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ABSTRACT: Anticyclonic vortices focus and trap near-inertial waves so that near-inertial energy levels are elevated
within the vortex core. Some aspects of this process, including the nonlinear modification of the vortex by the wave, are
explained by the existence of trapped near-inertial eigenmodes. These vortex eigenmodes are easily excited by an initial
wave with horizontal scale much larger than that of the vortex radius. We study this process using a wave-averaged model of
near-inertial dynamics and compare its theoretical predictions with numerical solutions of the three-dimensional
Boussinesq equations. In the linear approximation, the model predicts the eigenmode frequencies and spatial structures,
and a near-inertial wave energy signature that is characterized by an approximately time-periodic, azimuthally invariant
pattern. The wave-averaged model represents the nonlinear feedback of the waves on the vortex via a wave-induced
contribution to the potential vorticity that is proportional to the Laplacian of the kinetic energy density of the waves. When
this is taken into account, the modal frequency is predicted to increase linearly with the energy of the initial excitation. Both
linear and nonlinear predictions agree convincingly with the Boussinesq results.

KEYWORDS: Inertia—gravity waves; Ocean dynamics; Waves, oceanic; Vortices; Potential vorticity

1. Introduction

The trapping of near-inertial waves by anticyclonic axi-
symmetric vortices is a rare and happy case in which ocean
observations (Kunze 1986; Kunze et al. 1995; Kunze and Toole
1997) are in broad agreement with theory (Kunze and Boss
1998; Llewellyn Smith 1999; Danioux et al. 2015) and with
numerical models (Lee and Niiler 1998; Zhai et al. 2005). The
physical process responsible for wave trapping is that the
negative core vorticity extends the internal wave band to
frequency slightly below the Coriolis frequency f so that
waves with frequency less than fare trapped within the vortex
(Kunze 1985).

Anticyclonic near-inertial trapping is readily illustrated
with a numerical solution. The top row of Fig. 1 shows a so-
lution of the Boussinesq equations starting from an initial
condition consisting of a barotropic vortex superimposed with
a large-amplitude wavy disturbance. The vortex has initial
Gaussian vertical vorticity

{(x,y,z,0) = —Rofe™""" (1)

where r = (x> + y?)'? is a radial coordinate, a is the vortex
radius, and f'is the Coriolis parameter. The Rossby number in
(1) is based on the vorticity extremum:

Ro=[Z,,,IIf. @)
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The vortex is distorted by a near-inertial wave that is initially
horizontally uniform and a plane wave in the vertical, as
specified by the initial horizontal velocity

u(x,,2,0) + i/ (x,,2,0) = e, 3)

where ¢y is a constant initial amplitude—see Fig. la—and m
is a vertical wavenumber. In (3), the primes indicate the near-
inertial-wave contribution to the velocity; this is added to the
velocity associated with the vorticity ¢ of the axisymmetric
vortex in (1). The initial condition has no vertical velocity and
no buoyancy perturbations to the uniform buoyancy frequency
N. If there is no vortex (Ro = 0) then the disturbance in (3)
evolves as a horizontally uniform vertical plane wave with
exp(imz — ift). The Gaussian vorticity, however, perturbs the
effective inertial frequency so that the velocity vectors in
Figs. 1b and 1c rotate at different rates. This dephasing is ac-
companied by a concentration of wave energy into the core of
the anticyclonic vortex. For comparison, the lower row of Fig. 1
shows the evolution of the initial disturbance in (3) if the sign of
the vorticity in (1) is reversed so that the wave is dephased by a
cyclone: wave energy is expelled from the cyclone.

The assumption of a barotropic vortex in (1) and the
vertical-plane-wave initial condition in (3) are significant ide-
alizations: real vortices have baroclinic structure and near-
inertial waves are forced at the sea surface. Thus there is
downward energy propagation, the accumulation of near-
inertial energy at the base of the vortex and the formation of
critical levels (Joyce et al. 2013; Lelong et al. 2020). Despite the
idealizations in (1) and (3), the strong effect of eddy vorticity
on near-inertial energy level evident in Fig. 1 occurs in more
complicated and realistic flows containing many interacting
baroclinic vortices, separated by regions with significant strain
(Asselin and Young 2020; Asselin et al. 2020; Thomas et al. 2020).
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FIG. 1. Visualization of a Boussinesq simulation of near-inertial waves propagating on a Gaussian vortex. This is a slice at z = 0 showing
wave velocity vectors superimposed on the wave kinetic energy density, (/> + v/?)/2, indicated by color. The vortex is barotropic, and the
wave has a fixed vertical wavenumber m. Thus, the location z of the slice does not change the result. The snapshots are taken at times
indicated in inertial periods above each panel; the red circle has the vortex radius a in (1). The parameters are those of simulation L13Aa
detailed in Table 1. Shown are (top) the anticyclonic case, {(r) <0, and (bottom) the cyclonic case with the same vorticity profile, {(r) > 0.

Elipot et al. (2010) show that the resulting patterns of sea
surface near-inertial activity can be mapped globally using
surface drifters.

The main features of the spatial pattern of phase changes in
the top row of Fig. 1, and the concentration of wave energy into
the anticyclonic core, can be understood by linearizing the
Boussinesq equations around a basic state consisting of an
anticyclonic barotropic vortex, for example the Gaussian vor-
tex in (1), and then solving an eigenvalue problem to obtain the
trapped near-inertial modes of the vortex (Kunze et al. 1995;
Kunze and Boss 1998). Instead of linearizing the Boussinesq
equations, Llewellyn Smith (1999) used the phase-averaged
equation of Young and Ben Jelloul (1997, hereinafter YBJ) to
show how the spatially uniform initial wave in (3) excites
the linear eigenmodes of the vortex. The details of this linear
eigenproblem are, however, not without controversy and
novelty: some authors argue that the lowest frequency of the
internal wave band is f + {min (Kunze and Boss 1998; Joyce
et al. 2013), while others maintain it is f + {min/2 (Llewellyn
Smith 1999; Chavanne et al. 2012). We have more to say about
this issue later: we show that the lowest possible frequency of
the trapped eigenmode is f + {min/2
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The top row of Fig. 1 shows that despite the azimuthal
symmetry of the base-state vortex, the trapped eigenmode is
not a radial pulsation for which the wave velocity would have a
dominant radial component. Observations of trapped near-
inertial disturbances in a warm-core ring describe a similar
structure: see Fig. 14 of Kunze et al. (1995) and the associated
discussion. Describing the phase of the back-rotated velocity
(u' + i) exp(ift), Kunze et al. (1995) stress the “lack of hori-
zontal phase progression in the ring core’’; this uniformity of
phase within the vortex core is a good approximation in Fig. 1b
and is strikingly appropriate in Fig. lc.

Further details of the initial value problem are shown in
Fig. 2. In the anticyclonic case (top row) the initially uniform
wave kinetic energy, (1> + v/?)/2, localizes inside the vortex
core and then spreads radially to reform an almost horizon-
tally uniform field. This cycle of radial contraction and ex-
pansion, also evident in the time series in Fig. 3, repeats with a
period that is much longer than the inertial period. This
subinertial oscillation is a signature of the vortex eigenmode
and is the topic of this paper. We contrast this periodic be-
havior with that obtained in a cyclonic vortex, illustrated by
the bottom rows of Figs. 1 and 2. In the cyclonic case, wave
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FIG. 2. Horizontal slices of wave kinetic energy (/> + v/%)/2 for the same simulation as in Fig. 1. Snapshots are taken at times indicated in
inertial periods above each panel. Shown are (top) the anticyclonic case, {(r) < 0, and (bottom) the cyclonic case, {(r) > 0.

kinetic energy is expelled from the vortex core, creating a
void that expands outwards in time; there is no subinertial
pulsation of wave energy.

This paper has two main aims. First, we assess how the
predictions for the dynamics of trapped modes made by
Llewellyn Smith (1999) using linear theory and the YBJ model
apply to nonlinear three-dimensional Boussinesq simulations.
Second, we examine how nonlinear effects, specifically those
associated with wave-induced changes in the vortex, impact
this dynamics.

We start by formulating the vortex eigenmode problem in
the YBJ approximation, focusing on the mode with azi-
muthally uniform backrotated velocity observed in Figs. 1
and 2 (section 2). We add to Llewellyn Smith’s (1999) anal-
ysis by (i) deriving an approximation for the modal fre-
quency in the limit of small frequency corresponding to
weakly trapped modes, which gives us a handle on the
number of branches of the dispersion relation, and (ii)
showing that the lowest accessible frequency is f + {min/2.
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We compare the theoretical predictions of the eigenmode
problem with a series of high-resolution Boussinesq simu-
lations (section 3) covering a broad range of parameters,
finding an excellent agreement in spite of the complexities
introduced by the excitation of a continuous spectrum of
(nontrapped) modes, finite Rossby and Burger numbers,
finite domain size, and nonlinearity. We consider the ef-
fect of weak nonlinearity in section 4: using the nonlinear,
phase-averaged model of Xie and Vanneste (2015), in
which the YBJ equation is coupled to a quasigeostrophic
model, we predict a nonlinear frequency shift that increases the
period of trapped mode, and we test this prediction against
Boussinesq simulations. This quantitative comparison is a
significant test of the phase-averaged model and essential in
developing confidence in its accuracy in more complicated
situations, such as the propagation of near-inertial waves
through geostrophic turbulence characterized by a population
of coherent almost axisymmetric vortices (Rocha et al. 2018;
Asselin and Young 2020).
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FIG. 3. Time series of the wave kinetic energy at the three points given in the legend for (left) an anticyclone and
(right) a cyclone. The vortex center is at » = 0. For the anticyclone, the parameters are those of simulation L13Ba
detailed in Table 1, and for the cyclone they are those of simulation L13Aa with positive sign of vorticity.
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2. Eigenproblem for the anticyclonic vortex
a. YBJ vortex eigenmode problem

Following Llewellyn Smith (1999) we use the YBJ phase-
averaged description of subinertial evolution to solve the
vortex eigenmode problem. This assumes a weak vortex, with
Ro « 1, and near-inertial wave frequencies. Other authors
have approached this same problem by linearization of the full
Boussinesq equations of motion (Kunze et al. 1995; Kunze
and Boss 1998). This direct assault leads to an intricate ei-
genproblem that reduces to the simpler YBJ eigenproblem in
the relevant limit.

For the vertical-plane wave initial condition (3), the master
variable used in the YBJ equation is the back-rotated velocity

¢(x’y7 [) = [u/(xay» Z’t) + ivl(xvy’ Z’[)]eiUFMZ)’ (4)

where ' and v’ are the horizontal wave velocities. Because the
vortex is barotropic, and because the waves have the special
initial condition in (3), the back-rotated velocity ¢ is inde-
pendent of z. To a good approximation the Boussinesq solu-
tions also have this simple structure. This enables convenient
separation of the wave quantities from the balanced flow: the
balanced component of the solutions is obtained by a vertical
average. The remaining baroclinic part of any field is a good
approximation for the wave part of that field.

Using (4), the YBJ model can be simplified for barotropic
flows and constant buoyancy frequency N to

o i
o W) +5Ld=5nAd, (5)

where A = 97 + 97 is the horizontal Laplacian. The second and
third terms in (5) are advection by the streamfunction i and
refraction by the vorticity { = Ay of the balanced flow. In the
dispersive term on the right-hand side of (5),

WY N2 (fm?) (6)

is the dispersivity of near-inertial waves with vertical wave-
number m [see Danioux et al. (2015) for further discussion on
this parameter].

Following Llewellyn Smith (1999), we look for eigenso-
lutions of (5) in the form of

d(r,0,1) = A(m)e*'~", ™)

where n = r/la = (x*> + y*)"?/a is a nondimensional radial co-
ordinate, 6 is the azimuthal angle, v = 0, 1, . .. is the azimuthal
wavenumber, and w is the frequency of the eigenmode.
Introducing (7) into (5) and using the Gaussian form (1) of the
vortex leads to

2 —e 2
a +la el A (615 )a=0, )
monn " "

where

>0 ©)
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is a convenient nondimensional frequency. In (8), the strength
of the vortex is characterized by the ratio of the vortex angular
momentum to the wave dispersivity

2
A =Ll 'imin| : (10)
Introducing the Burger number
N\’ h
50 () =7 )

the vortex-strength parameter can be rewritten as the ratio

A =Ro/Bu. (12)

The YBJ model assumes that A is fixed as Ro and Bu — 0.

To ensure that the mode decays exponentially at great dis-
tances from the vortex center, the frequency o in (9) must be
positive so that

A~e V71 50, as n— . 13)

The other boundary condition defining the eigenproblem for
o and A is that the mode has no singularity at n = 0, which is
equivalent to A’(0) = 0.

b. Azimuthal wavenumber v = 0

In the remainder of the paper, we focus on modes with v = 0,
which reduces the eigenproblem (8) to

LA | 1dA

o (e ™ — o)A =0.

(14)
There are several reasons for considering only » = 0. Llewellyn
Smith (1999) showed that trapped modes with » < 0 do not
exist. And, after a vain numerical search for modes with v > 0,
he concluded that “we do not know if such solutions exist, nor
can we prove that they do not exist.”” We are pleased to ignore
this open problem because the Boussinesq solution in the top
row of Figs. 1 and 2 shows that the initial condition in Fig. 1a
excites only » = 0 modes. With v = 0, the eigenproblem in (14)
is the same as Schrodinger’s equation with an axisymmetric
Gaussian potential.

The absence of modes with nonzero v in Figs. 1 and 2 is
remarkable because the initial condition breaks azimuthal
symmetry by selecting a special direction: all the velocity
vectors in Fig. la point northeast. Despite this broken azi-
muthal symmetry, the trapped disturbance is axisymmetric in
the sense' that (i) velocity vectors lying on any circle of radius r
in top row of Fig. 1a are identical to one another and (ii) the
kinetic energy density in Fig. 2 is axisymmetric. As discussed in
section 1, this is consistent with the structure observed by
Kunze et al. (1995) in a warm-core ring.

In the Boussinesq eigenproblem of Kunze et al. (1995) and
Kunze and Boss (1998), the master variable is the radial

"The vector field (u, v) is not axisymmetric in the usual sense,
that is, # independent and pointing in the radial direction.
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component of velocity u,(r, 6, t). The relation u, + iug = (u +
iv)e” " then shows that a f-independent backrotated velocity ¢,
that is, our » = 0, corresponds to the azimuthal wavenumber
n = —1 of Kunze and Boss (1998). While use of the back-
rotated velocity ¢ in a problem with axial symmetry might at
first sight seem unnatural, the simplicity of the YBJ equation
and associated eigenproblem shows its effectiveness in exam-
ining near-inertial waves in small-Rossby-number flows; see
Llewellyn Smith (1999) for a detailed discussion.

c. Solution of the eigenproblem (14)

We now turn to solution of the boundary-value problem in
(13) and (14). Asymptotic calculations detailed in appendix A
show that for all values of A, including very weak vortices with
A < 1, there is at least one trapped mode. We refer to this
important solution as the zeroth mode and denote its corre-
sponding eigenfunction and eigenvalue by A, and o, respec-
tively: numerical results in Fig. 4 illustrate the form of the
zeroth-mode solution. The eigenproblem in (14) is analogous
to the quantum mechanical problem of trapping in an axi-
symmetric Gaussian potential well; in that context the zeroth
mode is known as the ground state of the well.

As A increases, additional trapped modes appear through a
sequence of bifurcations arisingatA = A,,n=1,2,....Figure 5
shows the first two eigenbranches, o(¢(A) and o(A). The
structure of the corresponding eigenfunctions is illustrated in
Fig. 6, which shows Ag(n) and A(n) for A = 25.

The bifurcations giving rise to new branches of the disper-
sion relation can be analyzed by solving the eigenvalue prob-
lem in the asymptotic limit o — 0 corresponding to weakly
trapped modes: see (13). This is done in appendix A, where we
find that the first three branches arise for

{ApAA,1={0,11.1, ... ,351, ... }. (15)

(The second mode is off stage in Fig. 5.) On each branch, o — 0
very rapidly as A — A,;: our analysis shows that

d
o-nocexp(—)\_/\,), as AlA (16)
where the d,, are constants that can be evaluated explicitly. For
the zeroth mode, Ao = 0 and (16) reduces to
AL0,

o, ~exp[2(In2 — y;) —4/A] as 17)

where vyg is the Euler-Mascheroni constant. The exponential
sensitivity of o,(A) to (A — A,,) ! explains the very flat curves as
A A, inFig. 5. In Fig. 7 we verify the asymptotic prediction (16)
for n = 0 and 1 by comparison with the numerical solutions of
the eigenproblem (14).

In the Boussinesq numerical solution the initial condition in
(3) will project onto all of the trapped eigenmodes of the
Gaussian vortex in (1). The vortex used for illustrative pur-
poses in Figs. 1-3 has A = 13.1. Because

11.1<13.1<351, (18)

this vortex has two trapped modes (the zeroth and first).
Only the zeroth mode is evident in Figs. 1-3, however,
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FIG. 4. Eigenfunctions corresponding to the largest eigenvalue
o for different A. This is the zeroth eigenmode, which is charac-
terized by having no zeros. As the vortex strength A increases, the
mode becomes more tightly trapped to the vortex core and its ei-
genvalue oy increases: see Fig. 5 below for A as a function of o.

presumably because the initial condition projects only weakly
on the first mode.

d. The lowest vortex-mode frequency

A bound on the frequency of subinertial oscillations can be
obtained from the eigenproblem (14). Untangling the non-
dimensionalization, the total frequency of the eigenmode in
dimensional variables is

f+Bufw:f(l—%Bua> :f+%%gmin. (19)
For the v = 0 modes studied here, the issue of whether the
lowest frequency of the internal wave band is f + i OF f +
{min/2 devolves to whether the ratio o/A in (19) is ever greater
than 1. Examination of Fig. 5 indicates that for the Gaussian
vortex o/A is less than 1 and thus for these modes f + {min/2 is
the lowest possible frequency.

We now establish this property for a general compact vortex,
with a vorticity profile {(r) satisfying

{(0) = ¢, =4(r) <0. (20)
The generalization of the eigenproblem (14) is
d*A  1dA
i —olA=0.
2y T M) —ala=0 e

where 0 < f(n) = 1 is (minus) the nondimensional vorticity
profile. Multiplying by 7, integrating and using the boundary
conditions of trapped modes leads to

rf (mA(m)ndn
L N — (22)

SIS

J{)A(n)n dn
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FIG. 5. Nondimensional frequency o of trapped modes for different A derived by numerical
solution of the YBJ eigenproblem (14). The two branches shown correspond to the zeroth
mode (solid curve) and first mode (dashed curve). The colored symbols correspond to the
simulations in Table 1 that are shown in the legend. See Fig. 7 below for a magnified view of

the two outlined rectangles.

The zeroth mode, also known as the ground state, has the
largest frequency o and a sign-definite eigenfunction; hence

g g,
= 0<

2= =maxf(n) =1, (23)

which completes the argument.

3. Comparison with numerical solutions of Boussinesq
equations

We now assess the analytical results of previous sections
against a suite of high-resolution nonhydrostatic Boussinesq
solutions in a triply periodic domain. In these simulations, the
flow is initialized with the planar wave in (3) superimposed on
the barotropic vortex in (1). To maintain the periodicity of
the initial field, the Gaussian vortex in (1) is slightly modified
by discretizing it in the Fourier space and truncating the unre-
solved high-wavenumber modes. A dealiased pseudospectral
solver detailed in Kafiabad et al. (2021) is used to derive
the numerical solutions, and a third-order Adams-Bashforth
scheme is used for time integration. A hyperdissipation of the
form v, (9% + 0} Y+, a8 is used in the momentum and buoyancy
equations. The flow parameters and setup are in Table 1. These
parameters are such that the simulations correspond to the in-
teraction of mesoscale vortices with wind-generated waves. The
Gaussian vortex in (1) has maximum azimuthal velocity of
0.32Rofa at r = 1.13a, which is around 1.3 for Ro = 0.05, f = 200,
and a = 0.4 (typical values listed in Table 1). Considering the
values of wave energy densities Ey, the initial wave velocity
ranges between 0.3 and 1, which makes the wave velocity at
the same order or slightly smaller than the vortex maximum
velocity. To map this to the ocean context, the value Ro = 0.05
is realistic for large-scale flows; the dimensional parameters
f=10"*s"" and a vortex radius = 100 km then give a maxi-
mum azimuthal velocity of 0.16ms ™" for the vortex and wave
velocities in the range 0.05-0.16ms ™.

The first aspect of the theoretical results that can be com-
pared with the numerical solutions of Boussinesq equations is
the frequency of subinertial oscillations such as those observed
in Fig. 3 and the top row of Fig. 2. For each simulation of
Table 1, we estimate the scaled frequency, o, defined in (9)
by averaging the times between consecutive troughs and peaks
of wave energy at r = 0. We also solve (14) for the value of A in
each simulation to derive the zeroth eigenfrequency o. In the
last column of Table 1, the normalized difference between o,
and oy is shown. Within the range of A = 13, this difference
remains less than 2%, if the simulations with the lowest wave
energy level for each set of parameters are considered. This
remarkable agreement is shown in Fig. 5 by superimposing o,

1
—Ao, gy = 16.0
- --Al, g1 = 2.9
A\ e e
05r i ]
\
\
\
\
i
\
0r \ —
\ o
\ //'
\ 2
\ /7
\ /
'\\ //
-0.5 i ‘ ‘
0 1 2 3 4
n=r/a

FI1G. 6. Two eigenmodes of the Gaussian vortex with A = 25 with
their corresponding eigenvalues in the legend. The Gaussian ex-
p(—7n?) is shown as guidance. The zeroth mode corresponds to
oy = 16.0; the first mode, with oy = 2.9 and one zero at n = 0.53,
is more weakly trapped than the zeroth mode.
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FIG. 7. Magnified view of the (top) red-outlined rectangle and (bottom) blue-outlined
rectangle from Fig. 5, with logarithmic vertical axis. Numerical results (large black dots) are
compared with the asymptotic results in (16) and (17) (small red dots).
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on the zeroth eigenbranch. The colored symbols in this figure
correspond to those in the second last column of Table 1. For
A > 13, the projection of initial condition on the first eigen-
vector (in addition to the zeroth one) affects the slow modu-
lation of wave energy observed in the simulations: this first

mode component increases the relative difference between
Tgim and o 0-

The simulations with the same parameters, but increasing
initial wave energy, reveal a systematic dependence of the
modal frequency on the amplitude of the initial wave. This

TABLE 1. List of Boussinesq simulations with their corresponding parameter values. All simulations share the following parameters:

horizontal domain size L = 27r, vertical domain size H = 27/36, number of grid points on the x and y axes N,, =

N, = 1152, number of grid

points on the z axis N, = 96, horizontal hyperviscosity v, = 5 X 10'®, and vertical hyperviscosity », = 5 X 10~%. The domain size, 27 X
27, determines the unit of length. The unit of time is defined such that the nondimensional Coriolis parameter is f = 200; hence for a
dimensional f = 10"*s", the unit of time is 200 X 10*s =23.15 days.

Simulation N a m At E, Ro Bu A Ogim loo — Osimlloo
L4 1600 0.28 288 1.74 x 10™* 0.1 0.04 0.0098 4.06 1.07 1.93%
L6A 1300 0.28 288 1.74 x 107* 0.05 0.04 0.0065 6.16 2.21 1.28%
L6B-R03 1600 0.40 288 1.74 x 10™* 0.05 0.03 0.0048 6.22 2.26 1.17%
L7 1600 0.50 180 1.74 X 107* 0.1 0.06 0.0079 7.59 3.08 1.48%
L8a 960 0.40 288 1.30 X 10™* 0.5 0.04 0.0048 8.29 3.45 3.57%
L8c-R04 1600 0.40 288 1.74 x 107* 0.05 0.04 0.0048 8.29 3.55 0.90%
L10A 1300 0.36 288 1.56 X 10™* 0.1 0.04 0.0039 10.18 4.80 0.69%
L10B-R05 1600 0.4 288 1.74 X 107* 0.05 0.05 0.0048 10.37 4.93 0.82%
L10C 1600 0.45 216 1.74 x 10™* 0.1 0.07 0.0068 10.33 4.87 1.40%
L12-R06 1600 0.4 288 1.74 X 107* 0.05 0.06 0.0048 12.44 6.32 1.66%
L13Aa 1600 0.45 288 1.30 x 107* 0.5 0.05 0.0038 13.12 6.58 4.88%
L13Ab 1600 0.45 288 1.30 X 107* 0.2 0.05 0.0038 13.12 6.71 3.00%
L13Ac 1600 0.45 288 1.30 X 10™* 0.1 0.05 0.0038 13.12 6.76 2.27%
L13Ad 1600 0.45 288 1.30 x 10~* 0.05 0.05 0.0038 13.12 6.77 2.08%
L13Ba 960 0.27 288 1.74 x 10™* 0.5 0.05 0.0038 13.12 6.39 7.50%
L13Bd 960 0.27 288 1.74 X 107* 0.05 0.05 0.0038 13.12 6.78 1.85%
L14-R0O7 1600 0.4 288 1.74 x 10™* 0.05 0.07 0.0048 14.51 7.66 3.34%
L16-R08 1600 0.4 288 1.74 X 107* 0.05 0.08 0.0048 16.59 8.96 5.39%
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FIG. 8. Relative difference between the modal frequency esti-
mated from Boussinesq simulations and the smallest eigenfre-
quency of the YBJ model as a function of Ro. The color-coded
symbols correspond to the simulations of Table 1. The second eigen-
mode exists to the right side of the dashed vertical line marking
A= /\1.

dependence is not captured by the YBJ model, because it ne-
glects the nonlinear wave feedback onto the balanced flow.
Analogy with other nonlinear oscillators suggests that this
feedback likely results in a frequency shift that depends on the
wave energy level. We will discuss this phenomenon in depth in
the next section and estimate the frequency shift using the
coupled model of Xie and Vanneste (2015). Setting this fre-
quency shift aside, the remaining differences between results
based on the YBJ model and the Boussinesq solution can
plausibly be attributed to some combination of

(i) inaccuracy in the YBJ equation resulting from the finite
Rossby and Burger numbers,
(ii) finite domain size of the Boussinesq code, and
(iii) low-resolution sampling frequency of the times series
used to calculate ogp,.

Figure 8 displays |09 — osim|/o0 as function of Ro for a suite
of simulations with identical parameters, but varying Ro.
Increasing Ro increases the discrepancy between o and ojp,.
This is partly due to nonlinear effects, not captured in the linear
YBJ model—issue i—and partly due to excitation of the higher
eigenmodes that appear as Ro and therefore A, is increased.
For very small values of A, a long integration time is required to
capture a few oscillations, which leads to reentering of the
waves back to the domain and interactions with the mean flow
and other waves—issue ii. Such a long time scales, however,
do not have realistic implications in the interaction of oceanic
flows with waves. For instance, the eigenperiod of the case
A = 3 is more than 230 inertial periods.

Comparing the eigenfunctions of section 2¢ with the simu-
lations is less straightforward, because the initial condition (3)
excites not only trapped vortex eigenmodes but also a contin-
uous spectrum (Llewellyn Smith 1999). Taking this into ac-
count, the solution of (5) can be written as
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FIG. 9. Wave amplitude |¢| at r = 0 (blue curve), back-rotated

velocity at r = 0 after removing the continuum, |¢ — ¢eon| (red

curve), and aopo = 2.32 calculated from (27) (dashed magenta) for
simulation L8a.

0 100

N-1

=9, 20 a,A (rlaye” " + ¢ (r,7)|,

p=

(24)

where a,, is the projection of the normalized initial condition
onto mode Ap and N = N(A) is the number of trapped modes
for given A. Here we set N = 1 since we are considering values
of A where the higher eigenmodes either do not exist or their
eigenfrequency is much lower than wg. The term ¢eonq is the
“continuum remnant” that is left over because the trapped
modes do not form a complete basis; Llewellyn Smith (1999)
shows that ¢on depends logarithmically on time for large time.
Because this time dependence is slow when compared with
1/wy, the continuum remnant can be estimated by integrating
over 1 eigenperiod,

(1)0 t+27/w,
bt =52 B0, (5)
and removed from the solution to obtain
a,pAy(rla) = d(rla, 1) = b, (r/a,1). (26)

Ay is orthogonal to all higher modes A, (p > 0) and to ¢pcon.
Hence, after multiplying both sides of (24) by Agn and inte-
grating (at ¢ = 0), ag is

JAU(n)n dn

. 7)
JAﬁ(n)n dn

Cl):

To investigate the accuracy of (26) we evaluate both sides at
r = 0 for the simulation L8a. We obtain Ay(n), with normali-
zation Ay(0) = 1, by numerical solution of eigenproblem (14).
Using this solution we find that the left-hand side of (26) is
agpo = 2.32, where (27) is used to calculate «g; the constant
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3r —Scaled eigenfunction |
—Boussinesq simulation

FIG. 10. Scaled eigenfunction agpoAo(r), with ag computed using
(27) (red curve) as compared with |p(r, £) — Peon(r, 1)| extracted
from data from simulation L8a (black curve).

2.32 is the dashed magenta line in Fig. 9. For the right-hand
side of (26), the blue sinusoidal curve in Fig. 9 is |¢(0, f)]
computed using the baroclinic velocity fields of the Boussinesq
simulation. The right-hand side of (26) is obtained from the
Boussinesq solution, resulting in the red curve in Fig. 9. The
time average of the red curve is 2.24, which is close to the
prediction agpy = 2.32.

After gaining confidence in (26), we scale Ay(r/a), which is
computed by solving (14), by ag¢po = 2.32 and compare it with
the right-hand side of (26), averaged over 400 inertial periods
(about 3 eigenperiods) to remove the small variation in time
that was discussed earlier. The results are shown in Fig. 10.
Despite many approximations, the agreement between theory
and simulation is remarkable. The tails of the two curves,
however, display a noticeable difference stemming from the
finite-domain effects—point ii above. Repeating the same
process for several other simulations of Table 1, we find similar
agreement (not shown).

We emphasize that the joint excitation of the zeroth
mode and continuous spectrum is necessary to observe the
subinertial oscillations of the wave energy displayed in
Figs. 2 and 3. Because ay and A((r/a) are real, exciting
solely the zeroth mode results in a time-independent wave
energy |po|*/2 = a2 A%(r/a)/2.

4. Nonlinear frequency shift

According to (14), the oscillation of trapped modes depends
only on A = Ro/Bu. However, after fixing these parameters, we
observe that the period of oscillations changes with the initial
wave energy E, = |¢o|*/2: see Fig. 11. To explain this frequency
shift we have to go beyond the linear YBJ model. Xie and
Vanneste (2015) include the feedback of waves on the time
evolution of ¢ using a generalized Lagrangian mean (GLM)
approach. Wagner and Young (2015) avoid GLM and instead
present an alternative derivation using a multitime expansion
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FIG. 11. Time series of wave kinetic energy |¢|*/2 at the center of
the vortex for fixed Ro and Bu and varying E,. All of the param-
eters in these simulations are the same as those in L10C, except for

Ey, which is set to 0.1 for the magenta curve, 0.5 for the red curve,
1.0 for the green curve, and 2.0 for the blue curve.

0 50 100 250 300

of the Eulerian equations of motion (see also Wagner and
Young 2016). The model can succinctly be written for a baro-
tropic flow by adding a nonlinear wave-induced component g"
to the linear PV:

11 i
q= Ao+ 7| AlF +576%0)| (28)

q"v

The material conservation of g together with the YBIJ
equation (5) form a coupled model for the joint evolution
of g and ¢, with ¢ obtained by inverting the Laplacian in
(28) [see Rocha et al. (2018) for the derivation]. We em-
phasize that ¢ is the streamfunction associated with the
Lagrangian mean flow; this is crucial for the interpretation
of the model, including its energetics (Rocha et al. 2018;
Kafiabad et al. 2021).

The model simplifies dramatically when the wave and flow
are axisymmetric. The potential vorticity (28) reduces to

ld( ap\  11d/[ de|
q(’)‘;a(’E)W;EQ dr ) (29)

_ b

“s(v+ 7). 0

and its material conservation to the local invariance d,q = 0.
For an initially uniform ¢, this gives

2
q=§U=A%=A(w+'d" ) G31)

4
Kafiabad et al. (2021) confirm the validity of (31) by comparing
it with numerical solutions of Boussinesq equations.
Using (31) to eliminate { = Ay in (5) results in a closed
nonlinear equation for ¢,
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FIG. 12. Numerical evaluation g(A) in (37). The symbols indicate
numerical results, and the smooth curve is an interpolant.

ap i AP, i
(T S R V) (32)

In passing from (5) to (32) there is a significant simplification
because ¢ is independent of the azimuthal angle so that the
advective term J(i, ¢) vanishes identically.

We are interested in the weakly nonlinear regime, when the
cubic nonlinearity A|¢|*p/(4f) is small when compared with the
linear term Ay, that is, when |¢|*/(4f L minl@®) < 1. Based on
this small parameter, we solve (32) by introducing the formal
parameter € < 1 and rewriting (32) as

ap i O AjpPY, i B
5+§(A% ST)(b Shad=0.

We expand the back-rotated velocity and frequency accord-
ing to

(33)

b= ‘750“0"40(’/”)('.&/ + 855("7 et)+ .-+ and (34)

(35)

w=w,tew+ -,

where wy and Ay are the eigenvalue and eigenfunction of the
zeroth trapped mode. Note that the leading-order term in (34)
varies on linear time scale 1/w, as well as slower time scale &t,
whereas the higher-order terms only vary on the slower time
scale. Computations detailed in appendix B lead to the fre-
quency shift

5= A 36
w—wé’( )s (36)
where g(A) is the dimensionless function
- 2%/ 4 2
(It J, () ne
g(h) =2 0 SN E0

0 3
(R

The frequency shift & is therefore quadratic in the wave
amplitude ¢; in other words, @ scales linearly with the wave
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FIG. 13. Subinertial oscillation frequency as a function of
initial wave energy: the predicted frequency w = wy + &, where
wq is the linear eigenfrequency and @ is a shift due to wave
feedback; @ is calculated from (36) (dashed lines) and is com-
pared with numerical estimates (circles and squares) using time
series of wave energy at the vortex center. The parameters of
simulation L7 (gray), L8c-R04 (blue), and L10C (purple) with
varying E, = \qbo|2/2 are used.

kinetic energy. The function g(A), computed from the numer-
ical solution of the eigenproblem and shown in Fig. 12, further
shows that @ increases monotonically with A; with small A the
frequency shift is less significant.

In Fig. 13, the modified eigenfrequency that takes the
wave feedback into account, i.e., w = wy + @, is compared
with the frequency of slow modulations in Boussinesq sim-
ulations. Three sets of simulations are considered where all
the parameters are fixed within each set while the initial
wave energy |¢g|*/2 is varied. These results show good
agreement between the nonlinear coupled model of Xie and
Vanneste (2015) and the Boussinesq simulations and con-
firm the validity of (36). There is a small offset between the
predicted and simulation frequencies of some sets, which is
due to the issues i-iii discussed in the previous section. For
L8c-R04 (the blue symbols) in Fig. 13 the analysis is limited
to Ey < 0.05: as discussed in the conclusion, for higher am-
plitude waves the vortex strongly interacts with the near
inertial wave.

5. Conclusions and discussion

The linearized YBJ model of section 2 focusses atten-
tion on the back-rotated velocity—rather than the radial
velocity—as the simplest variable characterizing the trapped
eigenmodes of an anticyclonic vortex. This is in immediate
agreement with solutions of the Boussinesq equations: the
top row of Fig. 1 shows that the trapped disturbance does
not have a conspicuous radial velocity component. Instead,
the back-rotated velocity is approximately independent of
azimuth. Thus, the advective term, J(i, ¢) in (5), vanishes
identically so that near-inertial trapping results only from
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FIG. 14. Horizontal slices of (top) the wave kinetic energy (1'? + v/?)/2 and (bottom) the barotropic vertical vorticity. All of the
parameters in this simulation are the same as those in L8c-R04, except that the initial wave energy is increased by a factor of 30 to
Ey = |¢o|*/2 = 1.5. Snapshots are taken at the times indicated in inertial periods above each panel.

the i{¢/2 frequency shift. In section 2d we show that, as
a consequence, the lowest possible frequency of the vor-
tex eigenmode—the ‘‘bottom of the discrete spectrum’ —is
f + gmin/z-

Exquisite forcing of a single pure eigenmode—designed
so as to not excite the continuous spectrum—produces a
steady axisymmetric pattern of wave kinetic energy density
since |¢]> = |A* is then time independent. But generic
forcing or initial conditions excites all of the available dis-
crete modes of the vortex, and also a continuum of untrapped
disturbances. Thus, in the top row of Fig. 2, we see that the
initial condition in (3)—chosen to represent excitation by
an atmospheric storm of scale much larger than the vortex
scale—results in a low-frequency pulsation of the kinetic
energy density, corresponding to the oscillations in the wave
kinetic energy time series of Fig. 3. This pulsation is not a
single pure eigenmode. In section 3 we extracted the frequency
of the subinertial oscillation from Fig. 3 and showed that this
modal period is in good agreement with the predictions of the
YBJ equation.

Our results provide a detailed picture of the dynamics of
near-inertial waves forced at large scales and subsequently
trapped by anticyclonic vortices; they should facilitate the
identification of such waves from observation and help to ex-
plain their behavior. Theoretical work on near-inertial vortex
eigenmodes, including results herein, is limited to barotropic
vortices (Kunze and Boss 1998; Llewellyn Smith 1999). A fu-
ture challenge is understanding the near-inertial eigenmodes
of baroclinic vortices and the development of critical-layer
singularities resulting from the accumulation of near-inertial
energy at the base of the vortex. This phenomenon is seen in
numerical solutions of both the Boussinesq equations (Lelong
et al. 2020) and the phase-averaged coupled model used here
(Asselin and Young 2020).

In section 4 we go beyond the linear approximation and test
the predictions of the phase-averaged model of Xie and
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Vanneste (2015), Wagner and Young (2016), and Rocha et al.
(2018). This model couples quasigeostrophic and YBJ models
and accounts for the mean-flow change induced by wave
feedback (see also Kafiabad et al. 2021) through a wave
contributions to PV. We show that the wave feedback leads
to frequency shift of the vortex eigenmode that is linearly
proportional to the kinetic energy of the eigenmode. We
find this frequency shift is in good quantitative agreement
with Boussinesq results. This confirms the ability of the
phase-averaged coupled model to represent NIW-mean-
flow interactions.

All results in this work are in the regime of weak nonline-
arity. But what happens if one hits the vortex with a very large
initial disturbance? Figures 14 and 15 show the result of
strongly perturbing a Gaussian vortex by increasing the am-
plitude of the initial condition ¢ in (3). The initial develop-
ment of this large disturbance, up to about 55 inertial periods, is
similar to that of the weakly nonlinear problem shown in the
top row of Fig. 2: the wave kinetic energy concentrates in the
vortex core and the barotropic vorticity remains smooth.
However, after about 60 inertial periods the core concentration
of wave kinetic energy triggers an instability—see Fig. 15. The
high-frequency bursts in Fig. 15 are accompanied by the for-
mation of small spatial scales in the vorticity field: in Figs. 14j-1,
the main anticyclone curdles and small vortex dipoles circulate
around its crumbled remains. It is impressive that a prominent
subinertial cycle persists and that there are episodes of “‘rela-
minarization” coincident with the wave-energy minima in
Fig. 15. This low-frequency modulation of the instability is a
persistent signature of the vortex eigenmode that survives for
over 300 inertial periods. There are open questions about the
nature of the instability observed in Fig. 14 that we leave for
future work.

Acknowledgments. Authors Kafiabad and Vanneste are
supported by the U.K. Natural Environment Research Council



2046 JOURNAL

0 50

150
tf/2m

FIG. 15. Time series of wave kinetic energy |¢|*/2 at the center of
the vortex for the simulation shown in Fig. 14 in blue and its av-
erage over two inertial periods in red.
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APPENDIX A

The Weak-Trapping Limit

We solve the eigenvalue problem (14) in the weak-trapping
regime o < 1 using matched asymptotics. In the outer region,
7 > 1, the Gaussian vorticity is exponentially small and can be
neglected. This leads to the outer approximation

A(n) = qK,(Von),

where K is the modified Bessel function and ¢ is an undeter-
mined constant. In an intermediate region where /o1 < 1
and n > 1, the Bessel function K is approximated as

(A1)

1
A(n) = —qlnn—qun0+q(ln2—yE)+ cee (A2)
where g is Euler’s constant and we have used the small-
argument asymptotics of K.
In the inner region where n = O(1), we use o < 1 to reduce
(14) to

d’A  1dA .

— 4+ +reTTA=0.

@ wdn AeTA=0 (A3)
We select the bounded solution as 7 — 0 by imposing

A(0)=1 and A'(0)=0. (A4)

Equations (A3) and (A4) define an initial-value problem
that—except for the zeroth mode in (A9) below—must
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FIG. Al. Functions «(A) and B()) derived by solving (A3)
numerically.

be solved numerically. For n > 1, the solution has the
asymptotics

A(n) ~a(d)Inn + B(A) + O(1), (AS)

with a(A) and B(A) determined from the numerical solution.
Matching (AS) with (A2) results in

(A6)

This is an equation for ¢ that is valid only for B/ < 0 and
|B/a| > 1 so that o <« 1 as assumed. Equation (A6) identifies
the zerosA,,n =0, 1, ... of the function @()) as the values of
A at which new branches of the dispersion relation appear.
Note that Ay = 0 corresponds to the zeroth mode; this eigen-
solution exists even for very weak vortices.

We have computed « and 8 numerically for 0 <A = 40 and
show the results in Fig. A1l. The first bifurcation values of A are
found tobe Ay = 0,A; =~ 11.1, and A; ~ 35.1. In view of the sign
of B(A,), new branches appear for A > A,. Approximating the
left-hand side of (A6) near A,, and solving for o leads to the
dispersion relations

o~expl2(In2 —yy) —c /A —A)] as A—A;, (A7)
with ¢, = —2B(A,)/a’(A,) > 0.

We can obtain a fully analytic form for the n = 0 branch
(the zeroth mode), with A = Aq = 0 by solving (A3) asymp-
totically for A <« 1. A straightforward expansion in powers
of A gives

2

We—x_l

Alm)=1-— %JO dx + O(\?),

(A8)

1R 200, (A9

where E; is the exponential integral. Noting that Ey(n) — 0
as 7 — o, we find from (AS) that, as A — 0, a(A) ~ —A/2
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and B(A) ~ 1; this results in ¢y = 4 and the zeroth-mode
dispersion relation in (17). For the n = 1 branch, we find
numerically &'(A;) =~ 0.18 and B(A;) =~ —0.62; hence
1=~ 6.8.

APPENDIX B

Frequency Shift due to Wave Feedback

Substituting (34) into (33), keeping the terms at order &°,
leads to
1 1
w4, + fA‘bo 0~ EhAA() =0, (B1)
which is the dimensional form of (14) for Ay and w,. We in-
troduce the self-adjoint operator .,
. 1 1
7 =—w,+ EA% - th’ (B2)
applied to functions, such as Ay(r), that vanish as r — « and are

nonsingular at r = 0. The terms at the next order form the
equation

~ 4 (;5 0‘5|¢0|2 2
—BA, + — =00l AAZA, =0,
0 a()d)() 8f 0470

which can be multiplied by A and then integrated to obtain

(B3)

—@JAgrdr + J( “ A)Ayrdr — %JA%AAﬁrdr =0. (B4

All integrals run from r = 0 to «. Because ./ is self-adjoint

J( Ld)A,rdr = J&;( L A)rdr=0. (B5)

The last integral in (B4) can also be simplified after integration
by parts

d/( d
jAﬁAAf,r dr = JAZ) a(raA(z)) dr

2
= —j(%A(z)) rdr.

Using (B5) and (B6), (B4) reduces to the following expression
after rewriting the integrals in terms of the dimensionless co-
ordinate n = rla

(B6)

d 2
g7 Aman)’[ (G3) men
0
8fa? 3 ’
v (JA?m dn)

W=

(B7)

where we used (27) to substitute for «.
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