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ABSTRACT. In this article we establish new inequalities, both conditional and uncondi-
tional, for the restriction problem associated to the hyperbolic, or one-sheeted, hyperboloid
in three dimensions, endowed with a Lorentz-invariant measure. These inequalities are
unconditional (and optimal) in the bilinear range ¢ > .

RESUME. Nous obtenons des nouvelles inégalités pour le probléme de restriction de la
transformée de Fourier associé & I'hyperboloide hyperbolique (ou & une nappe), équipé
avec une mesure invariante par transformations de Lorentz. Ces inégalités sont optimales
et inconditionnelles dans le régime bilinéaire g > 13—0.
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1. INTRODUCTION

This article concerns the boundedness of the Fourier restriction operator associated to
the hyperbolic, or one-sheeted, hyperboloid in R*2,

D= {(r,6) e R™"2: 1472 = ¢}
This surface is invariant under the Lorentz transformations

Ly: (1,8) = (W7 —v- &5+ w)el —ur), v e R2, (1.1)
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where (1) := /1+ |v[2 and &+ ¢l are the perpendicular and parallel components of &
with respect to v. We endow the surface with the unique (up to scalar multiples) Lorentz-
invariant measure, which coincides with what is known as the affine surface measure,

[ £ao= /{|£>1}(f(—<<£>>,£)+f(<<£>>,§)) e, where (€)== VEF 1. [¢] = 1

Various geometric features of this surface make it potentially interesting from the per-
spective of Fourier restriction/extension. Though the Gaussian curvature is nonvanishing,
the principal curvatures have different signs, which presents challenges at all scales because
the restriction theory for hyperbolic surfaces is much less well-developed than that for el-
liptic surfaces. One of the main contributions of the present article is an adaptation of the
techniques of [12] 16, 20] to establish unconditional, global restriction inequalities in the
bilinear range. In particular, we establish the first extension inequalities on the parabolic
scaling line ¢ = 2p’ beyond the Stein-Tomas range (i.e. with p > 2) for any negatively
curved surface that is not the hyperbolic paraboloid. The above-mentioned techniques are
directly applicable in the low-frequency region {|¢| < 1}, but at high frequencies, the sur-
face is asymptotic to the cone, presenting some additional complications. In this region,
we use conic decoupling and interpolation with bilinear inequalities to prove a conditional
result that boosts local restriction inequalities on the low-frequency region to global ones
in a range that is non-optimal but, nevertheless, offers the possibility of improvement over
that obtainable directly from bilinear restriction. Our explorations of the conic region also
suggest possible future applications of some (surprisingly, still open) questions about the
restriction operator associated to the cone in 1 + 2 dimensions.

We turn now to statements of our main results, given in terms of the Fourier extension
operator £f = fdo, and its local version & f = E(Ly¢<1yf). We say that R*(p — q)
holds if there exists a universal constant C such that |[€f| zams) < C|fllLr(riae), for all
f € CX.(R3); we say that Rf(p — ¢) holds when the analogous statement holds with &

cpct
in place of £.

Theorem 1.1. For (p,q) # (4,4) obeying 2p' < q < 3p/, ¢ > p, and q > 13—0, R*(p — q)
holds. Moreover, for 3 < qy < %, R§((R) — qo) implies R*(p — q) for all exponent pairs
obeying go < ¢ < 2, () <p <gq, and
1 2 1/g—3/10 1
p 5 1/g—3/10 10
In particular, the first author proved in [4] (see also Remark [5.2) that R§((%)" — qo)

holds for go > 3.25, and so our conditional result implies that R*(p — ¢) holds for ¢ < 12,
() <p<gq and

1 52 31
— > _—— —.
pq 2
. . (1 1y _ (3L 31 71
(The upper line segment of this region has endpoints (5, ) = (753, 1gz) and (5, 35)-)

Because of the loss in the range of g, we expect that our conditionality in Theorem 1.1
is not optimal. This suggests a potential application of improvements (or, rather, the
techniques used to obtain those improvements) to the range of LP x LP — L9 bilinear
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FiGure 1. By Theorem the full restriction conjecture for the low-
frequency region would imply global restriction estimates for exponent pairs
(p~!, ¢~ ') within the red quadrilateral. Unconditional estimates hold in the
bilinear range ¢ > 13—0.

extension inequalities for the cone in R3, should such inequalities become available in the
future.
By contrast with Theorem we note the following negative result.

Proposition 1.2. For (p,q) € {(3,3),(4,4)} and for (p~, ¢ 1) lying outside of the triangle

T:={(p g :20 <q<3p, q>p},
R*(p — q) fails.

We note in particular that there are exponent pairs along the diagonal ¢ = p at which
R*(p — ¢) holds; the authors had not expected this. The question of improved estimates
at the endpoint (4,4) looks to be potentially interesting for further study. Indeed, the
Kakeya-like example of [2] rules out even a restricted weak-type inequality at the endpoint
(3,3), but we are not able to exclude the possibility that some weaker inequality (such
as a restricted weak-type bound) might be valid at the endpoint (4,4), and, in fact, the
analogous question for the extension operator associated to the cone also seems to be open.

Overview. We prove the negative result, Proposition [I.2] in Section [2] via familiar Knapp
and Kakeya-like examples. In Section [3] we give a brief, self-contained proof of Theorem[1.]]
in the classical range, ¢ > 4. We also record a family of L?-based mixed norm (Strichartz)
inequalities which will be useful later on. In moving beyond the classical range, we begin



4 BENJAMIN BAKER BRUCE, DIOGO OLIVEIRA E SILVA, AND BETSY STOVALL

with our unconditional result: that Ri(p — ¢) holds in the bilinear range ¢ > 2p’ and
q > %. This argument will occupy Section |4, in which we establish the bilinear-to-linear
deduction for this surface, and Section [5] in which we prove an L? x L? — L%/2 bilinear
extension theorem for appropriately separated “tiles”. The geometry of the surface, namely
the double ruling, plays a critical role, because it enables us to define a bi-parameter family
of “tiles” that is quite close to that which naturally arises in the case of the hyperbolic
paraboloid. In Section |§|, we note that, via a Lorentz boost, Rf(p — ¢) implies bounds on
unit width “sectors” at high frequencies, and we use bilinear extension estimates (similar
to those for the cone) to deduce from our unconditional result uniform bounds for the
extension from dyadic frusta

Ty :={(r,¢) €T : [¢] ~ 2"}

In Section [7} we use conic decoupling to extend the deduction in Section [6] and obtain a
conditional result in a larger (but likely non-optimal) range. Finally, in Section [8) we prove
that uniform estimates for the extension from dyadic frusta imply global bounds for £.

Notation. We will use throughout the standard notation A < B to mean that A < CB,
for a constant C' that is allowed to depend on the Lebesgue exponents in question and also,
in the case of conditional results, on assumed finite bounds on the operator norms of the
extension operator. The expression A ~ B means A < B and B < A.

2. THE NEGATIVE RESULT: PROOF OF PROPOSITION

Proof of necessity of ¢ > 2p'. We apply the usual Knapp example. Indeed, if fs is a smooth
bump function of radius 0 < § < 1 on I', centered at (0,0,1), then | fs]|, ~ 5%, while
|Ef5| ~ 0% on a tube of length ¢6~2 and width ¢!, yielding ||€fsl, = §°~4. In more
detail, set ¢(¢) := /1 + (% — (2, and note that T' 2 {(¢1, ¢, 6(¢)) : (3 < 21+ ¢})}. Our

Lorentz-invariant measure on I' is expressed in these coordinates by do(¢) = %. Given
sufficiently small § > 0, let

Cs ={(¢,0(¢)) e I': (] < 6} (2.1)

denote the cap on I' of radius ¢ centered at (0,0,1), and consider its indicator function
15 = 1¢;. Then
1 2
”H(SHLP(F;dJ) = U(Cé)p ~ 0P, (22)
whereas

E(Ls)(t, x :e’m/ ellter22)-(Q,62.0(0)-1) 2
ot 2) Kl<s ¢(C)

Since [C1],|C2| < 6, it follows that |¢(¢) — 1| < C6%. Consequently, if [¢], |z1| < C;'6~! and
|xa| < 01_15_2, and C is sufficiently large, then

£(1,)(t )| = / Jilt1,02) (.G HO) 1)
S ‘ICISé ?(¢)

¢ _ &
> /Cléd cos(tC1 + x1C2 + z2(0(¢) — 1))% > =
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and therefore

\|5(ﬂ5)y\qu(R3) = /R3 E(1g)(t, 2)|%dtda > 629(57 167 1672) = g2, (2.3)

If £: LP(T;do) — L4(R3) defines a bounded operator, then from (2.2) and (2.3) it follows
that
_4 2
07 g 1ELo) | Lawsy S 1Ll zr(rido) ~ 67
Sending § N\, 0 implies % <2-— %, as claimed. O

Proof of necessity of ¢ < 3p’. We apply a conic Knapp example. Details are analogous to
the previous paragraph, so we shall be brief. For r > 0 sufficiently small and A > 0
sufficiently large, consider the set

Toai={(r& eTir~ A I —erl <7}, (2.4)

where e; € R? denotes the first coordinate vector. Let frx be a smooth bump function

adapted to I',x. Then || frxllp ~ ()\7‘)%, and |Ef.A] ~ Ar on a slab of length c(A\r?)~!
(perpendicular to T',. ), width ¢(Ar)~! (tangent to I, ) in the angular direction), and mini

3
width eA™! (tangent to I, in the radial direction). Thus ||€frally 2 (Ar)'"4. Holding r
fixed and sending A — oo yields % >1- g, as claimed. O

Proof of necessity of ¢ > p. We apply the standard example of summing many disjoint,
highly modulated caps whose LP and L¢ norms are all comparable to one another. For
k > 1, consider the functions gy(7,&) := eltme)mO ), o4 (7,€), with the (t,z1) to be
determined. Here, fy—« or is a smooth bump function adapted to I'y—k 9x; recall . Then
the previous paragraph implies that ||gx|, ~ 1, while ||Eggllq 2 1. For (tx,x)) sufficiently

1 1
widely separated, we then have that || >0, gill, ~ N7 and [|E(30_, g1)llq = N, from

~

which we see the necessity of ¢ > p. O

Proof of necessity of (p,q) # (3,3), (4,4). This follows by either using parabolic, resp. conic
scaling, Fatou’s lemma, and the fact that the corresponding inequalities do not hold for
the hyperbolic paraboloid nor for the cone, or by directly using stationary phase. At the
endpoint (3, 3), the Kakeya-like example of [2] rules out the possibility of even a restricted
weak-type inequality, but the authors have not been able to exclude the possibility that
weaker inequalities might hold at the endpoint (4,4). O

3. PROOF IN THE CLASSICAL RANGE ¢ > 4
We will use the mixed-norm Strichartz inequality

1_1
||5f||L§L;(R1+2) S e Sf”L?(F;da),

2 1+86 146 (3.1)
2<rs s<o0; —+ to_1+0 , for some 6 € [0,1].
r

S

This classical estimate follows from a straightforward modification of the methods in [I1].
As (3.1) implies boundedness of £ in the range p = 2, 4 < ¢ < 6, by interpolation it will
suffice to restrict attention to the conic line ¢ = 3p’.
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Proposition 3.1. Theorem holds on the line q = 3p’.

This result can be proved by slicing (see [10, [14]). For the convenience of the reader, we
include some details.

Proof of Proposition via slicing. By interpolation, it suffices to restrict attention to 2 <
p < 4 and ¢ = 3p’. Since 4 < ¢ < 6, it follows that p < ¢. In polar coordinates, we have
that

_ i(ta)((en.6) € _ °°< irw ) T T
Ere) /|£>1f(§)€ = (Lraeae) ™ g

where v denotes the usual arc length measure on the unit circle S! € R?. Changing variables
Vr?2 —1 = s, and applying the Lorentz space version of the Hausdorff-Young inequality
together with Minkowski’s integral inequalityﬂ yields

I 5 | [ T T R
1ar9"

< ‘ / eVITE £(/1 4 s2w)dy(w)
S1

A further change of variables y = /1 + s2z allows us to estimate the inner norm on the

right-hand side of (3.2) as follows:
’ /S1 eVIFETW £ (/1 4 520)dry(w) /S1 eV (V1 + s2w)dy(w)
S (147 F(V+ 82| o

where the latter estimate follows from the LP(S!; d~y) — L9(R?) adjoint restriction inequality
on the unit circle S'; see [21]. Going back to (3.2), we then have that

1€z S [|(1+ 2 VINFVTH+ 5 oy
g O Rk FCVARn e

where the latter estimate holds since p < g. Denote
F(s) = (1+5°) 7" and G(s) == | F (V1 + %)l Las1),

and let @ > 0 be such that % = é—l—%. Then the Lorentz space version of Holder’s inequality
implies

(3.2)

/
28]

= (14 %)~

Le LY

/
q 9
Ls

/
q'.p
Ls

1EFlzaqzs) S IF g1 Gllize.

1

To check that F € L™, simply note that 2a = ¢ since 7= é + % and ¢ = 3p’. Finally,

reverting back to the original variable r = /1 + s2, we see that

IGII7, p—IIGHLp—/O 1F (VL + 82 ey ds

1These are valid moves since max{q,q'} = q > 2.
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= [ [ P are) m—dr = 1fspany

This shows the boundedness of the operator £ : LP(I';do) — L(R3) whenever 2 < p < 4
and q = 3p/, as desired. O

4. UNCONDITIONAL BOUNDS AT LOW FREQUENCIES IN THE BILINEAR RANGE

We turn now to the heart of the article, the proof of Theorem beyond the classical
range. We begin by bounding the low-frequency extension operator & in the bilinear range
(g > %, p> (%)), which will occupy the next two sections. The companion article, [4],
bounds & in the polynomial range (¢ > 3.25, p > (2)’), except on the scaling line p = ().
Utilizing the results of this and the next section, we can extend the strictly local (p > (2)")
inequalities of [4] to the scaling line. We sketch this argument in Section [5} see Remark

It will suffice to prove extension estimates for a small region contained in a rotated
version of the hyperboloid. Let

2= {( 1+§f—§§,§)eRxR2:]§|§%}, (4.1)

and let U be a small neighborhood of the origin that we will choose. We will consider the
subset of ¥ that lies above U. Abusing notation, we define the extension operator & by

of ) = [ VIR p(e)ag

This definition of & is not quite the same as the one given in Section 1; however, the two
operators obey the same range of LP — L9 estimates, as one can see by using the triangle
inequality and symmetries of the operator. We aim to prove the following result.

Theorem 4.1. If ¢ > 10/3, then ||Eoflq < || f|l(g/2)y for all f € LY9/2'(U).

Our starting point will be the L2-based bilinear theory for 3, which we will obtain by
rescaling a result of Lee [12].

4.1. Related tiles. To state the bilinear estimate, we must first define “related tiles”, i.e.
pairs of subsets of U adapted to the transversality conditions that arise in the bilinear
method. Here, the geometry of the hyperbolic hyperboloid will play a distinguished role,
particularly the double ruling. Given (7,§) € X, the lines in ¥ that contain (7,&) are
parametrized by the formulae

(o) = +tarFo1+&, a6 %),

and their projections to the spatial coordinates are given by

) =e+t(1+ & a6+/1+8-g). (4:2)

Fix an integer n > 10, and set [ := [-27",27") and Q := IxI. Let D := D(0,1/10) C R?
denote the open disc of radius % centered at the origin. Define maps ® : Q — R? and
7t :D =R by

(GVI+E+eV1I+EG,G-G)
VIHG+V1+G

®(¢) =
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and

&(1+€7) .
&t /1+E& &
Then (possibly after increasing n) ® is a diffeomorphism satisfying % < detVO < 1,
[®[lcr < 3, and ®(Q) C D(0,27""5). Indeed, ® can be viewed as a perturbation of

the rotation ( — %(Cl + (2,(a — (1). Likewise, the maps 7% are submersions satisfying
7% lcr < 3. We now set U := ®(Q).

() =& - (4.3)

Lemma 4.2. The maps ® and 7+ satisfy the following geometric properties:
(1) {®()} = E&’O) N, 0 ond (m%(£),0) € Eéﬁ for every ( € Q and € € D.
(2) The fibers of ©* are precisely the line segments E? ND with & € D.
(3) @71 = (7 x 77)|v, where 7+ x 77 (&) := (7T (€), 77 (€)).

Proof. Property (1) can be verified by a straightforward calculation. It is helpful to
reparametrize (4.2)) so that the second coordinates of 6&170) (t) and £&270) (t) are ¢t and —t,
respectively.

Property (2) is a consequence of property (1) and the following claim: If |n|, || < 1/2

and 7' € @7[, then E:;L, = Kﬁ. Indeed, assume the claim holds, and let £ € D and ¢ € R
satisfy 7% (¢) = ¢. Then ¢ € Eét N D implies that Z? and E? are identical and thus have

the same z-intercept. Consequently, (7%)~1(c) D Egt N D by property (1). If ¢ is another

oyt =t
£ (c,0) £
Thus, (7%)7!(c) = Egi N D. It remains to prove the claim. Define F' : ¥ — D(0,1/2) by
F(7,§) :=¢. Then F is an invertible map such that F’l(ﬂgc N D(0,1/2)) is a line in ¥ for
every |¢] < 1/2. Suppose for contradiction that E:{, # (. Then the lines E:{,,E;,,é:)“ are
distinct (as one can easily check) and intersect at 7/, implying that F~!(n’) belongs to three
lines in . However, no three lines in the hyperbolic hyperboloid intersect at a common
point. Thus, we must have fﬁ = E;{ and, by a similar argument, Z;, =4,.

point such that =+ (é) = ¢, then applying the claim twice more shows that £

Property (3) is a consequence of properties (1) and (2). O
We also record that
Z(6y R(1,£1)) < 10° (4.4)
for all n € D; in particular, we always have Z(£,, b)) = 70°.

For each integer j > n, let Z; denote the set of dyadic intervals of length 277 contained
in I; that is,

1= {[m27j7 (m + 1)273') tmeZN [—23'*”, zjfn)}_

Given I, I € T;, we write I[; ~ I} if I; and I} are non-adjacent but have adjacent dyadic
parents.

Definition 4.3. A tile is any set of the form ®(I; x I;) with (I, I1,) € Z; x I}, and j,k > n.
We denote by O, x the set of 277 x 27 tiles. Given 0,0 € O, we write § ~ ¢’, and say that
6 and 0" are related, if 77 (0) ~ 7t (0") and 7~ (6) ~ 7 (¢'). (Note that if § = ®(I; x I),
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then 77 (0) = I; and m—(#) = Ij.) Finally, given C > 0, we define C6 := ®(CP~1(0) N Q),
where C®~1(0) is the C-fold dilate of the rectangle ®~1(#) with respect to its center.

We can now state the bilinear restriction theorem for related tiles, which we will prove
in the next section.

Theorem 4.4. Let 01,05 € O, be related tiles. If ¢ > 10/3, then

: 4_
1€0fEodllgy2 S 2V PGV £ lallgl2
for all f € L?(61) and g € L*(6s).

Next, we establish several properties of the tiles , most of which are easy consequences
of analogous properties of their rectangular counterparts I; x Ij.

Definition 4.5. Given a measurable set {2 C U, we call any set of the form Ezt N Q with
£ € Q a nt-fiber of Q. The length of Qt NQis Hl(ﬁét N Q), where H! denotes the one-
dimensional Hausdorff measure. Given an integer K > 0, we define two sets

QUK)* ={¢eq: 27X <H'(fr nQ) <27K+1,
and say that Q has constant 7% -fiber length 275 if Q = Q(K)*.

Lemma 4.6. The tiles 0 satisfy the following properties:
(1) There exists a set N C U x U of measure zero such that

UxU)\N= ] |J ox0;

J,k>n B,Q’EGj,k:
0~

moreover, the union is disjoint.
(2) For each pair of related tiles 0 ~ 6" € O, there exists a rectangle Ry g such that
0+ 0" C Rpg and the collection {2R9’9/}9N9/€@j,k has bounded overlap.
(3) For every constant C > 0, the collection of dilates CO, with 0 € ©;, has bounded
overlap. ‘
(4) For every 6 € ©; and constant C > 0, we have |Cf| ~ 2797k,
(5) For every 0 € ©; and constant C > 0, the set CO has " -fibers and w~ -fibers of
length O(27%) and O(277), respectively.
Proof. Property (1) is obtained by applying the diffeomorphism (¢, (') — (®(¢), ®(¢)) to
the disjoint union
@xQ\M= | U LxLxIjxp

7,k>n Ij,]é—EIjZIjNI}
Ilm[];ezlc:[k’“[]{c

with M := {(C.¢') € @ x Q: G = ¢ or G2 = G4}

Next, we prove property (2). We may assume that j > k. Fix § ~ ¢ € 0;; and
set cg := ®(cg,c, ), where c;t is the center of the dyadic interval 7%(#). We claim that
there exists an O(277) x O(27F) rectangle Ry g with center ¢y and major axis £ such that

QUG C Rop. If C € ®H(OUE), then |G —cf | 277 and |G — ¢; | S 27F, whence
dist(P(¢), £5,) < |2(Q) = @(cf, &) S 1@l |G — 5| S 277
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and similarly dist(®(¢),4z,) < 27" Thus, § U # lies in the intersection of O(277)- and
O(27%)-neighborhoods of Eﬁe and ¢_ , respectively. By ., this intersection is nearly

a rectangle; it lies in an O(277) x O(27%) rectangle with center ¢y and major axis £}

co’
cp?
which we may take as Rgﬂ/ We can define the rectangle Rg g as Rg g = Rg o+ Rg o =
2]%9,9/ + cg. We need to show that the collection {2R9,9/}9N9r€@jyk has bounded overlap.
Suppose 0; ~ 0 € Oy, i = 1,2, are such that 2Ry, 0, N 2Ry, g/ # (). Then there exist
points £% € 2Ry, o1 N (62'91 + cp,) such that |¢2 — ¢ < 279, Since ¢y, € 660 , it follows that

€2 ¢ Ej@i. Moreover, |€F — 2¢p.| < 27%, so if n (and therefore k) is sufficiently large, then
¢'/2 € D. Since " is constant on £f, N D, we see that

5, — g, = T4 (€2/2) =7 (€/2)] < |l llen €2 /2 — € /2] S 277
The assumption that 2Ry, o N 2Ry, g, # 0 also implies that [2c, — 2cp, | < 27k whence
|5, — ol < N7 llonlea, —cou| S 275,

Since céz and ¢, are the centers of dyadic intervals of length 277 and 2%, respectively,
we have shown the following: If 0; is fixed and 2R, o N 2Ry, g7 # (), then # must be one
of O(1) possible tiles. Since any tile has at most O(1) relatives, it then follows that the
collection {2R9’9/}9N9/€@j,k has bounded overlap.

Property (3) follows from the dilated dyadic rectangles C'(/; x 1)) having bounded overlap.

Property (4) follows from the change of variables theorem and the fact that | det V®| ~ 1.

Using property (3) in Lemma one sees that Egr NU =®({¢1} x I), where £ € U and
¢ :=® (). Hence,if C > 0,0 € O, and £ € CO, then EZOC’H = d(({GxHNCD1(9)).
The line segment ({¢;} x ) N C®~1(0) has length at most C27%, and thus the bounds on
V& imply that Eg NCH has length O(27%). A similar argument applies to the fibers Eg nco,
proving property (5). O

4.2. Proof of Theorem [4.1] Having defined related tiles and shown that they behave like
dyadic rectangles, we are ready to prove Theorem [£.1] We adapt the argument of the third
author in [16], with the fibers of 7T and 7~ now playing the roles of vertical and horizontal
fibers. For the remainder of this section, we will assume that % < q<A4.

The main step is to prove a restricted strong-type inequality. We state and prove the
below lemmas for characteristic functions, but the proofs are unchanged if we replace 1q
with a measurable function fq with |fq| ~ 1q.

Proposition 4.7. Let Q C U have constant w+-fiber length 2= for some integer K > 0.
2

Then ||Eolay|lq S Q1'% for every measurable set Q' C Q.

Proof. We essentially follow Vargas’s argument in [20], but replace dyadic rectangles I; x Ij,

with tiles 6. Fix a measurable set ' C Q. Using property (1) of Lemma the triangle
inequality, almost orthogonality (combining [19, Lemma 6.1] and property (2) of Lemma

, and finally Theorem we have
[Er Z 50 (Lomo)€o(Larng)

[P
J:k>n0,0'€0;
9~9’

/2
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2
q
S ( > !!50(]19'09)50(19'09')Hzg)

Jk>n Y0,0/€0);
0~0’
%
; 4_ q g
S Z 2(]+k)(q 1)( Z ’Q/m9‘4‘9/m0/’4> )
],k>TL 9,9’663-’;@:
0~0’

Since 100 D 0" whenever 6 and 6’ are related, each tile has a bounded number of relatives,
and the dilates 1060 have bounded overlap, it follows that

2

Il 2 < 3 2”*’““3—”( T mmoer%>q <

. 4 2 2
3 2UEYI00 max (@0 106" e
dk>n 0€0; & 0€O;n

7,k>n
(4.5)

Let J be an integer such that |7+ ()| ~ 277, By the coarea formula, the hypothesis on €,
and property (5) in Lemma we have || ~ 277/~ and

2N 100] S [7H(Q2N100)] sup H'(¢F N Q2N 106)
£eQn100
< min{277,277} min{27 %, 27F},

for every § € ©,. Inserting this bound into (4.5) and summing the resulting (four)
geometric series produces the required estimate. [l

Proposition 4.8. Let Q C U have constant w -fiber length 275 for some integer K > 0,
let J be an integer such that |Q| ~ 277=K and let ¢ be the smallest dyadic number such

2
that ||Eoloy|lq < e2Q'"7 for all measurable sets ¥ C Q. Up to a set of measure zero, there
exists a decomposition
0= U s,

0<d<el/4
where the union is taken over dyadic numbers, such that the following properties hold:
(1) |€olarlly S 8|Q1 =29 for every measurable set Q' C Qs, and
(2) Q5 C U9€@5 6, where ©5 C © 1k with #0605 < 6= for some constant Cj.

Proof. The construction of the sets 25 proceeds in three steps.

Step 1. Let S := w7 (). By the coarea formula, |S| ~ 277, Let & be a Lebesgue point
of S and 0 < n < € a dyadic number. Define I,({1) to be the maximal dyadic interval I
such that & € I and

|[INS]| c
=/
1]
where C is a constant (to be chosen); such an interval exists by the Lebesgue differentiation
theorem. Since we may exclude a set of measure zero in our decomposition, we assume

without loss of generality that S is equal to its set of Lebesgue points. We note that
|11, (&)] S m=C277. Let

(4.6)

Ty = {& € S: L&) = n“277},
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and let S; := T; and S, := T;, \ Ty, for n < . Then every point of S is contained in a
unique S, We set Q) := Qn (x7F)71(S,).

Lemma 4.9. For every 0 < n < ¢, the set 9717 is contained in a union of O(n~3%) tiles in

1

ns we have

©n, and for every measurable set Q' C Q
1—2
1€0erllq S n*1€2 .

Proof. By its definition, S, is covered by dyadic intervals I of length |I| > n¢|S]|, in each
of which S has density obeying (4.6). The density of each such I in S is

[INS| _ |[INS]| 'ﬂ>7720
5] st
Thus, a minimal-cardinality covering of S, by these I (which are necessarily pairwise dis-
joint) has size O(n~2¢). Additionally, each I satisfies |I| < n~¢277, and thus S, is covered
by O(n~3¢) intervals in Z;. Consequently, Q}? is contained in a union of O(n™3¢) tiles in
On.
We turn to the extension estimate, fixing a measurable set Q' C Q. By the definition of
g, we may assume that n < e. By the same argument that yields (4.5), we have

I€olo ]2 S S 225G Qe max |0 n109)' 7, (4.7)
7,k>n 0€O;n
and the coarea formula implies that

1 N100] < min{277, 277} min{27% 27F},

for every 0 € ©;. If [j — J| < % logy ™!, then the definition of Q}] leads to the stronger
estimate

' N106] < 75T min{2~7/, 277} min{2~ %, 275} (4.8)

Indeed, fix such a j. It suffices to prove (4.8) with some 6 e ©;_4k—4 in place of 0,
since each 6 is contained in a union of four such tiles. Let § =: ®(I;_4 X I;_4), so that
7T+(9) =14 € Ij_4. We have

|- > 1695277 > (2)C27

for n sufficiently small (which we may assume). Suppose that I;_4 NS, # (). Then there
exists & € Ij_4 such that & ¢ Tb,, whence

L9 (&1)] < (2m)927 < |1j].
Consequently, by the maximality of I5,(¢;) and the fact that 277 < nf%Q_J , we have
418y < 114 0S| < 20)C1L ] = 16(20)C279 < 0¥ min{27, 277},
Thus, by the coarea formula,

QN 0] < |1;_4N Sy min{27,27%} < 5’ min{2~7, 277} min{2 K 2%},
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as claimed. Inserting this bound into and summing the resulting (eight) geometric
series leads to the estimate ||Eolo/|q S < n |Q|l 2/4 where C' is a constant determined by

C. We can choose C so that C' = 2. O
Step 2. For dyadic 0 < 77 <eand 0 < p < nl/4, define
_ {f e Ql —3C— DQ J < rH (ﬁ N Q ) (2p)4anSCfD27J}7

where D is a constant to be chosen. Lemma and the near-orthogonality of Egr and 66_’
imply that Hl(ﬁg N Q717) < 73277 for every € € Q% Thus, each £ € (2717 belongs to a
unique Q% 0

Lemma 4.10. For every 0 < n < ¢ and 0 < p < n'/*, we have ||Egley |l < p?Q1=9 for
every measurable set ' C Q%,p.

Proof. I p*Py=3¢=P > p?P then by Lemma we have
_2 _4D 2 2
HEO]IQ’Hq 5 772‘(2’1 a < p30+D’Q‘1 e < ,02’9‘1 :

for D chosen sufficiently large. Thus, we may assume that p*Pn=3¢—P < p2D Given
0 € Oj, the set Q' N100 has 7"~ and 7~ -fibers of length at most min{2~%, 27%} and
min{p?P277 277}, respectively, and the images of Q' N 100 under 7+ and 7~ have measure
at most min{Q_J ,277} and 27F, respectively. Thus, by the coarea formula,

1 N100] < min{2~/~K 27i-K o=i=k 2Do=J=ky (4.9)
We define
Ry :={(j,k): J = Dlogop~' > j, K>k}U{(j,k):J >j, K- Dlogyp~' >k},
Ry :={(j,k):j > J+Dlogyp™', K>k}U{(j,k):j>J, K—Dlogyp "' >k},
Ry :={(j,k):j > J+Dlog2p L k>KYU{(j,k):j>J k>K+Dlogyp '},
Ry:={(j,k): J+ Dlogyp~" > j, k+ Dlogyp~' > K}.
Each (j, k) belongs to some R;, so by (4.7)) and (4.9)), we have
|l S 3 2HGDgHR=Digf | UG-y GHRI0-Dg ]
(4,k)ER (4,k)ER2
+ Z oUi+k) (=1 o= (+k)(1 |Q|q + Z o(i+k) (——1)p2D( )2—(J+k)(1—%)|m§‘
(4,k)ERs3 (j.k)ER4

Summing these geometric series leads to the bound ||l < pP Q)1 ~%9, where D' is a
constant determined by D; increasing D if necessary, we can make D’ > 2. U

Step 3. The final step of our decomposition is the same as the first, but with 7~ in place

of 7+, Indeed, each Q% , has 7~ -fibers of (essentially) constant length p*Pn=3¢=Po=J  For

0<np<ecand 0 < p < /4, let Snp = w_(Q%’p). Let K, , be an integer such that
|Sy.p| ~ 27 5ne. Let & be a Lebesgue point of S, , and 0 < § < p a dyadic number. Define
I, p5(&1) to be the maximal dyadic interval I such that & € I and |[I NS, ,| > §C\I1;
as before, the Lebesgue differentiation theorem guarantees such an interval exists. Let
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Typs =161 €8 |1 p5(61)] > 502_[(’7’”}, and set Sy, :=T)) pp and Sy p5 1= Ty .6\ T3y p,26
for 0 < p. Finally, we let Q% 08 = Q2N () (Syp0)-

Lemma 4.11. For every0 <n<eand 0 <0 <p < n'/4, the set Q?;p(s s contained in a

5715074D)

tiles in © j i, and for every measurable set ' C 03 we have

union of O( 1067

2
1€0Tarlly < 0%102 5.
Proof. By an argument similar to the proof of Lemma one can show that
l€0Terllg < 8727, 27 < 8|t

Likewise, one sees that €1, , s is contained in a union of 0(5_30) tiles in ©, k, ,. Since 9727,/7
has 7~ -fibers of length at least p*Pn=3¢~P2=7 and volume at most 277/~ % we must have
2~ Knp < p=4D9=K  Thus, Q3 p,6 18 contained in O(673¢=4P) tiles in O,, . By Lemma
and the fact that p < n'/%, we also know that Qg s Is contained in O(6712Y) tiles in © .
The intersection of a tile in © 7, and a tile in ©,, i is a tile in © ;. O

We are now ready to complete the proof of Proposition We set

{5 = U U npé’

0<p<el/4 pt<n<e

so that Q = (Jys<.1/4 Q5. Since for fixed & there are O((log§1)?) sets an(s, properties
(1) and (2) in the proposition follow from Lemma O

Now, fix some Q C U, and for each K, let J(K) be an integer such that |Q(K)*| ~
2-/(K)=K For each dyadic number ¢, let X(¢) denote the collection of all integers K > 0
for which ¢ is the smallest dyadic number satisfying ||Eolay |, < €2|Q(K)T|1=2/9 for every
measurable set Q' C Q(K)T. For each K € K(¢), Propositionproduces a decomposition
QUE)T = Upescersn UK )5 such that for each &, we have Q(K)f C Usco(r), 0 for some

O(K)s C O(x),kx with #O0(K); < 5.

Lemma 4.12. For every 0 < § < 81/4, we have

|5

KeK(e)

S (0581 Y ooy 4 + o202,
KeK(e)

Proof. Let A be a constant to be chosen later, and divide K(¢) into O(log§~1) subsets K
such that each is Alog 5‘1—separated. It suffices to prove that

H > Solguer | S D I€olgqe g +0%1907
Kek ¢ Kek

for each K. We recall that ¢ < 4. Thus,

4 q
H D Eolagy /’ > [é0taum,;

KeKk KeKkti=1




RESTRICTION INEQUALITIES FOR THE HYPERBOLIC HYPERBOLOID 15

<Y 1€0L g2 114 + > Hgo]l

Kek Kek4\D(k4) 1 i=1

where D(K?) := {K € K*: K1 = K3 = K3 = K4}. To control the latter sum, we have the
following lemma.

Lemma 4.13. For all K, K' € K, we have
_4
160 Loy 0L lajz S 25 mas{|(K) |, JR("YH 12
for some constant ¢y > 0.
Proof. Set Q = Q(K)}, OV = Q(K")}, J := J(K), and J' := J(K'). By the Cauchy-
Schwarz inequality and Proposition [£.7 we have
< 1_2 x,1_2
1€0(Tg)E0(Tg ) llgr2 S 197 1€Y' 7.
If either (i) K = K', (ii) J = J/, (iii) J < J  and K < K', or (iv) J > J" and K > K’, then
Q9 S 27O max(j0) 1),

Thus, by symmetry, we may assume that K < K’ and J > J'. By the bound #(0(K);s X
O(K')s) < 672 and the separation condition on K (with A sufficiently large), it suffices
to prove that

K (4.10)

1€0(Leyng)E0(Leymo) a2 S 271K~ K T max (|0, [Q[}*

for all 0 € O(K)s, 0 € O(K')s, and some constant ¢ > 0.

Fix two such tiles 6,0, and set 7 := ®71(0) and k := ® (o). Thus, 7 and x are
dyadic rectangles of dimensions 277 x 275 and 27/ x 27K respectively. We note that our
assumptions on J, J', K, K’ imply that 7 is taller than x and x wider than 7. By translation,
we may assume that the (- and (j-axes intersect the centers of 7 and &, respectively. Define

_Jrn{C Gl ~ 27, k< K, _Jend{Clal~ 27 g <
T 1= K , and Kj = i ] ,
TO{C: @S2 ) k=K rO{C:GI S 277}, g=1J
as well as 0, := ®(73,) and o0 := ®(k;). Thus,

K’ J
9=U9k and 0:U0j,
k=0 Jj=0

so that by the triangle inequality,
K J

|’50(1Qm9)50(ﬂ§z/mg)”q/2 < ZZ Hgo(ﬂfmek)go(ﬂfz/mgj)Hq/2'
k=0 j=0

We first sum the terms with k¥ = K’. By the Cauchy—Schwarz inequality, Proposition
and the fact that |det V®| ~ 1, we have

_2 1—2 J 1—2 1—2
Z||50 a0, €0 (Lo, Hq/2NZ|9K' Talog| T Y e[ gl
=0

7=0
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Since  has width 277", there are at most two nonempty k; with j < J’. This fact and the
bound

k| < min{27 070 1}« (4.11)
imply that Z _o ks 2/4 < |g|'=2/4. Since |rge| < 27K K| 7|, |7 ~ |Q], and |k| ~ [€],
we altogether have

J

K'—K)( 2 2
ZHEO Qo ,)50( Q'No; )Hq/QSQ ( \Qfl ’Q/\l
7=0

which is acceptable. A similar argument shows that
K/

J=J)(1=2) &5 1=2 &/ 1—2
> 11€0(Tgng, ) 0Ly Mlgrz S 276 (olagied
k=0

- 2*(K'*K)(1*§)‘Q’2*§.

We now consider the terms with ¥ < K’ and j < J. In this case, 7 is contained in a union
of four dyadic rectangles of dimensions 277 x 27 max{Kk} = and k; is contained in a union
of four dyadic rectangles of dimensions 2~ max{/ "3} x 27K’ Moreover, these rectangles are
separated by a distance of (at least) 27% and 277 in the vertical and horizontal directions,
respectively. Thus, we can apply Theorem 4.4 H to 0y and o; to get

+R)(4-1
1€0(L0g, )0 (L, o2 < 29D 12N 042102 N a2
Using (4.11) and the analogous bound for |7|, we now get

K'—1J-1 o
(J'+K 1 1
> 3 I€0(arg 0Ly, sz < 270 Vl0]3 o
k=0 j=0
~ 2(J/_J+K—K % % |Q| ’Q,|1_E
By the relations K < K’ and J > J’ and the fact that g < 4, the lemma is proved. (I

Returning to the proof of Lemma we consider the second sum in . Given
K € K*\ D(KY), let p(K) = (pi(K));_; be a permutation of K such that |Q(p1(K))T|
is maximal among |[Q(K;)"|, 1 < i < 4, and such that |K; — K| < 2|p1(K) — p2(K)| for
all 1 < 4,5 < 4. Then by the Cauchy—Schwarz inequality, Lemma the separation
condition on K, the fact that ¢ > 3, and choosing A sufficiently large, we get

4 q
4
>, |Tétawy; |, = > 2emtOElap )
Kekt\D(K4) " i=1 1 KeK“\D(K%)
K=p(K)
<SS S K — KaPr el gk ) e
K1€’CK2€’C

TN Q)2 S 8210,
Kiex
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This concludes the proof of Lemma [4.12 O

Proof of Theorem [{.1l By interpolation, it suffices to prove the analogous restricted strong-
type estimate. Let {2 C U be a measurable set. We have the decomposition

o=U U UQ

0<e<1 0<§<el/4 KeK(e

Thus, by the triangle inequality, Lemma [4.12] Proposmon and the fact that ¢ > 3, we

obtain
I€oTall, < D> > Z Eolg s |

0<e<10<6<el/4 ! KeK(e

DTS reoﬂmm;|rz+6m|q2)

Q=

0<€<10<5<g1/4 KeK(e)
1
S| XX w3 fauot)| vor
L 0<e<1 0<5<el/4 KeK(e)
S Z ST (ogs IRt E | 41 E S 0t
L 0<eS10<5<el/4

5. PROOF OF THEOREM [4.4]

In this section, we prove Theorem [4.4] the bilinear restriction estimate for related tiles.
As mentioned above, we proceed by rescaling a result of Lee [12].

We begin by defining some notation. The basic symmetries of the hyperbolic hyperboloid
are the Lorentz transformations, which, given the parametrization , are the linear maps
on R x R? that preserve the quadratic form (7,&) — 72 — &7 + €3, The Lorentz-invariant
measure do on ¥ takes the form

dg
gdo = [ (66,9
i BARFT
where ¢(€) = /1 + & — &2 as before. If L is a Lorentz transformation and supp g C 3 and

L~ Y(suppg) C 3, then
/(goL)da: / gdo.
b %

Let Q :={£ € R?2: 1+ ¢2 — ¢2 > 0}. Given a Lorentz transformation L and ¢ € €, let

L(§) = m(L((£). ),

where (77, &) := ¢ is the projection to the spatial coordinates. If £ € Q and eq-L(¢(€),&) >
0, where e; = (1,0,0) denotes the first standard basis vector, then ML(§) = M(Z({)) for
any other Lorentz transformation M. In particular, if £ C Q and e - L(¢(§), &) > 0 for all

¢ € E, then T is invertible on E with T (¢) = L~1(¢) for ¢ € L(E).
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We now turn to the proof of Theorem We may assume that j > k. Fix 01 ~ 02 € O,
and ¢ € 0; U6y, Arguing as in the proof of Lemma there exists an O(277) x O(27F)
rectangle S centered at ¢ with major axis £ such that ; U6y C S. We define three Lorentz
transformations,

P(c) c
R(7,€) i= (—walo + wiT, &1, w12 + wat), W= <\/1 +c%7_\/1—2|—c%> e st

B(7,§) = <—0151+\/14‘0%7:\/1"‘0%51—017,52),
D(r,€) ::%(27,(2 +2%% )§1+( )§2 ( Lo )£1+( Lot )éz)

which correspond to a spatial rotation, a boost, and a dilation, respectively. The compo-
sition BR takes (¢(c),c) to (1,0,0). We will show that DBR essentially takes 61,62 to a

pair of O(2~ 2k) squares near the origin, which we will then parabolically rescale to size
1. After checking that the separation of 8; and 65 is respected by these rescalings, we will
apply Lee’s result [I2) Theorem 1.1] to finish the proof.

We turn to the details. Because Lorentz transformations preserve the hyperbolic hyper-
boloid and are linear, they must permute the lines in the surface. Thus, since BR(¢(c), c) =
(1,0,0), we have either BR(¢}) = ¢ or BR({}) = ¢;. It is easy to check that in fact
BR({F) = ¢§ = R(1,1) and that ||VBR|| < 1 near the origin. Thus, by the definition of
the rectangle S, it follows that BR(6; U fs) is contained in an O(277) x O(27) rectangle

of slope 1 centered at the origin. Since D contracts by a factor comparable to 2 2% in the
—k
direction of (1,1) and expands by a factor comparable to 2% in the orthogonal direction,

D(BR(0;U#s)) lies in a disc V of radius O(2~ =2 ) centered at 0. If j and k are sufficiently
large (which we may assume), then V' C U. It is easy to check that e; - BR(¢(€),&) > 0 for
all ¢ € U. Thus, setting L := (DBR)™!, we have

L6, Uby) = D(BR(#, U b)) C V. (5.1)
Let Q; :=L ' (6;) := {€ € Q: L(€) € 6;}. We claim that
Qi = L~1(6:). (5.2)
Given a set E C Q, let E* := {(£¢(£),&) : £ € E}. Then we have
={{eQ:L(¢ (5)75) €0 U0}
={€€Q:(4(6),6) € LTHO) U (-L7H((—0)))}-

It is easy to check that e; - L=1(¢(¢),¢) > 0 for all ¢ € U. Thus, since —0; C U and ¢ > 0,
we have (¢(€),€) ¢ —L~Y((—6;)T) for every £. Hence

Qi={6€Q:(4(£),8) € L7HO)} = L~1(6y),

proving the claim.
Now, if f is supported in 61 U 02, then by the Lorentz invariance of the measure do,

Eof(t,x) = & fL(L*(t, x)),
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where

_ JL(&)S(L()

We have |fr| ~ |f o L] on suppfr, € Q1 U Q2 C V. Additionally, e; - L(¢(£),£) > 0 for all
¢ € V, so we know that L is invertible on Q; UQ2 with ffl(C) = L1(¢) for ¢ € L(Q1UQ2).
A straightforward calculation shows that |det VI ' (¢)| < 1 on L(Q; U Qz). Combining
these observations, we see that the estimate in Theorem is equivalent to
. 4
[€0€0gllar2 S 297V l2llg 2 (5.3)
for all f € L%(Q1) and g € L*(Q2).

Now, by parabolic rescaling, we have

Eof (t,x) = 277275 (29,2 a),

for every f supported in Q1 UQ2 C V', where Séb is the extension operator associated to the
phase ¥(€) 1= 27k /1 4+ 27-k(¢2 — £€2). The estimate (5.3)) now follows from [I2, Theorem

k

1.1], provided the hypotheses of the latter are satisfied. Let Qi = 2%621-. We need to the
check that

{(V2(E7) (V&) = VY(Q)), V(&) — V()] 2 1,
((V20(¢") "N (V(€) — Vo (()), Vi (€) = V()] 2 1,

for all £,¢',¢" € Q1 and ¢, ¢, ¢" € Qa. Let r(€) := (£1,—&). Simple calculations and the
mean value theorem show that

V() = (&) + 0@277"),

o)t =(y O ) o,

for all [¢] < 1, and thus we only need to show that
(E—CrE¢ =N 21 (5.4)

for all £,¢' € Q1 and (, ¢’ € Q.
Let p(¢) and ¢(&) denote the orthogonal projections of & to the lines R(1, —1) and R(1, 1),
respectively. That is,

pE) = L6 - 6.6 8)
o) = 61+ 62,61+ ).

Assume for now that the following lemma holds:

Lemma 5.1. For all £ € Q1 and € QQ2, we have

p(E) —p(Q)| 2277,
(€)= (O Z 275
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We immediately see that [p(€ —¢)| = 1 and |q(é —¢)| = 1 for all £ € Q; and ¢ € Qo. We
will use these bounds to prove . We have
(€=¢rE =)= @& +a€—Q,p(rE —)) +alrE -)))
= (p(§ =€), p(r(§" = ¢))) + (a(§ = O),a(r(§" = {)))

by orthogonality. Using the relations por =roq and gor = rop and the fact that r is
unitary, we thus have

(€=CrE =) =€ —=0)a€ =)+ (@€ =0).rpE =) (5.5)

Using the fact that the sets ¢(Q1) and ¢(Q2) (resp. p(Q1) and p(Qs)) are disjoint and each
of them is connected, one sees that ¢(§ — ¢) and ¢(§’ — () are parallel, as are p(¢ — ) and
p(&’ — ¢’). Since r is unitary, r(p(¢ — ¢)) and r(p(§’ — (’)) are also parallel. Hence, both
terms on the right-hand side of have the same sign, and thus it suffices to bound one
of them from below. We have

[{r(p(§ =€), a(€ = NI = Ip(& = Olla(€ = N 2 1.

It remains to prove Lemma [5.1

Proof of Lemma[5.4. We know that Q; = L=1(6;) = D(BR(6;)), by (5.2) and (5.1). We
claim, first, that

7€) 7T (O 2 27,

7€) -7 (Ol 227 (5.6)
for all ¢ € BR(#;) and ¢ € BR(fs), where 7% are the projections used throughout the
previous section (recall (4.3). Using that |[(BR)"!|| < 1, it is not difficult to show that

BR ' exists in a neighborhood of 0 (of constant size) and is given by Binl(n) = (BR)"(n).
We showed above that the sets BR(6;) lie in a disc of radius O(27%) centered at 0. Fix

¢ € BR(6,) and ¢ € BR(62), and let & := BR '(€), a := BR '(z*(€),0) and ¢/ :=
?R_I(C), B = ?R_l(w+(ﬁ),0). Since (71(£),0) € EZ by Lemma it follows that
a € E;,. Similarly, 3 € Ez,. Thus, since 7+ is constant along lines of the form ¢,7, by Lemma
42| and 6; ~ 63, we have

277 Slrt(E) — 7t ()]
= |7 () =7 (B)|
S la =g
= [BR'(x"().0) - BR ' (x"((),0)
Snt () =7 ()l
A similar argument gives the second estimate in .

We will now use to prove the lemma. We only prove the first estimate; the second
one follows by a similar argument. Fix £ € @1 and { € @9, and let a = ﬁ_l(p(é‘)) =
Q%p(g) and 3 = 5_1(19(()) = 2%17((). It suffices to show that | — 8] = 277. Let ¢ be
the intersection of the lines Eg and R(1,—1). The points A := &, B :=p(§), and C := ¢
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form a right triangle with hypotenuse AC. One easily checks that é(ﬁg,R(l, 1)) < [¢l
Thus, ZCAB < 9- 5" by the fact that £ € Q1 C V. We also have |AC| < 2_#,
and thus |p(¢) — & = |BC| < 2777F. Let o = ﬁ_l(ﬁ’) = 2°7%¢/. Then o — o' =
2%|p(§) ¢ < 9=*3" . Because ¢ € 1}, we have Egr, = ﬂg (see the proof of Lemma
and thus o/ € D' (£) = Z%_l

g
7t (a) — 7T (D™

and by a similar argument,

. Thus, since 7T is constant along 6%_1 , we have

© 6
3j+k

) =lr"(a) =7 (@) Sla—d| 272,

3j+k

—-1 _ 3tk
7B =7t (D ()2
Since ﬁ_l(f) € BR(6y) and 5_1(0 € BR(f2), the first estimate in (5.6) now gives the
bound

3j+k

2)’

279 St (D) — 7 (D Q)] = (@) — T (B)] + 02
and consequently
o =Bl 2 7t (a) =7 F(8)| 2 277,

~

which is what we needed to show. O

Remark 5.2. As an application, we pause to explain how the bilinear theory for & can
be used to obtain further (conditional) linear estimates for & on the parabolic scaling
line p = (q/2). Similar to the case of the hyperbolic paraboloid (see [16]), the proof
of Theorem can be adjusted to give the following conditional bilinear-to-linear result:
Given 3 < g < 4, if there exists some py < (%)’ such that
. 4 2
1€07€0la/2 S 27 5072 g gl

~

for all functions f, g supported in related tiles in ©;j, then &, is bounded from L/ 1o
L for all ¢ > qo. In [4], the first author showed the following: If go > 3.25, pg > (%)’, and
0 <r <1, then ||&] fllq S | fllp, uniformly in 7, where

& 1(t,z) = / VIR0 (6 dg
U

Using this result, the Cauchy—Schwarz inequality, a parabolic rescaling argument (utilizing
the uniformity in r), and interpolation with Theorem one can show that the hypothesis
of the conditional version of Theorem holds for each ¢y > 3.25. We conclude that & is
bounded from L(@/2)’ to LY for every g > 3.25.

6. BILINEAR ADJOINT RESTRICTION ON ANNULI

In the next two sections we establish bounds for the extension operator associated to
dyadic annuli in our hyperboloid. By invariance under cylindrical rotations and the triangle
inequality, it suffices to consider subsets of these annuli with some angular restriction, and
we abuse notation (relative to the introduction) by defining

Ty i={(r,§) €T : [¢] ~ 2V, |§ —e1] < 0.001},
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where e; denotes the usual first coordinate vector. We will use the notation fy to denote
a function supported on I'y.

The focus of this section will be on establishing bounds in the bilinear range, where our
results are unconditional and our deduction is more straightforward. We will then turn to
the conditional result in the next section, the proof of which will use some of the lemmas
from this section.

Proposition 6.1. Let () <p <qand4>q> 13—0. Then
1€fNllg S 1w llps

for all functions fn supported on I'y.

The remainder of this section will be devoted to the proof of Proposition [6.1
We will work on sectors of varying width contained in the I'y. Let C < k < N. By an
(N, k)-sector, we mean a set of the form

D = (&) €Dy : & —wl <27},

with w € S'; we refer to 27 as the angular width of the sector.
We begin by establishing bounds on the thinnest sectors.

Lemma 6.2. For any p, q, validity of Ri(p — q) implies that

1€f%nlla S 1% llps (6.1)

for every function ff\’,’N supported in an (N, N)-sector, N > 1. In particular, (6.1) holds
for all ¢ > 2p' when q > %.

Proof. We recall the definition (|1.1)) of the Lorentz boost L, and the Lorentz invariance
of our measure. The deduction claimed in the lemma follows from the observation that if
weSand N > 1, Lyn,, maps I'Y,  into To. O

Now we turn to the deduction of bounds on the I'y from those on the I'}; 5, for which
we adapt the bilinear theory for the cone.

For k < N, we say that two (IV, k)-sectors, 'Y ), and I“j{,: . are related, I'y, | ~ F‘;{ék, when
27k < |w — W!| < 27548 We say that two (IV, N)-sectors, I'Y v and I‘%N are related
when |w — /| < 27V+8,

We can deduce a near-optimal L?-based bilinear adjoint restriction theorem for related
(N, k)-sectors from results already in the literature. Namely, one may directly apply the
bilinear restriction method from [18] (which was quickly observed to apply to conic surfaces)
and conic rescaling, or else directly apply the results of [7] to obtain the following.

Theorem 6.3 ([7, 13, 18]). Let C < k < N, let I'Y}, and Iy, be related (N, k)-sectors,
and let fi1, fo be L? functions supported on F“ﬁk,Fﬁk, respectively. Then
C(N—k)(6—
|EnE Lo S 27PN AR g > (6.2)

We state our bilinear-to-linear deduction in slightly more general terms than we need in
this section in order to facilitate later arguments.
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Lemma 6.4. Let 3 < q <4, (1) <p<q, and s < p. Assume that Ri(p — q) holds and
that for C <k < N,

IEF1E Fallgsa S 27D fullsl f2lls, (6.3)

whenever f1 and fo are supported in related (N, k)-sectors. If o > > 2 — 5, a >0, and either
a;&f—f orp < q, then

1€fNllg S NN ps
for all measurable functions fn satisfying |fn| ~ Loy, for some Qn CT'y.

Lemma [6.4] implies a restricted strong-type inequality for extension from the I'y, which
can be interpolated to yield strong-type inequalities since we work with exponents obeying

q = p.

Proof of Lemma[6.4. We may choose O(27%)-separated collections Dy C S!, C < k <
N, such that whenever (7,€),(7',¢') € T'y, there exists a pair of related (NN, k)-sectors
FNk 5 (1,€) and I‘Nk > (7',¢), with w,w’ € Dy . Here k = N if ’IE\ |§,|\ < 27N and

~ |E — @|, otherwise. We will abuse notation by saying that for w,w’ € Dy g, w ~ W’

. /
it IS ~ 'Yy ;- Thus we may decompose

N
IyxIy={J J T%xxT¥x (6.4)
k=C LUNUJIGDNJC
We will later use the geometric property that each 'Yk is contained in a parallelepiped

Pf ., such that the sumsets Py, + P}{’/k are finitely overlapping as the pair w ~ w’ € Dy
varies. 7 7

Let fn be a measurable function with |fy| ~ 1q, , for some subset Q1 C I'y. Using the
decomposition to make a partition of unity, we have

1€Tay 117 = 1(€1ay)?ll4/2

<

Z N EfSLESY

k=C wrw' €D N i

= Il + IQ?
q/2

Z 5fJL§JI,N5f1“\)//,N

www/GDN,N

where the f3, are measurable functions supported on the I'Y; , with | fﬁ,ﬂ < |fn|-

We begin with the first term. By the Tao—Vargas—Vega orthogonality lemma [19, Lemma
6.1] and the finite overlap of sumsets, the Cauchy—Schwarz inequality, the hypothesis that
R§(p — g) holds, and the fact that ¢ > p, we have

, 2/q ) 2/q
ns( X lemaeialls) <( X Iemalgtiesiyy?)

UJNw’EDN,N UJNOJIEQN,N

, 2/q 2/q
(X W) S (X I lg) Sl

OJNW’E@N’N We@N,N
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Now we turn to the second term. Let (2%, , := Qn NI} ;. By the triangle inequality,
almost orthogonality, and the aforementioned finite overlap property of sumsets, and then
(6.3) and some standard reindexing,

N-C q N-C

DN BN EH T A B D s W (D

k=C WNW’E'DNJC k=C weDN,k

SR

Thus by Holder’s inequality and the estimates
O—(Q‘]’J\[,k) < mln{U(QN),O'(F‘JUV’k)} and J(F‘]"V’k) ~ 2]\7—1:7

we see that

N-C
LY o min{2/C=%) o(Qy) 57} Q1

j=C
logy(o(n)) ) , N—C - .
< Y 2E ey + > 279 ()5 = Iy + IY.
j=C j=max{C\log,(c(Qn))}

When o(Qy) <1, I, =0 and 1) ~ U(QN)% < U(QN)%, since s < p. When o(Qy) > 1,
2

I§ ~ o(Qy)F < o(Qy)r. If, in addition, 2 — 2 —a < 0, I ~ o(Qy)1 < o(Q)>.
2 2

Meanwhile, if < — s—a> 0, I ~o(Qn)s > < O'(QN)%. Finally, if a = % — % and p < g,
2 2
then 1!, ~ log(o(2n))o(Qn) e S o(n)P.
2
In any case, combining our estimates for I; and Iy gives ||€ fN||3 < o(Qn)?, completing
the proof of the lemma. [l

Theorem [6.3] Theorem [4.1] Lemma [6.2] Lemmal6.4] (with ¢ > p > 2, ¢ > 2p/, and s = 2),
and real interpolation together imply that ||€ f||, < || f]]p for all f € C°(I'y) when ¢ > 10/3

and ()" < p < ¢. Thus the proof of Proposition is complete.

2
s

7. REDUCTION TO BOUNDS ON I'y VIA DECOUPLING

In the previous section we showed how to deduce bounds for extension from the dyadic an-
nuli I'y from those for extension from I'g by using the bilinear adjoint restriction inequality
. This approach is limited, since we do not currently know any such result with ¢ < 13—0.
In this section, we will use the conic decoupling theorem of Bourgain—Demeter to obtain
new bounds for extension from I'y, conditional on further improvements to R§(p — q).
The entirety of this section will be devoted to a proof of the following result.

Proposition 7.1. Suppose that R§((%) — qo) holds for some gy < %. Then for (p,q)
obeying (3)' <p <q and

1 2 1/¢-3/10 1

/' ) 7.1

p 5 1/Q0—3/10+10 (7.1)
we have

1€ llg S 1w llps (7.2)
for all fy € LP(I'y), with bounds uniform in N.
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Our main tool in the proof of Proposition is the following consequence of Bourgain—
Demeter’s decoupling theorem for the cone.

Proposition 7.2. Suppose that Ri(p — q) holds for some p > (1), ¢ < 4. Then

1

11,y
1€ £llg Se 2V RETEE g,
for all functions f supported in an (N, k)-sector and all € > 0.

Proof of Propostion[7.9. Let k be an (N, k)-sector, let f. be supported in s, and let P be
a partition of x into (IV, V)-sectors. The estimate R(p — ¢) and Lemma imply that

1€ follg < [l follp (7.3)

for all fy supported in § € P. In particular, if N — k < 1, then #P < 1 and the required
estimate is a consequence of the triangle inequality and . We may assume, therefore,
that N — k > C for some sufficiently large constant C'.

We proceed by rescaling extension estimates on x to those on a nearly conic set of angular
width 1 in the region [£| ~ 1, where Bourgain—Demeter’s conic decoupling theorem can be
directly applied. We may assume by rotational symmetry that

ko= {({E), &) : 27 < el 2™, £(¢,(1,0)) <2777} (7:4)
Thus, # lies in an O(2~")-neighborhood of the conic sector
re = {(g,€) 1 2% < ¢l <2V, (& (1,0)) <271

Let D be the conic dilation D(7,&) := 27V (7,€). Then D(k.) is a conic sector of angular
width 27% in Cp := {(|¢,€) : 1 < |¢] < 2} that contains the point (1,1,0). Let L be the
linear map satisfying

L(0,0,1) = 2%(0,0,1),

L(1,1,0) = (1,1,0),

L(—1,1,0) = 22%(~1,1,0).

Geometrically, the vectors (0,0,1), (1,1,0), and (—1,1,0) are respectively “angularly tan-
gent,” “radially tangent,” and normal to Cy at the point (1,1,0). The map L preserves the
cone and expands D(k.) to angular width 1. Now, set M = LD and § = C'22(k=N) where

C'isa constant. If (' is sufficiently large, then M (k) lies in the §-neighborhood of a conic
frustum Cj, a slight enlargement of Cy. Let dM,.o be the pushforward measure on M (T'),

given by
/ ng*O'::/gOMdO',
M(T) r

and let EMg := (gdM,0)V. Let P be a partition of the d-neighborhood of Cy into sectors
A of angular Wldth 61/2 and thickness 8. By conic decoupling, see [3, Theorem 1.2], the
inequality

:
1€l <. 56( 3 HEM(gnA/)uz) (7.5)

A€EP
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holds for all g supported in M(k), where A’ := AN M(x). We claim that every A € P
obeys the bound

#{OecP:onM YA #0) < 1. (7.6)
Then, taking g = f o M~! in (7.5), rescaling, and applying (7.3) and Holder’s inequality,

we get

1€l <- 56( 3 H6<f11M1(A/)>u§) 2

AcP
2
(2 2 W)
Ae’ﬁ oeP:
ONM—L(A)#D

< 2N RG=5H2) ¢)

Since ¢ is arbitrary, the proof is complete modulo the claim (7.6]).
To begin the proof of ([7.6]), we record the following notation: The angular separation of
¢,¢" € R3 is defined as

(C27<3) . (Cé?Cé)
(G2, ) (G5, ¢l

Now, fix A € Pand let n:=#{0 € P: 6N M (A") # 0}. We need to show that n < 1, so
we may assume that n > 3. Then there exist ¢, ¢’ € kN M ~1(A’) such that distang(¢, () 2
n2~N. Since A’ has angular width O(2¥=%), it suffices to show that distang (M (¢), M (¢')) 2
2k distang (¢, ¢"). Toward that end, it will be convenient to understand how M transforms
the polar coordinates ({(&)), &) =: ({(r)), r cosv,rsinv), where (r) := v/r2 — 1. We compute
that M ({(r)),r cosv,rsinv) = 2=V (m;(r,v))3_,, where

mi(r,v) == (1422 () + (1 — 2%)rcos v,

ma(r,v) == (1 — 22)(r) + (1 + 2%)r cos v,
mg(r,v) :

( — 2k‘+1

The polar angle associated to M ({(r)),r cosv,rsinv) is

A(r,v) := arctan (mg u))

Thus, letting ¢ =: ({(r)),r cosv, rsinv) and ¢’ =: ({r'),r’ cos/, ' sinv’), we have
distang (M (), M({)) ~ |A(r,v) — A+, V). (7.7)

Since ¢ € k, we know that 2V < r < 2N+l and |v| < 2751 by (7.4). Consequently, one
easily checks that mao(r,v) ~ 2 and |ms(r,v)| < 2/; the same bounds hold for ma(r', 1)
and ms(r’,v'). Arguments using the mean value theorem and the preceding estimates show
that

diStang(Ca C/) =

rsinv.

|A(r,v) — A(r, V)| > v — V| |¢|<i£1_fk_l 102 A(r, p)| = 2 distang (¢, ¢)
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and

|A(r, V") — A( V)| < |r — 7| sup |01A(s,1)| < oN92k=3N < 2-Cok distang (¢, <.
2N§5§2N+1

Thus, if C is sufficiently large, then |A(r,v) — A(r',1')| 2 2¥ distang(¢,¢’) by the triangle
inequality. Plugging this estimate into ([7.7)) completes the proof. O

We are now ready to prove Proposition By the hypothesis R§((%)" — qo), Proposi-
tion and the Cauchy—Schwarz inequality, we have

IEF1E folloy S 27 £ lpo 1 F2 Lo

for all functions f1, fo supported in (N, k)-sectors. Given ¢; > 1—??, we also have

IELE fallgrse S 27 N illall fall2

by Theorem provided fi and f2 are supported in related (N, k)-sectors. Interpolating
these estimates, we see that

IEF1E fallgua Se 27N R fulls, | fols (7.8)

4
ka)(lf%fk

ka)(%q

for 0 <t <1, where
1 1 2 1 11
(’) ~ <1_t) <1_ ’) +t<7)’
St qt q0 9o 2" q1
4 6
at::(l—t)<1——25>+t<—1>.
q0 q1

We may apply Lemma to obtain uniform restricted weak-type LP — L% bounds on
dyadic annuli as long as (%) < p < ¢; and

11
p st 2’
or, equivalently, after a bit of arithmetic, if
1 3 1 3
- >|——=4¢|](1-)+1—-—. 7.9
> (2-F4e)a-nr1-2 (7.9
Sending g1 \ % and € \, 0, and substituting 1 —¢ = % in (7.9) yields (7.1). Having

proved restricted weak-type bounds in the claimed region, real interpolation completes the
proof of Proposition [7.1]

8. SUMMING THE BOUNDS ON ANNULI

The purpose of this section is to complete the proof of Theorem by proving that
uniform bounds for the extension from dyadic annuli imply global bounds on £. Let
Rion(@ — ¢) denote the statement that for all N > 1 and measurable fy supported
on FN,

1SN llg S 1N llp-
We will spend the majority of this section proving the following.
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Lemma 8.1. If R}, (po — qo) holds for some () < po < qo, then R*(p — q) holds for
all ¢ > qo and p' = Z—éq.

Lemma 8.2. If R}, . (q0 — qo) holds for some 3 < qo < 4, then R*(q — q) holds for all
qo < q < 4.

Before proving the lemmas in detail, we note that applying them in conjunction with
Propositions [6.1] and [7.1] completes the proof of Theorem

We will prove Lemmas [8.1] and by proving that the hypotheses imply a bilinear
extension estimate between annuli:

1€ fiiE fralle S 27NNl (1 v, s (8.1)

for some cy > 0, and measurable functions |fy;| ~ ]lgNj, Qn; € Tn;, j = 1,2, Indeed,

assuming validity of such an estimate, for any |f| ~ 1g, by the triangle inequality and
q<4,

4
HEFNG S IAIE+ 1D EfnlE S IFIE+ > yEAF

N>C N1>N2>N3>Ny>C =1
4
_a%0 N, — 4
ST+ Z 271 =Nl H I oy ) S Z HfH%p(pN) S AT
Ni>No>N3>Ny>1 i=1 YON>0

Real interpolation leads to strong-type bounds.

Proof of Lemma[8.1 The Strichartz inequality (3.1]) implies that
1.1
IEfllLrrs S IEEN ™= fllL2(rydo)s
/ (8.2)

2 2p!
2<rs; s<oo; —+ po, = po,.
r (g —po)s 90— po
As (8.2)) implies boundedness of £ in the range p = 2, 4 < ¢ < 6, we may assume henceforth
that pg > 2.
Let g9 = 2;—9, and choose some ¢, so, 71, s1 obeying (8.2]), 7o < g2 < sp, and
0

111 11
@ 2ro rm’ 2'sy s

By the Cauchy—Schwarz inequality, for any 1 < N; < Ns, we have the bilinear estimate
11 11
Ni(— =) No(—=—

IEfMERNIL 5 S 1€l ol fagllr o S 2770750 22750 iy, o | fv,

11
—(5=—=)|N1—N:
= 27 G075 T ) vy
Inequality (8.1)) follows by interpolation with the consequence
Hgfl\hngzH%O S HfN1Hp0HfN2HP0

of our hypothesis. O
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Proof of Lemma[8.4. We will prove a bilinear estimate between annuli as in , with
p=gqand C < Ny < Ny — C fixed. To do so, we will use three different bilinear extension
estimates between sectors at different scales.

It is convenient to modify our Whitney decomposition slightly from earlier, though we
will continue to use the convention that ||% —e1| < ¢ for all £ € T'y, for some sufficiently
small ¢. For C < k < Ny, let D;, denote a 2 F-separated subset of S'. For w,w’ € Dy,
and k < Ny — C, we say that w ~ «' if 270 < |w — | < 27%+2C¢ Meanwhile, for

—C < k < Ny, we say that w ~ ' if |w — w'| < 27M+2¢ Thus for & € T'y, and
& € T'y,, there is at least one and at most a bounded number of triples (k,w,w’) with
w~w €Dy and & €T, , and & € F“](;ka

By the hypothesis that R}, (g0 — qo) holds, interpolation, and the Cauchy—Schwarz
inequality, for ¥ > C and w,w’ € Dy, we have

€ FN N €T ma g S R vl R v las g0 < g <4 (8.3)
2

By Theorem 1.4 of [7] (see also [7l, Theorem 1.10]), if 0 < k < N; — C, w ~ v’ € Dy, and
% < q1 < 4, then

3_5
5= M

' —(N1+No—2k) (2 —-1) - —N. /
1€ 15,k Eff il 27T 276 AR allall o glle (8.4)

Finally, if K > Ny — C and w ~ ' € Dy, we claim that

/ _1 Ny —N- /
IE£5, 1w EF5 w2 S 271NNl o 1L £ el (8.5)

We now turn to the details of (8.5)), which follow a well-established route. Let ((£)),&) €

%, 5, and ((n),n) € Tg, ;.- The coordinate change ¢ = ({&) +{(n), £ +n), B = €~ (perpen-

dicular direction taken with respect to w) is finite-to-one, and has Jacobian determinant
a(¢,B) 2—2N1

‘8(5 n) |~
integrate with respect to do), and Hélder’s inequality (8 varies over an interval of length

at most 1), the right-hand side of is bounded by

— 1
1750 E5alle S ([ [ 155,400, 550 m) gty SR 45 00) .

Changing variables back, estimating the various roughly constant terms that have arisen,
and using Holder’s inequality again, the right-hand side of the preceding inequality is
bounded by

. By Plancherel’s identity, the change of variables formula (recall that we

_1 ! L ew !
oMo s NN (0 )T o (T, 1) 115, ellall 15 Al (8.6)

Since 0(1“‘]‘(,1,]6) < 1, while O‘(F‘X,;’k) < 2N2=MN1 ipequality implies (8.5)).
Interpolating (8.3)) and ( @ yields, for all w ~w’' € Dy, 0 < k < Ny — C,

Hngl,kngz, < 2" (NlJrNT%)%Té'NrNQ'”fJo\J/l,kHstJo\J/;,kHSa (8.7)

for all gy < ¢ < 4, some s < ¢, some a > % - %, and some ¢ > 0. Interpolating (8.5) and
(8-3) (taking ¢ = go in the latter) yields, for k = N1 + C and w ~ W’ € Dy, 4,

' —3|N1—N:; '
||5f]0\-}1,kgf%2,N1H% S 2 | ! 2|Hf]u\)f1,N1||q||f]c€f2,N1HQ’ qO < q < 4 (88)
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We adapt the bilinear to linear argument of Tao—Vargas—Vega [19]. Namely, if |fx. | ~
1g Ny j = 1,2, then using a partition of unity and almost orthogonality; using (8.7)), (8.8)),
the Cauchy—-Schwarz inequality, and reindexing; and finally summing as in the proof of

Lemma [6.4]

Ny

IEfmEmlls S D € REFRnll

k=C w~w'€Dy,

)%

kR kR

2

Ny 2
S2 e TS Il + S TT2 P30 w0

j=1 weDy, k=C j=1 wEDy,

< 27NN e ol s g

Q=
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