 3 and r > d‘f;fl). Let Ba(r) be the pentagon
(Figure |1]) with vertices

P(T) = (?? Tld)’ Ql(r) = (%a %)a QQ = (d%dla d%.ll)

Qs = (%Y, Qu= (%P, &),

[y

Ul

Then
(i) VIA . LP — L9 is bounded for all (
unbounded for all (%, %) ¢ Ba(r).

(ii) VIA : LP — L9 is bounded for all (%, %) on the half open line segment
[Q1(r),Q2), on the closed line segment [P(r),Q1(r)], on the half open line
segment [P(r),Q4), and on the open line segment (Q4,Q3).

(iii) VIA : LP' — L9 is bounded (i.e. of restricted strong type (p,q))
if (%, %) belongs to the half open line segment [Q2,Q3). VLA fails to be of
strong type on [Q2, Q3].

(iv) VIA . LY — L9 is bounded (i.e. of restricted weak type (p,q)) if

(1.1) € {Qa Qa).

For an explicit description of the various conditions at the boundary see
43.1]

We leave open what exactly happens at the points Q3 and Q4; it is not
even known whether the local maximal function is of restricted strong type
at (3 and whether it is any better than restricted weak type at Q4. If we
take r = oo we recover the known theorem for the local spherical maximal
operator. Note that both P(r) and Q1(r) tend to Q1 = (0,0) as r — oo.

119’ é) in the interior of Pa(r) and
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FIGURE 1. The pentagon B,(r) for r > g;fl and d > 3
(Theorem[1.2)). The outer (dashed) quadrangle shows the re-
gion of boundedness as r — oo, i.e. for the maximal operator.

Shown with d =4 and r = 3.

Theorem [I.2] covers an interesting consequence for a sharp strong type
estimate at the lower edge ¢=! = p~!/d of the type set for the maximal
function.

Corollary 1.3. Let d > 3 and let d‘@ﬂ) <p<oo. Then VTIA . LP — LPd
is bounded if and only if r > p.

When the value of r is between the reciprocal of the 1/p coordinate of Q4

and @3, that is, % <r< %, we obtain the following.

Theorem 1.4. Suppose d > 3 and % <r< dc(lflﬂ). Let Bqy(r) be the
pentagon (F igure@ with vertices

Qi) = () Qa= (14, Qu= (43 ])
P(r) = (L, H5), Quir) = (1— 8y, 5).

Then

(i) VIA . LP — L9 is bounded for (%,é) in the interior of Pqa(r) and
unbounded for (%, %) ¢ Ba(r).

(ii) VIA : LP — L% is bounded for (%, %) on the half open line segment
(Qa(r), Q1(r)] and on the half open line segment [Q1(r), Q2).

(iii) V.I A is of restricted strong type (p, q) if (%, %) belongs to the half open
line segment [Q2,Q3). V.IA fails to be of strong type on [Q2, Q3].

(iv) VI A is of restricted weak type (p,q) if (%, %) = Q3.
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Note that for r = dc(ljzi) the pentagon PB4(r) in Figure [2[ degenerates to
a quadrangle, as P(r) = Q4(r) = Q4. We leave open what happens at the

closed boundary segment [Q4(r), P(r)] and the half-open boundary segment
[P(r), @s3)-

Q=

9
|
—

— N
.
+

el
Y

I~ e
N
+

<3
S8

Ly
FIGURE 2. The pentagon PBa(r) for dil <r < ng}i and

d > 3 (Theorem [1.4). The outer (dashed) quadrangle is the
region of boundedness for the maximal operator. Shown with
d=4and r = 18—1.
Finally, we address small values of 7.
Theorem 1.5. Suppose that either d > 4 and 1 <1 < 5 1 ord =3 and
3 <r <3 Let Qq(r) be the quadrangle (Figure @ with vertzces
r(d—1)—1 r(d—1)—1
Q1(r) = (rd’ rd) Q2(r) = ( (r(d—)l) ; (r(d—)l) )
d—1)—
Qs(r) = (%7 ﬁ)a Qua(r) = (1 - %, rld)

Then

(i) VIA : LP — L9 is bounded for (l,%) in the interior of Qq(r) and
unbounded for ( ) ¢ Qq(r).

(ii) VIA : LP — L9 is bounded if (l %) is in the half open line segment
(Qa(r), Qu(r)] and [Q1(r), Q2(r))-

(iii) For the case r = 1, d > 4, the operator VL A is of restricted weak
type (g 1,d —1) (that is, at Q3(1)) and of restricted strong type ( =1 9)
for =1 < ¢ < d—1 (that is, on [Q2(1),Q3(1))). In three dimensions,
VIA: L2(R3) — L%(R3) is bounded.

We leave open what happens at the closed boundary segments [Q2(r), Q3(7)]
for 1 <7 < 2% and [Q3(r), Qa(r)] for 1 <7 < 2.
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FIGURE 3. The quadrangle Q4(r) for 1 <r < % and d > 4
(Theorem [1.5)). The outer (dashed) quadrangle is the bound-

edness region for the maximal function. Shown with d = 4

5
andr—4.

111y

p’q?r’n

FIGURE 4. A diagram of the typeset of V/A in (
space for large values of d. The green region corresponds
to Theorem 1.2 (Figure , the red region corresponds to

Theorem (Figure, and the blue region corresponds to
1.5 3))

Theorem (Figure |3). The yellow region is conjectural.
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FIGURE 5. A diagram of the typeset of V/A in (%,%, %)—
space for d = 3. The green region corresponds to Theorem
m (Figure , the red region corresponds to Theorem
(Figure |2)), and the blue region corresponds to Theorem [1.5

(Figure |3). The yellow region is conjectural.

Note that there is a discrepancy in our results between d = 3, for which
we only obtain sharp results in the partial range % <r< d%‘ll and the case

d > 4, where results are obtained for all 1 < r < %. The reason is because
we restrict ourselves to the traditional range 1 < r < oo for the variation
norm. The definition of V,. can be extended, with modifications, to the
range 0 < r < 1 (see for example [?]). In that context, one can formulate
conjectural results for VI A for % < r <1 (see Figure {4)) for d > 4. We
remark that a positive solution to Sogge’s local smoothing conjecture [?] in
d 4+ 1 dimensions would imply a complete result up to endpoints. Partial
results in the range r > % can be proved using the techniques of this
paper. We shall address issues for r < 1 in a follow up paper.

Similarly, in three dimensions, the range 1 < r < 4/3 remains open as a
conjecture (see Figure |5)). Note that here we are in the traditional range for
the V,. spaces.

In dimension 2, due to the recent full resolution of Sogge’s problem in
2 + 1 dimensions by Guth, Wang and Zhang [?], that is,

0,/ A: L' — LA(LY),

it is possible to get an almost optimal result (up to endpoints) for the vari-
ation norm estimates.
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Theorem 1.6. Let d = 2.
(i) If r > 5/2 then VIA : LP — L9 is bounded if (%, %) is either in the
interior of the quadrangle Qs(r) (Figure[6) formed by the vertices
P(r)=($:3:),  Qi(r) = (55 37);
Q2:Q3:(%7%)a Q4:(57§)

or in the open line segment between Q2 = Q3 and Q1(r).
(i) If 2 < r < 5/2 then VA : LP — L9 is bounded 2f( f) is either in

the interior of the quadrangle Qa(r) (Fzgure@ formed by the vertices

or in the open line segment between Q2 = Q3 and Q1(r).
(iii) If r < 2 then VI A does not map any LP(R?) to any LI(R?).

Q=

N[ —=

(&)
B "_‘ 33 ([N

1

1
P

3=
[SULRE
Nl— +

FIGURE 6. The region Qy(r) if 7 > 5/2 (Theorem[1.6]i). The
outer (dashed) triangle is the region of boundedness for the
maximal operator. Shown with r = 5.

Note that, as for the circular maximal function theorem, the points ()2 and
Q@3 coincide if d = 2; therefore the pentagon (Figures [l and [2]) in Theorems
and |1.4] becomes a quadrangle for r > 2. Moreover, P(5/2) = Q4(5/2) =
@4, so the quadrangle becomes a triangle for r = 5/2. The bounds are
subsumed in Figure |8; note that in contrast with d > 3, the blue/yellow
region disappears, as d%'ll = % coincide for d = 2.

It is also possible to show unboundedness for » = 2 via an argument in-
volving the Besicovitch set, which will be addressed in a forthcoming paper.

We note that an affirmative answer to endpoint versions of Sogge’s prob-

lem as formulated and conjectured in [?] would also settle strong type bounds
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on the half-open boundary segment (Q4,Q1(r)]. Unfortunately such end-
point bounds in Sogge’s problem are currently only available in dimensions

four and higher.

Q=
S

Il
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w
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|
35
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1
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p

FIGURE 7. The region Qs(r) if d = 2 and 2 < r < 5/2
(Theorem ii). The outer (dashed) triangle is the region
of boundedness for the maximal operator. Shown with r =

2.2.

FIGURE 8. A diagram of the typeset of V./A in (%,%, %)—

space for d = 2. The green region corresponds to Figure [0]
and the red region corresponds to Figure
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Sparse domination. We now formulate a sparse domination result for the
global operator V, A, r > 2. Recall that a family of cubes & in R? is called
sparse if for every () € & there is a measurable subset Eg C @ such that
|Eg| > |@Q|/2 and such that the sets on the family {Eg : Q € &} are pairwise

disjoint. In what follows we abbreviate (f)g.s = (|Q|~* fQ |f]%)Y/.

Theorem 1.7. Assume one of the following holds:

(i) d>3,r>2, and (%, %) in the interior of Pqa(r).
(i) d=2,r > 2 and (%, %) in the interior of Qa(r).

Then there is a constant C = C(p,q) such that for each pair of compactly

supported bounded functions f1, fo there is a sparse family of cubes & such

that

[ van@h@dr<c 3 @iosfor  (12)
R? QES
where 14+ L = 1. Furthermore, the (1/p,1/q) range is sharp up to endpoints

a"q
in the sense that no such result can hold if (1/p,1/q) does not lie in the

closure of Py(r), or Qa(r), respectively.

Theorem can be obtained as an immediate consequence of a (more
general) sparse domination result in [?], together with the LP results in [?]
and Theorems and see and Sparse domination is known
to imply as a corollary a number of weighted inequalities in the context of
Muckenhoupt and reverse Holder classes. We refer the interested reader to
[?] for the weighted consequences for V;. A of Theorem

Structure of the paper. We start gathering some well known facts about
spherical averages and function spaces in §2} In §3] we provide the examples
showing the necessary conditions for our theorems. In §4] we exploit a sin-
gle frequency analysis to deduce the claimed bounds in the interior of the
regions, as well as some restricted weak and strong type endpoints, in The-
orems and The proof of the harder off-diagonal strong type
boundary results in those theorems, and therefore Corollary is provided
in §§5H6l In §7] we prove the restricted weak type inequality for the global
operator in Theorem Finally, the sparse domination result is discussed
in
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2. PRELIMINARIES

It will be convenient to consider the t-parameter as a variable. To this
end, let x € C°(R) so that x(¢) = 1 for ¢ in a neighborhood of [1,2] and
supported in [1/2,4], and define

Af(z,t) := x(t)Ae f(2). (2.1)

In view of future frequency decompositions, let 5y € C°(R) so that Sy(s) =
1 for |s| < 1/2 and By(s) =0 for |s| > 1. For every integer j > 1, set

Bi(s) = Bo(277s) — Bo(2' 7 s).

For functions g on R, and [ € N, define the operators A; by

Aig(r) = Bi(7)g(7). (2.2)

For functions f on R¢, and j € Ny, define the operators L; by

Lif(€) = B;(IE) F(©), (2.3)

and let Ej be a modification of L; satisfying szj = Lj;.

2.1. V,. and related function spaces. It will be convenient to work with the
Besov space B:v/lr. The Besov spaces By q(R) can be defined using the dyadic
frequency decompositions {A;}72, on the real line and we have [[ullps =

(o2 ol2 ) Ayul[p)?) /9. From the Plancherel-Polya inequality we know the
embedding

B! sV, < BYI (2.4)

7,007

see [?, Ch.1]. One can also consult the paper by Bergh and Peetre [?] (who
however work with a different type of variation space when r = 1) or refer
to [?, Proposition 2.2]. Thus an inequality for the variation operator V,/ A
follows if we can control the Bi/lr norm of ¢ — Af(x,t).

Note that, by our definition, V;(R) coincides with the space of bounded
functions of bounded variations. The fundamental theorem of calculus im-
plies

VP Allr—ra < |00All o Loz (5, (2.5)

so we shall focus on obtaining bounds for the right-hand side when studying
VEA.
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2.2. Frequency decomposition in space. Given j > 0, write
AtLjf = Kjﬂg * f, (26)

where L; is as in (2.3), so that f(]\t(g) = o (t€)B;(|¢]). Note that Kj; is a
Schwartz convolution kernel and therefore we restrict our attention to the
case 7 > 1.

An immediate computation yields the following pointwise estimates for
the convolution kernel.

Lemma 2.1. For all N € Ny, there exists a constant C > 0 such that
9J
(14 27||z] — t|)N

10§ Kjo(2)] S Cn27* (2.7)

holds for all x € RY, all t > 0 and all ¢ € Ng. Consequently,
[Kje(@)| S @)™ if Ja[ =10, te[1/2,4]. (2.8)
In analogy to the definition of A in , define
Ajf(2,t) = x(O) AL f(x) = x(£) Kjp  f ().

We gather some estimates for A; when the inequalities involve L' or L™
spaces.

First, from the trivial fact that ||A:f|lcc < ||f]|cc uniformly in ¢ € R, one
immediately has

A fll oo ooy S M1 lloo (2.9)

Moreover, one has the following estimates for L' functions.
Lemma 2.2. For1l < g < oo,
1A fl Loy + 27711004 fll oy S Il
Proof. By one has
9J

Ay 0+ 2o )| 5 [ 1) e

for all N € Ny. Integrating in ¢ over the support of x one sees that, for fixed
x?

v dy (2.10)

4 4
/ | A f(z, )] dt + 21/ |0 A f (1) dt
1/2 1/2

4 2]
< . dt dy S .

This gives the assertion for ¢ = co.
For ¢ = 1, the result follows from integrating in x instead, using the decay
in and taking into account that the integration in ¢ is over [1/2,4].
The remaining cases 1 < ¢ < oo follow from combining the above through
Young’s convolution inequality. O
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Corollary 2.3. For 1 <r < oo,
(1_1
1A £l oo (ry S 2702 £

Proof. Interpolate between
1Al oo ooy S 2711 £ 11,
which follows from (2.7, and Lemma with ¢ = co. O

2.3. Oscillatory integral representation. Given m € R, let S™(R?) denote
the class of all functions a € C*°(RY) satisfying

[0%a(€)] Sa (1+1¢)m
for all multiindex o € N& and all ¢ € R%. Given a € S™(R), define

T fie.t) = [ Bllshattiehe == fe ds. )
It is well known that the Fourier transform of the spherical measure is

5 (&) = 2m)"21e] 722 Tz ([€]) = bo(l€]) + D be(l€)e ),
+

where by € C°(R) is supported in {|¢| < 1} and by € S~@D/2(R) are
supported in {|¢| > 1/2} (c.f. [?, Chapter VIII]). Thus one can write

A1) = 27960 D20m) =S T g fla, Ox () (2.12)
+

where a+ € S°(R). We note that the kernel estimate (2.7)) could also be ob-
tained through integration by parts in (2.11)) using the above representation.
It is clear from the expression of Tji that

0 (T [a, f1(x, )x(1)) = Tila, f1(z, )X (t) + T;[@, £1(z, t)x(t)
where a(§) = ' (t]€])|€] £ i|€]a(€). This and Plancherel’s theorem yield

IA 2y S 27794 D2N s 1064 flliaey S 279272 f 2.
(2.13)

2.4. A Stein-Tomas estimate. In [?], in order to obtain LP bounds for the
global V. A, the estimate

2 1/2 g(l_1y_1
| (/ R TIL ) I (2 Al P N CAPY
1 P
with € > 0 is used for 2%1;1) <p < ooifd?>3;it holds for 4 < p < o0
if d = 2. This statement is closely related to estimates for Stein’s square-
function generated by Bochner-Riesz multipliers in [?], [?] and [?], and the
connection is given by the theorem of Kaneko and Sunouchi [?]. See also
[?] for endpoint bounds and historical remarks, and [?], [?] for recent work

on Stein’s square function. The Stein-Tomas L? Fourier restriction theorem
together with a localization result (cf. Lemma below) yields an analogue
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of [@:14) with & = 0 for p > 29+ The method is well known [?] but we
include the statement Wlth a proof for completeness.

Lemma 2.4. Let % < q < o0. Then for all j >0,

1A fll o) < 27949 £ 2
Proof. We use the oscillatory integral representation in and -
We only discuss the estimate for Tf [a, f](x,t)x(t) and abbrev1ate it with

T;jf(z,t) (the corresponding estimate for T is analogous). It then suffices
to show

2D T || Loy S 27949 flla, 2D < g <o
Let
Tog(z,t) = / B;(1€DaltleN e MElG(E, 1)l dg

and observe that in view of the support of x we have Tjg(-, t) = 0 for
t ¢ [1/2,4]. By a duality argument, it suffices to show that for g € LP(L?)
the inequality

| [Tiscoa, s ¢4 Plglpn,  1<p< B2 2a5)
holds. By Plancherel’s theorem the square of the left-hand side is equal to

L] [ xwsstenateiene e 0] ac

) b

We now apply the Stein—Tomas inequality for the Fourier restriction opera-
tor for the sphere (valid for 1 < p < 2(d+1)/(d+ 3)), and see that the last
expression is dominated by a constant times

[ / X8 (raltr)er =g 1) ai|
<[] o ol
/ ‘/ £)8;(r)a(tr)e g dt‘ dr) 2”2 (2.16)

where in the last inequality we have used Minkowski’s integral inequality.
Next, observe that

/ ’/ t)B;(r)a(tr)e " g(z,t) dt‘ dr

= ] [ XN 0Pt ot e )

/ B;(r)altr)e"rg(ro, 1) dt‘ ag 41 ar.

rd=1qr
p

22 gy

dr
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We integrate by parts in r and then estimate the absolute value of the
displayed expression by a constant times

// 1+23|t t’|) slg(z, t)g(x,t")| dt dt’

= — < 2
/ <1+2ﬂ\h\ /|gxt g(w,t+ )| dtdh < /|gact| dt.
Using this in (2.16]) yields (2.15)) and hence the assertion. O

2.5. Frequency decompositions in time. In order to deduce Besov space es-
timates for ¢ — A, f(z,t), we also work with a frequency decomposition in
the t-variable. We extend the definition of A; in to functions of x and
t and apply that decomposition to the operators 4; in the ¢-variable.

It is useful to observe that dyadic frequency decompositions in the vari-
able dual to t essentially correspond in our situation to dyadic frequency
decompositions in the variables dual to z. To see this, we show that the
terms A;A; are mostly negligible when |j — | > 10. We write

AlAf(xt)_Q j(d— 1/2 —(d+1) Z/ ]l% fz —y)dy
d

where, in view of (2.11)), one has

i) = [ [ @I ama ) [ (s aslse)e dsdg(czhl.?)

Lemma 2.5. (i) For every N € Ny, there exists a finite C > 0 such that
K5y, ) < Cn(1+ [yl + )~ min{277V, 27} i — 1] > 10 (2.18)

(ii) Suppose 1 < p,r < q < co. Then, there exists a finite Cn(p,q,7) > 0
such that

[ALA; fllLacry < Cn(pyq;7) min{TjN,TlN}Hme lj = 1] = 10.

Proof. Part (i) follows from after multiple integration by parts in
s and subsequent integration by parts in £, 7. Part (ii) is an immediate

consequence of (i) using Minkowski’s and Young’s convolution inequality.
[l

The above lemma allows one to only focus on the spatial frequency de-

composition when looking for estimates of the type LP — L9(B, BY ) for the
operator A in most cases of interest. In particular, we get the followmg

Corollary 2.6. Let se R, 1 <p,q,r < oo. Then for all j € Ny,

Al r— Lass ) S 27| A}l Lo pa(rry + Cn2™ N
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Proof. We write ”AijLq(Biﬂ < I+ II where

)

ALA; f‘

Lr R)‘

I:H ; 2% La(R4)
0

li—1[<10

II:H 3o
>0

lj—1>10

AA; f’

Lr R)‘ La(Rd)

Clearly ' {
IS 27| Aj fllpaery S 27801 All o= aceny 1 fllp
and by (ii) in Lemma
115y min{277V 27N £, < 2799 £,
>0
Combining both estimates, the assertion follows. O
In certain endpoint estimates in we use an upgraded version of Corol-

lary in conjunction with Littlewood—Paley theory, as presented in the
next lemma.

Lemma 2.7. Let 1 <r <00, 2<g<o00,1<p< oo such that r,p < q.
Let s € R. Assume that for all {f;}j>0 with f; € LP,

s 1/q
| sl | gy 5 (o277 050) (2.19)
320 7>0
holds. Then
1AL 2oss ) S 1l (2.20)

Proof. Write || Af||La(ps,) < I + 11, where I and I1 are as in the proof of
Corollary - 2.6| but with an addltlonal sum in the j-parameter. Recall that
Ajf = A;(L;f). Applying the assumption (2 in I, one obtains

I Z2jsllv4j<fjf>liu<mHLQ(W) < (i IZ,f13)°
H(DL ), H(DL )7

since ¢ > 2 and 1 < p < g < o0; note that the second line follows from
Minkowski’s inequality, the embedding ¢2 < ¢9 and the LittlewoodPaley
inequality. For the error term I, one applies (ii) in Lemma to obtain

I Sn Y Y 2 min{27™ 279y |, < 1 £l
1>0 j>0
for N > s. Combining both estimates, (2.20)) follows. O

Remark. The previous lemma also extends to ¢ = oo with the obvious no-
tational modifications.

S 1l
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2.6. Bourgain’s interpolation lemma. For the proof of restricted weak type
inequalities we will repeatedly apply a result of Bourgain [?] that leads to
restricted weak type inequalities in certain endpoint situations. We cite the
abstract version of this lemma given in [?, §6.2] for the Lions—Peetre real
interpolation spaces (see [?]).

Let A = (Ag, A1), B = (By, B1) be compatible Banach spaces in the sense
of interpolation theory. Let T; : A — B be sublinear operators satisfying
forall j € Z

1Tl a0—50 < Co27, | Tjllaysm < C12797, 0, >0, (2:21)

This assumption and real interpolation immediately gives [|Tj[z, 5, =
P P

O(1) for all 0 < p < oo and all § = ~y/(70 + 1), but one also gets a weaker
conclusion for the sum of the operators.

Lemma 2.8. Suppose (2.21)) holds for all j € Z. Then

|37
J

71 70

< C(v0,m)Cg* M Co

Ap,1—Bo,0o

3. NECESSARY CONDITIONS

In this section we modify known examples for the spherical maximal op-
erators to give some necessary conditions for LP — L? boundedness of the
local variation operator V.!A. For r > % these conditions show that
LP — L% boundedness does not hold in the complement of the region B4(r)
in Theorems [1.2{ and [1.4] and the complement of Q(r) in Theorem For
1<r< d%'ll they show that LP — L? boundedness does not hold in the
complement of Q4(r) defined in Theorem They also show that V! is
unbounded from any LP(R?) to any L?(R?) if r < 2, that is, part (iii) in The-
orem Finally, we also prove sharpness of the sparse bounds in Theorem
up to the endpoints.

3.1. Description of the edges. It will be helpful to make explicit the equa-

tions for the edges of the boundedness regions in the above theorems.

(i) Consider the case r > d‘(lz*_'i) and the region B,(r) in Theorem In

this case the point P(r) is on the line through (0,0) and @4, which is given
by {% = ip} The boundary lines describing P4(r) are

PG = 1= &) @0@m=(i=}) @&=(i=%)
QQi={t=$1-1}, QPM={i=%}
If d = 2, the points Q2 and Q3 coincide, and the lines Q1(r)Q2, Q3Q4,

Q4P (r) and P(r)Q1(r) describe the quadrangle Qa(r) in Theorem |1.6] (i).

(ii) For the case d%‘ll <r < d‘(ljlﬂ) the point P(r) moves to the line

connecting Q3 and 4 and only the part between P(r) and @3 will be part

of the boundary. Note that for r = % the points P(r) and Q4 coincide
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so that the pentagon degenerates to a quadrangle. As r — 5% the point
P(r) moves to 3. The boundary lines of Py(r) in Theorem [1.4] ﬂ are given
in this case by

Q1(r)Q2 = éz }3}, Q2Q3 = {% =411
W:{%:Lﬂ'%_l}v W:{*_%‘Fr(dl)_lh
Q ) {1_

. . . d o ,
It is convenient to note, in view of 4 that the equation = >+ - @ 1
is equivalent to 2 = 471 (q + ]%)

Again, if d = 2 the points Q2 and Q3 coincide, and the lines Q1 (7)Qa,

QsP(r), P(r)Qa(r) and Q4(r)(r)Q1(r) describe the quadrangle Qs(r) in
Theorem (ii).
(iii) In the case 1 <r < % we now have a quadrangle Q,4(r) in Theorem

whose boundary lines are
Q1(r)Qa(r) {1 = } Q2(r)Qs(r) = {, =1~ ;7 1
Q3(1)Qa(r) {1 = -1}, Qa(r)Q1(r) = {% =+

We next list our necessary conditions for bounds on V,!A. We remark
that the sharpness in the conditions §§3.2|—[3.5] corresponds to the necessary
conditions for the spherical maximal function S7.

3.2. The condition p < ¢g. This is the standard necessary condition for trans-
lation operators mapping LP(R9) to L4(R%), see [?].

3.3. The condition p > ddl This is (a variant of ) Stein’s example for spher-
ical maximal functions [?]. Let B be the ball of radius 1 / 10 centered at the

origin and let f(y) = Lp(y)ly/'“(log|yl) " (loglog |y|)*. Then f € L71
for all ¢ > 1, but for 1 < [z < 2 and t(z) = |x| we have Ay, f(z) = occ.

3.4. The condition d/q > 1/p. For the condition d/q > 1/p we just take the
standard example for the spherical averages [?], namely consider a fixed shell
Sjo (asin below) and g; = 1g; , so that [|g;||, < 273/P_ For |z| < 27972
we have A;gj(x) > ¢ > 0 and evaluating the L¢ norm over {z : |z| < 27772}
we get |[V,I Agjll, > 2779 and obtain the necessity of d/q > 1/p.

3.5. The condition % > 0 ddjll)p — 1. This is the standard Knapp example

in [?]. Given 0 < § < 1, one tests the maximal operator on fs being the
characteristic function of {y : |¢/| < 6, |y4| < 6%} and evaluates A, fs5(x) for
|2/| <60 and 1 < x4 < 2.

3.6. The condition % <1- ﬁ In view of i this example is only

relevant for r < ;%5. For large j define

Cin = —n277, n=1,...,N (3.1)
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where N = 2972 Let B;,, be the ball of radius 2797* centered at c;eq.
Let fj(z) = Y (~1)"15, (), so that
Isllp S NVro-selp
Consider
R={(a,2q) : |2/| < (4d)™}, 1 <zg<3/2}. (3.2)
Note that for z € R we have |z — ¢jneq| € [1,2]; indeed, |z — ¢;neq| >
|2g — ¢jn| > 1 and |z — cjneq| < (Jzg — cjnl? + (4d)2)Y2 < 2.
For z € R pick t,(z) = |z — ¢jneq| and observe that there is a constant
a > 0 such that Ay, ) fj(@) > a2 and Ay, o) fi(2) < =279,
and thus
| Aty (@) (@) = Apyy @ f(2)] > 20277070,
Hence, for any r we get VAf(x) > N¥/72734=1) for € R and thus for
any g > 0
V" Afillg
151l

Since N = 2972 the assumption of L? — L4 boundedness of V! A implies
% < d=1 o equivalently Lo %
p D r(d—1)

S i loid-1-9)

3.7. The conditz’oné > %+ﬁ—l, i.e. %(%—l—ﬁ) > % This is a variant
of the example in §3.5, We let ¢, be as in and Pj,, = {y : [//] <
279272 yy — ¢j| < 27974} Let N < 2772 Let f; = S0 (~1)"1p,, (2).
Then ||fjll, < NP2 9% . Let Q = {x : [2/| < 279/22, 1 < x4 < 3/2}
so that |Q ~ 277@=D/2 Let t,(z) = |24 — ¢jn| € [1,2]. Then for z €
Q, Ay, ) fiz) = a2~7(@=1)/2 and Apy @ fi(x) < —a279@=1/2 fo1r some
constant @ > 0. Hence VIAfj(z) 2 NYr2=35" and thus IVEAf g 2

. d—1 1 . ~
N/ro=i% (), Consequently with N = 2972

I
Ve Afjllg o ni-to-istarb)ristt 5 gii-22(+d)
1511
Hence the condition d%l(% + ]%) > % is necessary for VIA : LP — L4

to be bounded. Moreover, as p < ¢ by this also implies that no
LP(R?) — L4(R?) bounds hold for r < 2.

3.8. The condition d/q > 1/r. Consider the shells
Sim={y:|lyl —1—-n2| <2772} (3.3)

We set f; = 27]:[:1(—1)”]15].1”, with N = 2772, Then clearly ||f;], < 1
uniformly in j.

For |z] < 27975 let ty(z) = 14+ n277 € [1,2]. Then Ay, (,)fj(z) > a and
Ay, (2)fj(x) < —a for some a independent of j. Hence VIf(z) > NV ~
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. . 1 d
29/7 for |z| < 277 and thus |V, f;]|, 2 2/(+=4) . This implies the necessity
of the condition 1/r < d/q.

Remark. An alternative (more complicated) example for the condition d/q >
1/risin [?, §8].

3.9. Sharpness of the sparse bounds. The sparse domination result in The-
orem is sharp, and this is immediate from the examples just described
in this section. The argument, shown by Lacey in [?, Section 5] for the
spherical maximal function, can be extended in our context and even more
general ones |7, Proposition 7.2].

We exemplify this considering the example in §3.6] with the choice N =
2972, With f; as in this example we have |f;| = 1y where U is the union of
the balls B;,, which is essentially a 2~ J-neighborhood of the z4-axis segment
[—1/4,0]. V. Af; is evaluated at R as in (3.2). Then for large j we have

<V;~Afj, 1gr) = / V,Af(2)1g(z)de 2 2j(}—d+1)'
R4
On the other hand, suppose that p < ¢ and the sparse bound

/]Rd V,Afj(x)1g(z)de < Cy sup AS.(f 1R)

G:sparse

holds for some positive Cp, with qu,(f, 9) =2 0ee QUi op(LRr)Qq- By
the definition of supremum there is a sparse collection & such that

/Rd Vo Afj(2)Lr(2)do < 2C0 Y 1QIf)ap(1r) g -

Qe6o

It is crucial in the example that
dist(supp(f;), R) > 1 (3.4)

which implies that all cubes contributing to the sum have side length at
least 1. Moreover, for each [ > 0 there are only O(1) cubes of sidelength 2!
contributing. For each such term we can estimate

11 d-1
QI fNer(lR) e SR 7277

and by summing over all terms (taking advantage of p < ¢) we obtain
. .d—
PG S WAfy Lg) = [ VeAf(0)Lale)do S G2 T
R

and letting j — oo we obtain the same necessary condition as in §3.6] i.e.
<1

The remaining examples in §§3.3H3.8] yield similar necessary conditions
for sparse bounds, and this is proved by essentially the same idea, always
taking advantage of a support-separation property analogous to . We

leave the details to the reader.
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4. LP — L(L") ESTIMATES FOR A;

In this section we prove LP — LI(L") bounds for the dyadic frequency
localized operators A; in the closure of the regions P4(r) and Qq(r) fea-

turing in Theorems and This will lead to the proofs for
L — L7 bounds for V,/A if (%, %) belongs to the interior of Py(r) and

0q(r) respectively, as well as several restricted weak-type results through
Bourgain’s interpolation trick.

4.1. Localization. The following observation relies on the localization prop-
erty (2.6) of the kernel Kj;.

Lemma 4.1. (i) Forpo <p1 < q1 < qo, 1 <7 <00, and every N € N,
HAj”LP1—>Lq1(Lr) S ||AjHLp0_>LqO(LT) + CNQ_jN,
(’LZ) FOTTO§T17 1 Spgqgoo7
H-AjHLP—>L¢Z(L7"0) S ”Aj‘|Lp—>Lq(L"'l)-

Proof. Assume that || Aj| reo—rarry < 0o. Let f € LPL. For 3 € 7% let

Q; = Hle[;,i,;,i +1). Let Q; be a cube centered at 3 with side-length 20d.
Write f = Zé f; with f; = flg, and estimate

14l < | 30 1o Aifi 0 0+ | 2 trar iy
3 3
Since the @} have bounded overlap, by Holder’s inequality for g1 < qo,

/ /
15 (g A Al w) " 2 (A wn) ™
3 3

Applying the bound for the operator A;,

/
(14 Al ) ™ S M amocssocery (S 1550250 )
3 3

and, since pg < p1 < g1, we also have

/ / /
(S als) ™ < (S 0ale) "™ = (S0 < 1l
3 3

5
Moreover, by (2.8)) with N > d,

, _ T 1/q .
m< ([ @ Mswid]" a) " s 2V )
ly—z[>1
Combining the two estimates we obtain

1A fll o 2y S (Ml o s pao (zry + CN 277N ) | £ llpes

which is the assertion in part (i).
Part (ii) is immediate and simply follows from Hoélder’s inequality in the
t-variable. O

= I+ 11
Lo (L)

/¢
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1
q
, 4=Pp
1] a
90 A
1| S
q
| : < \\¢
1
1/pmaX(Q) L l/pmin(Q) 1 P
PO
FIGURE 9. Interpolation and localization lemmas. If

1Al 2o Lo (zr0) S 2774/ then [ Ajll Lo paey S 2-dd/4
in the blue triangle and ||Aj||LpHLq(meax(q>) < 9-7d/4 in the
red triangle.

4.2. Interpolation. Lemma can be extended to a larger range of expo-
nents by interpolation with (2.9) and Lemma and by the localization
property in Lemma, We state this in more generality; see Figure [0

Lemma 4.2. Let pg and qy such that 1 < py < qo < 0o. Assume that

sup 2jd/q0HAjHLPO—>LqO(LPO) <C <o (4.1)
j=0

Let qo < q < o0 and define pmin(q) and pmax(q) by

1 1 1 1
1 :@<1——>, _d2 (4.2)
Pmin(q) q Po Pmax(q) q Po

Assume that pmin(q) <p < q and 0 < r < min{p, pmax(q)}. Then

sup 29| A o (1) < 0.
Jj=>0

Proof. Note that pmin(q) < pmax(q) when ¢ > qo, with strict inequality when
q > qo, and ppmin(qo) = Pmax(qo) = po. Assume g > qp and let ¥ =1 — qo/q.
Note that (1 — 39)/po = 1/pmax(q) and (1 — 9)/po + ¥ = 1/pmin(q). We
interpolate (4.1)) with the inequality

S}ilg ||Aj||LP1—>L°°(LP1) <oo, 1<p <0
Jj=

for the choices py = 1 and p; = oo (by Lemma and (2.9)) and obtain
the LP — L9(LP) inequality for p = pmin(q) and p = pmax(q). A further
interpolation gives

sup 1A | ooy S (1+ sup A | o290 (£r0)) s Pmin(@) < P < Pmax(q)-
Jj= J=Z
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FIGURE 10. Regions for LP — L9(L") bounds for the single

scale A; for 0 < r < 1. As r increases the regions shrink due

g(d—1)

to the constraints » < p or r < T

We now combine this with Lemma and see that the LP — LI(L") es-
timates hold when pmin(¢) < p < pmax(q) and r < p and moreover when
pmin(Q) Srs Pmax(q) and r <p <gq. U

4.3. Bounds for A;. The previous lemma and the estimates in §2| yield the
following bounds; see Figure [10] for the regions.

Proposition 4.3. Let d > 2.
(A) Let 1<p<2,p<q<p and0<r <p. Then

14 £l paery S 277D £l 1

(B) Let 2 <p<q< 2(;1_+11)' Let 0 <r <2. Then

1

_sd=1¢1,1
1A fll oy S 27777 G2 £ o

(C) Let 1 <p <2, %ﬁgég% and 0 <1 < p. Then

p

1A fll ey S 277

(D) Let 28H < g < o0, 411 <

1
) £l o

and 0 < r < q(j_ifll). Then

1A fllzowry S 2799 £l oo

-d—1
T
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(E)

‘H
*c\»—‘
Q=

D) < g < oo

< d < SIf%é,and0<r§p.

S

1
o0, q

Q|

+
Then

1A fllaqzry S 27991 f 2o

Proof. The bounds in (A) for r = p follow from interpolation of Lemma
and the L%-estimate (2.13), whilst the remaining values of 0 < r < p follow
from (ii) in Lemma
The bounds in (D) and (E) are an application of Lemma [4.2] with py = 2,
— 2(d+1)
0 — —qg=1 >
The bounds in (C) follow from interpolation of those in (A) if ¢ = p’ and
: el _ 1d-1
those in (E) if T=vanlsp<2
Finally, the bounds in (B) follow from interpolation of the L? estimate
(2-13) with the LP — LP(L?) estimate in (D) for p = (djll), and a further

interpolation of those with the estimates in (C) for p = 2. O

which is the estimate in Lemma

The above bounds on (A), (C) and (E) are sharp. However, the bounds
in (B) and the r-range in (D) can be improved; for example, if information
on the local smoothing phenomenon for the wave equation is known. Recall
that these estimates, first noted by Sogge in [?], are of the type

([ e Snmpa)], szeonn. as

for some o > 0 if 2 < p < oo, where 5, := (d —1)(3 — %) It is conjectured
that (4.3) holds for all o < o}, where

e it @ <p<oo,
P 5p if 2§p§d%dl.

This conjecture is strongest at p = d2d1 After contributions by many, it

has recently been solved by Guth, Wang and Zhang [?] for d = 2, and is
known to hold for all p > 2(d+1) if d > 3 by the sharp decoupling inequalities
of Bourgain and Demeter ["] It is also expected that endpoint regularity
results with o = 1/p should hold if p > 2d/(d — 1); see [?] for results in
this direction if d > 4. The validity of the local smoothing conjecture would
imply the following bounds on spherical averages on the region (B). We
remark that these improved bounds are only relevant for our variational
bounds if d = 2, 3; for d > 4 the bounds in Proposition will suffice (see
the discussion after Theorem in the Introduction).

Proposition 4.4. Let d > 2. Assume that the local smoothing conjecture

holds, that is, holds atp:%for all o < 1/p.
(Bl)lfg+%;§%§fand2<q<2 2<p<2j1and0<r<p,
then

d

P VSRS
1A, £l pagrry S 277 7 f
for alle > 0.
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. 2(d+1
(B2) If%gmln{%ﬁ,ﬁ} and 2d 1 <q< (d—+1) and 0 <r < p, then

1A fllLacery S 2_jd/qﬂ'allme
for alle > 0.

In particular, the above estimates hold for d = 2.

Proof. By the oscillatory integral representation in and - the
estimate (4.3]) implies

A Fllzoqeey S 2792 5| fllz (4.4)
for p = =%, Interpolation of (4.4]) and Lemma n ylelds

”AijLq(LP) < 279 | £l o (4.5)
for % = %i and 2 < p < 2 < g < (dH). Moreover, interpolation of
and the L?-estimate ylelds

1Al Loy S 277 % Lo (4.6)

for2 <p< 2d . The region (B1) then follows from interpolating (4.5)) and
[9).
For the region (B2), interpolate (4.4)) and (2.9) to obtain
1A £l Loy S 2777721 £l o (4.7)

for all 2d < g < 00. A further interpolation of (4.7]) with (4.5 for d%dl <

qg< 2(d+1) yields the estimates in (Bs).
The assertlon for d = 2 follows since the local smoothing assumption was
established in [?]. O

The range of r in the estimates in (D) can also be improved to 0 < r <p

using the known local smoothing estimates at p = (d+1) forall o < 1/p. For
our variational problem, this only becomes relevant 1f d = 2, as otherwise
the results in Proposition will suffice. We note that the use of such local
smoothing estimates induces an e-loss with respect to (D) in Proposition
although this will have no consequences on our proof in d = 2. The
e-loss in the forthcoming proposition can be removed if p > 2((;1__31) when
d > 4 by the currently known sharp regularity estimates in [?].

Proposition 4.5 (Improved bounds in (D)). Let d > 2. Let 2Sl_+11) <g<
00, &1l <1 <1 andrﬁp. Then

P d+lp = g =
14 fllacery S 2772 £l

for all e > 0.
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Proof. By ([2.12)), the estimates (4.3)) for p > Zgljll) imply that, given any
e >0,

1A fll oo zey S 27797 £l o
( ) < g < oco. It then suffices to interpolate this with the
estimates in Proposmon (D), when ¢ = % and r = p. O

4.4. Bounds for VIA;. Let 1 <r < co. By the embedding (2.4) and Corol-
lary V;.A maps LP(RY) to LY(R?) if there exists an € > 0 such that

—i(L
1A flla(zry S 27959 £l o, (4.8)
for all f € LP. This will suffice to show all the bounds in the interiors of

PBa(r), Qq(r) claimed in Theorems and

We start with the case d > 3. We will only have to identify in each region
A—E of Proposition [4.3| the conditions under which (4.8 holds and to relate
this to the corresponding statements in the theorems in the introduction.

Proposition 4.6. Let d > 3. The inequality (4.8) holds for some ¢ > 0
under the following conditions on 1 < p,q < oo, 0 <r < 00:

(A7) 1<p<2,p<q<yp,and
o dd1<r<p;0r

o—<r< - cmd <1-— (djl)r,
(B)2<p<q<2(d+1) and
2E3+B<r<2 or
2(d+1) 1 2 1
o< o> -
(C)].<p<27 d+1p§a§]7,and
4?41 d+11 1 _ d-1
(+)<r<pand >ﬁ5*,5<7;0r
d d+11 11 2 .
o gty <r < min{7Hyp} and { > P11 0> St
or
O%<r§d%and%>%+ (d 51
(d) d-11 1 1 1 2(d+1) q(d—1)
(D) == ngoo;ﬁgﬁggicmda>afordd1)<r§ﬁ,
(d+) 1 d—11 1 1 d+11
(E’) == Sq=00, 0 S gy g Sp S 1=y lqanda>ﬂfor
2(d+1)

a(d-1) <r<p.

Proof. 1t suffices to check that the exponents appearing in the inequalities
A — E in Proposition are strictly greater than 1/r under the claimed
conditions.

(A’) The exponent in (A), Proposition is dz;l. Note tha

Satisﬁed if ﬁ < r < p. Moreover, it also holds if l % and
r < 725- The additional constraint r > d 7 follows since p > 2 in (A).

Note thls requires d > 3.
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(B’) The exponent in (B), Proposition is %(%4—%). Note that %(%—l—

%) > % is satisfied if ZE?:B <r<2asq< Q(jjll). Moreover, it also

holds if % > ﬁ - % and r < Z%ﬂg The additional constraint

r > -2 follows since ¢ > 2 in (B). Note this requires d > 3.

(C’) The exponent in (C), Proposition is %(% l) Note that %(%—i—

) > = is satisﬁed if ‘g H) <r<wp,as - 2 gﬁpl The additional

constralnt : gﬂ; 1 follows from r < p. Note that this and g > p/,

also yield the additional constraint % < d%dl.

For the remaining values r < %, it simply holds by the assump-

1
thIl a > "‘ (d 1)

if r < % The lower bound r > % follows from the assumption
7> —|— (d ) —1 with ¢ > p’ and p < 2. This yields d 1 <r<p<2
Wthh requires d > 3.

(D’) The exponent in (D), Proposmon 1s . Note that d 1 is trivially

satisfied if l > di The lower bound r > ZE?B

Q(j_ﬂ) Note that when combined with r < q(d +1) requires d > 3.
(E’) The exponent in (E) Propos1t10n is 5 Note that g > 1 is trivially

satisfied if % . The constraint r > dE d+ ) 2((;1_+11).

Note the above constraints combined yield the additional condition

1
i< g +1’ which requires d > 3. O

— 1. Note that r < p is automatically satisfied

follows from g <

follows from ¢ >

We next turn to the case d = 2. As observed in the proof of the previous
proposition, the bounds in Proposition [£.3] do not yield any bound of the
type (4.8)) for d = 2. We use instead the upgraded bounds from Propositions

4.4 and 451

Proposition 4.7. Let d = 2. The inequality (4.8) holds for some € > 0
under the following conditions on 1 < p,q < o0, 0 <71 < 00:
(B1’) %p,g%g%and2<q§4,2<p§4, and
o b5/2<r<p;or
o 2 <r <min{5/2,p} (mdé>%+%f
(By’) % gmin{i,%p,,%}, 4<q<6 and 1 > 5 for2<r<p.
(D’) 6 < q< o0, ggégg and * >2T for 3 <r <p.
Proof. As in Proposition it suffices to check that the exponents appear-
ing in the inequalities By, By in Proposition [£.4] and in Proposition [£.5 are
strictly greater than 1/r under the claimed conditions.

(B1”) The exponent in (B;’), Proposition 4.4 is %(é + I%) — . Choosing
€ > 0 small enough, %(% + I%) —& > % is satisfied using q < 3p’
and 5/2 < r < p. If r <min{5/2, p}, the required condition follows
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simply by assumption choosing € > 0 to be small enough. Note that
r > 2 follows from the assumptions l( + i,) > Land p<yq.

2 D r
(B2’) The exponent in (By’), Proposition is 2/q — e. Choosing ¢ > 0

small enough, 2/q — ¢ > % is trivially satisfied by the assumption

% > % The lower bound r > 2 follows from the assumptions % > %
and g > 4.
(D’) The exponent in (D’), Proposition is 2/q — e. Choosing € > 0

small enough, 2/q — ¢ > % is trivially satisfied by the assumption

% > % Note that the lower bound r > 3 follows combining the
assumptions é > % and ¢ > 6. (]

Combining Propositions [£.6] and [£.7] with the observations in §3.1] we get
the following estimates for VTI A for all » > 1. We use the trivial fact that
LY(V,,) is embedded in L4(V;,) for ro < ri, which allows to overcome the

r<porr< q%ﬁ:ll) constraints in the above Propositions.

Corollary 4.8. Letd > 3. VIA: LP — L9 is bounded if one of the following
conditions is satisfied:
(i) ( ) belongs to the open line segment (Q1(r), Q2) or the interior of

the domam Ba(r) in Theorem. (7" > dddﬂ))

(i) ( ) belongs to the open line segment (Q1(r),Q2) or the interior of
the domam &Bd( ) in Theorem J (3 <r < dd )
(m) ) belongs to the open line segment (Ql( ) Q2(r)) or the interior

of the domam Qq4(r) in Theorem. (1<r< 3% ford>4 or 3 <r<3
ford=23).

Corollary 4.9. Letd = 2. VA : LP — L9 is bounded if one of the following
conditions is satisfied:

(i) (%, %) belongs to the open line segment (Q1(r),Q2) or the interior of
the domain Qa(r) in Theoreml (i) (r>32).

(ii) ( ) belongs to the open line segment (Q1(r),Q2) or the interior of
the domam Qo(r) in Theorem. (i) 2 <r<3).

4.5. Various endpoint bounds. We shall discuss various endpoint bounds
that can be obtained by interpolation (in particular Bourgain’s interpolation
lemma as formulated in . This will settle all endpoint results claimed
in our theorems except for a more sophisticated strong type bound at the
lower edges which will be discussed in the two subsequent sections.

We start by looking at the point Q3.

Lemma 4.10. Letd > 3, r > ddl Let p3 = dip g3 =d.

Then A : LP3l — [0 (Bl/T) is bounded. Consequently, V,'A is of
restricted weak type at Q3 in Theorems [T.2 [1-3 and[1.]}
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Proof. By standard embedding theorems, we can assume r < 2. For r > d%
1 2.3/ and Proposition 4.3 (A),

A fll e ry S 2j(171/”|!f|!
1A £l o 1y

and by Corollary
HAijLoo(Bi,/lr) S 2]Hf||17
”AJfHLr’(Bi’/lT) ~

The lemma then follows by applying to the last two inequalities. The
bound for V,. A is a simple corollary in view of ([2.4)). O

A similar argument yields a restricted weak type bound at Q4.

Lemma 4.11. Let d > 3, r>d(d 1) andmz% Q4:d;j11-

Then A : LP&! — [94°°(B 1/r) is bounded. Consequently, VIA is of
restricted weak type at Q4 in Theorem

Proof. By standard embedding theorems, we can assume r < 2. By assump-

d(dflr), — 1> 0. It then suffices to interpolate using §

tion on r we have
the inequalities

AN oo grrry S 2N Il
(B.4)
_i(d _1 .
”‘Aijqu(Bi/lr) 5 2 ](qo 2 S ||f||Lp0 with po =7, ¢ = leir%'r,;

the last inequality follows from Proposition (E). O

Corollary 4.12. Let d > 3. Then the following hold:
(i) VIA : LP — L9 is bounded if (1/p,1/q) belongs to the open segment

(@3, Q) in Theorem 4 (r> dddﬂ
(i) VIA : LP' — L% is bounded if (1/p,1/q) belongs to the half-open
segment [Q2, Q3) in Theorems and |1.4] (r > d;dl)_

Proof. Part (i) just follows from mterpolatlon between Lemmaand-

For part (ii), let p = f and fix gg = ﬂ and g3 = d. For 3 € Z4, let
Q; = Hf 113i,3i+1) and let Q] be a cube centered at 3 with sidelength 20d.
Write f = Z [; with f; = flg,. As V.IAis local and the Q7 have bounded
overlap, by Holder s inequality

1/q2
IV Af | o < (Z 20V AR Bee) ™ (Z I Vi Afl B )
By Lemma [4.10] the right-hand side is further bounded by

1/q2
(Zufauml) Ry Pt
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as p = qg = p3 = %. This implies that VTI A is of restricted weak type

at Qg if r > %. By interpolation between Q2 and Q3, one has that V! A
is of restricted strong type on the open line segment (Q2,@3). Finally, the
restricted strong type at ()2 follows from the above localization argument,
but using any of the just obtained LP! — L4 inequalities for ¢» < q < ¢3
instead of the LP'l — L3> O

Remark. One can obtain that V! A is of restricted weak type at Qo in Theo-
rems(1.2]and[L.4](r > d/(d—1)) by an application of §2.6|with the inequalities

451 iy S 2005

1Al 2 gy S 2224 .

Interpolation with the restricted weak type bound at Q3 yields the restricted
strong type bounds on the open line segment (Q2,Q3). However, in order
to deduce the restricted strong type at Q2 we need to argue with the local-
ization argument presented in the proof of Corollary above.

We next address the claimed bounds for V' A in Theorem

d—

Lemma 4.13. Let d > 4. The operator 0y A maps Lt boundedly to
LA=1eo(LY). Consequently, VI A is of restricted weak type at Q3(1) in The-
orem .3

Proof. We have [|0,A4; fll 1211y S 1004 fll 212y S 2777 || fll2. We interpo-
late the estimates (obtained from Corollary [2.3|and Proposition [4.3|together
with Corollary

100A; fll ooy S 27| fII1
_jd=3
106A; fllr2y S 2772 [ fll2
and obtain the conclusion by application of O

Corollary 4.14. Let d > 4. The operator VIA : LP' — L9 is bounded if
(1/p,1/q) belongs to the half-open line segment [Q2(1),Q3(1)) in Theorem
L1l

Proof. The restricted strong type bounds on [Q2(1),@3(1)) can be obtained
as in Corollary O

Lemma 4.15. Let d = 3. The operator V! A is bounded on L*(R?).
Proof. By (2.5)) we have

WAl < | [1oasc.ol e, < ([f 10402 arar) ™ < e

by (2.13) and orthogonality. O
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5. A MAXIMAL OPERATOR

We first introduce an auxiliary maximal function which will be crucial in
the proof of the endpoint bounds in 6]

For L € Z let Qr, be the family of all cubes in R? with side length in
(2L=1 28], Given Q we write

LQ) =L ifQeQ. (5.1)

We use the slashed integral to denote an average, i.e.

1
){2 o) dy = 1o /Q o(y) dy.

For 2 € R? we let Qr () be the collection of all Q € Qf, containing x. Given
n=0,1,2,... and a sequence of functions F' = {f;};>0, define the maximal
function

1/r
M, F(xr) =sup sup )[ (/|Ajfj(y,t)|r dt) dy. (5.2)
j=n QEQn—j (33) Q

The following result should be compared with Lemma Away from
the right boundary of the region in that lemma, we gain a crucial factor
of 27", Related statements can be found in [?], [?] (see also [?] for dual
versions).

Proposition 5.1. Let pg and gy such that 1 < pg < qo < 0o. Assume that

sup 2jd/qo”~/4j||LPO—>Lq0(Lp0) < 0. (5.3)
j=0
Let qp < q¢ < o0 and pmalx(q) = %Opio and m =1-2(1— pio) Assume
that
< ) min < < max )
pmin(q) < p<q and 4" =P ifp (9) <P < pmax(q) (5.4)
7 < pmax(q)  if pmax(q) <p < g
Then there exists e(p,q,r) > 0 such that
. 1/q
190 Flly < Cpgr2 00 (57 279 0) . (5.5)

jzn
For the proof we first observe a uniform estimate in n.

Lemma 5.2. Let pg < qo and assume (5.3)) holds. Let ¢ > 1 and qp <
q < o0o. Let Pmin(Q); pmax(Q) be as in ‘) and let pmin(Q) <p<qand
0 < r < min{p, pmax(q)}. Then

- /
9% Fle < (027 0550) (56)

jzn
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Proof. Let Mgy, denote the Hardy—Littlewood maximal function. Then

z€EQ jzn
< AIHL[sgplLAJJBHLTQQ](m)
Jj=n

1/r
|19, F(2)] < sup )[qup (/ ’Ajfj(y,t)‘rdt> dy

and therefore, since r < g and ¢ > 1

Pl S s 1A ol < (14l e) ]

i>n
/ . /
— (S ) " 5 (D2 se)
j>n jzn

here in the last step we have used Lemma [4.2] O

We now show how to gain over this inequality in the special case r = py.

Lemma 5.3. Let pg < qo and assume (5.3)) holds. Then for qo < q < o0,
Po=p=q

_nd(L_—1 . 1/q
1900 Fllg < 27" (7 279 ) (5.7)

Jjzn

Proof. We use real interpolation for the sublinear operator 9, ,. Then

(5.7) follows from

i 1/q0
1Mo Fll S (3 2770502) " m<p<a,  (58a)
jzn
and
190 0 Fllse < 275 sup | Sl 70 < p < co. (5.5b)
j=zn

Note that ([5.8a]) immediately follows by Lemma
We now show (5.8b). Fix z € R%, j > n and Q € Q,_;(z). Let R, be a
cube of diameter 20d centered at x. Then split

I (1 oma)™ 4 < 1)+ 11)
where

1= Y ([ 1At siw o a) ™ a
1) = | ([ 1At siwora)™
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Q=

S

1/pmin(q) 1

1/ pmax(q)

1
Po

FIGURE 11. Bounds for M, ,,. At r =p = po, o < ¢ < 00,
we have a gain in n given by Lemma Interpolation with
the uniform estimates from Lemma for r = p = pmin(p)
and r = p = pmax(q) yields the estimates in the interior of
the blue triangle. The bounds in the red triangle follow by
the localization argument.

Using Hélder’s inequality, then the assumption (/5.3]) and then again Holder’s
inequality we get

(g [ 14t bl i an) ™

S1QITH 02730 1R, fllp S 27|k, fillpe S 27N fjllps

I(a)

since () € Qp,—; and p > po.
Next we use estimate (2.8]) (with M > d)

s XQ/Iy—wlzl Crr(2|y — w])™ ™| f;(w)| dw dy

S 27 Fillp S 27 M| £l

We combine the estimates for I(z), II(x) and then, after taking suprema in

z,in Q € Q,—j(x) and in j, (5.8b)) follows. O

The proof of Proposition 5.1 follows from (carefully) interpolating the two
previous lemmas and a localization argument, as indicated in Figure

Conclusion of the proof of Pmposztwn . We fix ¢ > qo Observe that

1 1 L . 1 o )
pmin(@ PO =(1-7)- po) > 0and = 20 @ = ( ) > 0 so that

Pmin(7) < Po < pmax(q). We first focus on the case pmin(q ) < p < Pmax(q),
for which it suffices to consider » = p; the corresponding inequality for
smaller r follows by Hélder’s inequality on [1/2,4]. The remaining case
Pmax(q) < p < g will follow as a consequence of the previous range via a
localization argument.
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Let p be as in (5.4). In what follows set w(j) = 277% and let £ (LP) be
the space of LP-valued sequences with

, /
1l en = (S 27715518) ™"

J

By linearization it suffices to consider, for any measurable choices of pos-
itive integers  — j(x) € N, with j(z) > n, cubes Q(z) € Q,—j(z), and
measurable L' (R) valued functions (z,y) — v(z,y,-) in L®(R2%), the bi-
linear operator

Ma[F0)(z) = ){2 . / o(, . 5) Asiay fi(o (- 5) ds dy

and show that
IMa[F,0)[za S 279D F| gy oy 0] oo (1 (5.9)

~

The conclusion for » < p = pg is immediate from Lemma [5.3, and in
the study of the range pmin(q) < P < pPmax(q) we shall distinguish in what
follows between the pmin(q) < p < po and pp < p < Pmax(q)-

The case pmin(q) < p < po. It suffices to prove (5.9) for r = p. We have
from (5.)

[Mn[E,v]llze S IF e oy IVl oo oy for p = pmin(q) (5.10)
and from ([5.7))

—nd(L -1
[MalB,elllze S 27" 50 P g ool gy (51D
One ca? interpolate (5.10]) and ([5.11)), noting that for 0 < 6 < 1 and m =
1— %1
q Py’

Pmin(q) < p < po 1 1\ __ dp} 1 1
o, o _a1 ( — 0G0 =G0 6

pT Pmin (Q) p
and deduce

IMa[F,0]lpa S 27" ®9D | Fll g, 1oy 0] oo (17

~

d /
for pmin(@) <p<po, €, 0,0) = LGy — ) >0 (5.12)

with the implicit constants independent of the choices j(x), Q(z). Thus we
also get for 7 < p, pmin < p < po and e(p,q,7) = (p,q,p) as in (5.12)).

In order to carry out the interpolation argument one uses Stein’s inter-
polation theorem on analytic families of operators, with an obvious analytic
family suggested by the proof of the Riesz—Thorin theorem; we omit the
details. Alternatively one can use Calderén’s second method [, -]?, combin-
ing a result on multilinear maps with a result on Banach lattices such as

L>(X), see [?, §11.1], [?, §13.6].
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The case py < p < pmax(q). Again, it suffices to consider the case r = p.

1 — 9 1
Note that for 0 < 8 < 1 and o = 50

po<p< pmaX(Q)

—  (1-0)d(z-hH =l 1) (5.13)

1-9 9 1 q 9 \P  pmax(q)
Po + Pmax(q) T p
We claim
IMa[F 0]l S 27" 9 Fll g o) [0]] oo 1)
fOI‘ Po S b § pmax(Q)v 5(]7, Q) = %(% - pmi{(q)) > 07 (514)

Given ([5.13)), the inequalities (5.14) can then be deduced by the above in-
dicated interpolation arguments from

Ml olllze S IF g, moyl[0ll oo oy for p = pmax(q) (5.15)
and L
pd(L -1
|MalF,ellze S 27" %7 Fllg o0l e gy (5:16)
Note that (5.15)), (5.16) are immediate consequences of ([5.6) and ([5.7)), re-
spectively.

The case pmax(q) < p < q, 0 < 7 < pmax(q). This case just follows by
the localization argument used in the proof of Lemma [£.1] via the kernel
estimates ([2.8]), which allows to show that if

n s 1/q
199l 5 277 (32 2771501, )

j>n
holds for all 0 < r < r, and some 1 < p, < g, then

_ . 1/q
19 Flg S 277 (3027701 55113)
Jjzn
also holds for all p, < p < g and all 0 < r < r,. For fixed ¢ € (qo, 0],
the desired estimates for pmax(q) < p < ¢ then follow from the above with
input inequalities ry, = ps = pmax(q) — € for € arbitrarily small. Note that

this argument has already been used in the context of 9, ,, in the proof of
(5.8b) in Lemma [5.3] We omit the details. O

6. THE SHARP LP — LPY(LP) BOUND

In this section we will give bounds for the sums of the operators .A; which,
in particular, will cover the crucial endpoint bound at P(r) = (%, %) in
Theorem as well as the remaining endpoints bounds stated in Theorems

3 [ and L5

Proposition 6.1. Let 1 < pg < go < 0o. Assume that

sup 2jd/q0||./4jHLPo—>qu(Lpo) < Cp < o0. (6.1)
Jj=0
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I _ q@l L P
Let 9 < q < and deﬁne pmax(q) ¢ Ppo and pmin(q) 1 q (1 po)'

Assume that p, r are as in (5.4), i.e.
r<p if Pmin(q) < P < pPmax(q),

pmin(q) <p S q and .
r< pmaX(Q) Zf pmax(Q) <p<uqg.

Then for all {fj};>o0,
H > ||Ajfj||LT(R)‘
>0

Proof. We first observe that by the monotone convergence theorem it suffices
to show (6.2) for any finite collection of functions {f; ;;é, with uniform
bounds in n € N; moreover, all f; can be assumed to be in the Schwartz
class. From Lemma we get

| S 4553l - )|
j=0

and it is our task to remove the n-dependence in this estimate for p,q,r as
in the statement of the Proposition.
For a function G € L% (R?) we recall the definition of the Fefferman-Stein

sharp maximal function
= sup }[ ‘G }[ G(w) dw’dy
TEQ Q

which satisfies the bound |G|, < ¢(q)||G¥ ||, for every ¢ with g9 < g < oo,
and the implicit constant in this inequality is independent of the L%-norm
of G. This was proved in ['7] We may apply this inequality to

G(z) = l/LAj}xt|ﬁﬁ) ,

j>0

La(R4)

< oo+ a)( X2 " 62
>0

. 1/q
< qpl-1/4 —jd £ |19
Loy S0 (Ej 2 f18) ", <g<oo (63)

as its L9-norm is finite by (| -; recall the sum is assumed to be finite. Let
Q(x) = UrezQr(x), i.e. the family of cubes containing x. We estimate

GH(z ) S Gr(x) 4+ Grr(x) + Grrr(x)
where, with L(Q) as in ,

Gi() = s f\ H&meW—XW%MWNW&@N%
QeQ( 0<j<—L(Q 9
Hio

Grr(z) == sup X Z ||A fi(y, )l dy,

QEQ(w ]> L(Q

L(Q)<
Ouii(w) = swp ZnAjfj(y,-)HUdy.
QeQ() szo

L(@)>0
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The estimate for Gryr follows from the estimate for Gy;. To see this let

) =D IAifity, e, Udw)= sup )[U(y)dy
§>0 Qeo(w) JQ
L(Q)=0

Given a cube Q € Q(z) with L(Q) > 0 we may tile Q into cubes of side
length 1 and get

)[ Uy) dy < f Un(w) dw < My [U.](2)
Q Q

where My denotes the Hardy—Littlewood maximal operator. By a very
crude estimate we can replace U, by Gy and get

Grir(z) < Myr[Grr)(x). (6.4)

The term Gy is the most interesting but it has been already taken care
of in We can write, with U;(y) := || A; f;(y, )|z

gH = sup X U_g
Qe Q(w) Z
L(Q)<

(e 9] o0

<> sup | ){ U_(@)n(y)dy = sup  sup )[ Uj(y) dy.

n= OQEQ(-T n=0 j>n QEanj(w)
L(Q)<0
Hence, with 9, ,, defined in (5.2) and F' = {f;};>0, we get
gII Z m’r nF
n>0

From Proposition (6.4) and the L9-boundedness of the Hardy-Littlewood
maximal operator we obtain

. 1/q
1Grellg + 1Grrlla 5 (32 2770512) (6.5)
Jj=>0

for the range of (p, q,r) assumed in the proposition.
It remains to consider the term Gy, where we can use the cancellative
properties of the #-function. We will show that

s 1/q
191l 5 (D277 0508)  for pmin(a) <p <. (6.6)
>0
For n > 0 define
Grn(z) :=sup  sup )[ ‘IIA fiy, e — )[ [ A; f(w, )| r dw| dy

720 QeQ_pn—j(x)
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and, arguing as for Gy, we observe that Gr(z) < 3 5o Grn(z). Our claim
will follow from the estimate

_ s 1/q
19ralle S 27 (D 2701505) T for pum(@) Sp<a (67)
Jj=20
uniformly in n. In order to show this, note that by the triangle inequality

Grn(xz) <sup  sup " ){Q XQH-Ajfj(% )= Ajfi(w, )]

720 QeQ_n—;

- dwdy.

Write A; f; = EjAj fj and let 6; be the convolution kernel of Ej. Then for
j S n,r,y,w € Q) Q € Q—n—j

(/’Ajfj(y’t)_Ajfj(w,t)‘rdt>1/7"
< (/‘/(%(y— )_aj(w_Z)>Ajfj(zyt)dz‘rdt>l/r
< //01 [y —w, VO;(w + 7(y — w) _Z)>|d7_(/|Ajfj(z’t)‘rdt)1/rdz'

Since 1+ 27 |w+7(y —w) —z| & 1+ 27|z — 2| for z,y,w € Q, Q € Q_,,—;(),
T € [0,1], we can estimate the last expression by

Crog-n—i 9j(d+1) " 4 l/rd
T - iz, )" dt
N /(1+2ayx—z|)N</’ il de) e
and hence we get for n > 0 and N > d
Grn(2)| S 27" MuL [S.‘ig 1A4; £l £y ().
j>

This implies, using the LY boundedness of the Hardy—Littlewood maximal
operator My, and Lemma [4.2]
1/q
(Y14 w) |

1G1n
>0

/ - /
= (1A lwn) 22 (s 0g)

Jj=0 Jj=0
which is (6.7)) and thus is proved. The proof is complete after combining
and (6.5)). O

As (6.1) holds with py = 2, qo = % by Lemma Proposition

yields the following.

10 S 27" sup 143 0 5 27 .

Corollary 6.2. Assume that

2(d+1) d+11 1 d+11
d—1 < q <00, Tla<13<1_T167 7’<p (68)
or
2(d+1) 1 o1 o~ d+ll q(d—1)
d—1 <q<OO, aSES *167 r < d+1 (69)
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Then for all {f;};>0,
HZHA il g (Zz ) 118) "

Combining this with Lemma one obtains the strong type bound at
P(r) in Theorem (that is, Corollary [L.3).

Proposition 6.3. Let d > 3 CH p < oco. Then

» Ad-1)
IAF gy < 115 (6.10)
Moreover,
IV Afllpoa < || fllzs- (6.11)
Proof. The bound - ) follows from (6.10]) via

To prove we apply Corollary [6.2] and Lemma n with s = d/q =
1/p. We Verify the assumption for ¢ = pd, r = p. The condition

%% < %o is satisfied (for ¢ = pd) when d? — 2d — 1 > 0, which holds when

d > 3. The condltlon =<1 - dﬂ; is satisfied (for ¢ = pd) if p > dc(ljlf%).
(d-‘rl)

is also satisfied if ¢ = pd, p > %. In particular,

The condition g >

the latter implies that q = pd > 2 in this range, so the hypothesis of Lemma
are also satisfied and thus (6.10) follows. O

Arguing in a similar way, we obtain the remaining claimed endpoint

bounds in Theorems and

Proposition 6.4. Let d > 3 and r > dc(ldﬂ)

(i) Let r < p < rd. Then the operators A : LP — L”d(Bi/lr) and VIA :
LP — L' are bounded. That is, VI : LP — L9 is bounded if (1/p,1/q)
belongs to the closed segment [Q1(r), P(r)] in Theorem|[1.9

(ii) Let dd 7 < p <. Then the operators A : L — Lpd(Brl,/lT) and

VIA:.LP — Lpd are bounded. That is, VI . LP — L9 is bounded if (1/p,1/q)
belongs to the half-open segment [P(r),Q4) in Theorem .

Proof. For part (i) we use again Corollary[6.2]and Lemma[2.7 with s = d/q =
1/r. The condition ( . yields the ranges rd”l% <p< rdd=1) and

(d—1)—=(d+1)
r < p. Note that r > % if and only if r > dc(ljl—i_i)' moreover,

2(d+1) d*+1
d—1 d(d—1)
whenever d? — 2d — 1 > 0, which holds for d > 3. This settles the range

r<p< Tdflizl) Td(g‘fll) < p < rd corresponds to (6.9). Note

that the condition r < q(d+1) requires (for ¢ = rd) d> — 2d — 1 > 0, which

holds when d > 3. The condition ¢ > Q(d_ﬂ) was already verified for .
This concludes the bounds in (i).

the condition ¢ > (for ¢ = rd) is satisfied in the range r >

. The range
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Part (ii) follows from standard embedding theorems from Proposition
6.3 U

Proposition 6.5. Let d > 4 and 1 < r < d(d 1) ord=3and 4/3 <r <

5/3. Let %1)1 < p <rd. Then the operators A : LP — L’"d(Bi/lr) and

VIA:LP — L' are bounded. That is, VI : LP — L9 is bounded if (1/p,1/q)
belongs to the half-open segment [Q1(r), Q4(r)) in Theorems and [1.5,

Proof. This follows arguing as in the proof of Proposition [6.4 The only
difference is that in ) the relevant range for p (for ¢ = rd) if r < H1 g

@1
T e ’“‘i&i}” 2D oquires (for

q = rd) that r > dEng As r > 1, this condition is satlsﬁed if d2 3d—2 >0,

which holds for d > 4. If d = 3, we require the restriction r > 4/3. U

<p<

Moreover, the condition ¢ >

7. AN ENDPOINT BOUND FOR THE GLOBAL VARIATION

The purpose of this section is to prove Theorem
It will be useful to work with the standard homogeneous Littlewood—Paley
decomposition. We define P;f, j € Z by

Pif(§) = (Bo(2771¢]) — Bo(2" 1)) F(&)
so that P; localizes to frequencies of size ~ 27. We have P;=1Ljforj>1
and Lof = ngo P;f for f € LP, p € (1,00) with convergence in LP. It
will also be convenient to use reproducing operators ]5] localizing to slightly

larger frequency annuli, with Jngj = P; for j € Z.
Let j > 0. We recall the definition

A f(,) = X() AL () = X(8) K # f(w) where K () = 5(t€)3;([¢])-
We combine this with dyadic dilations, and define for k € Z, t € [1/2,4],
AS f(,t) = X (1) Agey Pjief (@) = x(6) KTy * f(x) (7.1)
where Kj’ft = 27%[;,(27%.). Below we shall often use a scaled version of
(2.8), namely
|KFy(2)] Sy 275427 F|z]) N, lz] >10-2%, te[1/2,4. (7.2

We start recording the following special case of Proposition 4.3] which
will be relevant for the proof of Theorem [1.1] - (when p = q).

Corollary 7.1. For 2 <r < o0, rgljll) <g<oo, r<p<q we have
1A Fll oy S 27949 £l
By Corollary [7.1] and rescaling we have
I r(d
<o ddle D < < oo, (7.3)

k
A7 N o= Lo (2
One can improve over this result and extend it to sums in k whenever

(d+1) <p< oo
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Proposition 7.2. For2 <r < oo, r(jjll) < p < oo we have, for all j > 1,

o> ”A?fVLT(R))l/THLP(Rd) S 27| £l (7.4)

kEZ

Proof. As in the proof of Proposition by the monotone convergence
theorem, it suffices to show for any finite collection {A;?}keK, with
uniform bounds on the cardinality of the finite set K C Z.

We use again the sharp maximal function of Fefferman—Stein. Let

= (3 1A f ()

keK

which has finite L% norm whenever pg = rs;ljll) ; note that ((7.3) and Minkowski’s
inequality imply that

1Glpe < V72792 £ .

By the bound [|Gfl, <, G#]l,, it suffices to show |G, < 2797 f]],
uniformly on the finite set K for pg < p < co. By the triangle inequality,
we dominate

ot < s o o (140 - Ap ) dway

QGQ () keZ
<2Gf(x +Zu fx
where
i ” 1/r
Gf () =sup sup N (D IAEF L) dy
LeZQeQr(x) /@ * 1<,
and
U f(x) :=sup sup f )[ “AL+nf (y,-) — AL+”f( )‘ - dwdy.
LeZ QeQy (x
We claim that for % <p<oo,2<r<oowe have
1Gf1lp S 279 fllp,  for some a(r) > d/p (7.5)
and
IR D gmdd p,, i1 <<,
ety 42 s (76)
207127342 I, if n > j.
r(d+1).

The desired bound ||G# ||, < 277%7| f|,, follows summing in n if p >
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Proof of (7.5)). We prove inequalities for G on L" and L>® which will yield
(7.5)) by interpolation.

Let po = T(ddjll). We first observe the inequalities

d— 2
AR Fll 2 ory S 279670 £l 2 (7.7
HA'fHLPO L) 2_Jd/pOHfHLPO (7.8

uniformly in k. The estimate (7.7) holds from the bounds H.A I L2_> 212) S

2-7(d=1)/2 and H@t.A 222y S 27 3(d=3)/2 (which follow from (2:13)) and
the Sobolev embeddmg theorem and . is . with p = pg. Since
2 <r < pg and d 241 - > 170 one has by interpolation that

~—  ~—

AR £l oy S 2770 £l for some a(r) > d/po. (7.9)
This implies
19 A11er S ([ Mor [ APl a) ]|

kEZ

~ /r
< (SIS l)

kEZ

<20 (S Pflr) " s 20 g, (7a0)
kEZ
by Littlewood—Paley theory, since r > 2.
We now prove an L> bound. Fix z, L, Q € Qr(x) and let BL be the
ball centered at x with radius d2/110. Using Hélder’s inequality and the
embedding /L C 0 for r > 1 we estimate

[ROMES

’"T)l/r dy < I(z) + 11 (z)

k<L
where
1/r
f Z H'A ]lBLf Y- iLr dy)
Q@ k<L
f Z H'A ]]']Rd\BLf Y, )i L'r
Qr<L
We have, in view of A? = A;?Pj,k and using (7.9)),
1/r
1) S 271 (3 APy a1 1] )
k<L
. ~ r \ 1/
< 9—jo(r)9—Ld/r ( Z HijkiﬂB% f]i LT)

k<L
< 27900 Ly f e € 2790 ] e,
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using r > 2 and Littlewood—Paley theory in the third inequality. For the
term I1(z) we use (7.2) and estimate

92— kd
1) S S Y, [y Ty =01

k<L
S22y 2PN floo S 279N £leo,
k<L
where N > d. We combine the estimates for I(x) and I1(x) to obtain
1G flloe S 279 flloo- (7.11)

Interpolating ([7.10) and ([7.11]) and noting that that «(r) > d/py > d/p for
p > po we obtain ((7.5)).

Proof of (7.6) for 1 < mn < j. This case is similar to that of G. Let
r(d+1

Po = —g—1 - We get the asserted estimate by interpolating between the
inequalities
[t fllpo < 2—J‘d/p0||f||p0 (7.12)
1t flloe < 27420 ]|, (7.13)

To see ([7.12), we use A’? = A'?Pj_k and (7.8) to estimate
64 Fllw % || Moz [ 1AS P 152 )] |

keZ
< (S AP )7
kEZ
< 279U (3 | By i ) S 2750 £,
keZ

using that pg > 2 and Littlewood—Paley theory in the last inequality.

To see (7.13)) we fix z, L, Q € Qr(x), let BL*™ be the ball centered at
with radius d2%+t"*10 and estimate

I 1A - A .|
QJQ
< )Q JAE By f(y, )]

- dwdy

o dy < I (z) + 1V ()

where
1/
111( )[ AP L Fl(w, [0 dy)
IV(z) = ){2 s T [ [
We get by

I11(x) S 27 HP02m 0|1 i flpy S 207947 flloc
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Moreover, by (7.2)),

9—(L+n)d o
X/Rd\BL+n 2j—L— n|y w|)N’f(w)‘dw dy§2 I ||f||oo

for any N > d. The estimates for ITI(z) and IV (z) yield (7.13) for 1 < n <
j.
Proof of ([7.6) for n > j. Here we use cancellation and note that for z € @

I 1P-s@-0) = Psi@rnston |,

S 27" Mur(|lgll )] (2)-

Using this with g = A;“J“” f= ]Sj_L_nAJL+" and the Fefferman—Stein in-
equality for sequences of Hardy—Littlewood maximal functions, we may then
estimate

Jsup s o 1A ) - A )

» dwdy

LeZ QeQr (x
. 1/p
< 27| sup Mirp [|45 7 ]| £ 277 (2 A5 P-1E Lr)
keZ keZ
, . ~ 1/ . .
<P (3 Bfl) s 2 p)

kEZ

for % < p < oo, using ([7.3) in the third inequality and p > 2 and
Littlewood—Paley theory in the last inequality. Thus (|7.6)) is established for
n>j.

This finishes the proof of the proposition. O

Remark. The difficulty for putting the pieces together comes because it is
(d+1)

assumed ~ < p. If one had r > p, one can simply put pleces together
by standard thtlewood Paley theory as, for instance, in

A consequence of Proposition [7.2] is the following restricted weak type
bound.

Proposition 7.3. Ford >3, r > 2,
r 1/r
I yw)
keZ 321 1
Proof. Write

N 0 =290 4 S [kt e = )y

gty S g (7.14)

where /<a;.—Ll is as in (2.17)).
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We first show that for all 7 > 1, 2 <r < o0, T(jjll) < p < oo,

1/r .
kg —j(d/p=1/r)
| O 181 ) ™ [ = Il (715)
keZ
Indeed, by Proposition for |7 —1] <10
1/r . —1/r
|2 18 A w) | ey S 27U (716)
keZ

Moreover for |j —I| > 10, we get from (2.18))
T T 1/7‘
|(2 M p )|

keZ

. ~ 1/
oo (5 i )
keZ P
Sy min{2 7N 27V 1, (7.17)
using that the Fefferman—Stein and Littlewood—Paley inequalities together
imply

LP(R4)

~ 1/r
|( 18 Boiti?) || %o 16l 1<p <0, r 22
keZ p

Then (7.15)) follows summing over £ > 0 in ([7.16]) and (7.17)).

We finish the proof using Bourgain’s interpolation trick (see §2.6|). Con-

sider 1r
= (AT @ M)

keZ
Note that % < rd when d> —2d —1 > 0, that is, d > 3. Let po,
p1 be such that Tgljll) < po < rd < pi. By (7.15) we have that ||2; fl,, <

279(@/Pi=1/7)|| f||,;, i = 0,1 and then a restricted weak type (rd,rd) inequality
for ) j>024; follows from Lemma This implies the assertion. O

Conclusion of the proof of Theorem[1.1 Following [?], we write

V,Af(x) < VASf(2) + VR AS ()
where

N-1 1
VL) = sup sup (3 Ay f() = Age f(@)]")
NeNk;<---<kn i=1

is the dyadic or long variation operator and

VERAf(2) = (3 IV Af(a) )

keZ

is the short variation operator, using only variation within the dyadic in-
tervals I, = [2F,2FF1]; recall that V,/kAf(x) denotes the r-variation of
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t — Aif(x) over the interval I. It then suffices to establish the claimed
bound in Theorem [1.1|for the operators V,¥* and Vsh.
Regarding V%4 A4, the inequality
||VrdyadAf||p Spor lfllpy 7>2, 1<p<oo
was proved in [?]. This of course implies a L bound for V,,,; if p > 2d
and, in particular, the claimed restricted weak type bound follows by the
embedding LPt < LP — [P,
We next proceed with VP A. Since x(t) =1 on I = [1,2] we get
o0
VIAS(e) < | S0 A f (.
§=0

Vi (I)

by the definition of A;? in ([7.1). The term corresponding to j = 0 is easily
estimated by a square function

(S M) s (2 g seoar)”

keZ keZ
We claim for 1 < p < oo
2 5 .\ 1/2
|( [ 1absanra) ™| <l (718)
keZ

Since x/(t) =0 for 1 <t < 2 we have

GABS (1) = x(D)(2°€, Vo (2°1€)) o (2°[€]) F ()
Using Plancherel’s theorem and interchanging sums and integrals one gets
for p = 2. We then invoke standard Calderén—Zygmund theory in the
Hilbert-space setting (see [?, ch. IL5]) to see that holds in the full
range 1 < p < oo. It follows that for r > 2

(32 1A ) o 0

keZ
which is stronger than the required LP*' — LP** bound.
It remains to consider the cases j > 1. By the embedding (2.4]) we have
1/r
) S (TS e
Jjz1

i r 1/r
OIIEHED )
kezZ j>1 keZ i
We apply the restricted weak type inequality of Proposition to the ex-

pression on the right-hand side to conclude the desired bound for V,". This
finishes the proof. O

r

Remark. If in two dimensions one has the conjectured local smoothing end-
point results for p > 4 then one can also show the restricted weak type
(2r,2r) estimate for » > 2. The conjectured endpoint estimate in the
assumptions seems currently out of reach.
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8. A SPARSE DOMINATION RESULT

We conclude the paper with a discussion of the sparse domination result
for the global V;. A in Theorem [I.7] It is indeed an immediate consequence of
a special case of a result on convolution operators with compactly supported
distributions which can be found in [?, Prop.7.2].

We let u be a compactly supported distribution, define the dilate in the
sense of distributions by (u, f) = (u, f(t-)) and let T'f(x,t) = f * uy. For
fixed x let VT f denote the r-variation norm of ¢t — T f(x,t). As before let
I =[1,2] and V! f(x) the corresponding variation norm over I.

Theorem 8.1. [?]. Let 1 < p < q < o0, and u € S'(RY) with compact
support in R4\ {0}.
(i) Suppose that

Vo || Lo pooo + (Ve T | ot 0 < 00, (8.1)

IV T Lo La < o0, (8.2)
and that there is an € > 0 so that for all X > 2, and all Schwartz function f
with supp f C {€: A\/2 < |€] < 2\},

IVITfllg < CA NI £lp (8.3)

Then there is a constant C = C(p,q) such that for each pair of compactly
supported bounded functions f1, fa there is a sparse family of cubes S( f1, f2)
such that

/ VITA@ h@dr<C Y QUesflor  (54)
QEG(f1,f2)

(ii) Suppose that in addition p < q, and suppose that (8.4) holds with a
constant independently of f1, fa. Then conditions (8.1]), (8.2]) hold.

Proof of Theorem[1.7, We let u be surface measure on the unit sphere. As
discussed in the introduction the inequalities in were already proved
in the relevant ranges of Theorem in [?]. The inequalities and
in the asserted ranges follow from the single-scale frequency bounds
in Propositions and [£.7] Thus the sparse bounds in Theorem are a
consequence of part (i) of Theorem The sharpness of the sparse bounds
follows from part (ii); see also for a direct argument. O
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