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Closing the Loop on Exoskeleton Motor Controllers:
Benefits of Regression-Based Open-Loop Control

Greg Orekhov , Jason Luque , and Zachary F. Lerner

Abstract—Lower-limb exoskeletons are widely researched to
improve walking performance and mobility. Low-level sensor-less
exoskeleton motor control is attractive for consumer applications
due to reduced device complexity and cost, but complex and vari-
able transmission system configurations make the development of
effective open-loop motor controllers that are responsive to user
input challenging. The objective of this study was to develop and
validate an open-loop motor control framework resulting in similar
or greater performance vs. closed-loop torque control. We used
generalized linear regression to develop two open-loop controllers
by modeling motor current during exoskeleton-assisted walking;
a “complex” model used desired torque and estimated ankle an-
gular velocity as inputs, while a “simple” model used desired
torque alone. Five participants walked at 1.0–1.3 m/s on a tread-
mill with closed-loop and both open-loop controllers providing
ankle exoskeleton assistance. Both open-loop current controllers
had similar root-mean-squared torque tracking error (p = 0.23)
compared to the closed-loop torque-feedback controller. Both open-
loop controllers had improved relative average torque production
(p < 0.001 complex, p = 0.022 simple), lower power consumption
(p < 0.001 for both), and reduced operating noise (p = 0.002
complex, p < 0.001 simple) over the closed-loop controller. New
control models developed for a different ankle exoskeleton config-
uration showed similar improvements (lower torque error, greater
average and peak torque production, lower power consumption)
over closed-loop control during over-ground walking. These results
demonstrate that our framework can produce open-loop motor
controllers that match closed-loop control performance during
exoskeleton operation.

Index Terms—Adaptive control, ankle assistance, closed loop,
exoskeleton, open loop, statistical modeling.

I. INTRODUCTION

W EARABLE exoskeletons provide mechanical assistance
to human joints and seek to augment the user’s func-

tion or task performance [1]. Most exoskeleton research and
commercial development has focused on assisting mobility in
patient populations with neuromuscular impairment caused by
spinal cord injury, stroke or cerebral palsy [2]–[5]. Despite
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considerable effort, only a few commercially-available devices
have measurably improved user performance [6]. Effective high-
and low-level control of exoskeleton assistance are two critical
components of wearable systems that require special attention,
particularly when translating wearable exoskeleton technology
from research environments to free-living environments [6].
Research and commercial exoskeleton devices have employed
both open- and closed-loop low-level controllers to varying
levels of success [7], [8].

Torque sensor-less (i.e., low-level open-loop) exoskeleton
actuator control is attractive for research- and commercial-grade
devices alike due to lower cost and reduced mechanical and
software complexity, which may limit the potential for system
instability and bodily harm [9], [10]. However, adequate perfor-
mance of open-loop controllers depends on proper system and
disturbance characterization. Methods involving disturbance ob-
servers typically require an inverted mechanical plant model [9],
[11], but modeling user-generated exoskeleton disturbances is
difficult. Once established, open-loop controllers may require
considerably less tuning than closed-loop controllers but, by def-
inition, they may also be less adaptive or responsive. Open-loop
characterization of system disturbances can improve exoskele-
ton performance [11] but the viability of open-loop exoskeleton
controllers depends on their responsiveness to user intent across
variable walking conditions.

We previously developed a high-level ankle exoskeleton con-
trol scheme that provided adaptive assistance proportional to the
biological joint moment [13]. We subsequently demonstrated
the ability of this controller, implemented on an untethered
cable-actuated ankle exoskeleton, to improve over-ground walk-
ing economy in individuals with cerebral palsy [4]. In our
prior research, the control signal from this high-level algo-
rithm was prescribed via a closed-loop proportional-derivative
(PD) torque-feedback controller. While the high-level algorithm
nicely adapted the torque set points to variable ankle demand, we
observed high battery power consumption, loud operating noise,
and occasional difficulty with tracking peak torque values that
were within the mechanical capabilities of the device. These
findings, coupled with a desire for a simpler, more reliable
system, motivated a renewed investigation into low-level ex-
oskeleton control. Surprisingly, we were unable to find any
published work that compared the performance of open-loop vs.
closed-loop control during exoskeleton-assisted walking trials.
Accurate analytical models for cable-driven robot control are
difficult to develop because cable routing and tension affect
friction compensation [12]. For lower-extremity exoskeletons
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Fig. 1. Mechanical and control system overview. (A) A user wearing our bilateral ankle exoskeleton. (B) Simple visualization of exoskeleton function and
experimental setup utilizing a treadmill at typical adult walking speeds [22]–[24]. Proportional joint moment control (PJMC) defines the assistance profile
Tset from the instantaneous force reading Fsen [13]. A torque sensor at the ankle measures applied torque Tmeas. On-board sensing and calculations yield motor
current C and estimate ankle angular velocity ω̃ankle from measured motor velocity ωmotor . (C) Simplified block diagrams of closed- and open-loop control
schemes. Closed-loop torque control (I) minimizes error between Tmeas and Tset using a PD controller. Simple open-loop current control (II) predicts a current
setpoint ĈS from Tset only. Complex open-loop current control (III) predicts a current setpoint ĈC from Tset, real-time velocity input ω̃ankle, and the interaction
of the two signals. βi are coefficients determined from generalized linear regression and can be found in equations 4-7 of the text. Plots of experimental data
demonstrate the variability in control objectives, input, and output signals for the three control modes.

designed to conform to each user, variable cable routing that
changes over the gait cycle and which is difficult to quantify
poses a considerable challenge for generalizing characterization
of analytical model parameters.

The objective of this study was to develop an effective em-
pirical modeling framework for generating open-loop motor
control schemes of cable-driven ankle exoskeletons that meet
or exceed the performance of closed-loop torque-feedback con-
trol. We utilized regression-based system modeling to establish
relationships between delivered torque and prescribed motor
current during the robot’s use case – walking at variable speeds.
Our primary hypothesis was that an appropriately modeled
open-loop current controller could meet and potentially exceed
the performance of closed-loop torque-feedback control. Our
secondary hypothesis was that inclusion of estimated ankle
velocity as a model input would increase the responsiveness and
therefore performance of open-loop motor control. We assessed
the performance of two regression-based open-loop motor cur-
rent controllers (velocity- & torque-input and just torque-input)
by comparing torque tracking error, average joint torque, power
consumption, and noise production to our standard closed-loop
torque-feedback controller during exoskeleton-assisted tread-
mill walking at moderate speeds. To the best of our knowledge,
this is the first study to use regression-based empirical methods
to model open-loop exoskeleton dynamics in functional use
cases.

II. METHODS

A. Ankle Exoskeleton and High-Level Control Algorithm

For this study, we used a battery-powered and wireless an-
kle exoskeleton designed to provide both plantarflexion (PFX)
and dorsiflexion (DFX) assistance [4], [14]. To summarize ex-
oskeleton design, which has been reported in extensive detail
previously, brushless DC motors (EC4-Pole 30 200W, Maxon)

worn around the waist actuated Bowden cables that subsequently
rotated a pulley at the ankle joint (Fig. 1AB). The pulley was
mounted to a carbon fiber footplate that rotated relative to a
carbon fiber calf cuff. A torque sensor between the pulley and
footplate measured applied torque and, in the case of closed-loop
control, provided feedback to a control unit. The control unit
included a microprocessor, motor drivers, signal processing
chips, and Bluetooth module. Force-sensitive resistors (FSRs)
on the footplate detected gait events and informed a simple state
machine to appropriately shift between PFX and DFX assistance
during the stance and swing phases of walking (Fig. 1B). A
5-sample moving average filtered torque sensor and FSR analog
readings.

The exoskeleton assistance profile was controlled by an
instantaneously-adaptive Proportional Joint Moment Controller
(PJMC) [13]. PJMC prescribed the desired torque (Tset) as in
equation (1):

Tset = T0
Fsen

Fref
(1)

where Fsen was the real-time FSR reading and Fref was the
average peak FSR reading during a baseline calibration. The
instantaneous sensor force ratio scaled the desired peak torque
setpoint T0 (e.g., 15 Nm) so that it adapted assistance based
on the ankle demand across variable walking conditions [13].
The PJMC controller was calibrated once during steady-state
walking conditions so that any change in speed was reflected in
the real-time FSR reading Fsen, which automatically adjusted
the desired torque profile [13].

In the case of closed-loop control, a PD controller trackedTset

based on the ankle torque (Tmeas) measured from the embedded
torque sensor (Fig. 1C, I). The PD gains for this controller
were carefully tuned to track the desired PFX torque while
limiting resonance (i.e., oscillation amplitude amplification) and
overshoot. This closed-loop controller and these PD gains were
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used in previous studies that demonstrated clinically significant
improvements in joint kinematics, positive ankle joint power,
and metabolic cost of transport in people with cerebral palsy
[4], [15] – outcomes that depended on an appropriately tuned
control system.

B. Open-Loop System Modeling for Low-Level Control

Developing an open-loop motor controller capable of accu-
rately prescribing the high-level adaptive assistance torque from
PJMC required precisely characterizing exoskeleton interaction
with the user during walking. Instead of attempting to develop
and validate an analytical model of the exoskeleton system
dynamics coupled with complex human interaction, we sought
to develop an empirical model to characterize the system exper-
imentally. We first used a basic open-loop current controller to
collect the experimental data for empirically predicting motor
current as a function of ankle torque alone or both ankle torque
and motor velocity during walk across a range of speeds and
PFX assistance levels. The basic open-loop current controller
specified motor current (Cset) as in equation (2):

Cset = Tset (τmRgbRpεmgb)
−1 (2)

where the torque setpoint (Tset) was divided by the motor torque
constant (τm), gearbox and pulley gear ratios (Rgb and Rp,
respectively) and motor and gearbox efficiencies (εmgb). The
gearbox and pulley ratios were 103:1 and 2.3:1, respectively. The
microcontroller recorded the motor current (C) and the average
motor angular velocity (ωmotor) from the motor drivers (ESCON
50/8, Maxon). Maxon motors use hall sensors to detect shaft
velocity. Ankle angular velocity (ω̃ankle) was estimated using
motor and exoskeleton gear ratios assuming no transmission
losses, as in equation (3):

ω̃ankle = ωmotor(RgbRp)
−1. (3)

Collecting data during functional use cases ensured that sys-
tem characteristics, such as energy lost due to friction, and hu-
man disturbances, such as walking speed and assistance profile
variability, were sufficiently captured and subsequently mod-
eled. Motivated by the critical role of positive mechanical ankle
joint power for efficient locomotion [14], [16]– [18] and based on
the rationale that DC motors operate with an inverse relationship
between motor torque production and output velocity [19], we
hypothesized that motor current could be accurately modeled
using the measured torque (Tmeas) and the estimated ankle
angular velocity (ω̃ankle).

We developed a generalized linear model (GLM) of motor
current in MATLAB using Tmeas and ω̃ankle as inputs assuming
normal distributions and a unity link function [20]. Positive
ω̃ankle values correspond to ankle PFX. All coefficients of the
fitted model, including the interaction of Tmeas and ω̃ankle,
were significant at 95% confidence. The complex current model
(ĈC) coefficients are summarized below (Eq. 4).

ĈC = − 0.124 + 0.282 Tmeas + 0.0578 ω̃ankle

+ 0.002 Tmeas ω̃ankle (4)

TABLE I
PARTICIPANT CHARACTERISTICS

Experience: Familiarity walking in the exoskeleton prior to data collection. Preference of
controller was surveyed after data collection. SP1 completed the over-ground experiment.

We also developed a simple motor current model (ĈS) with
only Tmeas as an input (Eq. 5) for the purpose of testing
our secondary hypothesis that ankle velocity is important for
modeling exoskeleton responsiveness.

ĈS = −0.055 + 0.291Tmeas (5)

To employ the regression equations for open-loop control, we
replaced Tmeas with Tset such that both models predict current
using the adaptive desired assistance profile defined by PJMC
(Fig. 1C).

The parameter coefficients of both GLMs can be inter-
preted to make informed predictions about exoskeleton perfor-
mance when using these regression-based open-loop current
controllers. Since both models are dominated by the torque
term, the predicted motor current profile will closely match
the desired torque assistance profile. We also expect that the
complex (velocity- & torque-input) open-loop controller will be
more responsive than the simple (just torque-input) open-loop
controller because the velocity term in Eq. 4 will increase current
in response to high ankle angular velocity (Fig. 1C), such as
during heel strike and toe-off regions of gait. Furthermore, the
interaction term in the complex model represents mechanical
ankle joint power; this term likely favorably increases current
production when torque and ankle angular velocity have the
same direction.

C. Exoskeleton Motor Controller Comparison Experiment

We evaluated the low-level exoskeleton motor controllers
during a treadmill walking experiment approved by Northern
Arizona University’s Institutional Review Board under protocol
#986744. Five unimpaired individuals participated in the study
(Table I). Written informed consent for each participant was
obtained prior to enrollment. Exclusion criteria included any
health condition that could affect walking ability or participant
safety. An operator controlled the treadmill and exoskeleton
through a MATLAB graphical user interface. Participants wore
the exoskeleton and walked on a treadmill at 1.0 m/s for PJMC
baseline calibration; the same participant-specific FSR sensor
calibration was used for all trials. All participants were pre-
scribed 0.25 Nm/kg peak PFX torque assistance.
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Participants walked with closed-loop torque control, simple
(torque-input) open-loop current control, and complex (velocity-
& torque-input) open-loop current control in single-blind ran-
domized order. Participants were told to walk normally prior
to the experiment. No coaching or instructions were provided
during walking trials. Treadmill speed was set to 1.0 m/s, then
1.3 m/s, and back to 1.0 m/s; these speeds are within the typical
ranges for children and adults with cerebral palsy [4], [21],
stroke survivors [2], and unimpaired adults [22]– [24]. The
acceleration/deceleration between speeds was set to 0.02 m/s2.
The time spent at each steady-state speed interval was 3 minutes.

We recorded the desired torque set point (Tset), measured
torque (Tmeas), motor current (C), and motor angular velocity
(ωmotor). Exoskeleton state transitions separated signals into
PFX and DFX regions corresponding to stance and swing phases
of gait, respectively [4]. Controller performance analysis and
assessment, performed across the entire stance phase, was com-
pleted using MATLAB.

Primary controller performance outcome measures included
deviance from the desired control signal, overall torque and
power generation capacity, battery power consumption, and
noise. We calculated root-mean-squared error (RMSE) between
Tset and Tmeas to quantify assistance profile tracking perfor-
mance. Average stance phase measured torque T̄meas was calcu-
lated and normalized by corresponding average demand torque
T̄set to assess average torque capacity and overall assistance
potential. Similarly, peak torque tracking was quantified by the
ratio of maximum demanded torque Tset and corresponding
measured torque Tmeas.

Battery power consumption was calculated by numerically
integrating motor current C with respect to time and is reported
in typical units of battery capacity in Ah. We normalized power
consumption by T̄meas to evaluate power use relative to torque
produced. Noise levels were calculated by averaging measured
sound recordings over the course of each trial.

The demand assistance profile Tset is generated in real-time
to instantaneously adapt the torque profile to variations in speed
and terrain [13]. Additionally, angular velocity is an important
contributor to ankle power [16], [17] and a controller must be
able to provide torque assistance without limiting joint range of
motion. To assess controller kinematic adaptability, motor peak
PFX (toe-off) angular velocities for each stance phase were also
collected and averaged.

D. Framework Verification Experiment

To verify the effectiveness of our controller design framework
and demonstrate utility beyond treadmill walking, we recruited
an additional participant SP1 (Table I) to perform over-ground
exoskeleton walking experiments. The same general protocol
was followed to build new open-loop GLMs and compare
closed-loop and open-loop controllers. We purposefully used a
different exoskeleton mechanical assembly, including different
motors (EC4-Pole 22 120W, Maxon), gearbox and pulley ratios
(123:1 and 2.9:1, respectively), and actuation cable lengths than
the exoskeleton used for treadmill experiments. The resulting
complex and simple models for this exoskeleton are summarized

in equations (6) and (7), respectively. As before, we replaced
Tmeas with Tset when implementing the open-loop controllers
(Fig. 1C, II and III).

ĈC = 0.343 Tmeas + 0.0236 ω̃ankle

+ 0.004 Tmeas ω̃ankle (6)

ĈS = 0.373 Tmeas (7)

SP1 walked one lap around a 60 m track with 0.25 Nm/kg
PFX assistance and 1 Nm DFX assistance for each controller.
Additionally, SP1 walked one lap with no assistance or resis-
tance using the closed-loop controller (i.e., zero-torque control
[14]) to capture motor behavior under minimal-load conditions.
All trials utilized the same PJMC baseline calibration. During
each lap, we captured Tset, Tmeas, C, and ωmotor. Each lap
contained between 37 and 38 complete strides and each stride
was treated as an individual observation. Average walking speed,
estimated from individual lap speeds, was 1.25 ± 0.03 m/s.
Similar data processing as for the treadmill experiment was
used to calculate performance metrics. We also compared motor
velocity during toe-off between the three controllers and the
closed-loop zero-torque control trial.

E. Statistics

Samples from each walking speed were pooled together for
statistical analysis to collectively quantify performance across
all experimental conditions. The typical number of strides (mean
± standard deviation) averaged and analyzed was 311.8 ±
14.1 strides for closed-loop control, 312.2 ± 9.1 strides for
simple open-loop control, and 313.4 ± 14.2 strides for complex
open-loop control. All experimental data were tested for outliers
in MATLAB within and across participants. Outliers 1.5 times
the interquartile range past the first or third quartiles for the
data set were removed from further analysis. Each performance
metric was treated as an independent set of samples when
testing for outliers. When an outlier was removed, corresponding
observations were also removed from each control mode within
the specific metric to maintain a balanced study design. One-
way repeated measures analyses of variance (ANOVAs) were
used to detect differences in performance metrics between the
closed-loop torque control, simple open-loop current control,
and complex open-loop current control schemes. Significantly
different means detected by ANOVAs were further analyzed
with post-hoc Tukey tests with corrections for multiple compar-
isons. All statistical analyses were performed at 95% confidence.

III. RESULTS

During the main controller comparison experiment, all three
controllers had statistically similar torque RMSE during stance
phase assistance (p= 0.23, Fig. 2A). Both open-loop controllers
had a significantly improved average relative torque ratios
(Tmeas/Tset) compared to the closed-loop controller (p= 0.022
for the simple model, p< 0.001 for the complex model, Fig. 2B);
average torque ratio was similar between the two open-loop con-
trollers (p= 0.46). Both open-loop controllers had a similar peak
relative torque ratio vs. the closed-loop controller (p = 0.21).
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Fig. 2. Summary of treadmill controller performance metrics and statistical analyses. Minimum, first quartile, median, third quartile, and maximum values shown.
∗ indicates a significant difference between control modes at 95% confidence. Closed-loop (CL), simple open-loop, and complex open-loop controller results shown.
(A) Total stance phase exoskeleton torque root-mean-square error (RMSE). (B) Measured torque averaged across each stance phase, T̄meas, normalized by the
average desired torque of the same step, T̄set. The ratio of measured to desired torque quantifies controller overshoot and general system torque capacity. (C)
Power consumption normalized by average measured torque T̄meas. (D) Measured exoskeleton noise during operation.

Fig. 3. Summary of over-ground controller performance metrics and statistical analyses. Minimum, first quartile, median, third quartile, and maximum values
shown. ∗ indicates a significant difference between control modes at 95% confidence. Closed-loop (CL), simple open-loop, and complex open-loop controller
results shown. (A) Stance phase exoskeleton torque root-mean-square error (RMSE) per step. (B) Measured torque averaged across each stance phase, T̄meas,
normalized by the average desired torque of the same step, T̄set. The ratio of measured to desired torque quantifies controller overshoot and general system torque
capacity. (C) The ratio of measured to peak demanded torqueTmeas/Tsetquantifies peak torque tracking and capacity. (D) Power consumption per step normalized
by the average measured torque of that step T̄meas.

The simple and complex open-loop controllers had lower power
consumption (p < 0.001 for both, Fig. 2C) and noise generation
(p < 0.001 for the simple controller, p = 0.002 for the complex
controller, Fig. 2D) compared to the closed-loop controller. Par-
ticipants were asked to state their controller preference (Table I)
and provide a qualitative comparison of the three control modes.

During the framework verification experiment, all three con-
trollers had significantly different torque RMSE during stance
(Fig. 3A, 4A). Closed-loop torque control had the highest torque
RMSE (p < 0.001 vs. both). Simple open-loop control had
the lowest torque RMSE (p = 0.010 vs. complex open-loop).
Both open-loop controllers had significantly improved average
relative torque ratios compared to the closed-loop controller
(p < 0.001 for both, Fig. 3B). All three controllers had sig-
nificantly different peak torque ratios (p < 0.001 closed-loop

vs. both open-loop controllers, p = 0.009 simple vs. complex
open-loop, Fig. 3C); simple open-loop had the highest ratio
while closed-loop control had the lowest. Closed-loop control
had the highest power consumption per step (p < 0.001 vs. both
open-loop controllers, Fig. 3D); the open-loop controllers had
similar consumption (p = 0.74).

IV. DISCUSSION

We accept our primary hypothesis that an appropriately mod-
eled open-loop current controller can meet or exceed the per-
formance of closed-loop torque-feedback control for provid-
ing adaptive cable-actuated ankle exoskeleton assistance during
walking. Specifically, both open-loop current controllers had
similar torque profile RMSE and peak relative torque ratios
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Fig. 4. Stance phase ankle torque (A) and motor velocity (B) profiles during
over-ground walking. Lines designate the mean profile and shaded regions show
standard deviations.

vs. the closed-loop torque controller, and both open-loop con-
trollers also had greater average measured to demanded torque,
better (lower) battery power consumption relative to torque
output, and quieter function than the closed-loop controller
during treadmill walking (Fig. 2). Both open-loop controllers
adapted well to changes in walking speed and torque demand,
consistently producing good profile tracking. We accomplished
this by modeling human-robot interactions using generalized
linear regression during functional use cases, thereby capturing
exoskeleton and human dynamics including inefficiencies due
to friction and transmission losses. This empirical method was
quick (< 15 minutes) and effective in modeling two different
cable-actuated exoskeletons. The framework verification exper-
iment corroborated the treadmill results and provided evidence
that our proposed empirical method for developing open-loop
controllers can be generalized to other cable-actuated exoskele-
tons. Though promising, the results should be interpreted with
care as this preliminary study involved only a few unimpaired
participants under controlled conditions. Future work will ex-
pand the quantity and variety of participants and walking sce-
narios.

We asked participants to identify their preferred controller
to assess whether perception matched the quantitative perfor-
mance results. Controller preference was varied: two partici-
pants preferred the closed-loop torque controller, two preferred
the complex model open-loop controller, and one preferred the
simple model open-loop controller (Table I). The supplemen-
tal participant also preferred the simple open-loop controller,
splitting preference evenly among the three controllers. The
two participants that preferred closed-loop torque control stated
that they liked the responsiveness compared to the open-loop
controllers that felt “stiffer” and “less responsive”. On the other

hand, most participants commented that open-loop control felt
more “consistent” and “assistive”, particularly regarding peak
torque, which supported the results showing improved relative
torque production when walking with open-loop controllers.

We are unable to prove or disprove our secondary hypothesis
that the inclusion of motor velocity as a model input would re-
sult in improved open-loop controller performance. There were
no statistically significant differences between the simple and
complex open-loop controller performance metrics during the
main treadmill experiment (Fig. 2), while the simple open-loop
controller had lower torque RMSE vs. the complex controller
during the framework verification experiment (Fig. 3). Prompted
by these results, we completed a post-hoc bench-top analysis to
verify our ability to estimate ankle velocity from motor velocity
(i.e., Eq. (3)). We observed considerable compliance in the
ankle joint’s angular position (∼15°) when the motors were
stalled, confirming our suspicion that motor angular velocity
cannot be used to accurately estimate ankle angular velocity
due to mechanical elasticity and deformation of the Bowden
cable transmission system at high torque. While including scaled
motor velocity (i.e., estimated ankle velocity) as a model input
was ineffective at improving open-loop motor control, future
work should evaluate the use of an angular velocity sensor in-line
with the ankle joint.

We initially planned to analyze peak ankle angular toe-off
velocity and compare PFX power production for each controller.
Peak ankle joint mechanical power typically occurs during the
late stance phase of walking when the ankle produces large
plantar-flexor angular velocity and moment during push-off
[16], [18], [25]. User comments that the open-loop controllers
felt “stiffer” encouraged a closer look at motor behavior during
assistance. We discovered that all three controllers significantly
underestimated peak biological ankle velocity during toe-off
[26]. This was likely the result of series elasticity across the
transmission system and ankle assembly, but also the inverse
relationship between torque production and angular velocity for
DC motors [19]. For example, the closed-loop controller had
reduced toe-off velocities when providing assistance vs. when
operating in zero-torque control (p < 0.001, Figs. 4, 5B).

Open-loop control had lower toe-off velocity than closed-
loop control, which may have contributed to user perception
of “stiffness” but also improved torque production efficiency
(Figs. 4, 5). The open-loop controllers may have utilized trans-
mission friction and elastic deformation of carbon fiber ex-
oskeleton components to “build” torque during early-mid stance
that subsequently was “released” during toe-off, requiring less
motor power. User perception was that assistance was much
stronger with open- vs. closed-loop control. We plan to conduct
a more-detailed biomechanical analysis using motion capture
and explore methods for improving responsiveness in the open-
loop controllers; a direct measurement of ankle joint velocity
may improve the complex (velocity- & torque-input) controller
performance.

Future work should quantify the effects of closed-loop vs.
open-loop motor controllers upon human gait mechanics,
energetics, and muscle control, particularly over an extended
acclimation period with the exoskeleton. Several previous
studies demonstrated clinically significant improvements in

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on August 10,2020 at 19:50:50 UTC from IEEE Xplore.  Restrictions apply. 



OREKHOV et al.: CLOSING THE LOOP ON EXOSKELETON MOTOR CONTROLLERS: BENEFITS OF REGRESSION-BASED OPEN-LOOP CONTROL 6031

Fig. 5. Comparison of motor toe-off velocity during over-ground walking. The
open-loop (OL) controllers and the closed-loop (CL) controller with assistance
were all significantly different from each other and from the no-load velocity.

joint kinematics, positive ankle power, muscle activity, and
metabolic cost of transport in impaired populations using the
closed-loop torque-feedback controller [4], [14], [15]. There is
evidence that humans entrain (i.e., adapt biomechanics) to the
frequency of external stimuli such as mechanical perturbations
[27], [28]. While torque tracking was similar between open- and
closed-loop motor control, user perception of “more consistent”
assistance for open-loop control suggests that it may be more ef-
fective than closed-loop controllers at improving gait mechanics
in individuals with neuromuscular impairment as the rhythmic
nature of open-loop control may encourage a consistent step
cadence and a reduction in muscle firing pattern variability.

Open-loop control may be particularly attractive for com-
mercialization because it produced significantly reduced audible
noise and had more efficient torque production. The open-loop
controllers averaged 127% of the closed-loop average torque
output with 64% of the battery consumption and only 89% of
the audible decibel readings (Fig. 6). The 11% reduction in
decibel measurement, or around 8 dB, means that the open-loop
controllers were nearly half as loud as the closed-loop controller
due to the logarithmic scale; noise level went from close to that
of a vacuum cleaner for closed-loop control to close to that of
conversational speech for open-loop control.

In summary, the results of this study show that a simple
empirical modeling framework can be effective for develop-
ing sensor-less motor controllers for cable-actuated robotic
exoskeletons. Both simple (torque-input only) and complex
(velocity- and torque-input) open-loop controllers matched or
exceeded the torque tracking and capacity of our finely-tuned
closed-loop torque-feedback controller with significantly lower
noise and power consumption during walking (Figs. 2, 3, 5A,
and 6). It remains unclear whether velocity input is beneficial for
open-loop controller performance, though the high variability in
performance of the complex controller suggests better sensitivity
to different gait patterns than the simple controller. Low-level

Fig. 6. A radar plot of the primary controller performance metrics. Treadmill
results from the simple and complex open-loop controllers are reported as a
percentage of the results from closed-loop control indicated with a blue dashed
pentagon. The open-loop controllers had reduced noise and power consumption
Cbattery , increased average stance torque ratio T̄meas/T̄set, and similar torque
tracking TRMSE and peak stance torque ratio Tmeas/Tset.

open-loop exoskeleton motor controllers hold potential to im-
prove exoskeleton performance and reduce cost, weight, and
complexity by eliminating the need for torque-feedback sensors.
The resulting improvements in power consumption and noise
generation may facilitate commercialization, long-term inter-
vention studies, and out-of-lab use. Future work will address the
limitation of estimating ankle velocity using motor hall sensors
and elucidate exoskeleton-user interaction.
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