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ABSTRACT 

Cyber-physical-social systems (CPSS) with highly integrated functions of sensing, actuation, 

computation, and communication are becoming the mainstream consumer and commercial 

products. The performance of CPSS heavily relies on the information sharing between devices. 

Given the extensive data collection and sharing, security and privacy are of major concerns. Thus 

one major challenge of designing those CPSS is how to incorporate the perception of trust in 

product and systems design. Recently a trust quantification method was proposed to measure 

trustworthiness of CPSS by quantitative metrics of ability, benevolence, and integrity. The CPSS 

network architecture can be optimized by choosing a subnet such that the trust metrics are 

maximized. The combinatorial network optimization problem however is computationally 

challenging. Most of the available global optimization algorithms for solving such problems are 

heuristic methods. In this paper, a surrogate-based discrete Bayesian optimization method is 

developed to perform network design, where the most trustworthy CPSS network with respect to 

a reference node is formed to collaborate and share information with. The applications of ability 

and benevolence metrics in design optimization of CPSS architecture are demonstrated.1  

Keywords: Cyber-Physical-Social Systems; Probabilistic Graph Model; Trust; Ability; 

Benevolence; Bayesian Optimization 

1 A shorter version of the paper was presented at ASME IDETC/CIE2020 as paper No. IDETC2020-22661. 
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1. Introduction 

Cyber-physical systems (CPS) are physical devices that have highly integrated functions of 

sensing, actuation, computation, and communication. Currently both consumer and commercial 

products are becoming more intelligent with the implementations of them as CPS. These CPS 

devices have embedded sensors and can collect data of the surrounding environment. The data are 

shared between those devices, which help human users as well as the intelligent devices to make 

individual decisions. The decisions can be further executed with the actuation units of the devices. 

The CPS devices are the essential elements for smart home, smart city, intelligent manufacturing, 

personalized medicine, autonomous and safe transportation, omnipresent energy supplies, and 

many other applications. When CPS interact with human users and are integrated with human 

society, they are also termed as cyber-physical-social systems (CPSS), where the social dimension 

of the systems needs to be considered.  

The design of CPSS is challenging because various factors and constraints in the cyber, 

physical, and social dimensions of design space need to be considered. There are unique challenges 

in CPSS design, such as sustainability, reliability, resilience, interoperability, adaptability, bio-

compatibility, flexibility, and safety in the physical subspace. There are also principles of human-

in-the-loop, data-driven design, co-design, scalability, usability, and security that need to be 

considered in the cyber subspace. In social subspace, the perceptions of risk, trust, and privacy, as 

well as memory capacity and emotion of users need to be incorporated. 

The rapid growth of CPSS requires engineers to adopt a new design for connectivity principle. 

Different from traditional products, CPSS devices heavily rely on information sharing with each 

other to be functioning. A standalone CPSS device that is disconnected from networks cannot 

perform the functions which it is designed for. Thus network connectivity is essential for CPSS. 

Those devices form the Internet of Things (IoT). How to consider the connectivity related issues 

in product design therefore is new to engineers. Particularly, each CPSS device constantly collects 

data and shares them with other devices in the networks. Information security and privacy become 

critical issues in designing such networked systems. At the high-level application layer, decisions 

of what data can be collected, where data are stored, who can access the data, which portion of 

data can be shared, etc. need to be made during the software design. These design decisions will 

simultaneously affect hardware and mechanism design. The effectiveness of CPSS functionalities 

critically depends on what and how information is shared between each other. Therefore trust is 
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an important design feature for these systems to work together. Designing the decision making 

units on CPSS or decision support for human users need to incorporate the social dimension of 

trust. 

Furthermore, how to design trustworthy CPSS that human users are willing to adopt and use 

is critical, as personal information are likely to be collected and shared by the devices. The users’ 

trust perceptions about a system may vary and can affect the effectiveness of human-device 

interactions. Thus the social dimension of trust is an important factor for design engineers to 

consider.  

Trust has been extensively studied in the domains of psychology, organizational behavior, 

marketing, and computer science. However, most studies remain conceptual and qualitative. 

Quantitative measurements of trustworthiness are needed when the concept is applied in 

engineering design and optimization. Some quantitative studies of trust have been conducted in 

computer science, where trustworthiness is mostly quantified by quality of service (QoS), e.g. 

success rate as well as consistency in packet forwarding and other transactions, in network 

communication. The reputations in user ratings and recommendations online were also used. These 

metrics are quantities only in cyber design space. There is still lack of trustworthiness metrics in 

both cyber and social design spaces, which are important to guide the design of trustworthy CPSS 

at the levels of network architecture and devices.  

In this work, the perception of trust is quantified and applied in the CPSS architecture design, 

where a node’s collaboration network can be obtained by maximizing the level of trustworthiness. 

The quantitative trustworthiness metrics are based on the recently proposed ability-benevolence-

integrity (A-B-I) model [1]-[3], where trustworthiness is quantified by the cyber-social metrics of 

ability, benevolence, and integrity. Ability shows how well a trustee party is capable of doing what 

it claims to perform. Benevolence indicates whether the motivation of the trustee is purely for the 

benefit of itself. Integrity measures if the trustee does what it claims to. Based on a mesoscale 

probabilistic graph model [4,5] of CPSS, the perceptions of ability, benevolence, and integrity can 

be quantified with the probabilities of good judgements for the nodes as well as the information 

dependencies among nodes.  

In this paper, we further demonstrate how to apply the quantitative trustworthy metrics as the 

design criteria in network architecture design and optimization. The metrics of ability and 

benevolence are used as the utilities to identify an optimal subset of nodes in the network that a 
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node can trust and collaborate with. A new discrete Bayesian optimization method is proposed to 

solve the combinatorial network optimization problem. Bayesian optimization is a surrogate-based 

global optimization scheme that incorporates uncertainty in the searching process. The proposed 

discrete optimization method employs Gaussian process surrogates with a new discrete kernel 

function in searching the best combinations of nodes. The new discrete kernel is developed to 

better measure the similarity between networks with respect to the objective function. 

Different from other global optimization approaches such as the commonly used genetic 

algorithms, simulated annealing, and other “memoryless” heuristic algorithms, Bayesian 

optimization keeps the search history. In addition, an acquisition function is constructed and used 

to guide the searching or sequential sampling process. It is designed to strike a balance between 

exploration and exploitation. During sequential sampling, the surrogate of objective function is 

continuously updated based on the Bayesian belief update when new samples are available. 

Therefore the searching process in Bayesian optimization can be accelerated with the properly 

designed surrogate model and acquisition function. This provides unique advantages in discrete 

optimization over traditional heuristic algorithms, especially for complex combinatorial problems 

where exhaustive search in the discrete solution space is computationally prohibitive.  

In the remainder of this paper, the existing work of system-level design of CPSS, discrete 

Bayesian optimization, and trust quantification approaches are reviewed in Section 2, where the 

probabilistic graph model of CPSS is also introduced. In Section 3, the metrics of ability and 

benevolence in the A-B-I trust model are introduced. The discrete Bayesian optimization method 

is described in Section 4. The application of Bayesian optimization to the CPSS network 

architecture design is demonstrated with the ability and benevolence metrics.  

2. Background 

Here an overview of CPSS system-level design is given. The existing research on discrete 

Bayesian optimization and trust quantification are reviewed. The probabilistic graph model of 

CPSS which the A-B-I model is based upon is also introduced. 

2.1 Systems level design of CPSS 

Compared to traditional products, the design of CPSS requires engineers to have better 

understanding of the systems level behaviors [7], from conceptual design to design optimization 

of multidisciplinary and hierarchical architecture [8]. Given the evolutionary nature of cyber and 
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physical technologies, adaptability that enables self-learning, self-organization, and context 

awareness is important [6]. As the complexity of the CPSS networks grows, the emphasis of large 

networks should be more on resilience (the ability to recover) than reliability (the ability to stay 

functioning) [4,5].  

Some systems modeling methods and tools have been applied for CPSS design and analysis, 

such as hybrid discrete-event and continuous simulations [11]-[13], inductive constraint logic 

programming [14], abductive reasoning [15], hybrid timed automaton [16], ontologies [17], 

information schema [18], UML [19], SysML [20], and information dynamics modeling [21]. The 

high-dimensional design space of CPSS includes not only the cyber and physical subspaces, but 

also the social subspace. The modalities for human-system interaction [9], context awareness and 

personalized human-system communication [10], as well as trusted collaboration [1]-[3] have been 

studied.  

To support systems design, developing optimization methods for large scale network at the 

metasystem level is necessary. Network optimization usually involves combinatorial problems. 

Here we propose to use Bayesian optimization to solve these problems.  

2.2 Bayesian optimization for discrete problems 

Bayesian optimization is a class of surrogate based methods to search global optimum under 

uncertainty with Bayesian sequential sampling strategies. The search or sampling process is based 

on an acquisition function that is defined in the same input space of the objective function. In 

parallel, a surrogate model of the objective is also constructed and updated during the search. The 

most used surrogate is Gaussian process regression (GPR) model which is updated based on the 

Bayesian principle. The surrogate keeps the search history since it is constructed from the samples. 

At the same time, it helps decide the next sample in the sequential sampling. Therefore, if the 

surrogate model is designed properly, surrogate based optimization methods can be more efficient 

than other “memoryless” searching methods.  Bayesian optimization has been widely used in the 

continuous domain and only recently gained attentions in the discrete domains. Here, the review 

is focused on its use to solve discrete problems.  

For mixed-integer problems, Tran et al. [22] proposed a Gaussian mixture approach to combine 

a discrete number of design subspaces for continuous variables. Each subspace contains a GPR 

surrogate model, and the global one is Gaussian mixture model. Iyer et al. [23] mapped the discrete 
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variables to a continuous latent space so that the mixed-integer problem is converted to continuous 

problem.  

For discrete problems, the straightforward extension is just treating discrete variables as 

continuous ones and round the variable values to the closest integers during the searching process. 

Baptista and Poloczek [25] proposed a quadratic acquisition function for combinatorial problems 

and converted the binary variables to high-dimensional vectors during the searching process. The 

solutions are then projected back to the binary space. However, this approach may fail to identify 

the true optimum and be trapped in the local region because there is a mismatch between the true 

discontinuous objective function and the assumed continuous acquisition function. Zaefferer et al. 

[24] replaced the continuous distance with discrete distance measures and compared the 

performance using the expected improvement acquisition function. Garrido-Merchán and 

Hernández-Lobato [26] developed an input variable transformation to ensure the distance between 

any two discrete variables remain unchanged in evaluating kernels when the variables perturb into 

the continuous space. Zhang et al. [27] proposed a new kernel function based on the Hamming 

distance for permutation problems and the prior knowledge about similarity in the problems. The 

sparse Gaussian process model was used to reduce the computational cost of kernel update. Oh et 

al. [28] represented the discrete solutions of the combinatorial problems as combinatorial graphs 

and the adjacency information is embedded in the kernel function.  

The major research question for discrete Bayesian optimization is how to design discrete 

kernels so that the differences between samples in the discrete space, which are problem-specific, 

can be quantitatively reflected in the distance measure. There is still a lack of thorough 

comprehension.  

2.3 Trust quantification for CPS 

Conceptually, trust is the willingness to be vulnerable to another. It is a different concept from 

security. Security is critical for trust. However, security alone cannot guarantee the trustworthiness. 

For instance, although security protocols can ensure data are not intercepted during transmission, 

they provide no guarantee against the misuse by the receiving party or against fraud by the 

transmitting party. In recent studies in cyberspace, trust was quantified with reputation, ratings, 

and user recommendations in information systems and social networks [22,30]. It was also 

measured by QoS, routing and delivery success rates, and consistency of data forwarding in 

computer networks and sensor networks [31,32]. Approaches of probability [33-35], imprecise 
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probability [36,37], and fuzzy logic [38-40] have been developed to quantify the human perception 

of trust. It should be noted that trust in social space and its dynamics need to be taken into 

consideration [41,42]. 

To quantify trustworthiness of CPS, Chen et al. [43] developed a fuzzy model of trust based 

on the reputation of communication efficiency. Huang et al. [44] represented trust as probabilistic 

measures of trustor’s belief and trustee’s performance. Al-Hamadi and Chen [45] calculated trust 

from user ratings aggregated from different time periods and different locations. Yu et al. [46] 

quantify trustworthiness as a weighted average of reliability, availability, and security. Xu et al. 

[47] used the weighted average of direct user experiences and other’s recommendations to evaluate 

the trust of edge computing devices. Tang et al. [48] measured the sensor data trustworthiness in 

sensor networks based on sensor-object distances, whereas Tao et al. [49] used the consistency 

with reference data sets. Xu et al. [50] quantified trustworthiness of CPS nodes by a combination 

of QoS and reputation, whereas Junejo et al. [51] used QoS measurements and Xia et al. [52] used 

reputation.  

Different from the above, Wang [1]-[3] developed a quantitative A-B-I model with multi-

faceted metrics of ability, benevolence, and integrity. The considerations of these three factors are 

broader than those in the above approaches. These factors have been qualitatively investigated in 

the studies of social organizations. As comprehensively studied by Mayer et al. [53], the common 

concepts and keywords to describe trust in human society can be grouped into these three 

categories. For instance, the ability category includes expertise, competence, and the similar. The 

benevolence category includes loyalty, openness, receptivity, availability, etc. Integrity is 

associated with consistency, discreetness, fairness, promise fulfillment, and reliability. The three 

trust factors have also been adopted in designing trustable information systems such as e-

commerce [54,55], e-banking [56], and mobile health [57]. In the quantitative A-B-I model [1]-[3] 

for CPS networks, metrics of ability, benevolence, and integrity are developed based on 

measurable quantities. Ability characterizes a node’s capabilities of sensing, reasoning, and 

influence to other nodes. Benevolence characterizes the motivation of a node for its information 

sharing. Integrity is related to the traditional cyber and physical security and can be quantified 

from QoS. These A-B-I metrics can be quantitatively measured, calculated, and compared. For 

instance, Wang et al. [58] applied the quantitative A-B-I model to evaluate trustworthiness of IoT 

nodes with data collection and communication behaviors.  
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In order to build large-scale networks, trustworthiness should be treated as transferrable 

quantities so that it can be propagated in scalable systems. With the quantitative measures of 

trustworthiness, the risk of deploying CPS can be quantified and assessed more thoroughly in 

highly complex networks where a global view of the networks is difficult to obtain. Trust 

quantification in this work is based on a probabilistic graph model of CPSS, as introduced in the 

next section.  

2.4 Probabilistic graph model of CPSS 

The probabilistic graph model [2,5] is an abstraction of CPSS networks at the mesoscale. It 

captures the sensing, computing, and communication capabilities of CPSS by the prediction 

probabilities for all nodes in a CPSS network and the pair-wise reliance probabilities between 

nodes as the extent of information dependency and mutual influences. The model is illustrated in 

Figure 1. The prediction and reliance probabilities of nodes are defined as follows. 

 

 

FIGURE 1: Probabilistic graph model of CPSS networks. 

A probabilistic graph ࣡ ൌ ሺࣰ, ࣟ, ࣪, ࣬ሻ consists of a set of vertices ࣰ ൌ ሼݒ௞ሽ and a set of 

directed edges ࣟ ൌ ሼሺݒ௜, ௞݌ ௞ is associated with a prediction probabilityݒ ௝ሻሽ. Each nodeݒ ∈ ࣪, 

and each directed edge ሺݒ௜, ௜௝݌ ௝ሻ is associated with a reliance probabilityݒ ∈ ࣬. The prediction 

probability that the k-th node detects the true state of world ߠ is 

 ܲሺݔ௞ ൌ ሻߠ ൌ  ௞  (1)݌

where ݔ௞ is the state variable. Without loss of generality, here only binary-valued state variables 

( ൌ 	or	ߠ ് ߠ ) are considered. State variables with multiple discrete values can be easily 

extended. Continuous variables are usually discretized in a digital computing environment. 

With binary-valued state variables, we can define P-reliance probability  

 ܲ൫ݔ௝ ൌ ௜ݔหߠ ൌ ൯ߠ ൌ  ௜௝  (2)݌
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as the probability that the j-th node predicts the true state of world given that the i-th node predicts 

correctly. We also define Q-reliance probability  

 ܲ൫ݔ௝ ൌ ௜ݔหߠ ് ൯ߠ ൌ  ௜௝  (3)ݍ

as the probability that the j-th node predicts the true state of world given that the i-th node does 

not predict the same.  

The state variables contain the results from sensing. The values can be updated from computing 

or reasoning. Therefore the prediction probabilities capture the sensing and computing 

functionalities, whereas the reliance probabilities indicate the functionality of communication. The 

random state variables with binary values can be extended to multiple values or continuous. For 

instance, one sensor measures a value which follows some distribution, as in prediction probability.  

If there are a finite set of possible values ሼߠଵ, … ,  ሽ for state variables. The prediction probability்ߠ

ܲሺݔ௞ ൌ ௡ሻߠ  and reliance probability ܲ൫ݔ௝ ൌ ௜ݔ௡หߠ ൌ ௠൯ߠ , where 1 ൑ ݉, ݊ ൑ ܶ , can be 

enumerated similarly.  

The edges in the probabilistic graph are directional. The neighbors of each node can be further 

differentiated as source nodes or destination nodes, as illustrated in Figure 2. For one node, its 

source nodes are those sending information to this node, whereas the destination nodes are those 

receiving information from it. When receiving different cues from source nodes, a CPSS node can 

update its prediction probability to reflect its perception of the world. The aggregation of prediction 

probabilities sensitively depends on the rules of information fusion during the prediction update.  

 

 

FIGURE 2: Source and destination nodes with respect to node ݆ are differentiated. 

 

If ܲሺݔ௞ሻ and ܲሺݔ௞
஼ሻ denote the probabilities of a positive and a negative prediction from 

node k respectively, a best-case fusion rule can be defined as 

ܲᇱሺ௫ೖሻ ൌ 1 െ ൫1 െ ܲሺݔ௞ሻ൯∏ ܲሺݔ௜ሻ൫1 െ ܲሺݔ௞|ݔ௜ሻ൯
ெು
௜ୀଵ ∏ ܲሺݔ௝

஼ሻ൫1 െ ܲሺݔ௞|ݔ௝
஼ሻ൯ெಿ

௝ୀଵ   (4) 
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where node k updates its prediction based on its own current prediction and those cues from its 

௉ܯ ൅ܯே  source nodes, out of which ܯ௉  of the source nodes provide positive predictions 

whereas ܯே  of them provide negative predictions, ܲሺݔ௞|ݔ௜ሻ indicates the probability that a 

positive message from node i leads to a positive prediction of node k, and ܲሺݔ௞|ݔ௝
஼ሻ is the 

probability that a negative message from node j leads to a positive prediction of node k. Therefore, 

if any of the cues from the source nodes is positive, the prediction of the node is positive. Some 

variations of this fusion rules exist. For instance, the previous prediction from itself can be either 

included or excluded during the update.  

Similarly, a worst-case fusion rule can be defined as 

  ܲ′ሺݔ௞ሻ ൌ ܲሺݔ௞ሻ∏ ܲሺݔ௜ሻܲሺݔ௞|ݔ௜ሻ
ெು
௜ୀଵ ∏ ܲሺݔ௝

஼ሻܲሺݔ௞|ݔ௝
஼ሻெಿ

௝ୀଵ   (5) 

That is, if any of the cues from the source nodes is negative, the prediction of the node is negative. 

The Bayesian fusion rule is defined as 

  ܲᇱሺݔ௞ሻ ൌ
௉ሺ௫ೖሻ୫ୟ୶ౌ

ቄሺ௉ሺ௫ೖሻሻೝ൫ଵି௉ሺ௫ೖሻ൯
ೄషೝ

ቅ

ሺ௉ሺ௫ೖሻሻೝ൫ଵି௉ሺ௫ೖሻ൯׬
ೄషೝ

ௗ௉
   (6) 

where the prediction of the node is updated to ܲ′ from prior prediction ܲ, and out of S cues that 

the neighboring nodes provide, ݎ  of them provide are positive, if the maximum likelihood 

principle is taken. 

The probabilistic graph model provides a mesoscale description of CPSS networks, where 

information exchange and aggregation are captured. Prediction and reliance probabilities can be 

easily obtained in a physical system from the collected historical data. The prediction probability 

of a node can be based on the data collected by its sensing and reasoning units. The probability 

can be estimated from the frequencies of observing correct state variable values under uncertainty 

or sharing correct observations. Similarly the reliance probability associated with an edge can be 

estimated from the frequencies of positive or negative predictions by the destination node given 

the source node’s own prediction. For instance, in a sensor network or industrial ethernet, if the 

prediction probability of a sensor is used to quantify its sensitivity, the probability can be estimated 

as the ratio of the number of observations per time unit sent by this node to a baseline reference 

number that the best performer in the local network sends. The known best performer sets an upper 

limit. The reliance probability for each edge of the sensor network can be estimated as the ratio of 

the number of packets received by the destination to the number sent by the source, or the ratio of 

correct observations, as a measure of communication reliability [5].  
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If no experimental data are available to quantify the probabilities, subjective estimations from 

domain experts can be elicited. Probability elicitation is well known in both practice and literature. 

Standard procedures are usually taken to elicit probabilities associated with some events from 

domain experts as subjective estimates. 

 

3. The A-B-I Trust Model 

 Based on the probabilistic graph model, the trust metrics of ability and benevolence in the A-

B-I model [1]-[3] can be calculated. The quantitative metrics in the A-B-I model are summarized 

in Figure 3. The trust level is quantified by three orthogonal metrics of ability, benevolence, and 

integrity. The ability of a CPSS node is measured with its capability of performing correct 

predictions and capability of information processing for decision making from the perspectives of 

sensing and computation, as well as its influence to other nodes. The benevolence is measured by 

reciprocity as the willingness to share information reciprocally and motive as the motivation of 

sharing from the perspective of communication. The integrity of a CPSS node is closely related to 

the cybersecurity and can be evaluated with consistency, frequency of compromises, QoS, and 

other security measurements.   

 

 

FIGURE 3: The metrics in the A-B-I trust model 

 

Here only the metrics of ability and benevolence are summarized. They will be used as the 

utilities to demonstrate the network optimization. Since integrity has been studied extensively in 

cybersecurity, ability and benevolence can show the uniqueness of our proposed trust 
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measurements. The complete description of the A-B-I trust model as well as the illustrations of the 

metrics and their use for detecting malicious attacks can be found in Ref.[2].  

3.1 Ability 

The ability of a CPSS node is evaluated by its capabilities of prediction and information 

processing as well as its influence to other nodes. The capability of prediction for a node is 

measured by its functionality of data collection. The capability of information processing is by its 

functionality of reasoning based on data obtained from its neighbors. The influence to others is 

quantified by how influential its information shared to others is in their decision making. Those 

quantities can be quantified by the prediction probability and reliance probabilities perceived by 

others, as well as the precisions of the perceptions.  

The perceived ability of node j with the consideration of its prediction capability is ܣ௝ሺߠሻ ൌ

ℙቀܲ൫ݔ௝ ൌ  ൯ቁ, where ℙሺ⋅ሻ denotes perception. Suppose that all perceptions follow Gaussianߠ

distributions. The prediction capability can be quantified by its mean  

 ॱ൫ܣ௝ሺߠሻ൯ ൌ  ௝,  (7)݌

and its variance 

  ॽ൫ܣ௝ሺߠሻ൯ ൌ ௝߬
ିଵ.  (8) 

That is, if a node has a higher prediction capability with less variability than others, it is more 

trustworthy. 

Based on the directions of information sharing between nodes, the neighboring nodes for each 

node in the network are categorized as source nodes and destination nodes, as illustrated in Figure 

2. With respect to node j, the set of source nodes that share information with node j is denoted as 

௝࣭ ൌ ሼݒ௜|ሺݒ௜, ௝ሻݒ ∈ ࣟሽ, and the set of destination nodes that receive information from node j is 

denoted as ௝ࣞ ൌ ሼݒ௞|ሺݒ௝, ௞ሻݒ ∈ ࣟሽ. 

The perceptions about the P- and Q-reliance probabilities for nodes i and j are related to the 

information processing capability of node j. A high P-reliance probability indicates that node j can 

absorb knowledge quickly. A high Q-reliance probability shows that node j can have good 

judgement even in a noisy and uncertain situation. We simplify the notations as ܮ௜௝ ൌ

ℙ ቀܲ൫ݔ௝ ൌ ௜ݔหߠ ൌ ൯ቁߠ  and ܮ௜௝
௖ ൌ ℙ ቀܲ൫ݔ௝ ൌ ௜ݔหߠ ് ൯ቁߠ  respectively.  They are assumed to 
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follow Gaussian distributions with means ॱ൫ܮ௜௝|ܣ௝൯ ൌ ௜௝ܮ௜௝ and ॱ൫݌
௖ ௝൯ܣ| ൌ  ௜௝, and variancesݍ

ॽ൫ܮ௜௝|ܣ௝൯ ൌ ߬௜௝,௣
ିଵ  and ॽ൫ܮ௜௝

௖ ௝൯ܣ| ൌ ߬௜௝,௤
ିଵ , respectively.   

The perceived ability of node j with the considerations of both capabilities of prediction and 

information processing is then quantified with mean 

  ॱ൫ܣ௝ሺߠ|ࣦሺା௝ሻሻ൯ ൌ
ఛೕ௣ೕା∑ ఛ೔ೕ,೛௣೔ೕ೔∈࣭ೕ

ା∑ ఛ೔ೕ,೜௤೔ೕ೔∈࣭ೕ

ఛೕା∑ ఛ೔ೕ,೛೔∈࣭ೕ
ା∑ ఛ೔ೕ,೜೔∈࣭ೕ

  (9) 

and variance 

  ॽ൫ܣ௝ሺߠ|ࣦሺା௝ሻሻ൯ ൌ ቀ ௝߬ ൅ ∑ ߬௜௝,௣௜∈࣭ೕ ൅ ∑ ߬௜௝,௤௜∈࣭ೕ ቁ
ିଵ

  (10) 

based on Bayes’ rule of belief update. Bayesian belief update is an intuitive way to combine 

multiple factors. The simple forms of the posterior mean in Eq.(9) and posterior variance in Eq.(10) 

are due to the Gaussian distributions of prior and likelihood.  

Leadership should be regarded as one’s ability. Here, it is estimated as its influence to others 

by sharing information. The perceived ability of node j with the considerations of its prediction 

capability and influence is quantified with mean 

  ॱ൫ܣ௝ሺߠ|ࣦሺି௝ሻሻ൯ ൌ
ఛೕ௣ೕା∑ ఛೕೖ,೛௣ೕೖೖ∈ࣞೕ

ା∑ ఛೕೖ,೜ሺଵି௤ೕೖሻೖ∈ࣞೕ

ఛೕା∑ ఛೕೖ,೛ೖ∈ࣞೕ
ା∑ ఛೕೖ,೜ೖ∈ࣞೕ

  (11) 

and variance 

 ॽቀܣ௝൫ߠหࣦ
ሺି௝ሻ൯ቁ ൌ ቀ ௝߬ ൅ ∑ ௝߬௞,௣௞∈ࣞೕ ൅ ∑ ௝߬௞,௤௞∈ࣞೕ ቁ

ିଵ
  (12) 

where Bayes’ rule is similarly applied.  

The overall and comprehensive ability perception with the simultaneous considerations of its 

capabilities of prediction and information processing, as well as influence is calculated as  

ॱቀܣ௝൫ߠหࣦ
ሺା௝ሻ, ࣦሺି௝ሻ൯ቁ ൌ

ఛೕ௣ೕା∑ ఛ೔ೕ,೛௣೔ೕ೔∈࣭ೕ
ା∑ ఛ೔ೕ,೜௤೔ೕ೔∈࣭ೕ

ା∑ ఛೕೖ,೛௣ೕೖೖ∈ࣞೕ
ା∑ ఛೕೖ,೜ሺଵି௤ೕೖሻೖ∈ࣞೕ

ఛೕା∑ ఛ೔ೕ,೛೔∈࣭ೕ
ା∑ ఛ೔ೕ,೜೔∈࣭ೕ

ା∑ ఛೕೖ,೛ೖ∈ࣞೕ
ା∑ ఛೕೖ,೜ೖ∈ࣞೕ

  (13) 

ॽቀܣ௝൫ߠหࣦ
ሺା௝ሻ, ࣦሺି௝ሻ൯ቁ ൌ ቀ ௝߬ ൅ ∑ ߬௜௝,௣௜∈࣭ೕ ൅ ∑ ߬௜௝,௤௜∈࣭ೕ ൅ ∑ ௝߬௞,௣௞∈ࣞೕ ൅ ∑ ௝߬௞,௤௞∈ࣞೕ ቁ

ିଵ
  (14) 

Therefore, a node that gives accurate predictions, makes sound decisions, and brings positive 

influences to others is deemed to be trustworthy. 

The perception of one’s ability can also be dictated by the abilities of those ones that are closely 

associated. That is, if a neighbor or associate, who is influenced by a node, has high ability, the 

perception of this node’s ability is also increased. Therefore higher-order perception of ability can 

be defined. If the ability in Eqs. (13) and (14) is first-order and has values of mean 
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ॱቀܣ௝൫ߠหࣦ
ሺା௝ሻ, ࣦሺି௝ሻ൯ቁ ൌ หࣦߠ௝൫ܣ௝ and variance ॽቀܧ

ሺା௝ሻ, ࣦሺି௝ሻ൯ቁ ൌ ௝ܸ, the second-order ability 

is defined as  

ॱሺଶሻ ቀܣ௝൫ߠหࣦ
ሺା௝ሻ, ࣦሺି௝ሻ൯ቁ ൌ

௏ೕ
షభாೕା∑ ఛೕೖ,೛௣ೕೖሺ௏ೖ

షభாೖሻೖ∈ࣞೕ
ା∑ ఛೕೖ,೜ሺଵି௤ೕೖሻሺ௏ೖ

షభாೖሻೖ∈ࣞೕ

ఛೕା∑ ఛೕೖ,೛௣ೕೖ௏ೖ
షభ

ೖ∈ࣞೕ
ା∑ ఛೕೖ,೜ሺଵି௤ೕೖሻ௏ೖ

షభ
ೖ∈ࣞೕ

  (15) 

ॽሺଶሻ ቀܣ௝൫ߠหࣦ
ሺା௝ሻ, ࣦሺି௝ሻ൯ቁ ൌ ቀ ௝߬ ൅ ∑ ௝߬௞,௣݌௝௞ ௞ܸ

ିଵ
௞∈ࣞೕ ൅ ∑ ௝߬௞,௤ሺ1 െ ௝௞ሻݍ ௞ܸ

ିଵ
௞∈ࣞೕ ቁ

ିଵ
  (16) 

Higher-order perceptions of ability can be similarly defined. 

3.2 Benevolence 

The benevolence of a CPSS node is evaluated by the reciprocity and motive. The perception 

of reciprocity is measured by the willingness of sharing information to others while receiving 

information simultaneously. The motive is quantified by the quality of information shared to others 

and the frequency of sharing.  

The expected reciprocity for node j perceived by node i is defined as   

 ॱ൫ܴ௜,௝൯ ൌ ௝→௜൯݌||௜→௝݌୏୐൫ܦ െ ௜→௝൯݌||௝→௜݌୏୐൫ܦ ൅ ܾ଴ (17) 

where ݌௝→௜ ൌ ∏ ௞,௞ାଵ݌
௜ିଵ
௞ୀ௝  is the product of all P-reliance probabilities ݌௞,௞ାଵ corresponding to 

the shortest path from node j to node i, ܦ୏୐ሺܲ||ܳሻ ൌ ∑ ௜ܲlog	ሺ ௜ܲ/ܳ௜ሻ௜  is the Kullback-Leibler 

divergence from probability Q to P, and ܾ଴ is a reference value such that ॱ൫ܴ௜,௝൯ ൐ ܾ଴ when 

node j has a larger reciprocity with respect to node i. Intuitively, if node j is willing to share accurate 

information with node i without necessarily expecting node i to share information as a return, node 

j has a high reciprocity to node i. In other words, node i can trust node j. Here, ܾ଴ ൌ 0.5 such that 

reciprocity has a value between 0 and 1. A higher value of reciprocity indicates higher 

trustworthiness. Furthermore, ॱ൫ܴ௜,௜൯ ൌ ܾ଴ . The variance associated with the perceived 

reciprocity is conservatively estimated as 

 ॽ൫ܴ௜,௝൯ ൌ min൫∑ ߬௔௕
ିଵ

௝→௜ ൅ ∑ ߬௖ௗ
ିଵ

௜→௝ , ௠ܸ௔௫൯ (18) 

where ߬௔௕ and  ߬௖ௗ are the precisions associated with the P-reliance probabilities along paths 

j→i and i→j, respectively, and ௠ܸ௔௫ ൌ 1.0  is the theoretical maximum value of variance 

associated with probabilities. ॽ൫ܴ௜,௜൯ ൌ 0.   

Motive measures the intention of information sharing within a community. Sharing high-

quality information with neighbors indicates the good purpose of improving the overall 

functionality of the community. Thus perceived motive of node j is defined as  
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 ॱ൫ܯ௝൯ ൌ ௝݌
ௗೕ (19) 

 ॽ൫ܯ௝൯ ൌ ௝߬
ିଵ (20) 

where ݌௝ is the prediction probability associated with node j with precision ௝߬, and ௝݀ ൌ | ௝ࣞ| is 

the number of destination nodes for node j.  

The overall benevolence of node j perceived by node i is 

 ॱ൫ܤ௜,௝൯ ൌ
ॽషభ൫ோ೔,ೕ൯ॱ൫ோ೔,ೕ൯ାॽషభ൫ெೕ൯ॱ൫ெೕ൯

ॽషభ൫ோ೔,ೕ൯ାॽషభ൫ெೕ൯
 (21) 

 ॽ൫ܤ௜,௝൯ ൌ ቀॽିଵ൫ܴ௜,௝൯ ൅ ॽିଵ൫ܯ௝൯ቁ
ିଵ

 (22) 

4. Discrete Bayesian Optimization 

The trust-based network optimization is to identify a subset of nodes in the network which are 

the most trustworthy with respect to a reference node. The optimization problem involves choosing 

the best subset of nodes and therefore is combinatorically complex. The traditional approach to 

solve these problems is using heuristic algorithms such as genetic algorithms and simulated 

annealing.  

Here, a new discrete Bayesian optimization (dBO) method is developed to perform the CPSS 

network optimization. The design problem is to choose the optimum subgraph out of a graph with 

respect to a reference node such that the trustworthiness level perceived by the reference node is 

maximized.  

The sampling strategy of choosing the next sample is to maximize the acquisition function 

instead of the objective surrogate. One example of acquisition functions is the expected 

improvement (EI)  

  ܽாூሺ࢞; ሼ࢞௜, ௜ሽ௜ୀଵݕ
஽ , ሻߠ ൌ ;ሺ࢞ߪ ሼ࢞௜, ௜ሽ௜ୀଵݕ

஽ , ሺ࢞ሻ൯ߛሺ࢞ሻΦ൫ߛሻ൫ߠ ൅ ߶ሺߛሺ࢞ሻሻ൯ (23) 

where ߶ሺ⋅ሻ and Φሺ⋅ሻ are the probability density function and cumulative distribution function 

of the standard normal distribution, ߛሺ࢞ሻ ൌ ሺߤሺ࢞; ሼ࢞௜, ௜ሽ௜ୀଵݕ
஽ , ሻߠ െ ;ሺ࢞ߪ/௕௘௦௧ሻݕ ሼ࢞௜, ௜ሽ௜ୀଵݕ

஽ ,  ሻ isߠ

the deviation away from the best solution ݕ௕௘௦௧  found so far, with posterior mean 

;ሺ࢞ߤ ሼ࢞௜, ௜ሽ௜ୀଵݕ
஽ , ;ሺ࢞ߪ ሻ and posterior standard deviationߠ ሼ࢞௜, ௜ሽ௜ୀଵݕ

஽ ,  ሻ, given the existing Dߠ

samples ሼ࢞௜, ௜ሽ௜ୀଵݕ
஽  and GPR hyper-parameter ߠ.  

Another example of acquisition function is upper confidence bound (UCB) 

  ܽ௎஼஻ሺ࢞; ሼ࢞௜, ௜ሽ௜ୀଵݕ
஽ , ሻߠ ൌ ;ሺ࢞ߤ ሼ࢞௜, ௜ሽ௜ୀଵݕ

஽ , ሻߠ ൅ ;ሺ࢞ߪߢ ሼ࢞௜, ௜ሽ௜ୀଵݕ
஽ ,  ሻ (24)ߠ
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where ߢ is a hyper-parameter for the exploitation-exploration balance. To simply the optimization 

process, in this work we choose ߢ ൌ 1.5 as a constant instead. 

In the proposed dBO method for network design, the GPR surrogate of the objective function  

݂ሺࢠሻ~࣡࣪ሺ݉ሺࢠሻ, ݇ሺࢠ, ሻሻ′ࢠ  has mean function ݉ሺࢠሻ and covariance kernel function ݇ሺࢠ, ሻ′ࢠ , 

where ࢠ ൌ ሾݖଵ, … , ௜ݖ) ேሿ is an index vector of N binary valuesݖ ∈ ሼ0,1ሽ, ∀݅ ൌ 1,… , ܰ) for a graph 

with N nodes. A “1” indicates that the corresponding node is included in the subgraph as the 

solution, and a “0” indicates not. The major construct of the GPR model is the kernel function, 

defined as 

 ݇ሺࢠ, ሻ′ࢠ ൌ expሺ∑ ݀ሺݖ௜, ௜ݖ
ᇱሻ/ߠ௜

ே
௜ୀଵ ሻ, (25) 

where ݀ሺ⋅ሻ is a distance function defined in the discrete space such as the Hamming distance, and 

 ௜’s are the hyper-parameters of scales. The advantage of one independent scale parameter beingߠ

associated with each node comparison is that the different importance levels of nodes for trust 

quantification can be captured. In other words, not every node in a network is equally trustworthy 

with respect to a reference node. The scale parameters after the training can provide the weights 

of importance. The disadvantage of the kernel function in Eq. (25) is that the quickly increased 

number of hyper-parameters for large networks requires large training datasets. The prediction will 

not be accurate otherwise. One easy way to mitigate the risk and reduce the computational load is 

to assume that all hyper-parameters have the same value, as  

 ݇ሺࢠ, ሻ′ࢠ ൌ expሺ∑ ݀ሺݖ௜, ௜ݖ
ᇱሻ/ߠே

௜ୀଵ ሻ. (26) 

That is, there is only one hyper-parameter ߠ. This greatly simplifies the training process, however 

at the expense of losing model granularity. 

5. Trust Based Strategic Network Design 

A strategic network for a node is the most trustworthy network that the node can form the 

strategic collaboration relation. The design of such strategic network is to identify a subset of nodes 

within the complete network so that the node has the highest trustworthiness level. The 

trustworthiness metrics of ability and benevolence are used here to demonstrate the trust based 

strategic network design. The network optimization based on other metrics such as integrity can 

be done similarly.   

5.1 Ability as the optimization criteria 
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Ability in Eq. (13) is first utilized as the metric to identify the most trustworthy network for a 

reference node. The strategic network of the reference node can be obtained by finding the network 

where the ability of the reference node is maximized. Three networks with 20, 40, and 60 nodes, 

shown in Figure 4, are generated with random connections for tests. The prediction and reliance 

probabilities are also randomly generated. Note that the random networks are generated to better 

test the robustness and scalability of the design optimization method than some deterministic ones.  

 

 

FIGURE 4: Three example networks for optimization tests, with (a) 20 nodes and 192 edges, (b) 
40 nodes and 787 edges, and (c) 60 nodes and 1731 edges. 

 

The EI acquisition in Eq. (23) and UCB acquisition in Eq. (24) along with the two kernel 

functions in Eqs. (25) and (26) are tested for the 20-node-192-edge example. The Hamming 

distance is used in the kernels. When searching for the optimum network to maximize the ability 

of node 0, they have different convergence rates, as compared in Figure 5(a). The optimum 

solution, as shown in Figure 5(b), is found with the EI acquisition in combination with the multi-

parameter kernel. During the search, a simulated annealing algorithm is applied to maximize the 

acquisition to decide the next sample. It is seen that the search can be trapped at the local optimum 

when the single-parameter kernel function in Eq. (26) is used. The single-parameter kernel 

function does not provide the as much granularity as the multi-parameter kernel and does not 

differentiate much about the different contributions between nodes for the ability of node 0. 

Therefore, the parameter training tends to be not optimal. The UCB acquisition function 

(a) (b) 

(c) 
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emphasizes more on exploitation than the EI acquisition. Thus the search tends to get trapped in 

local optima.  

The convergence speeds for the networks of different sizes are further tested. The results are 

shown in Figure 6. It is seen that as the size of network increases, more iterations are required to 

find the global optimum. The reason is two-fold. First, larger networks result in the higher 

dimension of the searching space. The searching complexity for the possible solutions grows 

exponentially. Second, as the dimension of searching space increases, more samples are required 

to construct reliable surrogate models. Therefore, more iterations are necessary to ensure the 

convergence to the global optimum.  

To compare the performance of the dBO method with the commonly used heuristic algorithms, 

simulated annealing is applied for the same network optimization problems. For each of the three 

examples with 20, 40, and 60 nodes, the simulated annealing algorithm to maximize the ability 

metric is run 5 times with different annealing steps ranging from 50 to 300. The means and standard 

deviations of the obtained optimal ability values for those test runs are listed in Table 1, Table 2, 

and Table 3 respectively. The means and standard deviations of results for 5 runs of the dBO 

algorithm after 50 iterations are also listed in these tables, where EI acquisition and multi-

parameter kernel are used. The number of annealing steps indicates the computational cost where 

each step involves one evaluation of the original objective function. In the dBO searching, 50 

initial samples with the evaluations of the objective function were obtained to construct the initial 

GPR surrogate. Additional samples are added for each of the iterations in Figure 5 and Figure 6. 

Each iteration involves one evaluation of the objective function, whereas the evaluation of the 

acquisition function in Bayesian optimization is based on the surrogate and usually costs much 

less, especially when the original objective function requires heavy computation. Therefore, the 

cost of dBO for 50 iterations is approximately equivalent to the cost of simulated annealing for 

100 steps in these examples. From the comparisons, it is seen that the dBO method can find better 

solutions than the simulated annealing with the similar cost. Furthermore, the results of the dBO 

method have much less variability. In other words, the dBO algorithm is also more robust than the 

heuristic simulated annealing.  

Besides the comprehensive ability metric, capabilities in Eq. (9) and influence in Eq. (11) can 

also be applied individually as the criteria to perform design optimization based on specific 

interests. In addition, the second-order ability in Eq. (15) can also be used as the optimization 
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criterion. The respective optimum networks based on these three criteria for node 0 in the 20-node 

example are shown in Figure 7. It is seen that different criteria lead to different optimum networks. 

The capabilities and influence criteria result in two different set of optimal nodes, given that two 

different types of information (source nodes vs. destination nodes) are applied in calculating the 

trustworthiness in Eq. (9) and Eq. (11). When the ability metric in Eq. (13) is used where both 

types of information are combined, the assessment of trustworthiness will be more comprehensive. 

The most trustable nodes, as seen in Figure 5 (b), are reduced to the ones that appear in both of the 

previous optimum networks. Some nodes become less trustworthy when more information is 

considered. The second-order ability is calculated with more information where the abilities of the 

destination nodes are more influential. Therefore the result of the second-order ability is different 

from that of the first-order one.      

 

 

FIGURE 5: (a) The convergence speeds of four cases with EI and UCB acquisition functions, 
along with single-parameter and multiple-parameter kernel functions, are com-pared for the 20-
node-192-edge example. (b) The optimum network with the ability of node 0 maximized is found 
with the EI acquisition and multiple-parameter kernel.  

(b) (a) 
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FIGURE 6: (a) The convergence speeds when searching in the 20-, 40-, and 60-node networks, 
with the EI acquisition and multi-parameter kernel functions. (b) The optimum in the 40-node 
network. (c) The optimum in the 60-node network.   

 

 

TABLE 1: The means and standard deviations of the maximum ability for the 20-node network 
using simulated annealing with different annealing steps, where the bold values for the case of 100 
annealing steps has the similar computational cost as in the dBO of 50 iterations 

Steps Mean Standard Deviation 

50 0.704128758 0.024803099 

100 0.717732062 0.01618725 

150 0.724677974 0.021446642 

200 0.738149753 0.026914332 

250 0.72842703 0.018894042 

300 0.726842286 0.014625707 

dBO 0.763904996 0.002614458 

 

 

(b) 

(a) 

(c) 
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TABLE 2: The means and standard deviations of the maximum ability for the 40-node network 
using simulated annealing with different annealing steps, in comparison with the dBO of 50 
iterations 

Steps Mean Standard Deviation 

50 0.638595221 0.060644109 

100 0.684115767 0.035342407 

150 0.696934409 0.028088683 

200 0.68054112 0.023215712 

250 0.709194429 0.031983543 

300 0.70440341 0.023225232 

dBO 0.746661792 0.00340882 

 

 

TABLE 3: The means and standard deviations of the maximum ability for the 60-node network 
using simulated annealing with different annealing steps, in comparison with the dBO of 50 
iterations 

Steps Mean Standard Deviation 

50 0.623391013 0.056150683 

100 0.65012841 0.039877341 

150 0.657217419 0.046396371 

200 0.679789337 0.005860135 

250 0.678678903 0.005974927 

300 0.676195812 0.00793658 

dBO 0.692554458 0.003021649 

 

 

 

 

FIGURE 7: Optimum networks with respect to node 0 in the 20-node-192-edge example by 
different ability metrics: (a) capabilities in Eq. (9) as criterion, (b) influence in Eq. (11) as criterion, 
and (c) second-order ability in Eq. (15) as criterion.  

 

(b) (a) (c) 
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5.2 Benevolence as the optimization criteria 

The design optimization procedure can be similarly applied with benevolence as the criterion. 

Because the reciprocity in Eq. (17) and benevolence in Eq. (21) are defined as pair-wise metrics, 

the optimization can be based on the weighted average benevolence perceived by node i as 

 ܷሺ௜ሻ ൌ ∑ ത௝௝∈ࣰሺ೔ሻܤ௝ݓ  (27) 

for all neighboring nodes ࣰሺ௜ሻ  of node i, where ܤത௝ ൌ ሺ1/ ௝݊ሻ ∑ ௝,௞௞∈ࣰሺ೔ሻܤ  is the average 

benevolence of node j among its ௝݊ neighbors, and weights ݓ௝’s (0 ൑ ௝ݓ ൑ 1) indicate the self-

interest level. When ݓ௜ ൌ 1 and ݓ௝ ൌ 0	ሺ∀݆ ് ݅ሻ with respect to node i, it is a “selfish” mode. 

Only the benevolence of node i is considered as the criterion to find the optimum network for node 

i. On the other hand, when ݓ௜ ൌ 0 and ∑ ௝௝ஷ௜ݓ ൌ 1, it is considered to be a “altruistic” mode. 

The weighted average reciprocity can be calculated similarly.  

In the 20-node-192-edge example, the optimum networks for node 0 with the benevolence 

criteria are shown in Figure 8. It is seen when the self-interest weight w0 is lower it is easier to 

build a larger trustworthy network. The obtained most trustable networks in Figure 8 based on the 

benevolence criteria are different from the one in Figure 5(b) based on the ability criteria. The only 

common trustworthy node is node 13 between Figure 5(b) and Figure 8(a), and is node 15 between 

Figure 5(b) and Figure 8(b) in the more “selfish” modes of benevolence. For the more “altruistic” 

mode in Figure 8(c), there is no node that is trustworthy measured by both benevolence and ability. 

Therefore, competitions and conflicts exist when different criteria of ability and benevolence are 

applied. If multiple criteria are considered simultaneously, multi-objective optimization methods 

are needed to identify the Pareto solutions and make tradeoffs.  

 

 

FIGURE 8: Optimum networks with respect to node 0 in the 20-node-192-edge example by 
different benevolence metrics: (a) weighted average benevolence as criterion with ݓ଴ ൌ 1; (b) 
weighted average benevolence as criterion with ݓ଴ ൌ 1/2 and all other weights are 1/38; (c) 
weighted average reciprocity as criterion with ݓ଴ ൌ 1/2 and all other weights are 1/38.  

 

(b) (a) (c) 
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6. Concluding Remarks 

In this paper, quantitative trustworthiness metrics are used as the design criteria to perform 

optimization of cyber-physical-social system networks. Each node can choose its own most trusted 

strategic network so that they can collaborate and share information. The trustworthiness is 

quantified as multi-faceted quantities in both cyber and social spaces, including the dimensions of 

ability, benevolence, and integrity. In CPSS, the ability and benevolence can be calculated based 

on statistics from their working history to measure the capacities of information gathering, 

reasoning, and information sharing. The most trusted strategic network for a node is the subnet 

that maximizes the ability of the node if ability is used as the criterion. A node that has the high 

capacities of observing the state of world accurately, making sound decisions based on available 

information, and bringing positive impacts to others is deemed to possess a high level of ability 

and thus a trustworthy individual. Similarly, a node that is willing to share accurate information 

with others is also regarded as trustworthy. The strategic network is the one that leads to the 

maximum level of ability for the reference node, or consists of a group of collaborators that are 

the most willing to collaborate with the reference node.  

Our previous study [2] showed that the new quantitative metrics of ability and benevolence are 

sensitive to trust attacks. It was seen that when a malicious node generates false predictions and 

sends them to other nodes, its perceived trustworthiness will drop quickly when measured by 

ability and benevolence. When the attack stops, the perceived trustworthiness will gradually 

increase and recover. This matches well with human social behaviors. It usually takes time to 

establish a trust relation, whereas the damage can be done much more quickly. When designing 

the trusted strategic network, the risks of attacks also need to be considered. Instead of targeting 

at the maximum trust level as shown in this paper, additional criteria for robustness need to be 

incorporated in future work. 

The proposed discrete Bayesian optimization performs reasonably well for the combinatorial 

problem of network design, where search efficiency is improved and variability of results can be 

reduced. For the kernel function based on the Hamming distance, more hyper-parameters can help 

increase the flexibility of the kernel, whereas a small number of hyper-parameters is not robust 

enough for optimization. The limitation of using multiple hyper-parameters is the training 

efficiency. More samples are required to train a larger number of hyper-parameters, which makes 

it not feasible for small problems. Combinatorial problems usually have very large searching 
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space. Introducing additional hyper-parameters can potentially bring the benefit of faster 

convergence. 

In this work only single-objective optimization is applied. The multi-faceted trustworthiness 

metrics eventually will need a multi-objective optimization approach [29] for trust based design, 

where multiple metrics are considered simultaneously and tradeoffs need to be made. The 

scalability of the discrete Bayesian optimization also requires further investigation, given that the 

Bayesian update procedure in GPR is computationally expensive when the number of samples is 

large. The proposed scheme for large-scale networks will require further tests. Enhancement such 

as sparse GPR is likely to bring better scalability.  
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