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Abstract. In this article we establish new inequalities, both conditional and uncondi-
tional, for the restriction problem associated to the hyperbolic, or one-sheeted, hyperboloid
in three dimensions, endowed with a Lorentz-invariant measure. These inequalities are
unconditional (and optimal) in the bilinear range q > 10

3
.

Résumé. Nous obtenons des nouvelles inégalités pour le problème de restriction de la
transformée de Fourier associé à l’hyperbolöıde hyperbolique (ou à une nappe), équipé
avec une mesure invariante par transformations de Lorentz. Ces inégalités sont optimales
et inconditionnelles dans le régime bilinéaire q > 10

3
.
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1. Introduction

This article concerns the boundedness of the Fourier restriction operator associated to
the hyperbolic, or one-sheeted, hyperboloid in R1+2,

Γ := {(τ, ξ) ∈ R1+2 : 1 + τ2 = |ξ|2}.

This surface is invariant under the Lorentz transformations

Lν : (τ, ξ) 7→ (〈ν〉τ − ν · ξ, ξ⊥ + 〈ν〉ξ‖ − ντ), ν ∈ R2, (1.1)
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where 〈ν〉 :=
√

1 + |ν|2 and ξ⊥, ξ‖ are the perpendicular and parallel components of ξ
with respect to ν. We endow the surface with the unique (up to scalar multiples) Lorentz-
invariant measure, which coincides with what is known as the affine surface measure,∫

Γ
f dσ =

∫
{|ξ|>1}

(f(−〈〈ξ〉〉, ξ) + f(〈〈ξ〉〉, ξ)) dξ
〈〈ξ〉〉 , where 〈〈ξ〉〉 :=

√
|ξ|2 − 1, |ξ| ≥ 1.

Various geometric features of this surface make it potentially interesting from the per-
spective of Fourier restriction/extension. Though the Gaussian curvature is nonvanishing,
the principal curvatures have different signs, which presents challenges at all scales because
the restriction theory for hyperbolic surfaces is much less well-developed than that for el-
liptic surfaces. One of the main contributions of the present article is an adaptation of the
techniques of [12, 16, 20] to establish unconditional, global restriction inequalities in the
bilinear range. In particular, we establish the first extension inequalities on the parabolic
scaling line q = 2p′ beyond the Stein–Tomas range (i.e. with p > 2) for any negatively
curved surface that is not the hyperbolic paraboloid. The above-mentioned techniques are
directly applicable in the low-frequency region {|ξ| . 1}, but at high frequencies, the sur-
face is asymptotic to the cone, presenting some additional complications. In this region,
we use conic decoupling and interpolation with bilinear inequalities to prove a conditional
result that boosts local restriction inequalities on the low-frequency region to global ones
in a range that is non-optimal but, nevertheless, offers the possibility of improvement over
that obtainable directly from bilinear restriction. Our explorations of the conic region also
suggest possible future applications of some (surprisingly, still open) questions about the
restriction operator associated to the cone in 1 + 2 dimensions.

We turn now to statements of our main results, given in terms of the Fourier extension

operator Ef := f̂dσ, and its local version E0f := E(1{|ξ|.1}f). We say that R∗(p → q)
holds if there exists a universal constant C such that ‖Ef‖Lq(R3) ≤ C‖f‖Lp(Γ;dσ), for all

f ∈ C∞cpct(R3); we say that R∗0(p → q) holds when the analogous statement holds with E0

in place of E .

Theorem 1.1. For (p, q) 6= (4, 4) obeying 2p′ ≤ q ≤ 3p′, q ≥ p, and q > 10
3 , R∗(p → q)

holds. Moreover, for 3 < q0 <
10
3 , R∗0(( q02 )′ → q0) implies R∗(p→ q) for all exponent pairs

obeying q0 < q ≤ 10
3 , ( q2)′ ≤ p ≤ q, and

1

p
>

2

5
· 1/q − 3/10

1/q0 − 3/10
+

1

10
.

In particular, the first author proved in [4] (see also Remark 5.2) that R∗0(( q02 )′ → q0)

holds for q0 > 3.25, and so our conditional result implies that R∗(p→ q) holds for q ≤ 10
3 ,

( q2)′ ≤ p ≤ q, and

1

p
>

52

q
− 31

2
.

(The upper line segment of this region has endpoints (1
p ,

1
q ) = ( 31

102 ,
31
102) and ( 7

18 ,
11
36).)

Because of the loss in the range of q, we expect that our conditionality in Theorem 1.1
is not optimal. This suggests a potential application of improvements (or, rather, the
techniques used to obtain those improvements) to the range of Lp × Lp → Lq bilinear
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Figure 1. By Theorem 1.1, the full restriction conjecture for the low-
frequency region would imply global restriction estimates for exponent pairs
(p−1, q−1) within the red quadrilateral. Unconditional estimates hold in the
bilinear range q > 10

3 .

extension inequalities for the cone in R3, should such inequalities become available in the
future.

By contrast with Theorem 1.1, we note the following negative result.

Proposition 1.2. For (p, q) ∈ {(3, 3), (4, 4)} and for (p−1, q−1) lying outside of the triangle

T := {(p−1, q−1) : 2p′ ≤ q ≤ 3p′, q ≥ p},

R∗(p→ q) fails.

We note in particular that there are exponent pairs along the diagonal q = p at which
R∗(p → q) holds; the authors had not expected this. The question of improved estimates
at the endpoint (4, 4) looks to be potentially interesting for further study. Indeed, the
Kakeya-like example of [2] rules out even a restricted weak-type inequality at the endpoint
(3, 3), but we are not able to exclude the possibility that some weaker inequality (such
as a restricted weak-type bound) might be valid at the endpoint (4, 4), and, in fact, the
analogous question for the extension operator associated to the cone also seems to be open.

Overview. We prove the negative result, Proposition 1.2, in Section 2 via familiar Knapp
and Kakeya-like examples. In Section 3, we give a brief, self-contained proof of Theorem 1.1
in the classical range, q > 4. We also record a family of L2-based mixed norm (Strichartz)
inequalities which will be useful later on. In moving beyond the classical range, we begin
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with our unconditional result: that R∗0(p → q) holds in the bilinear range q ≥ 2p′ and
q > 10

3 . This argument will occupy Section 4, in which we establish the bilinear-to-linear

deduction for this surface, and Section 5, in which we prove an L2 × L2 → Lq/2 bilinear
extension theorem for appropriately separated “tiles”. The geometry of the surface, namely
the double ruling, plays a critical role, because it enables us to define a bi-parameter family
of “tiles” that is quite close to that which naturally arises in the case of the hyperbolic
paraboloid. In Section 6, we note that, via a Lorentz boost, R∗0(p→ q) implies bounds on
unit width “sectors” at high frequencies, and we use bilinear extension estimates (similar
to those for the cone) to deduce from our unconditional result uniform bounds for the
extension from dyadic frusta

ΓN := {(τ, ξ) ∈ Γ : |ξ| ∼ 2N}.
In Section 7, we use conic decoupling to extend the deduction in Section 6 and obtain a
conditional result in a larger (but likely non-optimal) range. Finally, in Section 8, we prove
that uniform estimates for the extension from dyadic frusta imply global bounds for E .

Notation. We will use throughout the standard notation A . B to mean that A ≤ CB,
for a constant C that is allowed to depend on the Lebesgue exponents in question and also,
in the case of conditional results, on assumed finite bounds on the operator norms of the
extension operator. The expression A ∼ B means A . B and B . A.

2. The negative result: Proof of Proposition 1.2

Proof of necessity of q ≥ 2p′. We apply the usual Knapp example. Indeed, if fδ is a smooth

bump function of radius 0 < δ < 1 on Γ, centered at (0, 0, 1), then ‖fδ‖p ∼ δ
2
p , while

|Efδ| ∼ δ2 on a tube of length cδ−2 and width cδ−1, yielding ‖Efδ‖q & δ
2− 4

q . In more

detail, set φ(ζ) :=
√

1 + ζ2
1 − ζ2

2 , and note that Γ ⊇ {(ζ1, ζ2, φ(ζ)) : ζ2
2 <

1
4(1 + ζ2

1 )}. Our

Lorentz-invariant measure on Γ is expressed in these coordinates by dσ(ζ) = dζ
φ(ζ) . Given

sufficiently small δ > 0, let

Cδ = {(ζ, φ(ζ)) ∈ Γ : |ζ| ≤ δ} (2.1)

denote the cap on Γ of radius δ centered at (0, 0, 1), and consider its indicator function
1δ = 1Cδ . Then

‖1δ‖Lp(Γ;dσ) = σ(Cδ)
1
p ∼ δ

2
p , (2.2)

whereas

E(1δ)(t, x) = eix2
∫
|ζ|≤δ

ei(t,x1,x2)·(ζ1,ζ2,φ(ζ)−1) dζ

φ(ζ)
.

Since |ζ1|, |ζ2| ≤ δ, it follows that |φ(ζ)− 1| ≤ Cδ2. Consequently, if |t|, |x1| ≤ C−1
1 δ−1 and

|x2| ≤ C−1
1 δ−2, and C1 is sufficiently large, then

|E(1δ)(t, x)| =

∣∣∣∣∣
∫
|ζ|≤δ

ei(t,x1,x2)·(ζ1,ζ2,φ(ζ)−1) dζ

φ(ζ)

∣∣∣∣∣
≥
∫
|ζ|≤δ

cos(tζ1 + x1ζ2 + x2(φ(ζ)− 1))
dζ

φ(ζ)
≥ δ2

2
,
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and therefore

‖E(1δ)‖qLq(R3)
=

∫
R3

|E(1δ)(t, x)|qdtdx & δ2q(δ−1δ−1δ−2) = δ2q−4. (2.3)

If E : Lp(Γ; dσ)→ Lq(R3) defines a bounded operator, then from (2.2) and (2.3) it follows
that

δ
2− 4

q . ‖E(1δ)‖Lq(R3) . ‖1δ‖Lp(Γ;dσ) ∼ δ
2
p .

Sending δ ↘ 0 implies 2
p ≤ 2− 4

q , as claimed. �

Proof of necessity of q ≤ 3p′. We apply a conic Knapp example. Details are analogous to
the previous paragraph, so we shall be brief. For r > 0 sufficiently small and λ > 0
sufficiently large, consider the set

Γr,λ :=
{

(τ, ξ) ∈ Γ : τ ∼ λ, | ξ|ξ| − e1| < r
}
, (2.4)

where e1 ∈ R2 denotes the first coordinate vector. Let fr,λ be a smooth bump function

adapted to Γr,λ. Then ‖fr,λ‖p ∼ (λr)
1
p , and |Efr,λ| ∼ λr on a slab of length c(λr2)−1

(perpendicular to Γr,λ), width c(λr)−1 (tangent to Γr,λ in the angular direction), and mini

width cλ−1 (tangent to Γr,λ in the radial direction). Thus ‖Efr,λ‖q & (λr)
1− 3

q . Holding r

fixed and sending λ→∞ yields 1
p ≥ 1− 3

q , as claimed. �

Proof of necessity of q ≥ p. We apply the standard example of summing many disjoint,
highly modulated caps whose Lp and Lq norms are all comparable to one another. For
k ≥ 1, consider the functions gk(τ, ξ) := ei(tk,xk)(τ,ξ)f2−k,2k(τ, ξ), with the (tk, xk) to be
determined. Here, f2−k,2k is a smooth bump function adapted to Γ2−k,2k ; recall (2.4). Then
the previous paragraph implies that ‖gk‖p ∼ 1, while ‖Egk‖q & 1. For (tk, xk) sufficiently

widely separated, we then have that ‖
∑N

k=1 gk‖p ∼ N
1
p and ‖E(

∑N
k=1 gk)‖q & N

1
q , from

which we see the necessity of q ≥ p. �

Proof of necessity of (p, q) 6= (3, 3), (4, 4). This follows by either using parabolic, resp. conic
scaling, Fatou’s lemma, and the fact that the corresponding inequalities do not hold for
the hyperbolic paraboloid nor for the cone, or by directly using stationary phase. At the
endpoint (3, 3), the Kakeya-like example of [2] rules out the possibility of even a restricted
weak-type inequality, but the authors have not been able to exclude the possibility that
weaker inequalities might hold at the endpoint (4, 4). �

3. Proof in the classical range q > 4

We will use the mixed-norm Strichartz inequality

‖Ef‖LrtLsx(R1+2) . ‖〈〈ξ〉〉
1
r
− 1
s f‖L2(Γ;dσ),

2 ≤ r, s; s <∞;
2

r
+

1 + θ

s
=

1 + θ

2
, for some θ ∈ [0, 1].

(3.1)

This classical estimate follows from a straightforward modification of the methods in [11].
As (3.1) implies boundedness of E in the range p = 2, 4 ≤ q ≤ 6, by interpolation it will
suffice to restrict attention to the conic line q = 3p′.
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Proposition 3.1. Theorem 1.1 holds on the line q = 3p′.

This result can be proved by slicing (see [10, 14]). For the convenience of the reader, we
include some details.

Proof of Proposition 3.1 via slicing. By interpolation, it suffices to restrict attention to 2 ≤
p < 4 and q = 3p′. Since 4 < q ≤ 6, it follows that p < q. In polar coordinates, we have
that

Ef(t, x) =

∫
|ξ|>1

f(ξ)ei(t,x)·(〈〈ξ〉〉,ξ) dξ

〈〈ξ〉〉
=

∫ ∞
1

(∫
S1
f(rω)eirx·ωdγ(ω)

)
eit
√
r2−1 r√

r2 − 1
dr,

where γ denotes the usual arc length measure on the unit circle S1 ⊂ R2. Changing variables√
r2 − 1 = s, and applying the Lorentz space version of the Hausdorff–Young inequality

together with Minkowski’s integral inequality,1 yields

‖Ef‖Lq(R3) .

∥∥∥∥∫
S1
ei
√

1+s2x·ωf(
√

1 + s2ω)dγ(ω)

∥∥∥∥
LqxL

q′,q
s

.

∥∥∥∥∫
S1
ei
√

1+s2x·ωf(
√

1 + s2ω)dγ(ω)

∥∥∥∥
Lq
′,q
s Lqx

. (3.2)

A further change of variables y =
√

1 + s2x allows us to estimate the inner norm on the
right-hand side of (3.2) as follows:∥∥∥∥∫

S1
ei
√

1+s2x·ωf(
√

1 + s2ω)dγ(ω)

∥∥∥∥
Lqx

= (1 + s2)−1/q

∥∥∥∥∫
S1
eiy·ωf(

√
1 + s2ω)dγ(ω)

∥∥∥∥
Lqy

. (1 + s2)−1/q‖f(
√

1 + s2·)‖Lp(S1)

where the latter estimate follows from the Lp(S1; dγ)→ Lq(R2) adjoint restriction inequality
on the unit circle S1; see [21]. Going back to (3.2), we then have that

‖Ef‖Lq(R3) .
∥∥∥(1 + s2)−1/q‖f(

√
1 + s2·)‖Lp(S1)

∥∥∥
Lq
′,q
s

.
∥∥∥(1 + s2)−1/q‖f(

√
1 + s2·)‖Lp(S1)

∥∥∥
Lq
′,p
s

where the latter estimate holds since p < q. Denote

F (s) := (1 + s2)−1/q and G(s) := ‖f(
√

1 + s2·)‖Lp(S1),

and let α > 0 be such that 1
q′ = 1

α+ 1
p . Then the Lorentz space version of Hölder’s inequality

implies

‖Ef‖Lq(R3) . ‖F‖Lα,∞s ‖G‖Lp,ps .

To check that F ∈ Lα,∞s , simply note that 2α = q since 1
q′ = 1

α + 1
p and q = 3p′. Finally,

reverting back to the original variable r =
√

1 + s2, we see that

‖G‖p
Lp,ps

= ‖G‖p
Lps

=

∫ ∞
0
‖f(
√

1 + s2·)‖p
Lp(S1)

ds

1These are valid moves since max{q, q′} = q > 2.
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=

∫ ∞
1

∫
S1
|f(rω)|pdγ(ω)

r√
r2 − 1

dr = ‖f‖pLp(Γ;dσ).

This shows the boundedness of the operator E : Lp(Γ; dσ) → Lq(R3) whenever 2 ≤ p < 4
and q = 3p′, as desired. �

4. Unconditional bounds at low frequencies in the bilinear range

We turn now to the heart of the article, the proof of Theorem 1.1 beyond the classical
range. We begin by bounding the low-frequency extension operator E0 in the bilinear range
(q > 10

3 , p ≥ ( q2)′), which will occupy the next two sections. The companion article, [4],
bounds E0 in the polynomial range (q > 3.25, p ≥ ( q2)′), except on the scaling line p = ( q2)′.
Utilizing the results of this and the next section, we can extend the strictly local (p > ( q2)′)
inequalities of [4] to the scaling line. We sketch this argument in Section 5; see Remark 5.2.

It will suffice to prove extension estimates for a small region contained in a rotated
version of the hyperboloid. Let

Σ :=
{(√

1 + ξ2
1 − ξ2

2 , ξ
)
∈ R× R2 : |ξ| ≤ 1

2

}
, (4.1)

and let U be a small neighborhood of the origin that we will choose. We will consider the
subset of Σ that lies above U . Abusing notation, we define the extension operator E0 by

E0f(t, x) :=

∫
U
ei(t,x)·(

√
1+ξ21−ξ22 ,ξ)f(ξ)dξ.

This definition of E0 is not quite the same as the one given in Section 1; however, the two
operators obey the same range of Lp → Lq estimates, as one can see by using the triangle
inequality and symmetries of the operator. We aim to prove the following result.

Theorem 4.1. If q > 10/3, then ‖E0f‖q . ‖f‖(q/2)′ for all f ∈ L(q/2)′(U).

Our starting point will be the L2-based bilinear theory for Σ, which we will obtain by
rescaling a result of Lee [12].

4.1. Related tiles. To state the bilinear estimate, we must first define “related tiles”, i.e.
pairs of subsets of U adapted to the transversality conditions that arise in the bilinear
method. Here, the geometry of the hyperbolic hyperboloid will play a distinguished role,
particularly the double ruling. Given (τ, ξ) ∈ Σ, the lines in Σ that contain (τ, ξ) are
parametrized by the formulae

`±(τ,ξ)(t) := (τ, ξ) + t(ξ1τ ∓ ξ2, 1 + ξ2
1 , ξ1ξ2 ± τ),

and their projections to the spatial coordinates are given by

`±ξ (t) := ξ + t
(

1 + ξ2
1 , ξ1ξ2 ±

√
1 + ξ2

1 − ξ2
2

)
. (4.2)

Fix an integer n ≥ 10, and set I := [−2−n, 2−n) andQ := I×I. LetD := D(0, 1/10) ⊆ R2

denote the open disc of radius 1
10 centered at the origin. Define maps Φ : Q → R2 and

π± : D → R by

Φ(ζ) :=
(ζ1

√
1 + ζ2

2 + ζ2

√
1 + ζ2

1 , ζ2 − ζ1)√
1 + ζ2

1 +
√

1 + ζ2
2
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and

π±(ξ) := ξ1 −
ξ2(1 + ξ2

1)

ξ1ξ2 ±
√

1 + ξ2
1 − ξ2

2

. (4.3)

Then (possibly after increasing n) Φ is a diffeomorphism satisfying 1
3 ≤ det∇Φ ≤ 1,

‖Φ‖C1 ≤ 3, and Φ(Q) ⊆ D(0, 2−n+5). Indeed, Φ can be viewed as a perturbation of
the rotation ζ 7→ 1

2(ζ1 + ζ2, ζ2 − ζ1). Likewise, the maps π± are submersions satisfying
‖π±‖C1 ≤ 3. We now set U := Φ(Q).

Lemma 4.2. The maps Φ and π± satisfy the following geometric properties:

(1) {Φ(ζ)} = `+(ζ1,0) ∩ `
−
(ζ2,0) and (π±(ξ), 0) ∈ `±ξ for every ζ ∈ Q and ξ ∈ D.

(2) The fibers of π± are precisely the line segments `±ξ ∩D with ξ ∈ D.

(3) Φ−1 = (π+ × π−)|U , where π+ × π−(ξ) := (π+(ξ), π−(ξ)).

Proof. Property (1) can be verified by a straightforward calculation. It is helpful to
reparametrize (4.2) so that the second coordinates of `+(ζ1,0)(t) and `−(ζ2,0)(t) are t and −t,
respectively.

Property (2) is a consequence of property (1) and the following claim: If |η|, |η′| ≤ 1/2
and η′ ∈ `±η , then `±η′ = `±η . Indeed, assume the claim holds, and let ξ ∈ D and c ∈ R
satisfy π±(ξ) = c. Then ξ′ ∈ `±ξ ∩ D implies that `±ξ′ and `±ξ are identical and thus have

the same x-intercept. Consequently, (π±)−1(c) ⊇ `±ξ ∩D by property (1). If ξ̃ is another

point such that π±(ξ̃) = c, then applying the claim twice more shows that `±
ξ̃

= `±(c,0) = `±ξ .

Thus, (π±)−1(c) = `±ξ ∩ D. It remains to prove the claim. Define F : Σ → D(0, 1/2) by

F (τ, ξ) := ξ. Then F is an invertible map such that F−1(`±ξ ∩D(0, 1/2)) is a line in Σ for

every |ξ| ≤ 1/2. Suppose for contradiction that `+η′ 6= `+η . Then the lines `+η′ , `
−
η′ , `

+
η are

distinct (as one can easily check) and intersect at η′, implying that F−1(η′) belongs to three
lines in Σ. However, no three lines in the hyperbolic hyperboloid intersect at a common
point. Thus, we must have `+η′ = `+η and, by a similar argument, `−η′ = `−η .

Property (3) is a consequence of properties (1) and (2). �

We also record that

∠(`±η ,R(1,±1)) ≤ 10◦ (4.4)

for all η ∈ D; in particular, we always have ∠(`+η , `
−
η′) ≥ 70◦.

For each integer j > n, let Ij denote the set of dyadic intervals of length 2−j contained
in I; that is,

Ij := {[m2−j , (m+ 1)2−j) : m ∈ Z ∩ [−2j−n, 2j−n)}.

Given Ij , I
′
j ∈ Ij , we write Ij ∼ I ′j if Ij and I ′j are non-adjacent but have adjacent dyadic

parents.

Definition 4.3. A tile is any set of the form Φ(Ij×Ik) with (Ij , Ik) ∈ Ij×Ik and j, k > n.

We denote by Θj,k the set of 2−j×2−k tiles. Given θ, θ′ ∈ Θj,k, we write θ ∼ θ′, and say that
θ and θ′ are related, if π+(θ) ∼ π+(θ′) and π−(θ) ∼ π−(θ′). (Note that if θ = Φ(Ij × Ik),
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then π+(θ) = Ij and π−(θ) = Ik.) Finally, given C > 0, we define Cθ := Φ(CΦ−1(θ) ∩Q),
where CΦ−1(θ) is the C-fold dilate of the rectangle Φ−1(θ) with respect to its center.

We can now state the bilinear restriction theorem for related tiles, which we will prove
in the next section.

Theorem 4.4. Let θ1, θ2 ∈ Θj,k be related tiles. If q > 10/3, then

‖E0fE0g‖q/2 . 2
(j+k)( 4

q
−1)‖f‖2‖g‖2

for all f ∈ L2(θ1) and g ∈ L2(θ2).

Next, we establish several properties of the tiles θ, most of which are easy consequences
of analogous properties of their rectangular counterparts Ij × Ik.

Definition 4.5. Given a measurable set Ω ⊆ U , we call any set of the form `±ξ ∩ Ω with

ξ ∈ Ω a π±-fiber of Ω. The length of `±ξ ∩ Ω is H1(`±ξ ∩ Ω), where H1 denotes the one-

dimensional Hausdorff measure. Given an integer K ≥ 0, we define two sets

Ω(K)± := {ξ ∈ Ω : 2−K ≤ H1(`±ξ ∩ Ω) < 2−K+1},

and say that Ω has constant π±-fiber length 2−K if Ω = Ω(K)±.

Lemma 4.6. The tiles θ satisfy the following properties:

(1) There exists a set N ⊂ U × U of measure zero such that

(U × U) \N =
⋃
j,k>n

⋃
θ,θ′∈Θj,k:
θ∼θ′

θ × θ′;

moreover, the union is disjoint.
(2) For each pair of related tiles θ ∼ θ′ ∈ Θj,k, there exists a rectangle Rθ,θ′ such that

θ + θ′ ⊆ Rθ,θ′ and the collection {2Rθ,θ′}θ∼θ′∈Θj,k has bounded overlap.
(3) For every constant C > 0, the collection of dilates Cθ, with θ ∈ Θj,k, has bounded

overlap.
(4) For every θ ∈ Θj,k and constant C > 0, we have |Cθ| ∼ 2−j−k.
(5) For every θ ∈ Θj,k and constant C > 0, the set Cθ has π+-fibers and π−-fibers of

length O(2−k) and O(2−j), respectively.

Proof. Property (1) is obtained by applying the diffeomorphism (ζ, ζ ′) 7→ (Φ(ζ),Φ(ζ ′)) to
the disjoint union

(Q×Q) \M =
⋃
j,k>n

⋃
Ij ,I
′
j∈Ij :Ij∼I′j

Ik,I
′
k∈Ik:Ik∼I′k

Ij × Ik × I ′j × I ′k

with M := {(ζ, ζ ′) ∈ Q×Q : ζ1 = ζ ′1 or ζ2 = ζ ′2}.
Next, we prove property (2). We may assume that j ≥ k. Fix θ ∼ θ′ ∈ Θj,k and

set cθ := Φ(c+
θ , c
−
θ ), where c±θ is the center of the dyadic interval π±(θ). We claim that

there exists an O(2−j)×O(2−k) rectangle R̃θ,θ′ with center cθ and major axis `+cθ such that

θ ∪ θ′ ⊆ R̃θ,θ′ . If ζ ∈ Φ−1(θ ∪ θ′), then |ζ1 − c+
θ | . 2−j and |ζ2 − c−θ | . 2−k, whence

dist(Φ(ζ), `+cθ) ≤ |Φ(ζ)− Φ(c+
θ , ζ2)| . ‖Φ‖C1 |ζ1 − c+

θ | . 2−j
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and similarly dist(Φ(ζ), `−cθ) . 2−k. Thus, θ ∪ θ′ lies in the intersection of O(2−j)- and

O(2−k)-neighborhoods of `+cθ and `−cθ , respectively. By (4.4), this intersection is nearly

a rectangle; it lies in an O(2−j) × O(2−k) rectangle with center cθ and major axis `+cθ ,

which we may take as R̃θ,θ′ . We can define the rectangle Rθ,θ′ as Rθ,θ′ := R̃θ,θ′ + R̃θ,θ′ =

2R̃θ,θ′ + cθ. We need to show that the collection {2Rθ,θ′}θ∼θ′∈Θj,k has bounded overlap.

Suppose θi ∼ θ′i ∈ Θj,k, i = 1, 2, are such that 2Rθ1,θ′1 ∩ 2Rθ2,θ′2 6= ∅. Then there exist

points ξi ∈ 2Rθi,θ′i ∩ (`+cθi
+ cθi) such that |ξ2 − ξ1| . 2−j . Since cθi ∈ `+cθi , it follows that

ξi/2 ∈ `+cθi . Moreover, |ξi − 2cθi | . 2−k, so if n (and therefore k) is sufficiently large, then

ξi/2 ∈ D. Since π+ is constant on `+cθi
∩D, we see that

|c+
θ2
− c+

θ1
| = |π+(ξ2/2)− π+(ξ1/2)| ≤ ‖π+‖C1 |ξ2/2− ξ1/2| . 2−j .

The assumption that 2Rθ1,θ′1 ∩ 2Rθ2,θ′2 6= ∅ also implies that |2cθ2 − 2cθ1 | . 2−k, whence

|c−θ2 − c
−
θ1
| ≤ ‖π−‖C1 |cθ2 − cθ1 | . 2−k.

Since c+
θ2

and c−θ2 are the centers of dyadic intervals of length 2−j and 2−k, respectively,

we have shown the following: If θ1 is fixed and 2Rθ1,θ′1 ∩ 2Rθ2,θ′2 6= ∅, then θ2 must be one

of O(1) possible tiles. Since any tile has at most O(1) relatives, it then follows that the
collection {2Rθ,θ′}θ∼θ′∈Θj,k has bounded overlap.

Property (3) follows from the dilated dyadic rectangles C(Ij×Ik) having bounded overlap.
Property (4) follows from the change of variables theorem and the fact that | det∇Φ| ∼ 1.
Using property (3) in Lemma 4.2, one sees that `+ξ ∩ U = Φ({ζ1} × I), where ξ ∈ U and

ζ := Φ−1(ξ). Hence, if C > 0, θ ∈ Θj,k, and ξ ∈ Cθ, then `+ξ ∩Cθ = Φ(({ζ1}×I)∩CΦ−1(θ)).

The line segment ({ζ1} × I) ∩ CΦ−1(θ) has length at most C2−k, and thus the bounds on
∇Φ imply that `+ξ ∩Cθ has length O(2−k). A similar argument applies to the fibers `−ξ ∩Cθ,
proving property (5). �

4.2. Proof of Theorem 4.1. Having defined related tiles and shown that they behave like
dyadic rectangles, we are ready to prove Theorem 4.1. We adapt the argument of the third
author in [16], with the fibers of π+ and π− now playing the roles of vertical and horizontal
fibers. For the remainder of this section, we will assume that 10

3 < q < 4.
The main step is to prove a restricted strong-type inequality. We state and prove the

below lemmas for characteristic functions, but the proofs are unchanged if we replace 1Ω

with a measurable function fΩ with |fΩ| ∼ 1Ω.

Proposition 4.7. Let Ω ⊆ U have constant π+-fiber length 2−K for some integer K ≥ 0.

Then ‖E01Ω′‖q . |Ω|1−
2
q for every measurable set Ω′ ⊆ Ω.

Proof. We essentially follow Vargas’s argument in [20], but replace dyadic rectangles Ij×Ik
with tiles θ. Fix a measurable set Ω′ ⊆ Ω. Using property (1) of Lemma 4.6, the triangle
inequality, almost orthogonality (combining [19, Lemma 6.1] and property (2) of Lemma
4.6), and finally Theorem 4.4, we have

‖E01Ω′‖2q =

∥∥∥∥ ∑
j,k>n

∑
θ,θ′∈Θj,k:
θ∼θ′

E0(1Ω′∩θ)E0(1Ω′∩θ′)

∥∥∥∥
q/2
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.
∑
j,k>n

( ∑
θ,θ′∈Θj,k:
θ∼θ′

‖E0(1Ω′∩θ)E0(1Ω′∩θ′)‖
q/2
q/2

) 2
q

.
∑
j,k>n

2
(j+k)( 4

q
−1)
( ∑
θ,θ′∈Θj,k:
θ∼θ′

|Ω′ ∩ θ|
q
4 |Ω′ ∩ θ′|

q
4

) q
2

.

Since 10θ ⊇ θ′ whenever θ and θ′ are related, each tile has a bounded number of relatives,
and the dilates 10θ have bounded overlap, it follows that

‖E01Ω′‖2q .
∑
j,k>n

2
(j+k)( 4

q
−1)
( ∑
θ∈Θj,k

|Ω ∩ 10θ|
q
2

) 2
q

.
∑
j,k>n

2
(j+k)( 4

q
−1)|Ω|

2
q max
θ∈Θj,k

|Ω ∩ 10θ|1−
2
q .

(4.5)

Let J be an integer such that |π+(Ω)| ∼ 2−J . By the coarea formula, the hypothesis on Ω,
and property (5) in Lemma 4.6, we have |Ω| ∼ 2−J−K and

|Ω ∩ 10θ| . |π+(Ω ∩ 10θ)| sup
ξ∈Ω∩10θ

H1(`+ξ ∩ Ω ∩ 10θ)

. min{2−J , 2−j}min{2−K , 2−k},
for every θ ∈ Θj,k. Inserting this bound into (4.5) and summing the resulting (four)
geometric series produces the required estimate. �

Proposition 4.8. Let Ω ⊆ U have constant π+-fiber length 2−K for some integer K ≥ 0,
let J be an integer such that |Ω| ∼ 2−J−K , and let ε be the smallest dyadic number such

that ‖E01Ω′‖q ≤ ε2|Ω|1−
2
q for all measurable sets Ω′ ⊆ Ω. Up to a set of measure zero, there

exists a decomposition

Ω =
⋃

0<δ.ε1/4

Ωδ,

where the union is taken over dyadic numbers, such that the following properties hold:

(1) ‖E01Ω′‖q . δ|Ω|1−2/q for every measurable set Ω′ ⊆ Ωδ, and
(2) Ωδ ⊆

⋃
θ∈Θδ

θ, where Θδ ⊆ ΘJ,K with #Θδ . δ−C0 for some constant C0.

Proof. The construction of the sets Ωδ proceeds in three steps.
Step 1. Let S := π+(Ω). By the coarea formula, |S| ∼ 2−J . Let ξ1 be a Lebesgue point

of S and 0 < η ≤ ε a dyadic number. Define Iη(ξ1) to be the maximal dyadic interval I
such that ξ1 ∈ I and

|I ∩ S|
|I|

≥ ηC , (4.6)

where C is a constant (to be chosen); such an interval exists by the Lebesgue differentiation
theorem. Since we may exclude a set of measure zero in our decomposition, we assume
without loss of generality that S is equal to its set of Lebesgue points. We note that
|Iη(ξ1)| . η−C2−J . Let

Tη := {ξ1 ∈ S : |Iη(ξ1)| ≥ ηC2−J},
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and let Sε := Tε and Sη := Tη \ T2η for η < ε. Then every point of S is contained in a
unique Sη. We set Ω1

η := Ω ∩ (π+)−1(Sη).

Lemma 4.9. For every 0 < η ≤ ε, the set Ω1
η is contained in a union of O(η−3C) tiles in

ΘJ,n, and for every measurable set Ω′ ⊆ Ω1
η, we have

‖E01Ω′‖q . η2|Ω|1−
2
q .

Proof. By its definition, Sη is covered by dyadic intervals I of length |I| & ηC |S|, in each
of which S has density obeying (4.6). The density of each such I in S is

|I ∩ S|
|S|

=
|I ∩ S|
|I|

· |I|
|S|
& η2C .

Thus, a minimal-cardinality covering of Sη by these I (which are necessarily pairwise dis-
joint) has size O(η−2C). Additionally, each I satisfies |I| . η−C2−J , and thus Sη is covered
by O(η−3C) intervals in IJ . Consequently, Ω1

η is contained in a union of O(η−3C) tiles in
ΘJ,n.

We turn to the extension estimate, fixing a measurable set Ω′ ⊆ Ω. By the definition of
ε, we may assume that η < ε. By the same argument that yields (4.5), we have

‖E01Ω′‖2q .
∑
j,k>n

2
(j+k)( 4

q
−1)|Ω|

2
q max
θ∈Θj,k

|Ω′ ∩ 10θ|1−
2
q , (4.7)

and the coarea formula implies that

|Ω′ ∩ 10θ| . min{2−J , 2−j}min{2−K , 2−k},

for every θ ∈ Θj,k. If |j − J | < C
4 log2 η

−1, then the definition of Ω1
η leads to the stronger

estimate

|Ω′ ∩ 10θ| . η
3C
4 min{2−J , 2−j}min{2−K , 2−k}. (4.8)

Indeed, fix such a j. It suffices to prove (4.8) with some θ̃ ∈ Θj−4,k−4 in place of θ,

since each θ is contained in a union of four such tiles. Let θ̃ =: Φ(Ij−4 × Ik−4), so that

π+(θ̃) = Ij−4 ∈ Ij−4. We have

|Ij−4| ≥ 16η
C
4 2−J ≥ (2η)C2−J

for η sufficiently small (which we may assume). Suppose that Ij−4 ∩ Sη 6= ∅. Then there
exists ξ1 ∈ Ij−4 such that ξ1 /∈ T2η, whence

|I2η(ξ1)| < (2η)C2−J ≤ |Ij−4|.

Consequently, by the maximality of I2η(ξ1) and the fact that 2−j ≤ η−
C
4 2−J , we have

|Ij−4 ∩ Sη| ≤ |Ij−4 ∩ S| ≤ (2η)C |Ij−4| = 16(2η)C2−j . η
3C
4 min{2−J , 2−j}.

Thus, by the coarea formula,

|Ω′ ∩ θ̃| . |Ij−4 ∩ Sη|min{2−K , 2−k} . η
3C
4 min{2−J , 2−j}min{2−K , 2−k},
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as claimed. Inserting this bound into (4.7) and summing the resulting (eight) geometric

series leads to the estimate ‖E01Ω′‖q . ηC
′ |Ω|1−2/q, where C ′ is a constant determined by

C. We can choose C so that C ′ = 2. �

Step 2. For dyadic 0 < η ≤ ε and 0 < ρ . η1/4, define

Ω2
η,ρ := {ξ ∈ Ω1

η : ρ4Dη−3C−D2−J ≤ H1(`−ξ ∩ Ω1
η) < (2ρ)4Dη−3C−D2−J},

where D is a constant to be chosen. Lemma 4.9 and the near-orthogonality of `+ξ and `−ξ′

imply that H1(`−ξ ∩ Ω1
η) . η−3C2−J for every ξ ∈ Ω1

η. Thus, each ξ ∈ Ω1
η belongs to a

unique Ω2
η,ρ.

Lemma 4.10. For every 0 < η ≤ ε and 0 < ρ . η1/4, we have ‖E01Ω′‖q . ρ2|Ω|1−2/q for
every measurable set Ω′ ⊆ Ω2

η,ρ.

Proof. If ρ4Dη−3C−D ≥ ρ2D, then by Lemma 4.9, we have

‖E01Ω′‖q . η2|Ω|1−
2
q ≤ ρ

4D
3C+D |Ω|1−

2
q . ρ2|Ω|1−

2
q

for D chosen sufficiently large. Thus, we may assume that ρ4Dη−3C−D ≤ ρ2D. Given
θ ∈ Θj,k, the set Ω′ ∩ 10θ has π+- and π−-fibers of length at most min{2−K , 2−k} and

min{ρ2D2−J , 2−j}, respectively, and the images of Ω′ ∩ 10θ under π+ and π− have measure
at most min{2−J , 2−j} and 2−k, respectively. Thus, by the coarea formula,

|Ω′ ∩ 10θ| . min{2−J−K , 2−j−K , 2−j−k, ρ2D2−J−k}. (4.9)

We define

R1 := {(j, k) : J −D log2 ρ
−1 ≥ j, K ≥ k} ∪ {(j, k) : J ≥ j, K −D log2 ρ

−1 ≥ k},
R2 := {(j, k) : j ≥ J +D log2 ρ

−1, K ≥ k} ∪ {(j, k) : j ≥ J, K −D log2 ρ
−1 ≥ k},

R3 := {(j, k) : j ≥ J +D log2 ρ
−1, k ≥ K} ∪ {(j, k) : j ≥ J, k ≥ K +D log2 ρ

−1},
R4 := {(j, k) : J +D log2 ρ

−1 ≥ j, k +D log2 ρ
−1 ≥ K}.

Each (j, k) belongs to some Ri, so by (4.7) and (4.9), we have

‖E01Ω′‖2q .
∑

(j,k)∈R1

2
(j+k)( 4

q
−1)

2
−(J+K)(1− 2

q
)|Ω|

2
q +

∑
(j,k)∈R2

2
(j+k)( 4

q
−1)

2
−(j+K)(1− 2

q
)|Ω|

2
q

+
∑

(j,k)∈R3

2
(j+k)( 4

q
−1)

2
−(j+k)(1− 2

q
)|Ω|

2
q +

∑
(j,k)∈R4

2
(j+k)( 4

q
−1)

ρ
2D(1− 2

q
)
2
−(J+k)(1− 2

q
)|Ω|

2
q .

Summing these geometric series leads to the bound ‖E01Ω′‖q . ρD
′ |Ω|1−2/q, where D′ is a

constant determined by D; increasing D if necessary, we can make D′ ≥ 2. �

Step 3. The final step of our decomposition is the same as the first, but with π− in place
of π+. Indeed, each Ω2

η,ρ has π−-fibers of (essentially) constant length ρ4Dη−3C−D2−J . For

0 < η ≤ ε and 0 < ρ . η1/4, let Sη,ρ := π−(Ω2
η,ρ). Let Kη,ρ be an integer such that

|Sη,ρ| ∼ 2−Kη,ρ . Let ξ1 be a Lebesgue point of Sη,ρ and 0 < δ ≤ ρ a dyadic number. Define
Iη,ρ,δ(ξ1) to be the maximal dyadic interval I such that ξ1 ∈ I and |I ∩ Sη,ρ| ≥ δC |I|;
as before, the Lebesgue differentiation theorem guarantees such an interval exists. Let
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Tη,ρ,δ := {ξ1 ∈ S : |Iη,ρ,δ(ξ1)| ≥ δC2−Kη,ρ}, and set Sη,ρ,ρ := Tη,ρ,ρ and Sη,ρ,δ := Tη,ρ,δ\Tη,ρ,2δ
for δ < ρ. Finally, we let Ω3

η,ρ,δ := Ω2
η,ρ ∩ (π−)−1(Sη,ρ,δ).

Lemma 4.11. For every 0 < η ≤ ε and 0 < δ ≤ ρ . η1/4, the set Ω3
η,ρ,δ is contained in a

union of O(δ−15C−4D) tiles in ΘJ,K , and for every measurable set Ω′ ⊆ Ω3
η,ρ,δ, we have

‖E01Ω′‖q . δ2|Ω|1−
2
q .

Proof. By an argument similar to the proof of Lemma 4.9, one can show that

‖E01Ω′‖q . δ2|Ω2
η,ρ|1−2/q ≤ δ2|Ω|1−2/q.

Likewise, one sees that Ωη,ρ,δ is contained in a union of O(δ−3C) tiles in Θn,Kη,ρ . Since Ω2
η,ρ

has π−-fibers of length at least ρ4Dη−3C−D2−J and volume at most 2−J−K , we must have
2−Kη,ρ . ρ−4D2−K . Thus, Ω3

η,ρ,δ is contained in O(δ−3C−4D) tiles in Θn,K . By Lemma 4.9

and the fact that ρ . η1/4, we also know that Ω3
η,ρ,δ is contained in O(δ−12C) tiles in ΘJ,n.

The intersection of a tile in ΘJ,n and a tile in Θn,K is a tile in ΘJ,K . �

We are now ready to complete the proof of Proposition 4.8. We set

Ωδ :=
⋃

δ≤ρ.ε1/4

⋃
ρ4.η≤ε

Ω3
η,ρ,δ,

so that Ω =
⋃

0<δ.ε1/4 Ωδ. Since for fixed δ there are O((log δ−1)2) sets Ω3
η,ρ,δ, properties

(1) and (2) in the proposition follow from Lemma 4.11. �

Now, fix some Ω ⊆ U , and for each K, let J(K) be an integer such that |Ω(K)+| ∼
2−J(K)−K . For each dyadic number ε, let K(ε) denote the collection of all integers K ≥ 0

for which ε is the smallest dyadic number satisfying ‖E01Ω′‖q . ε2|Ω(K)+|1−2/q for every
measurable set Ω′ ⊆ Ω(K)+. For each K ∈ K(ε), Proposition 4.8 produces a decomposition
Ω(K)+ =

⋃
0<δ.ε1/4 Ω(K)+

δ such that for each δ, we have Ω(K)+
δ ⊆

⋃
θ∈Θ(K)δ

θ for some

Θ(K)δ ⊆ ΘJ(K),K with #Θ(K)δ . δ−C0 .

Lemma 4.12. For every 0 < δ . ε1/4, we have∥∥∥∥ ∑
K∈K(ε)

E01Ω(K)+δ

∥∥∥∥q
q

. (log δ−1)q
∑

K∈K(ε)

‖E01Ω(K)+δ
‖qq + δ|Ω|q−2.

Proof. Let A be a constant to be chosen later, and divide K(ε) into O(log δ−1) subsets K
such that each is A log δ−1-separated. It suffices to prove that∥∥∥∥ ∑

K∈K
E01Ω(K)+δ

∥∥∥∥q
q

.
∑
K∈K
‖E01Ω(K)+δ

‖qq + δ2|Ω|q−2

for each K. We recall that q < 4. Thus,∥∥∥∥ ∑
K∈K
E01Ω(K)+δ

∥∥∥∥q
q

=

∫ ∣∣∣∣ ∑
K∈K4

4∏
i=1

E01Ω(Ki)
+
δ

∣∣∣∣ q4
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.
∑
K∈K
‖E01Ω(K)+δ

‖qq +
∑

K∈K4\D(K4)

∥∥∥∥ 4∏
i=1

E01Ω(Ki)
+
δ

∥∥∥∥ q4
q
4

, (4.10)

where D(K4) := {K ∈ K4 : K1 = K2 = K3 = K4}. To control the latter sum, we have the
following lemma.

Lemma 4.13. For all K,K ′ ∈ K, we have

‖E0(1Ω(K)+δ
)E0(1Ω(K′)+δ

)‖q/2 . 2−c0|K−K
′|max{|Ω(K)+|, |Ω(K ′)+|}2−

4
q

for some constant c0 > 0.

Proof. Set Ω̃ := Ω(K)+
δ , Ω̃′ := Ω(K ′)+

δ , J := J(K), and J ′ := J(K ′). By the Cauchy–
Schwarz inequality and Proposition 4.7, we have

‖E0(1Ω̃)E0(1Ω̃′)‖q/2 . |Ω̃|
1− 2

q |Ω̃′|1−
2
q .

If either (i) K = K ′, (ii) J = J ′, (iii) J < J ′ and K < K ′, or (iv) J > J ′ and K > K ′, then

|Ω̃|1−
2
q |Ω̃′|1−

2
q . 2

−(1− 2
q

)|K−K′|
max{|Ω̃|, |Ω̃′|}2−

4
q .

Thus, by symmetry, we may assume that K < K ′ and J > J ′. By the bound #(Θ(K)δ ×
Θ(K ′)δ) . δ−2C0 and the separation condition on K (with A sufficiently large), it suffices
to prove that

‖E0(1Ω̃∩θ)E0(1Ω̃′∩σ)‖q/2 . 2−c|K−K
′|max{|Ω̃|, |Ω̃′|}2−

4
q

for all θ ∈ Θ(K)δ, σ ∈ Θ(K ′)δ, and some constant c > 0.
Fix two such tiles θ, σ, and set τ := Φ−1(θ) and κ := Φ−1(σ). Thus, τ and κ are

dyadic rectangles of dimensions 2−J ×2−K and 2−J
′×2−K

′
, respectively. We note that our

assumptions on J, J ′,K,K ′ imply that τ is taller than κ and κ wider than τ . By translation,
we may assume that the ζ2- and ζ1-axes intersect the centers of τ and κ, respectively. Define

τk :=

{
τ ∩ {ζ : |ζ2| ∼ 2−k}, k < K ′,

τ ∩ {ζ : |ζ2| . 2−K
′}, k = K ′

and κj :=

{
κ ∩ {ζ : |ζ1| ∼ 2−j}, j < J,

κ ∩ {ζ : |ζ1| . 2−J}, j = J
,

as well as θk := Φ(τk) and σj := Φ(κj). Thus,

θ =

K′⋃
k=0

θk and σ =

J⋃
j=0

σj ,

so that by the triangle inequality,

‖E0(1Ω̃∩θ)E0(1Ω̃′∩σ)‖q/2 ≤
K′∑
k=0

J∑
j=0

‖E0(1Ω̃∩θk)E0(1Ω̃′∩σj )‖q/2.

We first sum the terms with k = K ′. By the Cauchy–Schwarz inequality, Proposition
4.7, and the fact that | det∇Φ| ∼ 1, we have

J∑
j=0

‖E0(1Ω̃∩θK′
)E0(1Ω̃′∩σj )‖q/2 .

J∑
j=0

|θK′ |1−
2
q |σj |1−

2
q ∼

J∑
j=0

|τK′ |1−
2
q |κj |1−

2
q .
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Since κ has width 2−J
′
, there are at most two nonempty κj with j ≤ J ′. This fact and the

bound

|κj | ≤ min{2−(j−J ′), 1}|κ| (4.11)

imply that
∑J

j=0 |κj |1−2/q . |κ|1−2/q. Since |τK′ | . 2−(K′−K)|τ |, |τ | ∼ |Ω̃|, and |κ| ∼ |Ω̃′|,
we altogether have

J∑
j=0

‖E0(1Ω̃∩θK′
)E0(1Ω̃′∩σj )‖q/2 . 2

−(K′−K)(1− 2
q

)|Ω̃|1−
2
q |Ω̃′|1−

2
q ,

which is acceptable. A similar argument shows that

K′∑
k=0

‖E0(1Ω̃∩θk)E0(1Ω̃′∩σJ )‖q/2 . 2
−(J−J ′)(1− 2

q
)|Ω̃|1−

2
q |Ω̃′|1−

2
q

∼ 2
−(K′−K)(1− 2

q
)|Ω̃|2−

4
q .

We now consider the terms with k < K ′ and j < J . In this case, τk is contained in a union
of four dyadic rectangles of dimensions 2−J × 2−max{K,k}, and κj is contained in a union

of four dyadic rectangles of dimensions 2−max{J ′,j} × 2−K
′
. Moreover, these rectangles are

separated by a distance of (at least) 2−k and 2−j in the vertical and horizontal directions,
respectively. Thus, we can apply Theorem 4.4 to θk and σj to get

‖E0(1Ω̃∩θk)E0(1Ω̃′∩σj )‖q/2 . 2
(j+k)( 4

q
−1)|Ω̃ ∩ θk|

1
2 |Ω̃′ ∩ σj |

1
2 .

Using (4.11) and the analogous bound for |τk|, we now get

K′−1∑
k=0

J−1∑
j=0

‖E0(1Ω̃∩θk)E0(1Ω̃′∩σj )‖q/2 . 2
(J ′+K)( 4

q
−1)|θ|

1
2 |σ|

1
2

∼ 2
(J ′−J+K−K′)( 2

q
− 1

2
)|Ω̃|1−

2
q |Ω̃′|1−

2
q .

By the relations K < K ′ and J > J ′ and the fact that q < 4, the lemma is proved. �

Returning to the proof of Lemma 4.12, we consider the second sum in (4.10). Given
K ∈ K4 \ D(K4), let p(K) = (pi(K))4

i=1 be a permutation of K such that |Ω(p1(K))+|
is maximal among |Ω(Ki)

+|, 1 ≤ i ≤ 4, and such that |Ki −Kj | ≤ 2|p1(K) − p2(K)| for
all 1 ≤ i, j ≤ 4. Then by the Cauchy–Schwarz inequality, Lemma 4.12, the separation
condition on K, the fact that q > 3, and choosing A sufficiently large, we get∑

K∈K4\D(K4)

∥∥∥∥ 4∏
i=1

E01Ω(Ki)
+
δ

∥∥∥∥ q4
q
4

.
∑

K∈K4\D(K4)
K=p(K)

2−c0|p1(K)−p2(K)||Ω(p1(K))+|q−2

.
∑
K1∈K

∑
K2∈K

|K1 −K2|22−c0|K1−K2||Ω(K1)+|q−2

. δ
c0A
2

∑
K1∈K

|Ω(K1)+|q−2 . δ2|Ω|q−2.
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This concludes the proof of Lemma 4.12. �

Proof of Theorem 4.1. By interpolation, it suffices to prove the analogous restricted strong-
type estimate. Let Ω ⊆ U be a measurable set. We have the decomposition

Ω =
⋃

0<ε.1

⋃
0<δ.ε1/4

⋃
K∈K(ε)

Ω(K)+
δ .

Thus, by the triangle inequality, Lemma 4.12, Proposition 4.8, and the fact that q > 3, we
obtain

‖E01Ω‖q ≤
∑

0<ε.1

∑
0<δ.ε1/4

∥∥∥∥ ∑
K∈K(ε)

E01Ω(K)+δ

∥∥∥∥
q

.
∑

0<ε.1

∑
0<δ.ε1/4

(
(log δ−1)q

∑
K∈K(ε)

‖E01Ω(K)+δ
‖qq + δ|Ω|q−2

) 1
q

.

[ ∑
0<ε.1

∑
0<δ.ε1/4

(log δ−1)δ

( ∑
K∈K(ε)

|Ω(K)+|q−2

) 1
q

]
+ |Ω|1−

2
q

.

[ ∑
0<ε.1

∑
0<δ.ε1/4

(log δ−1)δ|Ω|1−
2
q

]
+ |Ω|1−

2
q . |Ω|1−

2
q .

�

5. Proof of Theorem 4.4

In this section, we prove Theorem 4.4, the bilinear restriction estimate for related tiles.
As mentioned above, we proceed by rescaling a result of Lee [12].

We begin by defining some notation. The basic symmetries of the hyperbolic hyperboloid
are the Lorentz transformations, which, given the parametrization (4.1), are the linear maps
on R × R2 that preserve the quadratic form (τ, ξ) 7→ τ2 − ξ2

1 + ξ2
2 . The Lorentz-invariant

measure dσ on Σ takes the form∫
Σ
g dσ :=

∫
U
g(φ(ξ), ξ)

dξ

φ(ξ)
,

where φ(ξ) =
√

1 + ξ2
1 − ξ2

2 as before. If L is a Lorentz transformation and supp g ⊆ Σ and
L−1(supp g) ⊆ Σ, then ∫

Σ
(g ◦ L)dσ =

∫
Σ
g dσ.

Let Ω := {ξ ∈ R2 : 1 + ξ2
1 − ξ2

2 ≥ 0}. Given a Lorentz transformation L and ξ ∈ Ω, let

L(ξ) := π(L(φ(ξ), ξ)),

where π(τ ′, ξ′) := ξ′ is the projection to the spatial coordinates. If ξ ∈ Ω and e1·L(φ(ξ), ξ) ≥
0, where e1 = (1, 0, 0) denotes the first standard basis vector, then ML(ξ) = M(L(ξ)) for
any other Lorentz transformation M . In particular, if E ⊆ Ω and e1 · L(φ(ξ), ξ) ≥ 0 for all

ξ ∈ E, then L is invertible on E with L
−1

(ζ) = L−1(ζ) for ζ ∈ L(E).
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We now turn to the proof of Theorem 4.4. We may assume that j ≥ k. Fix θ1 ∼ θ2 ∈ Θj,k

and c ∈ θ1 ∪ θ2. Arguing as in the proof of Lemma 4.6, there exists an O(2−j) × O(2−k)
rectangle S centered at c with major axis `+c such that θ1∪θ2 ⊆ S. We define three Lorentz
transformations,

R(τ, ξ) := (−ω2ξ2 + ω1τ, ξ1, ω1ξ2 + ω2τ), ω :=

(
φ(c)√
1 + c2

1

,− c2√
1 + c2

1

)
∈ S1,

B(τ, ξ) :=
(
− c1ξ1 +

√
1 + c2

1τ,
√

1 + c2
1ξ1 − c1τ, ξ2

)
,

D(τ, ξ) :=
1

2

(
2τ,
(
2
k−j
2 + 2

j−k
2
)
ξ1 +

(
2
k−j
2 − 2

j−k
2
)
ξ2,
(
2
k−j
2 − 2

j−k
2
)
ξ1 +

(
2
k−j
2 + 2

j−k
2
)
ξ2

)
,

which correspond to a spatial rotation, a boost, and a dilation, respectively. The compo-
sition BR takes (φ(c), c) to (1, 0, 0). We will show that DBR essentially takes θ1, θ2 to a

pair of O(2−
j+k
2 )-squares near the origin, which we will then parabolically rescale to size

1. After checking that the separation of θ1 and θ2 is respected by these rescalings, we will
apply Lee’s result [12, Theorem 1.1] to finish the proof.

We turn to the details. Because Lorentz transformations preserve the hyperbolic hyper-
boloid and are linear, they must permute the lines in the surface. Thus, since BR(φ(c), c) =
(1, 0, 0), we have either BR(`+c ) = `+0 or BR(`+c ) = `−0 . It is easy to check that in fact

BR(`+c ) = `+0 = R(1, 1) and that ‖∇BR‖ . 1 near the origin. Thus, by the definition of

the rectangle S, it follows that BR(θ1 ∪ θ2) is contained in an O(2−j) × O(2−k) rectangle

of slope 1 centered at the origin. Since D contracts by a factor comparable to 2
k−j
2 in the

direction of (1, 1) and expands by a factor comparable to 2
j−k
2 in the orthogonal direction,

D(BR(θ1 ∪ θ2)) lies in a disc V of radius O(2−
j+k
2 ) centered at 0. If j and k are sufficiently

large (which we may assume), then V ⊆ U . It is easy to check that e1 ·BR(φ(ξ), ξ) ≥ 0 for
all ξ ∈ U . Thus, setting L := (DBR)−1, we have

L−1(θ1 ∪ θ2) = D(BR(θ1 ∪ θ2)) ⊆ V. (5.1)

Let Qi := L
−1

(θi) := {ξ ∈ Ω : L(ξ) ∈ θi}. We claim that

Qi = L−1(θi). (5.2)

Given a set E ⊆ Ω, let E± := {(±φ(ξ), ξ) : ξ ∈ E}. Then we have

Qi = {ξ ∈ Ω : L(φ(ξ), ξ) ∈ θ+
i ∪ θ

−
i }

= {ξ ∈ Ω : (φ(ξ), ξ) ∈ L−1(θ+
i ) ∪ (−L−1((−θi)+))}.

It is easy to check that e1 · L−1(φ(ζ), ζ) > 0 for all ζ ∈ U . Thus, since −θi ⊆ U and φ ≥ 0,
we have (φ(ξ), ξ) /∈ −L−1((−θi)+) for every ξ. Hence

Qi = {ξ ∈ Ω : (φ(ξ), ξ) ∈ L−1(θ+
i )} = L−1(θi),

proving the claim.
Now, if f is supported in θ1 ∪ θ2, then by the Lorentz invariance of the measure dσ,

E0f(t, x) = E0fL(L∗(t, x)),
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where

fL(ξ) :=
f(L(ξ))φ(L(ξ))

φ(ξ)
.

We have |fL| ∼ |f ◦ L| on suppfL ⊆ Q1 ∪Q2 ⊆ V . Additionally, e1 · L(φ(ξ), ξ) ≥ 0 for all

ξ ∈ V , so we know that L is invertible on Q1∪Q2 with L
−1

(ζ) = L−1(ζ) for ζ ∈ L(Q1∪Q2).

A straightforward calculation shows that | det∇L−1
(ζ)| . 1 on L(Q1 ∪ Q2). Combining

these observations, we see that the estimate in Theorem 4.4 is equivalent to

‖E0fE0g‖q/2 . 2
(j+k)( 4

q
−1)‖f‖2‖g‖2 (5.3)

for all f ∈ L2(Q1) and g ∈ L2(Q2).
Now, by parabolic rescaling, we have

E0f(t, x) = 2−j−kEψ0 [f(2−
j+k
2 ·)](2−j−kt, 2−

j+k
2 x),

for every f supported in Q1∪Q2 ⊆ V , where Eψ0 is the extension operator associated to the

phase ψ(ξ) := 2j+k
√

1 + 2−j−k(ξ2
1 − ξ2

2). The estimate (5.3) now follows from [12, Theorem

1.1], provided the hypotheses of the latter are satisfied. Let Q̃i := 2
j+k
2 Qi. We need to the

check that

|〈(∇2ψ(ξ′′))−1(∇ψ(ξ)−∇ψ(ζ)),∇ψ(ξ′)−∇ψ(ζ ′)〉| & 1,

|〈(∇2ψ(ζ ′′))−1(∇ψ(ξ)−∇ψ(ζ)),∇ψ(ξ′)−∇ψ(ζ ′)〉| & 1,

for all ξ, ξ′, ξ′′ ∈ Q̃1 and ζ, ζ ′, ζ ′′ ∈ Q̃2. Let r(ξ) := (ξ1,−ξ2). Simple calculations and the
mean value theorem show that

∇ψ(ξ) = r(ξ) +O(2−j−k),

(∇2ψ(ξ))−1 =

(
1 0
0 −1

)
+O(2−j−k),

for all |ξ| ≤ 1, and thus we only need to show that

|〈ξ − ζ, r(ξ′ − ζ ′)〉| & 1 (5.4)

for all ξ, ξ′ ∈ Q̃1 and ζ, ζ ′ ∈ Q̃2.
Let p(ξ) and q(ξ) denote the orthogonal projections of ξ to the lines R(1,−1) and R(1, 1),

respectively. That is,

p(ξ) :=
1

2
(ξ1 − ξ2, ξ2 − ξ1)

q(ξ) :=
1

2
(ξ1 + ξ2, ξ1 + ξ2).

Assume for now that the following lemma holds:

Lemma 5.1. For all ξ ∈ Q1 and ζ ∈ Q2, we have

|p(ξ)− p(ζ)| & 2−
j+k
2 ,

|q(ξ)− q(ζ)| & 2−
j+k
2 .
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We immediately see that |p(ξ− ζ)| & 1 and |q(ξ− ζ)| & 1 for all ξ ∈ Q̃1 and ζ ∈ Q̃2. We
will use these bounds to prove (5.4). We have

〈ξ − ζ, r(ξ′ − ζ ′)〉 = 〈p(ξ − ζ) + q(ξ − ζ), p(r(ξ′ − ζ ′)) + q(r(ξ′ − ζ ′))〉
= 〈p(ξ − ζ), p(r(ξ′ − ζ ′))〉+ 〈q(ξ − ζ), q(r(ξ′ − ζ ′))〉

by orthogonality. Using the relations p ◦ r = r ◦ q and q ◦ r = r ◦ p and the fact that r is
unitary, we thus have

〈ξ − ζ, r(ξ′ − ζ ′)〉 = 〈r(p(ξ − ζ)), q(ξ′ − ζ ′)〉+ 〈q(ξ − ζ), r(p(ξ′ − ζ ′))〉. (5.5)

Using the fact that the sets q(Q̃1) and q(Q̃2) (resp. p(Q̃1) and p(Q̃2)) are disjoint and each
of them is connected, one sees that q(ξ − ζ) and q(ξ′ − ζ ′) are parallel, as are p(ξ − ζ) and
p(ξ′ − ζ ′). Since r is unitary, r(p(ξ − ζ)) and r(p(ξ′ − ζ ′)) are also parallel. Hence, both
terms on the right-hand side of (5.5) have the same sign, and thus it suffices to bound one
of them from below. We have

|〈r(p(ξ − ζ)), q(ξ′ − ζ ′)〉| = |p(ξ − ζ)||q(ξ′ − ζ ′)| & 1.

It remains to prove Lemma 5.1.

Proof of Lemma 5.1. We know that Qi = L−1(θi) = D(BR(θi)), by (5.2) and (5.1). We
claim, first, that

|π+(ξ)− π+(ζ)| & 2−j ,

|π−(ξ)− π−(ζ)| & 2−k (5.6)

for all ξ ∈ BR(θ1) and ζ ∈ BR(θ2), where π± are the projections used throughout the
previous section (recall (4.3)). Using that ‖(BR)−1‖ . 1, it is not difficult to show that

BR
−1

exists in a neighborhood of 0 (of constant size) and is given byBR
−1

(η) = (BR)−1(η).
We showed above that the sets BR(θi) lie in a disc of radius O(2−k) centered at 0. Fix

ξ ∈ BR(θ1) and ζ ∈ BR(θ2), and let ξ′ := BR
−1

(ξ), α := BR
−1

(π+(ξ), 0) and ζ ′ :=

BR
−1

(ζ), β := BR
−1

(π+(ζ), 0). Since (π+(ξ), 0) ∈ `+ξ by Lemma 4.2, it follows that

α ∈ `+ξ′ . Similarly, β ∈ `+ζ′ . Thus, since π+ is constant along lines of the form `+η , by Lemma

4.2, and θ1 ∼ θ2, we have

2−j . |π+(ξ′)− π+(ζ ′)|
= |π+(α)− π+(β)|
. |α− β|

= |BR−1
(π+(ξ), 0)−BR−1

(π+(ζ), 0)|
. |π+(ξ)− π+(ζ)|.

A similar argument gives the second estimate in (5.6).
We will now use (5.6) to prove the lemma. We only prove the first estimate; the second

one follows by a similar argument. Fix ξ ∈ Q1 and ζ ∈ Q2, and let α = D
−1

(p(ξ)) =

2
k−j
2 p(ξ) and β = D

−1
(p(ζ)) = 2

k−j
2 p(ζ). It suffices to show that |α − β| & 2−j . Let ξ′ be

the intersection of the lines `+ξ and R(1,−1). The points A := ξ, B := p(ξ), and C := ξ′
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form a right triangle with hypotenuse AC. One easily checks that ∠(`+ξ ,R(1, 1)) . |ξ|.
Thus, ∠CAB . 2−

j+k
2 by the fact that ξ ∈ Q1 ⊆ V . We also have |AC| . 2−

j+k
2 ,

and thus |p(ξ) − ξ′| = |BC| . 2−j−k. Let α′ = D
−1

(ξ′) = 2
k−j
2 ξ′. Then |α − α′| =

2
k−j
2 |p(ξ) − ξ′| . 2−

3j+k
2 . Because ξ′ ∈ `+ξ , we have `+ξ′ = `+ξ (see the proof of Lemma 4.2)

and thus α′ ∈ D−1
(`+ξ ) = `+

D
−1

(ξ)
. Thus, since π+ is constant along `+

D
−1

(ξ)
, we have

|π+(α)− π+(D
−1

(ξ))| = |π+(α)− π+(α′)| . |α− α′| . 2−
3j+k

2 ,

and by a similar argument,

|π+(β)− π+(D
−1

(ζ))| . 2−
3j+k

2 .

Since D
−1

(ξ) ∈ BR(θ1) and D
−1

(ζ) ∈ BR(θ2), the first estimate in (5.6) now gives the
bound

2−j . |π+(D
−1

(ξ))− π+(D
−1

(ζ))| = |π+(α)− π+(β)|+O(2−
3j+k

2 ),

and consequently

|α− β| & |π+(α)− π+(β)| & 2−j ,

which is what we needed to show. �

Remark 5.2. As an application, we pause to explain how the bilinear theory for E0 can
be used to obtain further (conditional) linear estimates for E0 on the parabolic scaling
line p = (q/2)′. Similar to the case of the hyperbolic paraboloid (see [16]), the proof
of Theorem 4.1 can be adjusted to give the following conditional bilinear-to-linear result:
Given 3 < q0 < 4, if there exists some p0 < ( q02 )′ such that

‖E0fE0g‖q0/2 . 2
(j+k)( 4

q0
+ 2
p0
−2)‖f‖p0‖g‖p0 ,

for all functions f , g supported in related tiles in Θj,k, then E0 is bounded from L(q/2)′ to
Lq for all q > q0. In [4], the first author showed the following: If q0 > 3.25, p0 > ( q02 )′, and
0 < r ≤ 1, then ‖Er0f‖q0 . ‖f‖p0 uniformly in r, where

Er0f(t, x) :=

∫
U
ei(t,x)·(r−2

√
1+r2(ξ21−ξ22),ξ)f(ξ)dξ.

Using this result, the Cauchy–Schwarz inequality, a parabolic rescaling argument (utilizing
the uniformity in r), and interpolation with Theorem 4.4, one can show that the hypothesis
of the conditional version of Theorem 4.1 holds for each q0 > 3.25. We conclude that E0 is
bounded from L(q/2)′ to Lq for every q > 3.25.

6. Bilinear adjoint restriction on annuli

In the next two sections we establish bounds for the extension operator associated to
dyadic annuli in our hyperboloid. By invariance under cylindrical rotations and the triangle
inequality, it suffices to consider subsets of these annuli with some angular restriction, and
we abuse notation (relative to the introduction) by defining

ΓN := {(τ, ξ) ∈ Γ : |ξ| ∼ 2N , | ξ|ξ| − e1| < 0.001},
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where e1 denotes the usual first coordinate vector. We will use the notation fN to denote
a function supported on ΓN .

The focus of this section will be on establishing bounds in the bilinear range, where our
results are unconditional and our deduction is more straightforward. We will then turn to
the conditional result in the next section, the proof of which will use some of the lemmas
from this section.

Proposition 6.1. Let ( q2)′ ≤ p ≤ q and 4 > q > 10
3 . Then

‖EfN‖q . ‖fN‖p,

for all functions fN supported on ΓN .

The remainder of this section will be devoted to the proof of Proposition 6.1.
We will work on sectors of varying width contained in the ΓN . Let C ≤ k ≤ N . By an

(N, k)-sector, we mean a set of the form

ΓωN,k := {(τ, ξ) ∈ ΓN : | ξ|ξ| − ω| < 2−k},

with ω ∈ S1; we refer to 2−k as the angular width of the sector.
We begin by establishing bounds on the thinnest sectors.

Lemma 6.2. For any p, q, validity of R∗0(p→ q) implies that

‖EfωN,N‖q . ‖fωN,N‖p, (6.1)

for every function fωN,N supported in an (N,N)-sector, N ≥ 1. In particular, (6.1) holds

for all q ≥ 2p′ when q > 10
3 .

Proof. We recall the definition (1.1) of the Lorentz boost Lν and the Lorentz invariance
of our measure. The deduction claimed in the lemma follows from the observation that if
ω ∈ S1 and N ≥ 1, L2Nω maps ΓωN,N into Γ0. �

Now we turn to the deduction of bounds on the ΓN from those on the ΓωN,N , for which
we adapt the bilinear theory for the cone.

For k < N , we say that two (N, k)-sectors, ΓωN,k and Γω
′

N,k are related, ΓωN,k ∼ Γω
′

N,k, when

2−k+4 ≤ |ω − ω′| ≤ 2−k+8. We say that two (N,N)-sectors, ΓωN,N and Γω
′

N,N are related

when |ω − ω′| ≤ 2−N+8.
We can deduce a near-optimal L2-based bilinear adjoint restriction theorem for related

(N, k)-sectors from results already in the literature. Namely, one may directly apply the
bilinear restriction method from [18] (which was quickly observed to apply to conic surfaces)
and conic rescaling, or else directly apply the results of [7] to obtain the following.

Theorem 6.3 ([7, 13, 18]). Let C ≤ k < N , let Γω1
N,k and Γω2

N,k be related (N, k)-sectors,

and let f1, f2 be L2 functions supported on Γω1
N,k,Γ

ω2
N,k, respectively. Then

‖Ef1Ef2‖Lq/2 . 2
−(N−k)( 6

q
−1)‖f1‖2‖f2‖2, q > 10

3 . (6.2)

We state our bilinear-to-linear deduction in slightly more general terms than we need in
this section in order to facilitate later arguments.
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Lemma 6.4. Let 3 < q < 4, ( q2)′ ≤ p ≤ q, and s ≤ p. Assume that R∗0(p → q) holds and
that for C ≤ k < N ,

‖Ef1Ef2‖q/2 . 2−(N−k)α‖f1‖s‖f2‖s, (6.3)

whenever f1 and f2 are supported in related (N, k)-sectors. If α ≥ 2
s −

2
p , α > 0, and either

α 6= 2
s −

2
q or p < q, then

‖EfN‖q . ‖fN‖p,

for all measurable functions fN satisfying |fN | ∼ 1ΩN , for some ΩN ⊆ ΓN .

Lemma 6.4 implies a restricted strong-type inequality for extension from the ΓN , which
can be interpolated to yield strong-type inequalities since we work with exponents obeying
q ≥ p.

Proof of Lemma 6.4. We may choose O(2−k)-separated collections DN,k ⊆ S1, C ≤ k ≤
N , such that whenever (τ, ξ), (τ ′, ξ′) ∈ ΓN , there exists a pair of related (N, k)-sectors

ΓωN,k 3 (τ, ξ) and Γω
′

N,k 3 (τ ′, ξ′), with ω, ω′ ∈ DN,k. Here k = N if | ξ|ξ| −
ξ′

|ξ′| | . 2−N , and

2−k ∼ | ξ|ξ| −
ξ′

|ξ′| |, otherwise. We will abuse notation by saying that for ω, ω′ ∈ DN,k, ω ∼ ω′

if ΓωN,k ∼ Γω
′

N,k. Thus we may decompose

ΓN × ΓN :=

N⋃
k=C

⋃
ω∼ω′∈DN,k

ΓωN,k × Γω
′

N,k. (6.4)

We will later use the geometric property that each ΓωN,k is contained in a parallelepiped

PωN,k, such that the sumsets PωN,k + Pω
′

N,k are finitely overlapping as the pair ω ∼ ω′ ∈ DN,k
varies.

Let fN be a measurable function with |fN | ∼ 1ΩN , for some subset ΩN ⊆ ΓN . Using the
decomposition (6.4) to make a partition of unity, we have

‖E1ΩN ‖
2
q = ‖(E1ΩN )2‖q/2

≤
∥∥∥∥ ∑
ω∼ω′∈DN,N

EfωN,NEfω
′

N,N

∥∥∥∥
q/2

+

∥∥∥∥N−1∑
k=C

∑
ω∼ω′∈DN,k

EfωN,kEfω
′

N,k

∥∥∥∥
q/2

=: I1 + I2,

where the fωN,k are measurable functions supported on the ΓωN,k with |fωN,k| . |fN |.
We begin with the first term. By the Tao–Vargas–Vega orthogonality lemma [19, Lemma

6.1] and the finite overlap of sumsets, the Cauchy–Schwarz inequality, the hypothesis that
R∗0(p→ q) holds, and the fact that q ≥ p, we have

I1 .

( ∑
ω∼ω′∈DN,N

‖EfωN,NEfω
′

N,N‖
q/2
q/2

)2/q

≤
( ∑
ω∼ω′∈DN,N

‖EfωN,N‖q/2q ‖Efω
′

N,N‖q/2q

)2/q

.

( ∑
ω∼ω′∈DN,N

‖fωN,N‖q/2p ‖fω
′

N,N‖q/2p

)2/q

.

( ∑
ω∈DN,N

‖fN1ΓωN,N
‖qp
)2/q

. ‖fN‖2p.
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Now we turn to the second term. Let Ωω
N,k := ΩN ∩ ΓωN,k. By the triangle inequality,

almost orthogonality, and the aforementioned finite overlap property of sumsets, and then
(6.3) and some standard reindexing,

I2 .
N−C∑
k=C

 ∑
ω∼ω′∈DN,k

‖EfωN,kEfω
′

N,k‖
q
2
q
2

 2
q

.
N−C∑
k=C

2−(N−k)α
( ∑
ω∈DN,k

σ(Ωω
N,k)

q
s
) 2
q .

Thus by Hölder’s inequality and the estimates

σ(Ωω
N,k) ≤ min{σ(ΩN ), σ(ΓωN,k)} and σ(ΓωN,k) ∼ 2N−k,

we see that

I2 .
N−C∑
j=C

2−jα min{2j(
2
s
− 2
q

)
, σ(ΩN )

2
s
− 2
q }|ΩN |

2
q

≤
log2(σ(ΩN ))∑

j=C

2
j( 2
s
− 2
q
−α)

σ(ΩN )
2
q +

N−C∑
j=max{C,log2(σ(ΩN ))}

2−jασ(ΩN )
2
s =: I ′2 + I ′′2 .

When σ(ΩN ) ≤ 1, I ′2 = 0 and I ′′2 ∼ σ(ΩN )
2
s ≤ σ(ΩN )

2
p , since s ≤ p. When σ(ΩN ) ≥ 1,

I ′′2 ∼ σ(ΩN )
2
s
−α ≤ σ(ΩN )

2
p . If, in addition, 2

s −
2
q − α < 0, I ′2 ∼ σ(ΩN )

2
q ≤ σ(ΩN )

2
p .

Meanwhile, if 2
s −

2
q − α > 0, I ′2 ∼ σ(ΩN )

2
s
−α ≤ σ(ΩN )

2
p . Finally, if α = 2

s −
2
q and p < q,

then I ′2 ∼ log(σ(ΩN ))σ(ΩN )
2
q . σ(ΩN )

2
p .

In any case, combining our estimates for I1 and I2 gives ‖EfN‖2q . σ(ΩN )
2
p , completing

the proof of the lemma. �

Theorem 6.3, Theorem 4.1, Lemma 6.2, Lemma 6.4 (with q ≥ p > 2, q ≥ 2p′, and s = 2),
and real interpolation together imply that ‖Ef‖q . ‖f‖p for all f ∈ C∞c (ΓN ) when q > 10/3
and ( q2)′ ≤ p ≤ q. Thus the proof of Proposition 6.1 is complete.

7. Reduction to bounds on Γ0 via decoupling

In the previous section we showed how to deduce bounds for extension from the dyadic an-
nuli ΓN from those for extension from Γ0 by using the bilinear adjoint restriction inequality
(6.2). This approach is limited, since we do not currently know any such result with q ≤ 10

3 .
In this section, we will use the conic decoupling theorem of Bourgain–Demeter to obtain
new bounds for extension from ΓN , conditional on further improvements to R∗0(p → q).
The entirety of this section will be devoted to a proof of the following result.

Proposition 7.1. Suppose that R∗0(( q02 )′ → q0) holds for some q0 <
10
3 . Then for (p, q)

obeying ( q2)′ ≤ p ≤ q and
1

p
>

2

5
· 1/q − 3/10

1/q0 − 3/10
+

1

10
, (7.1)

we have

‖EfN‖q . ‖fN‖p, (7.2)

for all fN ∈ Lp(ΓN ), with bounds uniform in N .
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Our main tool in the proof of Proposition 7.1 is the following consequence of Bourgain–
Demeter’s decoupling theorem for the cone.

Proposition 7.2. Suppose that R∗0(p→ q) holds for some p ≥ ( q2)′, q ≤ 4. Then

‖Ef‖q .ε 2
(N−k)( 1

2
− 1
p

+ε)‖f‖p
for all functions f supported in an (N, k)-sector and all ε > 0.

Proof of Propostion 7.2. Let κ be an (N, k)-sector, let fκ be supported in κ, and let P be
a partition of κ into (N,N)-sectors. The estimate R∗0(p→ q) and Lemma 6.2 imply that

‖Efθ‖q . ‖fθ‖p (7.3)

for all fθ supported in θ ∈ P. In particular, if N − k . 1, then #P . 1 and the required
estimate is a consequence of the triangle inequality and (7.3). We may assume, therefore,
that N − k ≥ C for some sufficiently large constant C.

We proceed by rescaling extension estimates on κ to those on a nearly conic set of angular
width 1 in the region |ξ| ∼ 1, where Bourgain–Demeter’s conic decoupling theorem can be
directly applied. We may assume by rotational symmetry that

κ = {(〈〈ξ〉〉, ξ) : 2N ≤ |ξ| ≤ 2N+1, ∠(ξ, (1, 0)) ≤ 2−k−1}. (7.4)

Thus, κ lies in an O(2−N )-neighborhood of the conic sector

κc := {(|ξ|, ξ) : 2N ≤ |ξ| ≤ 2N+1, ∠(ξ, (1, 0)) ≤ 2−k−1}.

Let D be the conic dilation D(τ, ξ) := 2−N (τ, ξ). Then D(κc) is a conic sector of angular
width 2−k in C0 := {(|ξ|, ξ) : 1 ≤ |ξ| ≤ 2} that contains the point (1, 1, 0). Let L be the
linear map satisfying

L(0, 0, 1) = 2k(0, 0, 1),

L(1, 1, 0) = (1, 1, 0),

L(−1, 1, 0) = 22k(−1, 1, 0).

Geometrically, the vectors (0, 0, 1), (1, 1, 0), and (−1, 1, 0) are respectively “angularly tan-
gent,” “radially tangent,” and normal to C0 at the point (1, 1, 0). The map L preserves the

cone and expands D(κc) to angular width 1. Now, set M = LD and δ = C ′22(k−N), where
C ′ is a constant. If C ′ is sufficiently large, then M(κ) lies in the δ-neighborhood of a conic

frustum C̃0, a slight enlargement of C0. Let dM∗σ be the pushforward measure on M(Γ),
given by ∫

M(Γ)
g dM∗σ :=

∫
Γ
g ◦M dσ,

and let EMg := (gdM∗σ)∨. Let P̃ be a partition of the δ-neighborhood of C̃0 into sectors

∆ of angular width δ1/2 and thickness δ. By conic decoupling, see [3, Theorem 1.2], the
inequality

‖EMg‖q .ε δ−ε
( ∑

∆∈P̃

‖EM (g1∆′)‖2q
) 1

2

(7.5)
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holds for all g supported in M(κ), where ∆′ := ∆ ∩M(κ). We claim that every ∆ ∈ P̃
obeys the bound

#{θ ∈ P : θ ∩M−1(∆′) 6= ∅} . 1. (7.6)

Then, taking g = f ◦M−1 in (7.5), rescaling, and applying (7.3) and Hölder’s inequality,
we get

‖Ef‖q .ε δ−ε
( ∑

∆∈P̃

‖E(f1M−1(∆′))‖2q
) 1

2

. δ−ε
( ∑

∆∈P̃

∑
θ∈P:

θ∩M−1(∆′)6=∅

‖f‖2Lp(θ∩M−1(∆′))

) 1
2

. 2
(N−k)( 1

2
− 1
p

+2ε)‖f‖p.

Since ε is arbitrary, the proof is complete modulo the claim (7.6).
To begin the proof of (7.6), we record the following notation: The angular separation of

ζ, ζ ′ ∈ R3 is defined as

distang(ζ, ζ ′) :=

∣∣∣∣ (ζ2, ζ3)

|(ζ2, ζ3)|
− (ζ ′2, ζ

′
3)

|(ζ ′2, ζ ′3)|

∣∣∣∣ .
Now, fix ∆ ∈ P̃ and let n := #{θ ∈ P : θ∩M−1(∆′) 6= ∅}. We need to show that n . 1, so
we may assume that n ≥ 3. Then there exist ζ, ζ ′ ∈ κ∩M−1(∆′) such that distang(ζ, ζ ′) &
n2−N . Since ∆′ has angular width O(2k−N ), it suffices to show that distang(M(ζ),M(ζ ′)) &
2k distang(ζ, ζ ′). Toward that end, it will be convenient to understand how M transforms

the polar coordinates (〈〈ξ〉〉, ξ) =: (〈〈r〉〉, r cos ν, r sin ν), where 〈〈r〉〉 :=
√
r2 − 1. We compute

that M(〈〈r〉〉, r cos ν, r sin ν) = 2−N−1(mi(r, ν))3
i=1, where

m1(r, ν) := (1 + 22k)〈〈r〉〉+ (1− 22k)r cos ν,

m2(r, ν) := (1− 22k)〈〈r〉〉+ (1 + 22k)r cos ν,

m3(r, ν) := 2k+1r sin ν.

The polar angle associated to M(〈〈r〉〉, r cos ν, r sin ν) is

A(r, ν) := arctan

(
m3(r, ν)

m2(r, ν)

)
.

Thus, letting ζ =: (〈〈r〉〉, r cos ν, r sin ν) and ζ ′ =: (〈〈r′〉〉, r′ cos ν ′, r′ sin ν ′), we have

distang(M(ζ),M(ζ ′)) ∼ |A(r, ν)−A(r′, ν ′)|. (7.7)

Since ζ ∈ κ, we know that 2N ≤ r ≤ 2N+1 and |ν| ≤ 2−k−1 by (7.4). Consequently, one
easily checks that m2(r, ν) ∼ 2N and |m3(r, ν)| . 2N ; the same bounds hold for m2(r′, ν ′)
and m3(r′, ν ′). Arguments using the mean value theorem and the preceding estimates show
that

|A(r, ν)−A(r, ν ′)| ≥ |ν − ν ′| inf
|ϕ|≤2−k−1

|∂2A(r, ϕ)| & 2k distang(ζ, ζ ′)
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and

|A(r, ν ′)−A(r′, ν ′)| ≤ |r − r′| sup
2N≤s≤2N+1

|∂1A(s, ν ′)| . 2N22k−3N . 2−C2k distang(ζ, ζ ′).

Thus, if C is sufficiently large, then |A(r, ν) − A(r′, ν ′)| & 2k distang(ζ, ζ ′) by the triangle
inequality. Plugging this estimate into (7.7) completes the proof. �

We are now ready to prove Proposition 7.1. By the hypothesis R∗0(( q02 )′ → q0), Proposi-
tion 7.2, and the Cauchy–Schwarz inequality, we have

‖Ef1Ef2‖q0/2 .ε 2
−(N−k)(1− 4

q0
−2ε)‖f1‖p0‖f2‖p0

for all functions f1, f2 supported in (N, k)-sectors. Given q1 >
10
3 , we also have

‖Ef1Ef2‖q1/2 . 2
−(N−k)( 6

q1
−1)‖f1‖2‖f2‖2

by Theorem 6.3, provided f1 and f2 are supported in related (N, k)-sectors. Interpolating
these estimates, we see that

‖Ef1Ef2‖qt/2 .ε 2−(N−k)αt‖f1‖st‖f2‖st , (7.8)

for 0 ≤ t ≤ 1, where (
1

st
,

1

qt

)
:= (1− t)

(
1− 2

q0
,

1

q0

)
+ t

(
1

2
,

1

q1

)
,

αt := (1− t)
(

1− 4

q0
− 2ε

)
+ t

(
6

q1
− 1

)
.

We may apply Lemma 6.4 to obtain uniform restricted weak-type Lp → Lqt bounds on
dyadic annuli as long as ( qt2 )′ ≤ p ≤ qt and

1

p
>

1

st
− αt

2
,

or, equivalently, after a bit of arithmetic, if

1

p
>

(
3

q1
− 1

2
+ ε

)
(1− t) + 1− 3

q1
. (7.9)

Sending q1 ↘ 10
3 and ε↘ 0, and substituting 1− t = 1/qt−1/q1

1/q0−1/q1
in (7.9) yields (7.1). Having

proved restricted weak-type bounds in the claimed region, real interpolation completes the
proof of Proposition 7.1.

8. Summing the bounds on annuli

The purpose of this section is to complete the proof of Theorem 1.1 by proving that
uniform bounds for the extension from dyadic annuli imply global bounds on E . Let
R∗ann(p → q) denote the statement that for all N ≥ 1 and measurable fN supported
on ΓN ,

‖EfN‖q . ‖fN‖p.
We will spend the majority of this section proving the following.
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Lemma 8.1. If R∗ann(p0 → q0) holds for some ( q02 )′ ≤ p0 ≤ q0, then R∗(p → q) holds for

all q > q0 and p′ =
p′0
q0
q.

Lemma 8.2. If R∗ann(q0 → q0) holds for some 3 < q0 < 4, then R∗(q → q) holds for all
q0 < q < 4.

Before proving the lemmas in detail, we note that applying them in conjunction with
Propositions 6.1 and 7.1 completes the proof of Theorem 1.1.

We will prove Lemmas 8.1 and 8.2 by proving that the hypotheses imply a bilinear
extension estimate between annuli:

‖EfN1EfN2‖ q2 . 2−c0|N1−N2|‖fN1‖p‖fN2‖p, (8.1)

for some c0 > 0, and measurable functions |fNj | ∼ 1ΩNj
, ΩNj ⊆ ΓNj , j = 1, 2. Indeed,

assuming validity of such an estimate, for any |f | ∼ 1Ω, by the triangle inequality and
q ≤ 4,

‖Ef‖qq . ‖f‖qp + ‖
∑
N≥C

EfN‖qq . ‖f‖qp +
∑

N1≥N2≥N3≥N4≥C
‖

4∏
i=1

EfNi‖
q
4
q
4

. ‖f‖qp +
∑

N1≥N2≥N3≥N4≥1

2−
qc0
4
|N1−N4|

4∏
i=1

‖f‖
q
4

Lp(ΓNi )
.
∑
N≥0

‖f‖qLp(ΓN ) . ‖f‖
q
Lp .

Real interpolation leads to strong-type bounds.

Proof of Lemma 8.1. The Strichartz inequality (3.1) implies that

‖Ef‖LrtLsx . ‖〈〈ξ〉〉
1
r
− 1
s f‖L2(Γ;dσ),

2 ≤ r, s; s <∞;
2

r
+

2p′0
(q0 − p′0)s

=
p′0

q0 − p′0
.

(8.2)

As (8.2) implies boundedness of E in the range p = 2, 4 ≤ q ≤ 6, we may assume henceforth
that p0 > 2.

Let q2 = 2 q0
p′0

, and choose some r0, s0, r1, s1 obeying (8.2), r0 < q2 < s0, and

1

q2
=

1

2
(

1

r0
+

1

r1
) =

1

2
(

1

s0
+

1

s1
).

By the Cauchy–Schwarz inequality, for any 1 ≤ N1 ≤ N2, we have the bilinear estimate

‖EfN1EfN2‖L q22 . ‖EfN1‖Lr0t Ls0x ‖EfN2‖Lr1t Ls1x . 2
N1(

1
r0
− 1
s0

)
2
N2(

1
r1
− 1
s1

)‖fN1‖2‖fN2‖2

= 2
−(

1
r0
− 1
s0

)|N1−N2|‖fN1‖2‖fN2‖2.

Inequality (8.1) follows by interpolation with the consequence

‖EfN1EfN2‖ q0
2
. ‖fN1‖p0‖fN2‖p0

of our hypothesis. �
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Proof of Lemma 8.2. We will prove a bilinear estimate between annuli as in (8.1), with
p = q and C ≤ N1 ≤ N2 − C fixed. To do so, we will use three different bilinear extension
estimates between sectors at different scales.

It is convenient to modify our Whitney decomposition slightly from earlier, though we
will continue to use the convention that | ξ|ξ| − e1| < c for all ξ ∈ ΓN , for some sufficiently

small c. For C ≤ k ≤ N1, let Dk denote a 2−k-separated subset of S1. For ω, ω′ ∈ Dk
and k < N1 − C, we say that ω ∼ ω′ if 2−k+C ≤ |ω − ω′| ≤ 2−k+2C . Meanwhile, for
N1 − C ≤ k ≤ N1, we say that ω ∼ ω′ if |ω − ω′| ≤ 2−N1+2C . Thus for ξ1 ∈ ΓN1 and
ξ2 ∈ ΓN2 , there is at least one and at most a bounded number of triples (k, ω, ω′) with

ω ∼ ω′ ∈ Dk and ξ1 ∈ ΓωN1,k
and ξ2 ∈ Γω

′
N2,k

.

By the hypothesis that R∗ann(q0 → q0) holds, interpolation, and the Cauchy–Schwarz
inequality, for k ≥ C and ω, ω′ ∈ Dk, we have

‖EfωN1,N1
Efω′N2,N2

‖ q
2
. ‖fωN1,N1

‖q‖fω
′

N2,N2
‖q, q0 ≤ q < 4. (8.3)

By Theorem 1.4 of [7] (see also [7, Theorem 1.10]), if 0 ≤ k < N1 − C, ω ∼ ω′ ∈ Dk, and
10
3 < q1 < 4, then

‖EfωN1,k Ef
ω′
N2,k‖ q12 . 2

−(N1+N2−2k)( 3
q1
− 1

2
)
2
−( 3

2
− 5
q1

)|N1−N2|‖fωN1,k‖2‖f
ω′
N2,k‖2. (8.4)

Finally, if k ≥ N1 − C and ω ∼ ω′ ∈ Dk, we claim that

‖EfωN1,k Ef
ω′
N2,k‖2 . 2−

1
4
|N1−N2|‖fωN1,k‖4‖f

ω′
N2,k‖4. (8.5)

We now turn to the details of (8.5), which follow a well-established route. Let (〈〈ξ〉〉, ξ) ∈
ΓωN1,k

and (〈〈η〉〉, η) ∈ Γω
′

N2,k
. The coordinate change ζ = (〈〈ξ〉〉+〈〈η〉〉, ξ+η), β = ξ⊥ (perpen-

dicular direction taken with respect to ω) is finite-to-one, and has Jacobian determinant

|∂(ζ,β)
∂(ξ,η) | ∼ 2−2N1 . By Plancherel’s identity, the change of variables formula (recall that we

integrate with respect to dσ), and Hölder’s inequality (β varies over an interval of length
at most 1), the right-hand side of (8.5) is bounded by

‖ÊfωN1,k
Êfω′N2,k

‖2 .
(∫∫

|fωN1,k(〈〈ξ〉〉, ξ) f
ω′
N2,k(〈〈η〉〉, η) 1

〈〈ξ〉〉〈〈η〉〉 |
∂(ξ,η)
∂(ζ,β) ||

2 dβ dζ
) 1

2 .

Changing variables back, estimating the various roughly constant terms that have arisen,
and using Hölder’s inequality again, the right-hand side of the preceding inequality is
bounded by

2N12−
1
2

(N1+N2)σ(ΓωN1,k)
1
4σ(Γω

′
N2,k)

1
4 ‖fωN1,k‖4‖f

ω′
N2,k‖4. (8.6)

Since σ(ΓωN1,k
) . 1, while σ(Γω

′
N2,k

) . 2N2−N1 , inequality (8.6) implies (8.5).

Interpolating (8.3) and (8.4), yields, for all ω ∼ ω′ ∈ Dk, 0 ≤ k < N1 − C,

‖EfωN1,kEf
ω′
N2,k‖ q2 . 2−(N1+N2−2k)α

2 2−δ|N1−N2|‖fωN1,k‖s‖f
ω′
N2,k‖s, (8.7)

for all q0 < q < 4, some s < q, some α > 2
s −

2
q , and some δ > 0. Interpolating (8.5) and

(8.3) (taking q = q0 in the latter) yields, for k = N1 + C and ω ∼ ω′ ∈ DN1,k,

‖EfωN1,kEf
ω′
N2,N1

‖ q
2
. 2−δ|N1−N2|‖fωN1,N1

‖q‖fω
′

N2,N1
‖q, q0 < q < 4. (8.8)
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We adapt the bilinear to linear argument of Tao–Vargas–Vega [19]. Namely, if |fNj | ∼
1ΩNj

, j = 1, 2, then using a partition of unity and almost orthogonality; using (8.7), (8.8),

the Cauchy–Schwarz inequality, and reindexing; and finally summing as in the proof of
Lemma 6.4,

‖EfN1EfN2‖ q2 .
N1∑
k=C

( ∑
ω∼ω′∈Dk

‖EfωN1,kEf
ω′
N2,k‖

q
2
q
2

) 2
q

. 2−δ|N1−N2|

 2∏
j=1

( ∑
ω∈DN1

‖fωNj ,k‖
q
q

) 1
q +

N1∑
k=C

2∏
j=1

2−(Nj−k)α
2
( ∑
ω∈Dk

‖fωNj ,k‖
q
s

) 1
q


. 2−δ|N1−N2|‖fN1‖q‖fN2‖q.
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